Home | History | Annotate | Download | only in libpcap
      1 /*#define CHASE_CHAIN*/
      2 /*
      3  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that: (1) source code distributions
      8  * retain the above copyright notice and this paragraph in its entirety, (2)
      9  * distributions including binary code include the above copyright notice and
     10  * this paragraph in its entirety in the documentation or other materials
     11  * provided with the distribution, and (3) all advertising materials mentioning
     12  * features or use of this software display the following acknowledgement:
     13  * ``This product includes software developed by the University of California,
     14  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
     15  * the University nor the names of its contributors may be used to endorse
     16  * or promote products derived from this software without specific prior
     17  * written permission.
     18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
     19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
     20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
     21  */
     22 #ifndef lint
     23 static const char rcsid[] _U_ =
     24     "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.221.2.53 2007/09/12 19:17:24 guy Exp $ (LBL)";
     25 #endif
     26 
     27 #ifdef HAVE_CONFIG_H
     28 #include "config.h"
     29 #endif
     30 
     31 #ifdef WIN32
     32 #include <pcap-stdinc.h>
     33 #else /* WIN32 */
     34 #include <sys/types.h>
     35 #include <sys/socket.h>
     36 #endif /* WIN32 */
     37 
     38 /*
     39  * XXX - why was this included even on UNIX?
     40  */
     41 #ifdef __MINGW32__
     42 #include "IP6_misc.h"
     43 #endif
     44 
     45 #ifndef WIN32
     46 
     47 #ifdef __NetBSD__
     48 #include <sys/param.h>
     49 #endif
     50 
     51 #include <netinet/in.h>
     52 
     53 #endif /* WIN32 */
     54 
     55 #include <stdlib.h>
     56 #include <string.h>
     57 #include <memory.h>
     58 #include <setjmp.h>
     59 #include <stdarg.h>
     60 
     61 #ifdef MSDOS
     62 #include "pcap-dos.h"
     63 #endif
     64 
     65 #include "pcap-int.h"
     66 
     67 #include "ethertype.h"
     68 #include "nlpid.h"
     69 #include "llc.h"
     70 #include "gencode.h"
     71 #include "atmuni31.h"
     72 #include "sunatmpos.h"
     73 #include "ppp.h"
     74 #include "sll.h"
     75 #include "arcnet.h"
     76 #ifdef HAVE_NET_PFVAR_H
     77 #include <sys/socket.h>
     78 #include <net/if.h>
     79 #include <net/pfvar.h>
     80 #include <net/if_pflog.h>
     81 #endif
     82 #ifndef offsetof
     83 #define offsetof(s, e) ((size_t)&((s *)0)->e)
     84 #endif
     85 #ifdef INET6
     86 #ifndef WIN32
     87 #include <netdb.h>	/* for "struct addrinfo" */
     88 #endif /* WIN32 */
     89 #endif /*INET6*/
     90 #include <pcap-namedb.h>
     91 
     92 #define ETHERMTU	1500
     93 
     94 #ifndef IPPROTO_SCTP
     95 #define IPPROTO_SCTP 132
     96 #endif
     97 
     98 #ifdef HAVE_OS_PROTO_H
     99 #include "os-proto.h"
    100 #endif
    101 
    102 #define JMP(c) ((c)|BPF_JMP|BPF_K)
    103 
    104 /* Locals */
    105 static jmp_buf top_ctx;
    106 static pcap_t *bpf_pcap;
    107 
    108 #ifdef WIN32
    109 /* Hack for updating VLAN, MPLS, and PPPoE offsets. */
    110 static u_int	orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
    111 #else
    112 static u_int	orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
    113 #endif
    114 
    115 /* XXX */
    116 #ifdef PCAP_FDDIPAD
    117 static int	pcap_fddipad;
    118 #endif
    119 
    120 /* VARARGS */
    121 void
    122 bpf_error(const char *fmt, ...)
    123 {
    124 	va_list ap;
    125 
    126 	va_start(ap, fmt);
    127 	if (bpf_pcap != NULL)
    128 		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
    129 		    fmt, ap);
    130 	va_end(ap);
    131 	longjmp(top_ctx, 1);
    132 	/* NOTREACHED */
    133 }
    134 
    135 static void init_linktype(pcap_t *);
    136 
    137 static int alloc_reg(void);
    138 static void free_reg(int);
    139 
    140 static struct block *root;
    141 
    142 /*
    143  * Value passed to gen_load_a() to indicate what the offset argument
    144  * is relative to.
    145  */
    146 enum e_offrel {
    147 	OR_PACKET,	/* relative to the beginning of the packet */
    148 	OR_LINK,	/* relative to the link-layer header */
    149 	OR_NET,		/* relative to the network-layer header */
    150 	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
    151 	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
    152 	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
    153 };
    154 
    155 /*
    156  * We divy out chunks of memory rather than call malloc each time so
    157  * we don't have to worry about leaking memory.  It's probably
    158  * not a big deal if all this memory was wasted but if this ever
    159  * goes into a library that would probably not be a good idea.
    160  *
    161  * XXX - this *is* in a library....
