Home | History | Annotate | Download | only in Geometry
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra. Eigen itself is part of the KDE project.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <g.gael (at) free.fr>
      5 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
     12 
     13 namespace Eigen {
     14 
     15 /** \geometry_module \ingroup Geometry_Module
     16   *
     17   * \class Hyperplane
     18   *
     19   * \brief A hyperplane
     20   *
     21   * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
     22   * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
     23   *
     24   * \param _Scalar the scalar type, i.e., the type of the coefficients
     25   * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
     26   *             Notice that the dimension of the hyperplane is _AmbientDim-1.
     27   *
     28   * This class represents an hyperplane as the zero set of the implicit equation
     29   * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
     30   * and \f$ d \f$ is the distance (offset) to the origin.
     31   */
     32 template <typename _Scalar, int _AmbientDim>
     33 class Hyperplane
     34 {
     35 public:
     36   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
     37   enum { AmbientDimAtCompileTime = _AmbientDim };
     38   typedef _Scalar Scalar;
     39   typedef typename NumTraits<Scalar>::Real RealScalar;
     40   typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
     41   typedef Matrix<Scalar,int(AmbientDimAtCompileTime)==Dynamic
     42                         ? Dynamic
     43                         : int(AmbientDimAtCompileTime)+1,1> Coefficients;
     44   typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
     45 
     46   /** Default constructor without initialization */
     47   inline explicit Hyperplane() {}
     48 
     49   /** Constructs a dynamic-size hyperplane with \a _dim the dimension
     50     * of the ambient space */
     51   inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {}
     52 
     53   /** Construct a plane from its normal \a n and a point \a e onto the plane.
     54     * \warning the vector normal is assumed to be normalized.
     55     */
     56   inline Hyperplane(const VectorType& n, const VectorType& e)
     57     : m_coeffs(n.size()+1)
     58   {
     59     normal() = n;
     60     offset() = -e.eigen2_dot(n);
     61   }
     62 
     63   /** Constructs a plane from its normal \a n and distance to the origin \a d
     64     * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
     65     * \warning the vector normal is assumed to be normalized.
     66     */
     67   inline Hyperplane(const VectorType& n, Scalar d)
     68     : m_coeffs(n.size()+1)
     69   {
     70     normal() = n;
     71     offset() = d;
     72   }
     73 
     74   /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
     75     * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
     76     */
     77   static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
     78   {
     79     Hyperplane result(p0.size());
     80     result.normal() = (p1 - p0).unitOrthogonal();
     81     result.offset() = -result.normal().eigen2_dot(p0);
     82     return result;
     83   }
     84 
     85   /** Constructs a hyperplane passing through the three points. The dimension of the ambient space
     86     * is required to be exactly 3.
     87     */
     88   static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
     89   {
     90     EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
     91     Hyperplane result(p0.size());
     92     result.normal() = (p2 - p0).cross(p1 - p0).normalized();
     93     result.offset() = -result.normal().eigen2_dot(p0);
     94     return result;
     95   }
     96 
     97   /** Constructs a hyperplane passing through the parametrized line \a parametrized.
     98     * If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
     99     * so an arbitrary choice is made.
    100     */
    101   // FIXME to be consitent with the rest this could be implemented as a static Through function ??
    102   explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
    103   {
    104     normal() = parametrized.direction().unitOrthogonal();
    105     offset() = -normal().eigen2_dot(parametrized.origin());
    106   }
    107 
    108   ~Hyperplane() {}
    109 
    110   /** \returns the dimension in which the plane holds */
    111   inline int dim() const { return int(AmbientDimAtCompileTime)==Dynamic ? m_coeffs.size()-1 : int(AmbientDimAtCompileTime); }
    112 
    113   /** normalizes \c *this */
    114   void normalize(void)
    115   {
    116     m_coeffs /= normal().norm();
    117   }
    118 
    119   /** \returns the signed distance between the plane \c *this and a point \a p.
    120     * \sa absDistance()
    121     */
    122   inline Scalar signedDistance(const VectorType& p) const { return p.eigen2_dot(normal()) + offset(); }
    123 
    124   /** \returns the absolute distance between the plane \c *this and a point \a p.
