Home | History | Annotate | Download | only in blas
      1       SUBROUTINE STBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
      2 *     .. Scalar Arguments ..
      3       INTEGER INCX,K,LDA,N
      4       CHARACTER DIAG,TRANS,UPLO
      5 *     ..
      6 *     .. Array Arguments ..
      7       REAL A(LDA,*),X(*)
      8 *     ..
      9 *
     10 *  Purpose
     11 *  =======
     12 *
     13 *  STBMV  performs one of the matrix-vector operations
     14 *
     15 *     x := A*x,   or   x := A'*x,
     16 *
     17 *  where x is an n element vector and  A is an n by n unit, or non-unit,
     18 *  upper or lower triangular band matrix, with ( k + 1 ) diagonals.
     19 *
     20 *  Arguments
     21 *  ==========
     22 *
     23 *  UPLO   - CHARACTER*1.
     24 *           On entry, UPLO specifies whether the matrix is an upper or
     25 *           lower triangular matrix as follows:
     26 *
     27 *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
     28 *
     29 *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
     30 *
     31 *           Unchanged on exit.
     32 *
     33 *  TRANS  - CHARACTER*1.
     34 *           On entry, TRANS specifies the operation to be performed as
     35 *           follows:
     36 *
     37 *              TRANS = 'N' or 'n'   x := A*x.
     38 *
     39 *              TRANS = 'T' or 't'   x := A'*x.
     40 *
     41 *              TRANS = 'C' or 'c'   x := A'*x.
     42 *
     43 *           Unchanged on exit.
     44 *
     45 *  DIAG   - CHARACTER*1.
     46 *           On entry, DIAG specifies whether or not A is unit
     47 *           triangular as follows:
     48 *
     49 *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
     50 *
     51 *              DIAG = 'N' or 'n'   A is not assumed to be unit
     52 *                                  triangular.
     53 *
     54 *           Unchanged on exit.
     55 *
     56 *  N      - INTEGER.
     57 *           On entry, N specifies the order of the matrix A.
     58 *           N must be at least zero.
     59 *           Unchanged on exit.
     60 *
     61 *  K      - INTEGER.
     62 *           On entry with UPLO = 'U' or 'u', K specifies the number of
     63 *           super-diagonals of the matrix A.
     64 *           On entry with UPLO = 'L' or 'l', K specifies the number of
     65 *           sub-diagonals of the matrix A.
     66 *           K must satisfy  0 .le. K.
     67 *           Unchanged on exit.
     68 *
     69 *  A      - REAL             array of DIMENSION ( LDA, n ).
     70 *           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
     71 *           by n part of the array A must contain the upper triangular
     72 *           band part of the matrix of coefficients, supplied column by
     73 *           column, with the leading diagonal of the matrix in row
     74 *           ( k + 1 ) of the array, the first super-diagonal starting at
     75 *           position 2 in row k, and so on. The top left k by k triangle
     76 *           of the array A is not referenced.
     77 *           The following program segment will transfer an upper
     78 *           triangular band matrix from conventional full matrix storage
     79 *           to band storage:
     80 *
     81 *                 DO 20, J = 1, N
     82 *                    M = K + 1 - J
     83 *                    DO 10, I = MAX( 1, J - K ), J
     84 *                       A( M + I, J ) = matrix( I, J )
     85 *              10    CONTINUE
     86 *              20 CONTINUE
     87 *
     88 *           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
     89 *           by n part of the array A must contain the lower triangular
     90 *           band part of the matrix of coefficients, supplied column by
     91 *           column, with the leading diagonal of the matrix in row 1 of
     92 *           the array, the first sub-diagonal starting at position 1 in
     93 *           row 2, and so on. The bottom right k by k triangle of the
     94 *           array A is not referenced.
     95 *           The following program segment will transfer a lower
     96 *           triangular band matrix from conventional full matrix storage
     97 *           to band storage:
     98 *
     99 *                 DO 20, J = 1, N
    100 *                    M = 1 - J
    101 *                    DO 10, I = J, MIN( N, J + K )
    102 *                       A( M + I, J ) = matrix( I, J )
    103 *              10    CONTINUE
    104 *              20 CONTINUE
    105 *
    106 *           Note that when DIAG = 'U' or 'u' the elements of the array A
    107 *           corresponding to the diagonal elements of the matrix are not
    108 *           referenced, but are assumed to be unity.