    162  */
    163 #define NCHUNKS 16
    164 #define CHUNK0SIZE 1024
    165 struct chunk {
    166 	u_int n_left;
    167 	void *m;
    168 };
    169 
    170 static struct chunk chunks[NCHUNKS];
    171 static int cur_chunk;
    172 
    173 static void *newchunk(u_int);
    174 static void freechunks(void);
    175 static inline struct block *new_block(int);
    176 static inline struct slist *new_stmt(int);
    177 static struct block *gen_retblk(int);
    178 static inline void syntax(void);
    179 
    180 static void backpatch(struct block *, struct block *);
    181 static void merge(struct block *, struct block *);
    182 static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
    183 static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
    184 static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
    185 static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
    186 static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
    187 static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
    188     bpf_u_int32);
    189 static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
    190 static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
    191     bpf_u_int32, bpf_u_int32, int, bpf_int32);
    192 static struct slist *gen_load_llrel(u_int, u_int);
    193 static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
    194 static struct slist *gen_loadx_iphdrlen(void);
    195 static struct block *gen_uncond(int);
    196 static inline struct block *gen_true(void);
    197 static inline struct block *gen_false(void);
    198 static struct block *gen_ether_linktype(int);
    199 static struct block *gen_linux_sll_linktype(int);
    200 static void insert_radiotap_load_llprefixlen(struct block *);
    201 static void insert_ppi_load_llprefixlen(struct block *);
    202 static void insert_load_llprefixlen(struct block *);
    203 static struct slist *gen_llprefixlen(void);
    204 static struct block *gen_linktype(int);
    205 static struct block *gen_snap(bpf_u_int32, bpf_u_int32, u_int);
    206 static struct block *gen_llc_linktype(int);
    207 static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
    208 #ifdef INET6
    209 static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
    210 #endif
    211 static struct block *gen_ahostop(const u_char *, int);
    212 static struct block *gen_ehostop(const u_char *, int);
    213 static struct block *gen_fhostop(const u_char *, int);
    214 static struct block *gen_thostop(const u_char *, int);
    215 static struct block *gen_wlanhostop(const u_char *, int);
    216 static struct block *gen_ipfchostop(const u_char *, int);
    217 static struct block *gen_dnhostop(bpf_u_int32, int);
    218 static struct block *gen_mpls_linktype(int);
    219 static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
    220 #ifdef INET6
    221 static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
    222 #endif
    223 #ifndef INET6
    224 static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
    225 #endif
    226 static struct block *gen_ipfrag(void);
    227 static struct block *gen_portatom(int, bpf_int32);
    228 static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
    229 #ifdef INET6
    230 static struct block *gen_portatom6(int, bpf_int32);
    231 static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
    232 #endif
    233 struct block *gen_portop(int, int, int);
    234 static struct block *gen_port(int, int, int);
    235 struct block *gen_portrangeop(int, int, int, int);
    236 static struct block *gen_portrange(int, int, int, int);
    237 #ifdef INET6
    238 struct block *gen_portop6(int, int, int);
    239 static struct block *gen_port6(int, int, int);
    240 struct block *gen_portrangeop6(int, int, int, int);
    241 static struct block *gen_portrange6(int, int, int, int);
    242 #endif
    243 static int lookup_proto(const char *, int);
    244 static struct block *gen_protochain(int, int, int);
    245 static struct block *gen_proto(int, int, int);
    246 static struct slist *xfer_to_x(struct arth *);
    247 static struct slist *xfer_to_a(struct arth *);
    248 static struct block *gen_mac_multicast(int);
    249 static struct block *gen_len(int, int);
    250 
    251 static struct block *gen_ppi_dlt_check(void);
    252 static struct block *gen_msg_abbrev(int type);
    253 
    254 static void *
    255 newchunk(n)
    256 	u_int n;
    257 {
    258 	struct chunk *cp;
    259 	int k;
    260 	size_t size;
    261 
    262 #ifndef __NetBSD__
    263 	/* XXX Round up to nearest long. */
    264 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
    265 #else
    266 	/* XXX Round up to structure boundary. */
    267 	n = ALIGN(n);
    268 #endif
    269 
    270 	cp = &chunks[cur_chunk];
    271 	if (n > cp->n_left) {
    272 		++cp, k = ++cur_chunk;
    273 		if (k >= NCHUNKS)
    274 			bpf_error("out of memory");
    275 		size = CHUNK0SIZE << k;
    276 		cp->m = (void *)malloc(size);
    277 		if (cp->m == NULL)
    278 			bpf_error("out of memory");
    279 		memset((char *)cp->m, 0, size);
    280 		cp->n_left = size;
    281 		if (n > size)
    282 			bpf_error("out of memory");
    283 	}
    284 	cp->n_left -= n;
    285 	return (void *)((char *)cp->m + cp->n_left);
    286 }
    287 
    288 static void
    289 freechunks()
    290 {
    291 	int i;
    292 
    293 	cur_chunk = 0;
    294 	for (i = 0; i < NCHUNKS; ++i)
    295 		if (chunks[i].m != NULL) {
    296 			free(chunks[i].m);
    297 			chunks[i].m = NULL;
    298 		}
    299 }
    300 
    301 /*
    302  * A strdup whose allocations are freed after code generation is over.
    303  */
    304 char *
    305 sdup(s)
    306 	register const char *s;
    307 {
    308 	int n = strlen(s) + 1;
    309 	char *cp = newchunk(n);
    310 
    311 	strlcpy(cp, s, n);
    312 	return (cp);
    313 }
    314 
    315 static inline struct block *
    316 new_block(code)
    317 	int code;
    318 {
    319 	struct block *p;
    320 
    321 	p = (struct block *)newchunk(sizeof(*p));
    322 	p->s.code = code;
    323 	p->head = p;
    324 
    325 	return p;
    326 }
    327 
    328 static inline struct slist *
    329 new_stmt(code)
    330 	int code;
    331 {
    332 	struct slist *p;
    333 
    334 	p = (struct slist *)newchunk(sizeof(*p));
    335 	p->s.code = code;
    336 
    337 	return p;
    338 }
    339 
    340 static struct block *
    341 gen_retblk(v)
    342 	int v;
    343 {
    344 	struct block *b = new_block(BPF_RET|BPF_K);
    345 
    346 	b->s.k = v;
    347 	return b;
    348 }
    349 
    350 static inline void
    351 syntax()
    352 {
    353 	bpf_error("syntax error in filter expression");
    354 }
    355 
    356 static bpf_u_int32 netmask;
    357 static int snaplen;
    358 int no_optimize;
    359 
    360 int
    361 pcap_compile(pcap_t *p, struct bpf_program *program,
    362 	     const char *buf, int optimize, bpf_u_int32 mask)
    363 {
    364 	extern int n_errors;
    365 	const char * volatile xbuf = buf;
    366 	int len;
    367 
    368 	no_optimize = 0;
    369 	n_errors = 0;
    370 	root = NULL;
    371 	bpf_pcap = p;
    372 	if (setjmp(top_ctx)) {
    373 		lex_cleanup();
    374 		freechunks();
    375 		return (-1);
    376 	}
    377 
    378 	netmask = mask;
    379 
    380 	snaplen = pcap_snapshot(p);
    381 	if (snaplen == 0) {
    382 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
    383 			 "snaplen of 0 rejects all packets");
    384 		return -1;
    385 	}
    386 
    387 	lex_init(xbuf ? xbuf : "");
    388 	init_linktype(p);
    389 	(void)pcap_parse();
    390 
    391 	if (n_errors)
    392 		syntax();
    393 
    394 	if (root == NULL)
    395 		root = gen_retblk(snaplen);
    396 
    397 	if (optimize && !no_optimize) {
    398 		bpf_optimize(&root);
    399 		if (root == NULL ||
    400 		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
    401 			bpf_error("expression rejects all packets");
    402 	}
    403 	program->bf_insns = icode_to_fcode(root, &len);
    404 	program->bf_len = len;
    405 
    406 	lex_cleanup();
    407 	freechunks();
    408 	return (0);
    409 }
    410 
    411 /*
    412  * entry point for using the compiler with no pcap open
    413  * pass in all the stuff that is needed explicitly instead.