    125     * \sa signedDistance()
    126     */
    127   inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); }
    128 
    129   /** \returns the projection of a point \a p onto the plane \c *this.
    130     */
    131   inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
    132 
    133   /** \returns a constant reference to the unit normal vector of the plane, which corresponds
    134     * to the linear part of the implicit equation.
    135     */
    136   inline const NormalReturnType normal() const { return NormalReturnType(*const_cast<Coefficients*>(&m_coeffs),0,0,dim(),1); }
    137 
    138   /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
    139     * to the linear part of the implicit equation.
    140     */
    141   inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
    142 
    143   /** \returns the distance to the origin, which is also the "constant term" of the implicit equation
    144     * \warning the vector normal is assumed to be normalized.
    145     */
    146   inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
    147 
    148   /** \returns a non-constant reference to the distance to the origin, which is also the constant part
    149     * of the implicit equation */
    150   inline Scalar& offset() { return m_coeffs(dim()); }
    151 
    152   /** \returns a constant reference to the coefficients c_i of the plane equation:
    153     * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
    154     */
    155   inline const Coefficients& coeffs() const { return m_coeffs; }
    156 
    157   /** \returns a non-constant reference to the coefficients c_i of the plane equation:
    158     * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
    159     */
    160   inline Coefficients& coeffs() { return m_coeffs; }
    161 
    162   /** \returns the intersection of *this with \a other.
    163     *
    164     * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
    165     *
    166     * \note If \a other is approximately parallel to *this, this method will return any point on *this.
    167     */
    168   VectorType intersection(const Hyperplane& other)
    169   {
    170     EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
    171     Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
    172     // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
    173     // whether the two lines are approximately parallel.
    174     if(ei_isMuchSmallerThan(det, Scalar(1)))
    175     {   // special case where the two lines are approximately parallel. Pick any point on the first line.
    176         if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0)))
    177             return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
    178         else
    179             return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
    180     }
    181     else
    182     {   // general case
    183         Scalar invdet = Scalar(1) / det;
    184         return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
    185                           invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
    186     }
    187   }
    188 
    189   /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
    190     *
    191     * \param mat the Dim x Dim transformation matrix
    192     * \param traits specifies whether the matrix \a mat represents an Isometry
    193     *               or a more generic Affine transformation. The default is Affine.
    194     */
    195   template<typename XprType>
    196   inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
    197   {
    198     if (traits==Affine)
    199       normal() = mat.inverse().transpose() * normal();
    200     else if (traits==Isometry)
    201       normal() = mat * normal();
    202     else
    203     {
    204       ei_assert("invalid traits value in Hyperplane::transform()");
    205     }
    206     return *this;
    207   }
    208 
    209   /** Applies the transformation \a t to \c *this and returns a reference to \c *this.
    210     *
    211     * \param t the transformation of dimension Dim
    212     * \param traits specifies whether the transformation \a t represents an Isometry
    213     *               or a more generic Affine transformation. The default is Affine.
    214     *               Other kind of transformations are not supported.
    215     */
    216   inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t,
    217                                 TransformTraits traits = Affine)
    218   {
    219     transform(t.linear(), traits);
    220     offset() -= t.translation().eigen2_dot(normal());
    221     return *this;
    222   }
    223 
    224   /** \returns \c *this with scalar type casted to \a NewScalarType
    225     *
    226     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    227     * then this function smartly returns a const reference to \c *this.
    228     */
    229   template<typename NewScalarType>
    230   inline typename internal::cast_return_type<Hyperplane,
    231            Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
    232   {
    233     return typename internal::cast_return_type<Hyperplane,
    234                     Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
    235   }
    236 
    237   /** Copy constructor with scalar type conversion */
    238   template<typename OtherScalarType>
    239   inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime>& other)
    240   { m_coeffs = other.coeffs().template cast<Scalar>(); }
    241 
    242   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    243     * determined by \a prec.
    244     *
    245     * \sa MatrixBase::isApprox() */
    246   bool isApprox(const Hyperplane& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
    247   { return m_coeffs.isApprox(other.m_coeffs, prec); }
    248 
    249 protected:
    250 
    251   Coefficients m_coeffs;
    252 };
    253 
    254 } // end namespace Eigen
    255