    109 *           Unchanged on exit.
    110 *
    111 *  LDA    - INTEGER.
    112 *           On entry, LDA specifies the first dimension of A as declared
    113 *           in the calling (sub) program. LDA must be at least
    114 *           ( k + 1 ).
    115 *           Unchanged on exit.
    116 *
    117 *  X      - REAL             array of dimension at least
    118 *           ( 1 + ( n - 1 )*abs( INCX ) ).
    119 *           Before entry, the incremented array X must contain the n
    120 *           element vector x. On exit, X is overwritten with the
    121 *           tranformed vector x.
    122 *
    123 *  INCX   - INTEGER.
    124 *           On entry, INCX specifies the increment for the elements of
    125 *           X. INCX must not be zero.
    126 *           Unchanged on exit.
    127 *
    128 *  Further Details
    129 *  ===============
    130 *
    131 *  Level 2 Blas routine.
    132 *
    133 *  -- Written on 22-October-1986.
    134 *     Jack Dongarra, Argonne National Lab.
    135 *     Jeremy Du Croz, Nag Central Office.
    136 *     Sven Hammarling, Nag Central Office.
    137 *     Richard Hanson, Sandia National Labs.
    138 *
    139 *  =====================================================================
    140 *
    141 *     .. Parameters ..
    142       REAL ZERO
    143       PARAMETER (ZERO=0.0E+0)
    144 *     ..
    145 *     .. Local Scalars ..
    146       REAL TEMP
    147       INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
    148       LOGICAL NOUNIT
    149 *     ..
    150 *     .. External Functions ..
    151       LOGICAL LSAME
    152       EXTERNAL LSAME
    153 *     ..
    154 *     .. External Subroutines ..
    155       EXTERNAL XERBLA
    156 *     ..
    157 *     .. Intrinsic Functions ..
    158       INTRINSIC MAX,MIN
    159 *     ..
    160 *
    161 *     Test the input parameters.
    162 *
    163       INFO = 0
    164       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
    165           INFO = 1
    166       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
    167      +         .NOT.LSAME(TRANS,'C')) THEN
    168           INFO = 2
    169       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
    170           INFO = 3
    171       ELSE IF (N.LT.0) THEN
    172           INFO = 4
    173       ELSE IF (K.LT.0) THEN
    174           INFO = 5
    175       ELSE IF (LDA.LT. (K+1)) THEN
    176           INFO = 7
    177       ELSE IF (INCX.EQ.0) THEN
    178           INFO = 9
    179       END IF
    180       IF (INFO.NE.0) THEN
    181           CALL XERBLA('STBMV ',INFO)
    182           RETURN
    183       END IF
    184 *
    185 *     Quick return if possible.
    186 *
    187       IF (N.EQ.0) RETURN
    188 *
    189       NOUNIT = LSAME(DIAG,'N')
    190 *
    191 *     Set up the start point in X if the increment is not unity. This
    192 *     will be  ( N - 1 )*INCX   too small for descending loops.
    193 *
    194       IF (INCX.LE.0) THEN
    195           KX = 1 - (N-1)*INCX
    196       ELSE IF (INCX.NE.1) THEN
    197           KX = 1
    198       END IF
    199 *
    200 *     Start the operations. In this version the elements of A are
    201 *     accessed sequentially with one pass through A.
    202 *
    203       IF (LSAME(TRANS,'N')) THEN
    204 *
    205 *         Form  x := A*x.