    414  */
    415 int
    416 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
    417 		    struct bpf_program *program,
    418 	     const char *buf, int optimize, bpf_u_int32 mask)
    419 {
    420 	pcap_t *p;
    421 	int ret;
    422 
    423 	p = pcap_open_dead(linktype_arg, snaplen_arg);
    424 	if (p == NULL)
    425 		return (-1);
    426 	ret = pcap_compile(p, program, buf, optimize, mask);
    427 	pcap_close(p);
    428 	return (ret);
    429 }
    430 
    431 /*
    432  * Clean up a "struct bpf_program" by freeing all the memory allocated
    433  * in it.
    434  */
    435 void
    436 pcap_freecode(struct bpf_program *program)
    437 {
    438 	program->bf_len = 0;
    439 	if (program->bf_insns != NULL) {
    440 		free((char *)program->bf_insns);
    441 		program->bf_insns = NULL;
    442 	}
    443 }
    444 
    445 /*
    446  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
    447  * which of the jt and jf fields has been resolved and which is a pointer
    448  * back to another unresolved block (or nil).  At least one of the fields
    449  * in each block is already resolved.
    450  */
    451 static void
    452 backpatch(list, target)
    453 	struct block *list, *target;
    454 {
    455 	struct block *next;
    456 
    457 	while (list) {
    458 		if (!list->sense) {
    459 			next = JT(list);
    460 			JT(list) = target;
    461 		} else {
    462 			next = JF(list);
    463 			JF(list) = target;
    464 		}
    465 		list = next;
    466 	}
    467 }
    468 
    469 /*
    470  * Merge the lists in b0 and b1, using the 'sense' field to indicate
    471  * which of jt and jf is the link.
    472  */
    473 static void
    474 merge(b0, b1)
    475 	struct block *b0, *b1;
    476 {
    477 	register struct block **p = &b0;
    478 
    479 	/* Find end of list. */
    480 	while (*p)
    481 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
    482 
    483 	/* Concatenate the lists. */
    484 	*p = b1;
    485 }
    486 
    487 
    488 void
    489 finish_parse(p)
    490 	struct block *p;
    491 {
    492 	struct block *ppi_dlt_check;
    493 
    494 	ppi_dlt_check = gen_ppi_dlt_check();
    495 
    496 	if (ppi_dlt_check != NULL)
    497 	{
    498 		gen_and(ppi_dlt_check, p);
    499 	}
    500 
    501 	backpatch(p, gen_retblk(snaplen));
    502 	p->sense = !p->sense;
    503 	backpatch(p, gen_retblk(0));
    504 	root = p->head;
    505 
    506 	/*
    507 	 * Insert before the statements of the first (root) block any
    508 	 * statements needed to load the lengths of any variable-length
    509 	 * headers into registers.
    510 	 *
    511 	 * XXX - a fancier strategy would be to insert those before the
    512 	 * statements of all blocks that use those lengths and that
    513 	 * have no predecessors that use them, so that we only compute
    514 	 * the lengths if we need them.  There might be even better
    515 	 * approaches than that.  However, as we're currently only
    516 	 * handling variable-length radiotap headers, and as all
    517 	 * filtering expressions other than raw link[M:N] tests
    518 	 * require the length of that header, doing more for that
    519 	 * header length isn't really worth the effort.
    520 	 */
    521 
    522 	insert_load_llprefixlen(root);
    523 }
    524 
    525 void
    526 gen_and(b0, b1)
    527 	struct block *b0, *b1;
    528 {
    529 	backpatch(b0, b1->head);
    530 	b0->sense = !b0->sense;
    531 	b1->sense = !b1->sense;
    532 	merge(b1, b0);
    533 	b1->sense = !b1->sense;
    534 	b1->head = b0->head;
    535 }
    536 
    537 void
    538 gen_or(b0, b1)
    539 	struct block *b0, *b1;
    540 {
    541 	b0->sense = !b0->sense;
    542 	backpatch(b0, b1->head);
    543 	b0->sense = !b0->sense;
    544 	merge(b1, b0);
    545 	b1->head = b0->head;
    546 }
    547 
    548 void
    549 gen_not(b)
    550 	struct block *b;
    551 {
    552 	b->sense = !b->sense;
    553 }
    554 
    555 static struct block *
    556 gen_cmp(offrel, offset, size, v)
    557 	enum e_offrel offrel;
    558 	u_int offset, size;
    559 	bpf_int32 v;
    560 {
    561 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
    562 }
    563 
    564 static struct block *
    565 gen_cmp_gt(offrel, offset, size, v)
    566 	enum e_offrel offrel;
    567 	u_int offset, size;
    568 	bpf_int32 v;
    569 {
    570 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
    571 }
    572 
    573 static struct block *
    574 gen_cmp_ge(offrel, offset, size, v)
    575 	enum e_offrel offrel;
    576 	u_int offset, size;
    577 	bpf_int32 v;
    578 {
    579 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
    580 }
    581 
    582 static struct block *
    583 gen_cmp_lt(offrel, offset, size, v)
    584 	enum e_offrel offrel;
    585 	u_int offset, size;
    586 	bpf_int32 v;
    587 {
    588 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
    589 }
    590 
    591 static struct block *
    592 gen_cmp_le(offrel, offset, size, v)
    593 	enum e_offrel offrel;
    594 	u_int offset, size;
    595 	bpf_int32 v;
    596 {
    597 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
    598 }
    599 
    600 static struct block *
    601 gen_mcmp(offrel, offset, size, v, mask)
    602 	enum e_offrel offrel;
    603 	u_int offset, size;
    604 	bpf_int32 v;
    605 	bpf_u_int32 mask;
    606 {
    607 	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
    608 }
    609 
    610 static struct block *
    611 gen_bcmp(offrel, offset, size, v)
    612 	enum e_offrel offrel;
    613 	register u_int offset, size;
    614 	register const u_char *v;
    615 {
    616 	register struct block *b, *tmp;
    617 
    618 	b = NULL;
    619 	while (size >= 4) {
    620 		register const u_char *p = &v[size - 4];
    621 		bpf_int32 w = ((bpf_int32)p[0] << 24) |
    622 		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
    623 
    624 		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
    625 		if (b != NULL)
    626 			gen_and(b, tmp);
    627 		b = tmp;
    628 		size -= 4;
    629 	}
    630 	while (size >= 2) {
    631 		register const u_char *p = &v[size - 2];
    632 		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
    633 
    634 		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
    635 		if (b != NULL)
    636 			gen_and(b, tmp);
    637 		b = tmp;
    638 		size -= 2;
    639 	}
    640 	if (size > 0) {
    641 		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
    642 		if (b != NULL)
    643 			gen_and(b, tmp);
    644 		b = tmp;
    645 	}
    646 	return b;
    647 }
    648 
    649 /*
    650  * AND the field of size "size" at offset "offset" relative to the header
    651  * specified by "offrel" with "mask", and compare it with the value "v"
    652  * with the test specified by "jtype"; if "reverse" is true, the test
    653  * should test the opposite of "jtype".
