1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. Eigen itself is part of the KDE project. 3 // 4 // Copyright (C) 2008 Gael Guennebaud <g.gael (at) free.fr> 5 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #include "main.h" 12 #include <functional> 13 #include <Eigen/Array> 14 15 using namespace std; 16 17 template<typename Scalar> struct AddIfNull { 18 const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;} 19 enum { Cost = NumTraits<Scalar>::AddCost }; 20 }; 21 22 template<typename MatrixType> void cwiseops(const MatrixType& m) 23 { 24 typedef typename MatrixType::Scalar Scalar; 25 typedef typename NumTraits<Scalar>::Real RealScalar; 26 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; 27 28 int rows = m.rows(); 29 int cols = m.cols(); 30 31 MatrixType m1 = MatrixType::Random(rows, cols), 32 m2 = MatrixType::Random(rows, cols), 33 m3(rows, cols), 34 m4(rows, cols), 35 mzero = MatrixType::Zero(rows, cols), 36 mones = MatrixType::Ones(rows, cols), 37 identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> 38 ::Identity(rows, rows), 39 square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows); 40 VectorType v1 = VectorType::Random(rows), 41 v2 = VectorType::Random(rows), 42 vzero = VectorType::Zero(rows), 43 vones = VectorType::Ones(rows), 44 v3(rows); 45 46 int r = ei_random<int>(0, rows-1), 47 c = ei_random<int>(0, cols-1); 48 49 Scalar s1 = ei_random<Scalar>(); 50 51 // test Zero, Ones, Constant, and the set* variants 52 m3 = MatrixType::Constant(rows, cols, s1); 53 for (int j=0; j<cols; ++j) 54 for (int i=0; i<rows; ++i) 55 { 56 VERIFY_IS_APPROX(mzero(i,j), Scalar(0)); 57 VERIFY_IS_APPROX(mones(i,j), Scalar(1)); 58 VERIFY_IS_APPROX(m3(i,j), s1); 59 } 60 VERIFY(mzero.isZero()); 61 VERIFY(mones.isOnes()); 62 VERIFY(m3.isConstant(s1)); 63 VERIFY(identity.isIdentity()); 64 VERIFY_IS_APPROX(m4.setConstant(s1), m3); 65 VERIFY_IS_APPROX(m4.setConstant(rows,cols,s1), m3); 66 VERIFY_IS_APPROX(m4.setZero(), mzero); 67 VERIFY_IS_APPROX(m4.setZero(rows,cols), mzero); 68 VERIFY_IS_APPROX(m4.setOnes(), mones); 69 VERIFY_IS_APPROX(m4.setOnes(rows,cols), mones); 70 m4.fill(s1); 71 VERIFY_IS_APPROX(m4, m3); 72 73 VERIFY_IS_APPROX(v3.setConstant(rows, s1), VectorType::Constant(rows,s1)); 74 VERIFY_IS_APPROX(v3.setZero(rows), vzero); 75 VERIFY_IS_APPROX(v3.setOnes(rows), vones); 76 77 m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones); 78 79 VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2()); 80 VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square()); 81 VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube()); 82 83 VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1)); 84 VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1)); 85 m3 = m1; m3.cwise() += 1; 86 VERIFY_IS_APPROX(m1 + mones, m3); 87 m3 = m1; m3.cwise() -= 1; 88 VERIFY_IS_APPROX(m1 - mones, m3); 89 90 VERIFY_IS_APPROX(m2, m2.cwise() * mones); 91 VERIFY_IS_APPROX(m1.cwise() * m2, m2.cwise() * m1); 92 m3 = m1; 93 m3.cwise() *= m2; 94 VERIFY_IS_APPROX(m3, m1.cwise() * m2); 95 96 VERIFY_IS_APPROX(mones, m2.cwise()/m2); 97 if(NumTraits<Scalar>::HasFloatingPoint) 98 { 99 VERIFY_IS_APPROX(m1.cwise() / m2, m1.cwise() * (m2.cwise().inverse())); 100 m3 = m1.cwise().abs().cwise().sqrt(); 101 VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs()); 102 VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs()); 103 VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs()); 104 105 VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square()); 106 m3 = (m1.cwise().abs().cwise()<=RealScalar(0.01)).select(mones,m1); 107 VERIFY_IS_APPROX(m3.cwise().pow(-1), m3.cwise().inverse()); 108 m3 = m1.cwise().abs(); 109 VERIFY_IS_APPROX(m3.cwise().pow(RealScalar(0.5)), m3.cwise().sqrt()); 110 111 // VERIFY_IS_APPROX(m1.cwise().tan(), m1.cwise().sin().cwise() / m1.cwise().cos()); 112 VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square()); 113 m3 = m1; 114 m3.cwise() /= m2; 115 VERIFY_IS_APPROX(m3, m1.cwise() / m2); 116 } 117 118 // check min 119 VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) ); 120 VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 ); 121 VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones ); 122 123 // check max 124 VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) ); 125 VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 ); 126 VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones ); 127 128 VERIFY( (m1.cwise() == m1).all() ); 129 VERIFY( (m1.cwise() != m2).any() ); 130 VERIFY(!(m1.cwise() == (m1+mones)).any() ); 131 if (rows*cols>1) 132 { 133 m3 = m1; 134 m3(r,c) += 1; 135 VERIFY( (m1.cwise() == m3).any() ); 136 VERIFY( !(m1.cwise() == m3).all() ); 137 } 138 VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() ); 139 VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() ); 140 VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() ); 141 VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() ); 142 143 VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() ); 144 VERIFY( !(m1.cwise()<m1.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() ); 145 VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() ); 146 } 147 148 void test_eigen2_cwiseop() 149 { 150 for(int i = 0; i < g_repeat ; i++) { 151 CALL_SUBTEST_1( cwiseops(Matrix<float, 1, 1>()) ); 152 CALL_SUBTEST_2( cwiseops(Matrix4d()) ); 153 CALL_SUBTEST_3( cwiseops(MatrixXf(3, 3)) ); 154 CALL_SUBTEST_3( cwiseops(MatrixXf(22, 22)) ); 155 CALL_SUBTEST_4( cwiseops(MatrixXi(8, 12)) ); 156 CALL_SUBTEST_5( cwiseops(MatrixXd(20, 20)) ); 157 } 158 } 159