    206 *
    207           IF (LSAME(UPLO,'U')) THEN
    208               KPLUS1 = K + 1
    209               IF (INCX.EQ.1) THEN
    210                   DO 20 J = 1,N
    211                       IF (X(J).NE.ZERO) THEN
    212                           TEMP = X(J)
    213                           L = KPLUS1 - J
    214                           DO 10 I = MAX(1,J-K),J - 1
    215                               X(I) = X(I) + TEMP*A(L+I,J)
    216    10                     CONTINUE
    217                           IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J)
    218                       END IF
    219    20             CONTINUE
    220               ELSE
    221                   JX = KX
    222                   DO 40 J = 1,N
    223                       IF (X(JX).NE.ZERO) THEN
    224                           TEMP = X(JX)
    225                           IX = KX
    226                           L = KPLUS1 - J
    227                           DO 30 I = MAX(1,J-K),J - 1
    228                               X(IX) = X(IX) + TEMP*A(L+I,J)
    229                               IX = IX + INCX
    230    30                     CONTINUE
    231                           IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J)
    232                       END IF
    233                       JX = JX + INCX
    234                       IF (J.GT.K) KX = KX + INCX
    235    40             CONTINUE
    236               END IF
    237           ELSE
    238               IF (INCX.EQ.1) THEN
    239                   DO 60 J = N,1,-1
    240                       IF (X(J).NE.ZERO) THEN
    241                           TEMP = X(J)
    242                           L = 1 - J
    243                           DO 50 I = MIN(N,J+K),J + 1,-1
    244                               X(I) = X(I) + TEMP*A(L+I,J)
    245    50                     CONTINUE
    246                           IF (NOUNIT) X(J) = X(J)*A(1,J)
    247                       END IF
    248    60             CONTINUE
    249               ELSE
    250                   KX = KX + (N-1)*INCX
    251                   JX = KX
    252                   DO 80 J = N,1,-1
    253                       IF (X(JX).NE.ZERO) THEN
    254                           TEMP = X(JX)
    255                           IX = KX
    256                           L = 1 - J
    257                           DO 70 I = MIN(N,J+K),J + 1,-1
    258                               X(IX) = X(IX) + TEMP*A(L+I,J)
    259                               IX = IX - INCX
    260    70                     CONTINUE
    261                           IF (NOUNIT) X(JX) = X(JX)*A(1,J)
    262                       END IF
    263                       JX = JX - INCX
    264                       IF ((N-J).GE.K) KX = KX - INCX
    265    80             CONTINUE
    266               END IF
    267           END IF
    268       ELSE
    269 *
    270 *        Form  x := A'*x.
    271 *
    272           IF (LSAME(UPLO,'U')) THEN
    273               KPLUS1 = K + 1
    274               IF (INCX.EQ.1) THEN
    275                   DO 100 J = N,1,-1
    276                       TEMP = X(J)
    277                       L = KPLUS1 - J
    278                       IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
    279                       DO 90 I = J - 1,MAX(1,J-K),-1
    280                           TEMP = TEMP + A(L+I,J)*X(I)
    281    90                 CONTINUE
    282                       X(J) = TEMP
    283   100             CONTINUE
    284               ELSE
    285                   KX = KX + (N-1)*INCX
    286                   JX = KX
    287                   DO 120 J = N,1,-1
    288                       TEMP = X(JX)
    289                       KX = KX - INCX
    290                       IX = KX
    291                       L = KPLUS1 - J
    292                       IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
    293                       DO 110 I = J - 1,MAX(1,J-K),-1
    294                           TEMP = TEMP + A(L+I,J)*X(IX)
    295                           IX = IX - INCX
    296   110                 CONTINUE
    297                       X(JX) = TEMP
    298                       JX = JX - INCX
    299   120             CONTINUE
    300               END IF
    301           ELSE
    302               IF (INCX.EQ.1) THEN
    303                   DO 140 J = 1,N
    304                       TEMP = X(J)
    305                       L = 1 - J
    306                       IF (NOUNIT) TEMP = TEMP*A(1,J)
    307                       DO 130 I = J + 1,MIN(N,J+K)
    308                           TEMP = TEMP + A(L+I,J)*X(I)
    309   130                 CONTINUE
    310                       X(J) = TEMP
    311   140             CONTINUE
    312               ELSE
    313                   JX = KX
    314                   DO 160 J = 1,N
    315                       TEMP = X(JX)
    316                       KX = KX + INCX
    317                       IX = KX
    318                       L = 1 - J
    319                       IF (NOUNIT) TEMP = TEMP*A(1,J)
    320                       DO 150 I = J + 1,MIN(N,J+K)
    321                           TEMP = TEMP + A(L+I,J)*X(IX)
    322                           IX = IX + INCX
    323   150                 CONTINUE
    324                       X(JX) = TEMP
    325                       JX = JX + INCX
    326   160             CONTINUE
    327               END IF
    328           END IF
    329       END IF
    330 *
    331       RETURN
    332 *
    333 *     End of STBMV .
    334 *
    335       END
    336