    654  */
    655 static struct block *
    656 gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
    657 	enum e_offrel offrel;
    658 	bpf_int32 v;
    659 	bpf_u_int32 offset, size, mask, jtype;
    660 	int reverse;
    661 {
    662 	struct slist *s, *s2;
    663 	struct block *b;
    664 
    665 	s = gen_load_a(offrel, offset, size);
    666 
    667 	if (mask != 0xffffffff) {
    668 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
    669 		s2->s.k = mask;
    670 		sappend(s, s2);
    671 	}
    672 
    673 	b = new_block(JMP(jtype));
    674 	b->stmts = s;
    675 	b->s.k = v;
    676 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
    677 		gen_not(b);
    678 	return b;
    679 }
    680 
    681 /*
    682  * Various code constructs need to know the layout of the data link
    683  * layer.  These variables give the necessary offsets from the beginning
    684  * of the packet data.
    685  *
    686  * If the link layer has variable_length headers, the offsets are offsets
    687  * from the end of the link-link-layer header, and "reg_ll_size" is
    688  * the register number for a register containing the length of the
    689  * link-layer header.  Otherwise, "reg_ll_size" is -1.
    690  */
    691 static int reg_ll_size;
    692 
    693 /*
    694  * This is the offset of the beginning of the link-layer header from
    695  * the beginning of the raw packet data.
    696  *
    697  * It's usually 0, except for 802.11 with a fixed-length radio header.
    698  * (For 802.11 with a variable-length radio header, we have to generate
    699  * code to compute that offset; off_ll is 0 in that case.)
    700  */
    701 static u_int off_ll;
    702 
    703 /*
    704  * This is the offset of the beginning of the MAC-layer header.
    705  * It's usually 0, except for ATM LANE, where it's the offset, relative
    706  * to the beginning of the raw packet data, of the Ethernet header.
    707  */
    708 static u_int off_mac;
    709 
    710 /*
    711  * "off_linktype" is the offset to information in the link-layer header
    712  * giving the packet type.  This offset is relative to the beginning
    713  * of the link-layer header (i.e., it doesn't include off_ll).
    714  *
    715  * For Ethernet, it's the offset of the Ethernet type field.
    716  *
    717  * For link-layer types that always use 802.2 headers, it's the
    718  * offset of the LLC header.
    719  *
    720  * For PPP, it's the offset of the PPP type field.
    721  *
    722  * For Cisco HDLC, it's the offset of the CHDLC type field.
    723  *
    724  * For BSD loopback, it's the offset of the AF_ value.
    725  *
    726  * For Linux cooked sockets, it's the offset of the type field.
    727  *
    728  * It's set to -1 for no encapsulation, in which case, IP is assumed.
    729  */
    730 static u_int off_linktype;
    731 
    732 /*
    733  * TRUE if the link layer includes an ATM pseudo-header.
    734  */
    735 static int is_atm = 0;
    736 
    737 /*
    738  * TRUE if "lane" appeared in the filter; it causes us to generate
    739  * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
    740  */
    741 static int is_lane = 0;
    742 
    743 /*
    744  * These are offsets for the ATM pseudo-header.
    745  */
    746 static u_int off_vpi;
    747 static u_int off_vci;
    748 static u_int off_proto;
    749 
    750 /*
    751  * These are offsets for the MTP2 fields.
    752  */
    753 static u_int off_li;
    754 
    755 /*
    756  * These are offsets for the MTP3 fields.
    757  */
    758 static u_int off_sio;
    759 static u_int off_opc;
    760 static u_int off_dpc;
    761 static u_int off_sls;
    762 
    763 /*
    764  * This is the offset of the first byte after the ATM pseudo_header,
    765  * or -1 if there is no ATM pseudo-header.
    766  */
    767 static u_int off_payload;
    768 
    769 /*
    770  * These are offsets to the beginning of the network-layer header.
    771  * They are relative to the beginning of the link-layer header (i.e.,
    772  * they don't include off_ll).
    773  *
    774  * If the link layer never uses 802.2 LLC:
    775  *
    776  *	"off_nl" and "off_nl_nosnap" are the same.
    777  *
    778  * If the link layer always uses 802.2 LLC:
    779  *
    780  *	"off_nl" is the offset if there's a SNAP header following
    781  *	the 802.2 header;
    782  *
    783  *	"off_nl_nosnap" is the offset if there's no SNAP header.
    784  *
    785  * If the link layer is Ethernet:
    786  *
    787  *	"off_nl" is the offset if the packet is an Ethernet II packet
    788  *	(we assume no 802.3+802.2+SNAP);
    789  *
    790  *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
    791  *	with an 802.2 header following it.
    792  */
    793 static u_int off_nl;
    794 static u_int off_nl_nosnap;
    795 
    796 static int linktype;
    797 
    798 static void
    799 init_linktype(p)
    800 	pcap_t *p;
    801 {
    802 	linktype = pcap_datalink(p);
    803 #ifdef PCAP_FDDIPAD
    804 	pcap_fddipad = p->fddipad;
    805 #endif
    806 
    807 	/*
    808 	 * Assume it's not raw ATM with a pseudo-header, for now.
    809 	 */
    810 	off_mac = 0;
    811 	is_atm = 0;
    812 	is_lane = 0;
    813 	off_vpi = -1;
    814 	off_vci = -1;
    815 	off_proto = -1;
    816 	off_payload = -1;
    817 
    818 	/*
    819 	 * And assume we're not doing SS7.
    820 	 */
    821 	off_li = -1;
    822 	off_sio = -1;
    823 	off_opc = -1;
    824 	off_dpc = -1;
    825 	off_sls = -1;
    826 
    827 	/*
    828 	 * Also assume it's not 802.11 with a fixed-length radio header.
    829 	 */
    830 	off_ll = 0;
    831 
    832 	orig_linktype = -1;
    833 	orig_nl = -1;
    834         label_stack_depth = 0;
    835 
    836 	reg_ll_size = -1;
    837 
    838 	switch (linktype) {
    839 
    840 	case DLT_ARCNET:
    841 		off_linktype = 2;
    842 		off_nl = 6;		/* XXX in reality, variable! */
    843 		off_nl_nosnap = 6;	/* no 802.2 LLC */
    844 		return;
    845 
    846 	case DLT_ARCNET_LINUX:
    847 		off_linktype = 4;
    848 		off_nl = 8;		/* XXX in reality, variable! */
    849 		off_nl_nosnap = 8;	/* no 802.2 LLC */
    850 		return;
    851 
    852 	case DLT_EN10MB:
    853 		off_linktype = 12;
    854 		off_nl = 14;		/* Ethernet II */
    855 		off_nl_nosnap = 17;	/* 802.3+802.2 */
    856 		return;
    857 
    858 	case DLT_SLIP:
    859 		/*
    860 		 * SLIP doesn't have a link level type.  The 16 byte
    861 		 * header is hacked into our SLIP driver.
