1 #include <tommath.h> 2 #ifdef BN_MP_KARATSUBA_MUL_C 3 /* LibTomMath, multiple-precision integer library -- Tom St Denis 4 * 5 * LibTomMath is a library that provides multiple-precision 6 * integer arithmetic as well as number theoretic functionality. 7 * 8 * The library was designed directly after the MPI library by 9 * Michael Fromberger but has been written from scratch with 10 * additional optimizations in place. 11 * 12 * The library is free for all purposes without any express 13 * guarantee it works. 14 * 15 * Tom St Denis, tomstdenis (at) gmail.com, http://math.libtomcrypt.com 16 */ 17 18 /* c = |a| * |b| using Karatsuba Multiplication using 19 * three half size multiplications 20 * 21 * Let B represent the radix [e.g. 2**DIGIT_BIT] and 22 * let n represent half of the number of digits in 23 * the min(a,b) 24 * 25 * a = a1 * B**n + a0 26 * b = b1 * B**n + b0 27 * 28 * Then, a * b => 29 a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0 30 * 31 * Note that a1b1 and a0b0 are used twice and only need to be 32 * computed once. So in total three half size (half # of 33 * digit) multiplications are performed, a0b0, a1b1 and 34 * (a1+b1)(a0+b0) 35 * 36 * Note that a multiplication of half the digits requires 37 * 1/4th the number of single precision multiplications so in 38 * total after one call 25% of the single precision multiplications 39 * are saved. Note also that the call to mp_mul can end up back 40 * in this function if the a0, a1, b0, or b1 are above the threshold. 41 * This is known as divide-and-conquer and leads to the famous 42 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than 43 * the standard O(N**2) that the baseline/comba methods use. 44 * Generally though the overhead of this method doesn't pay off 45 * until a certain size (N ~ 80) is reached. 46 */ 47 int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c) 48 { 49 mp_int x0, x1, y0, y1, t1, x0y0, x1y1; 50 int B, err; 51 52 /* default the return code to an error */ 53 err = MP_MEM; 54 55 /* min # of digits */ 56 B = MIN (a->used, b->used); 57 58 /* now divide in two */ 59 B = B >> 1; 60 61 /* init copy all the temps */ 62 if (mp_init_size (&x0, B) != MP_OKAY) 63 goto ERR; 64 if (mp_init_size (&x1, a->used - B) != MP_OKAY) 65 goto X0; 66 if (mp_init_size (&y0, B) != MP_OKAY) 67 goto X1; 68 if (mp_init_size (&y1, b->used - B) != MP_OKAY) 69 goto Y0; 70 71 /* init temps */ 72 if (mp_init_size (&t1, B * 2) != MP_OKAY) 73 goto Y1; 74 if (mp_init_size (&x0y0, B * 2) != MP_OKAY) 75 goto T1; 76 if (mp_init_size (&x1y1, B * 2) != MP_OKAY) 77 goto X0Y0; 78 79 /* now shift the digits */ 80 x0.used = y0.used = B; 81 x1.used = a->used - B; 82 y1.used = b->used - B; 83 84 { 85 register int x; 86 register mp_digit *tmpa, *tmpb, *tmpx, *tmpy; 87 88 /* we copy the digits directly instead of using higher level functions 89 * since we also need to shift the digits 90 */ 91 tmpa = a->dp; 92 tmpb = b->dp; 93 94 tmpx = x0.dp; 95 tmpy = y0.dp; 96 for (x = 0; x < B; x++) { 97 *tmpx++ = *tmpa++; 98 *tmpy++ = *tmpb++; 99 } 100 101 tmpx = x1.dp; 102 for (x = B; x < a->used; x++) { 103 *tmpx++ = *tmpa++; 104 } 105 106 tmpy = y1.dp; 107 for (x = B; x < b->used; x++) { 108 *tmpy++ = *tmpb++; 109 } 110 } 111 112 /* only need to clamp the lower words since by definition the 113 * upper words x1/y1 must have a known number of digits 114 */ 115 mp_clamp (&x0); 116 mp_clamp (&y0); 117 118 /* now calc the products x0y0 and x1y1 */ 119 /* after this x0 is no longer required, free temp [x0==t2]! */ 120 if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY) 121 goto X1Y1; /* x0y0 = x0*y0 */ 122 if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY) 123 goto X1Y1; /* x1y1 = x1*y1 */ 124 125 /* now calc x1+x0 and y1+y0 */ 126 if (s_mp_add (&x1, &x0, &t1) != MP_OKAY) 127 goto X1Y1; /* t1 = x1 - x0 */ 128 if (s_mp_add (&y1, &y0, &x0) != MP_OKAY) 129 goto X1Y1; /* t2 = y1 - y0 */ 130 if (mp_mul (&t1, &x0, &t1) != MP_OKAY) 131 goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */ 132 133 /* add x0y0 */ 134 if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY) 135 goto X1Y1; /* t2 = x0y0 + x1y1 */ 136 if (s_mp_sub (&t1, &x0, &t1) != MP_OKAY) 137 goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */ 138 139 /* shift by B */ 140 if (mp_lshd (&t1, B) != MP_OKAY) 141 goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */ 142 if (mp_lshd (&x1y1, B * 2) != MP_OKAY) 143 goto X1Y1; /* x1y1 = x1y1 << 2*B */ 144 145 if (mp_add (&x0y0, &t1, &t1) != MP_OKAY) 146 goto X1Y1; /* t1 = x0y0 + t1 */ 147 if (mp_add (&t1, &x1y1, c) != MP_OKAY) 148 goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */ 149 150 /* Algorithm succeeded set the return code to MP_OKAY */ 151 err = MP_OKAY; 152 153 X1Y1:mp_clear (&x1y1); 154 X0Y0:mp_clear (&x0y0); 155 T1:mp_clear (&t1); 156 Y1:mp_clear (&y1); 157 Y0:mp_clear (&y0); 158 X1:mp_clear (&x1); 159 X0:mp_clear (&x0); 160 ERR: 161 return err; 162 } 163 #endif 164 165 /* $Source: /cvs/libtom/libtommath/bn_mp_karatsuba_mul.c,v $ */ 166 /* $Revision: 1.5 $ */ 167 /* $Date: 2006/03/31 14:18:44 $ */ 168