    862 		 */
    863 		off_linktype = -1;
    864 		off_nl = 16;
    865 		off_nl_nosnap = 16;	/* no 802.2 LLC */
    866 		return;
    867 
    868 	case DLT_SLIP_BSDOS:
    869 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
    870 		off_linktype = -1;
    871 		/* XXX end */
    872 		off_nl = 24;
    873 		off_nl_nosnap = 24;	/* no 802.2 LLC */
    874 		return;
    875 
    876 	case DLT_NULL:
    877 	case DLT_LOOP:
    878 		off_linktype = 0;
    879 		off_nl = 4;
    880 		off_nl_nosnap = 4;	/* no 802.2 LLC */
    881 		return;
    882 
    883 	case DLT_ENC:
    884 		off_linktype = 0;
    885 		off_nl = 12;
    886 		off_nl_nosnap = 12;	/* no 802.2 LLC */
    887 		return;
    888 
    889 	case DLT_PPP:
    890 	case DLT_PPP_PPPD:
    891 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
    892 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
    893 		off_linktype = 2;
    894 		off_nl = 4;
    895 		off_nl_nosnap = 4;	/* no 802.2 LLC */
    896 		return;
    897 
    898 	case DLT_PPP_ETHER:
    899 		/*
    900 		 * This does no include the Ethernet header, and
    901 		 * only covers session state.
    902 		 */
    903 		off_linktype = 6;
    904 		off_nl = 8;
    905 		off_nl_nosnap = 8;	/* no 802.2 LLC */
    906 		return;
    907 
    908 	case DLT_PPP_BSDOS:
    909 		off_linktype = 5;
    910 		off_nl = 24;
    911 		off_nl_nosnap = 24;	/* no 802.2 LLC */
    912 		return;
    913 
    914 	case DLT_FDDI:
    915 		/*
    916 		 * FDDI doesn't really have a link-level type field.
    917 		 * We set "off_linktype" to the offset of the LLC header.
    918 		 *
    919 		 * To check for Ethernet types, we assume that SSAP = SNAP
    920 		 * is being used and pick out the encapsulated Ethernet type.
    921 		 * XXX - should we generate code to check for SNAP?
    922 		 */
    923 		off_linktype = 13;
    924 #ifdef PCAP_FDDIPAD
    925 		off_linktype += pcap_fddipad;
    926 #endif
    927 		off_nl = 21;		/* FDDI+802.2+SNAP */
    928 		off_nl_nosnap = 16;	/* FDDI+802.2 */
    929 #ifdef PCAP_FDDIPAD
    930 		off_nl += pcap_fddipad;
    931 		off_nl_nosnap += pcap_fddipad;
    932 #endif
    933 		return;
    934 
    935 	case DLT_IEEE802:
    936 		/*
    937 		 * Token Ring doesn't really have a link-level type field.
    938 		 * We set "off_linktype" to the offset of the LLC header.
    939 		 *
    940 		 * To check for Ethernet types, we assume that SSAP = SNAP
    941 		 * is being used and pick out the encapsulated Ethernet type.
    942 		 * XXX - should we generate code to check for SNAP?
    943 		 *
    944 		 * XXX - the header is actually variable-length.
    945 		 * Some various Linux patched versions gave 38
    946 		 * as "off_linktype" and 40 as "off_nl"; however,
    947 		 * if a token ring packet has *no* routing
    948 		 * information, i.e. is not source-routed, the correct
    949 		 * values are 20 and 22, as they are in the vanilla code.
    950 		 *
    951 		 * A packet is source-routed iff the uppermost bit
    952 		 * of the first byte of the source address, at an
    953 		 * offset of 8, has the uppermost bit set.  If the
    954 		 * packet is source-routed, the total number of bytes
    955 		 * of routing information is 2 plus bits 0x1F00 of
    956 		 * the 16-bit value at an offset of 14 (shifted right
    957 		 * 8 - figure out which byte that is).
    958 		 */
    959 		off_linktype = 14;
    960 		off_nl = 22;		/* Token Ring+802.2+SNAP */
    961 		off_nl_nosnap = 17;	/* Token Ring+802.2 */
    962 		return;
    963 
    964 	case DLT_IEEE802_11:
    965 		/*
    966 		 * 802.11 doesn't really have a link-level type field.
    967 		 * We set "off_linktype" to the offset of the LLC header.
    968 		 *
    969 		 * To check for Ethernet types, we assume that SSAP = SNAP
    970 		 * is being used and pick out the encapsulated Ethernet type.
    971 		 * XXX - should we generate code to check for SNAP?
    972 		 *
    973 		 * XXX - the header is actually variable-length.  We
    974 		 * assume a 24-byte link-layer header, as appears in
    975 		 * data frames in networks with no bridges.  If the
    976 		 * fromds and tods 802.11 header bits are both set,
    977 		 * it's actually supposed to be 30 bytes.
    978 		 */
    979 		off_linktype = 24;
    980 		off_nl = 32;		/* 802.11+802.2+SNAP */
    981 		off_nl_nosnap = 27;	/* 802.11+802.2 */
    982 		return;
    983 
    984 	case DLT_PRISM_HEADER:
    985 		/*
    986 		 * Same as 802.11, but with an additional header before
    987 		 * the 802.11 header, containing a bunch of additional
    988 		 * information including radio-level information.
    989 		 *
    990 		 * The header is 144 bytes long.
    991 		 *
    992 		 * XXX - same variable-length header problem; at least
    993 		 * the Prism header is fixed-length.
    994 		 */
    995 		off_ll = 144;
    996 		off_linktype = 24;
    997 		off_nl = 32;	/* Prism+802.11+802.2+SNAP */
    998 		off_nl_nosnap = 27;	/* Prism+802.11+802.2 */
    999 		return;
   1000 
   1001 	case DLT_IEEE802_11_RADIO_AVS:
   1002 		/*
   1003 		 * Same as 802.11, but with an additional header before
   1004 		 * the 802.11 header, containing a bunch of additional
   1005 		 * information including radio-level information.
   1006 		 *
   1007 		 * The header is 64 bytes long, at least in its
   1008 		 * current incarnation.
   1009 		 *
   1010 		 * XXX - same variable-length header problem, only
   1011 		 * more so; this header is also variable-length,
   1012 		 * with the length being the 32-bit big-endian
   1013 		 * number at an offset of 4 from the beginning
   1014 		 * of the radio header.  We should handle that the
   1015 		 * same way we handle the length at the beginning
   1016 		 * of the radiotap header.
   1017 		 *
   1018 		 * XXX - in Linux, do any drivers that supply an AVS
   1019 		 * header supply a link-layer type other than
   1020 		 * ARPHRD_IEEE80211_PRISM?  If so, we should map that
   1021 		 * to DLT_IEEE802_11_RADIO_AVS; if not, or if there are
   1022 		 * any drivers that supply an AVS header but supply
   1023 		 * an ARPHRD value of ARPHRD_IEEE80211_PRISM, we'll
   1024 		 * have to check the header in the generated code to
   1025 		 * determine whether it's Prism or AVS.
   1026 		 */
   1027 		off_ll = 64;
   1028 		off_linktype = 24;
   1029 		off_nl = 32;		/* Radio+802.11+802.2+SNAP */
   1030 		off_nl_nosnap = 27;	/* Radio+802.11+802.2 */
   1031 		return;
   1032 
   1033 
   1034 		/*
   1035 		 * At the moment we treat PPI as normal Radiotap encoded
   1036 		 * packets. The difference is in the function that generates
   1037 		 * the code at the beginning to compute the header length.
   1038 		 * Since this code generator of PPI supports bare 802.11
   1039 		 * encapsulation only (i.e. the encapsulated DLT should be
   1040 		 * DLT_IEEE802_11) we generate code to check for this too.
   1041 		 */
   1042 	case DLT_PPI:
   1043 	case DLT_IEEE802_11_RADIO:
   1044 		/*
   1045 		 * Same as 802.11, but with an additional header before
   1046 		 * the 802.11 header, containing a bunch of additional
   1047 		 * information including radio-level information.
   1048 		 *
   1049 		 * The radiotap header is variable length, and we
   1050 		 * generate code to compute its length and store it
   1051 		 * in a register.  These offsets are relative to the
   1052 		 * beginning of the 802.11 header.
   1053 		 */
   1054 		off_linktype = 24;
   1055 		off_nl = 32;		/* 802.11+802.2+SNAP */
   1056 		off_nl_nosnap = 27;	/* 802.11+802.2 */
   1057 		return;
   1058 
   1059 	case DLT_ATM_RFC1483:
   1060 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
   1061 		/*
   1062 		 * assume routed, non-ISO PDUs
   1063 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
   1064 		 *
   1065 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
   1066 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
   1067 		 * latter would presumably be treated the way PPPoE
   1068 		 * should be, so you can do "pppoe and udp port 2049"
   1069 		 * or "pppoa and tcp port 80" and have it check for
   1070 		 * PPPo{A,E} and a PPP protocol of IP and....
   1071 		 */
   1072 		off_linktype = 0;
   1073 		off_nl = 8;		/* 802.2+SNAP */
   1074 		off_nl_nosnap = 3;	/* 802.2 */
   1075 		return;
   1076 
   1077 	case DLT_SUNATM:
   1078 		/*
   1079 		 * Full Frontal ATM; you get AALn PDUs with an ATM
   1080 		 * pseudo-header.
   1081 		 */
   1082 		is_atm = 1;
   1083 		off_vpi = SUNATM_VPI_POS;
   1084 		off_vci = SUNATM_VCI_POS;
   1085 		off_proto = PROTO_POS;
   1086 		off_mac = -1;	/* LLC-encapsulated, so no MAC-layer header */
   1087 		off_payload = SUNATM_PKT_BEGIN_POS;
   1088 		off_linktype = off_payload;
   1089 		off_nl = off_payload+8;		/* 802.2+SNAP */
   1090 		off_nl_nosnap = off_payload+3;	/* 802.2 */
   1091 		return;
   1092 
   1093 	case DLT_RAW:
   1094 		off_linktype = -1;
   1095 		off_nl = 0;
   1096 		off_nl_nosnap = 0;	/* no 802.2 LLC */
   1097 		return;
   1098 
   1099 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
   1100 		off_linktype = 14;
   1101 		off_nl = 16;
   1102 		off_nl_nosnap = 16;	/* no 802.2 LLC */
   1103 		return;
   1104 
   1105 	case DLT_LTALK:
   1106 		/*
   1107 		 * LocalTalk does have a 1-byte type field in the LLAP header,
   1108 		 * but really it just indicates whether there is a "short" or
   1109 		 * "long" DDP packet following.
   1110 		 */
   1111 		off_linktype = -1;
   1112 		off_nl = 0;
   1113 		off_nl_nosnap = 0;	/* no 802.2 LLC */
   1114 		return;
   1115 
   1116 	case DLT_IP_OVER_FC:
   1117 		/*
   1118 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
   1119 		 * link-level type field.  We set "off_linktype" to the
   1120 		 * offset of the LLC header.
   1121 		 *
   1122 		 * To check for Ethernet types, we assume that SSAP = SNAP
   1123 		 * is being used and pick out the encapsulated Ethernet type.
   1124 		 * XXX - should we generate code to check for SNAP? RFC
   1125 		 * 2625 says SNAP should be used.
   1126 		 */
   1127 		off_linktype = 16;
   1128 		off_nl = 24;		/* IPFC+802.2+SNAP */
   1129 		off_nl_nosnap = 19;	/* IPFC+802.2 */
   1130 		return;
   1131 
   1132 	case DLT_FRELAY:
   1133 		/*
   1134 		 * XXX - we should set this to handle SNAP-encapsulated
   1135 		 * frames (NLPID of 0x80).
   1136 		 */
   1137 		off_linktype = -1;
   1138 		off_nl = 0;
   1139 		off_nl_nosnap = 0;	/* no 802.2 LLC */
   1140 		return;
   1141 
   1142                 /*
   1143                  * the only BPF-interesting FRF.16 frames are non-control frames;
   1144                  * Frame Relay has a variable length link-layer
   1145                  * so lets start with offset 4 for now and increments later on (FIXME);
   1146                  */
   1147 	case DLT_MFR:
   1148 		off_linktype = -1;
   1149 		off_nl = 4;
   1150 		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
   1151 		return;
   1152 
   1153 	case DLT_APPLE_IP_OVER_IEEE1394:
   1154 		off_linktype = 16;
   1155 		off_nl = 18;
   1156 		off_nl_nosnap = 18;	/* no 802.2 LLC */
   1157 		return;
   1158 
   1159 	case DLT_LINUX_IRDA:
   1160 		/*
   1161 		 * Currently, only raw "link[N:M]" filtering is supported.
   1162 		 */
   1163 		off_linktype = -1;
   1164 		off_nl = -1;
   1165 		off_nl_nosnap = -1;
   1166 		return;
   1167 
   1168 	case DLT_DOCSIS:
   1169 		/*
   1170 		 * Currently, only raw "link[N:M]" filtering is supported.
   1171 		 */
   1172 		off_linktype = -1;
   1173 		off_nl = -1;
   1174 		off_nl_nosnap = -1;
   1175 		return;
   1176 
   1177 	case DLT_SYMANTEC_FIREWALL:
   1178 		off_linktype = 6;
   1179 		off_nl = 44;		/* Ethernet II */
   1180 		off_nl_nosnap = 44;	/* XXX - what does it do with 802.3 packets? */
   1181 		return;
   1182 
   1183 #ifdef HAVE_NET_PFVAR_H
   1184 	case DLT_PFLOG:
   1185 		off_linktype = 0;
   1186 		off_nl = PFLOG_HDRLEN;
   1187 		off_nl_nosnap = PFLOG_HDRLEN;	/* no 802.2 LLC */
   1188 		return;
   1189 #endif
   1190 
   1191         case DLT_JUNIPER_MFR:
   1192         case DLT_JUNIPER_MLFR:
   1193         case DLT_JUNIPER_MLPPP:
   1194         case DLT_JUNIPER_PPP:
   1195         case DLT_JUNIPER_CHDLC:
   1196         case DLT_JUNIPER_FRELAY:
   1197                 off_linktype = 4;
   1198 		off_nl = 4;
   1199 		off_nl_nosnap = -1;	/* no 802.2 LLC */
   1200                 return;
   1201 
   1202 	case DLT_JUNIPER_ATM1:
   1203 		off_linktype = 4; /* in reality variable between 4-8 */
   1204 		off_nl = 4;
   1205 		off_nl_nosnap = 14;
   1206 		return;
   1207 
   1208 	case DLT_JUNIPER_ATM2:
   1209 		off_linktype = 8; /* in reality variable between 8-12 */
   1210 		off_nl = 8;
   1211 		off_nl_nosnap = 18;
   1212 		return;
   1213 
   1214 		/* frames captured on a Juniper PPPoE service PIC
   1215 		 * contain raw ethernet frames */
   1216 	case DLT_JUNIPER_PPPOE:
   1217         case DLT_JUNIPER_ETHER:
   1218 		off_linktype = 16;
   1219 		off_nl = 18;		/* Ethernet II */
   1220 		off_nl_nosnap = 21;	/* 802.3+802.2 */
   1221 		return;
   1222 
   1223 	case DLT_JUNIPER_PPPOE_ATM:
   1224 		off_linktype = 4;
   1225 		off_nl = 6;
   1226 		off_nl_nosnap = -1;	 /* no 802.2 LLC */
   1227 		return;
   1228 
   1229 	case DLT_JUNIPER_GGSN:
   1230 		off_linktype = 6;
   1231 		off_nl = 12;
   1232 		off_nl_nosnap = -1;	 /* no 802.2 LLC */
   1233 		return;
   1234 
   1235 	case DLT_JUNIPER_ES:
   1236 		off_linktype = 6;
   1237 		off_nl = -1;		/* not really a network layer but raw IP adresses */
   1238 		off_nl_nosnap = -1;	/* no 802.2 LLC */
   1239 		return;
   1240 
   1241 	case DLT_JUNIPER_MONITOR:
   1242 		off_linktype = 12;
   1243 		off_nl = 12;		/* raw IP/IP6 header */
   1244 		off_nl_nosnap = -1;	/* no 802.2 LLC */
   1245 		return;
   1246 
   1247 	case DLT_JUNIPER_SERVICES:
   1248 		off_linktype = 12;
   1249 		off_nl = -1;		/* L3 proto location dep. on cookie type */
   1250 		off_nl_nosnap = -1;	/* no 802.2 LLC */
   1251 		return;
   1252 
   1253 	case DLT_JUNIPER_VP:
   1254 		off_linktype = 18;
   1255 		off_nl = -1;
   1256 		off_nl_nosnap = -1;
   1257 		return;
   1258 
   1259 	case DLT_MTP2:
   1260 		off_li = 2;
   1261 		off_sio = 3;
   1262 		off_opc = 4;
   1263 		off_dpc = 4;
   1264 		off_sls = 7;
   1265 		off_linktype = -1;
   1266 		off_nl = -1;
   1267 		off_nl_nosnap = -1;
   1268 		return;
   1269 
   1270 	case DLT_MTP2_WITH_PHDR:
   1271 		off_li = 6;
   1272 		off_sio = 7;
   1273 		off_opc = 8;
   1274 		off_dpc = 8;
   1275 		off_sls = 11;
   1276 		off_linktype = -1;
   1277 		off_nl = -1;
   1278 		off_nl_nosnap = -1;
   1279 		return;
   1280 
   1281 #ifdef DLT_PFSYNC
   1282 	case DLT_PFSYNC:
   1283 		off_linktype = -1;
   1284 		off_nl = 4;
   1285 		off_nl_nosnap = 4;
   1286 		return;
   1287 #endif
   1288 
   1289 	case DLT_LINUX_LAPD:
   1290 		/*
   1291 		 * Currently, only raw "link[N:M]" filtering is supported.
   1292 		 */
   1293 		off_linktype = -1;
   1294 		off_nl = -1;
   1295 		off_nl_nosnap = -1;
   1296 		return;
   1297 
   1298 	case DLT_USB:
   1299 		/*
   1300 		 * Currently, only raw "link[N:M]" filtering is supported.
   1301 		 */
   1302 		off_linktype = -1;
   1303 		off_nl = -1;
   1304 		off_nl_nosnap = -1;
   1305 		return;
   1306 
   1307 	case DLT_BLUETOOTH_HCI_H4:
   1308 		/*
   1309 		 * Currently, only raw "link[N:M]" filtering is supported.
   1310 		 */
   1311 		off_linktype = -1;
   1312 		off_nl = -1;
   1313 		off_nl_nosnap = -1;
   1314 		return;
   1315 	}
   1316 	bpf_error("unknown data link type %d", linktype);
   1317 	/* NOTREACHED */
   1318 }
   1319 
   1320 /*
   1321  * Load a value relative to the beginning of the link-layer header.
   1322  * The link-layer header doesn't necessarily begin at the beginning
   1323  * of the packet data; there might be a variable-length prefix containing
   1324  * radio information.
   1325  */
   1326 static struct slist *
   1327 gen_load_llrel(offset, size)
   1328 	u_int offset, size;
   1329 {
   1330 	struct slist *s, *s2;
   1331 
   1332 	s = gen_llprefixlen();
   1333 
   1334 	/*
   1335 	 * If "s" is non-null, it has code to arrange that the X register
   1336 	 * contains the length of the prefix preceding the link-layer
   1337 	 * header.
   1338 	 *
   1339 	 * Otherwise, the length of the prefix preceding the link-layer
   1340 	 * header is "off_ll".
   1341 	 */
   1342 	if (s != NULL) {
   1343 		/*
   1344 		 * There's a variable-length prefix preceding the
   1345 		 * link-layer header.  "s" points to a list of statements
   1346 		 * that put the length of that prefix into the X register.
   1347 		 * do an indirect load, to use the X register as an offset.
   1348 		 */
   1349 		s2 = new_stmt(BPF_LD|BPF_IND|size);
   1350 		s2->s.k = offset;
   1351 		sappend(s, s2);
   1352 	} else {
   1353 		/*
   1354 		 * There is no variable-length header preceding the
   1355 		 * link-layer header; add in off_ll, which, if there's
   1356 		 * a fixed-length header preceding the link-layer header,
   1357 		 * is the length of that header.
   1358 		 */
   1359 		s = new_stmt(BPF_LD|BPF_ABS|size);
   1360 		s->s.k = offset + off_ll;
   1361 	}
   1362 	return s;
   1363 }
   1364 
   1365 
   1366 /*
   1367  * Load a value relative to the beginning of the specified header.
   1368  */
   1369 static struct slist *
   1370 gen_load_a(offrel, offset, size)
   1371 	enum e_offrel offrel;
   1372 	u_int offset, size;
   1373 {
   1374 	struct slist *s, *s2;
   1375 
   1376 	switch (offrel) {
   1377 
   1378 	case OR_PACKET:
   1379                 s = new_stmt(BPF_LD|BPF_ABS|size);
   1380                 s->s.k = offset;
   1381 		break;
   1382 
   1383 	case OR_LINK:
   1384 		s = gen_load_llrel(offset, size);
   1385 		break;
   1386 
   1387 	case OR_NET:
   1388 		s = gen_load_llrel(off_nl + offset, size);
   1389 		break;
   1390 
   1391 	case OR_NET_NOSNAP:
   1392 		s = gen_load_llrel(off_nl_nosnap + offset, size);
   1393 		break;
   1394 
   1395 	case OR_TRAN_IPV4:
   1396 		/*
   1397 		 * Load the X register with the length of the IPv4 header
   1398 		 * (plus the offset of the link-layer header, if it's
   1399 		 * preceded by a variable-length header such as a radio
   1400 		 * header), in bytes.
   1401 		 */
   1402 		s = gen_loadx_iphdrlen();
   1403 
   1404 		/*
   1405 		 * Load the item at {offset of the link-layer header} +
   1406 		 * {offset, relative to the start of the link-layer
   1407 		 * header, of the IPv4 header} + {length of the IPv4 header} +
   1408 		 * {specified offset}.
   1409 		 *
   1410 		 * (If the link-layer is variable-length, it's included
   1411 		 * in the value in the X register, and off_ll is 0.)
   1412 		 */
   1413 		s2 = new_stmt(BPF_LD|BPF_IND|size);
   1414 		s2->s.k = off_ll + off_nl + offset;
   1415 		sappend(s, s2);
   1416 		break;
   1417 
   1418 	case OR_TRAN_IPV6:
   1419 		s = gen_load_llrel(off_nl + 40 + offset, size);
   1420 		break;
   1421 
   1422 	default:
   1423 		abort();
   1424 		return NULL;
   1425 	}
   1426 	return s;
   1427 }
   1428 
   1429 /*
   1430  * Generate code to load into the X register the sum of the length of
   1431  * the IPv4 header and any variable-length header preceding the link-layer
   1432  * header.
   1433  */
   1434 static struct slist *
   1435 gen_loadx_iphdrlen()
   1436 {
   1437 	struct slist *s, *s2;
   1438 
   1439 	s = gen_llprefixlen();
   1440 	if (s != NULL) {
   1441 		/*
   1442 		 * There's a variable-length prefix preceding the
   1443 		 * link-layer header.  "s" points to a list of statements
   1444 		 * that put the length of that prefix into the X register.
   1445 		 * The 4*([k]&0xf) addressing mode can't be used, as we
   1446 		 * don't have a constant offset, so we have to load the
   1447 		 * value in question into the A register and add to it
   1448 		 * the value from the X register.
   1449 		 */
   1450 		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
   1451 		s2->s.k = off_nl;
   1452 		sappend(s, s2);
   1453 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
   1454 		s2->s.k = 0xf;
   1455 		sappend(s, s2);
   1456 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
   1457 		s2->s.k = 2;
   1458 		sappend(s, s2);
   1459 
   1460 		/*
   1461 		 * The A register now contains the length of the
   1462 		 * IP header.  We need to add to it the length
   1463 		 * of the prefix preceding the link-layer
   1464 		 * header, which is still in the X register, and
   1465 		 * move the result into the X register.
   1466 		 */
   1467 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
   1468 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
   1469 	} else {
   1470 		/*
   1471 		 * There is no variable-length header preceding the
   1472 		 * link-layer header; add in off_ll, which, if there's
   1473 		 * a fixed-length header preceding the link-layer header,
   1474 		 * is the length of that header.
   1475 		 */
   1476 		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
   1477 		s->s.k = off_ll + off_nl;
   1478 	}
   1479 	return s;
   1480 }
   1481 
   1482 static struct block *
   1483 gen_uncond(rsense)
   1484 	int rsense;
   1485 {
   1486 	struct block *b;
   1487 	struct slist *s;
   1488 
   1489 	s = new_stmt(BPF_LD|BPF_IMM);
   1490 	s->s.k = !rsense;
   1491 	b = new_block(JMP(BPF_JEQ));
   1492 	b->stmts = s;
   1493 
   1494 	return b;
   1495 }
   1496 
   1497 static inline struct block *
   1498 gen_true()
   1499 {
   1500 	return gen_uncond(1);
   1501 }
   1502 
   1503 static inline struct block *
   1504 gen_false()
   1505 {
   1506 	return gen_uncond(0);
   1507 }
   1508 
   1509 /*
   1510  * Byte-swap a 32-bit number.
   1511  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
   1512  * big-endian platforms.)
   1513  */
   1514 #define	SWAPLONG(y) \
   1515 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
   1516 
   1517 /*
   1518  * Generate code to match a particular packet type.
   1519  *
   1520  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
   1521  * value, if <= ETHERMTU.  We use that to determine whether to
   1522  * match the type/length field or to check the type/length field for
   1523  * a value <= ETHERMTU to see whether it's a type field and then do
   1524  * the appropriate test.
   1525  */
   1526 static struct block *
   1527 gen_ether_linktype(proto)
   1528 	register int proto;
   1529 {
   1530 	struct block *b0, *b1;
   1531 
   1532 	switch (proto) {
   1533 
   1534 	case LLCSAP_ISONS:
   1535 	case LLCSAP_IP:
   1536 	case LLCSAP_NETBEUI:
   1537 		/*
   1538 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
   1539 		 * so we check the DSAP and SSAP.
   1540 		 *
   1541 		 * LLCSAP_IP checks for IP-over-802.2, rather
   1542 		 * than IP-over-Ethernet or IP-over-SNAP.
   1543 		 *
   1544 		 * XXX - should we check both the DSAP and the
   1545 		 * SSAP, like this, or should we check just the
   1546 		 * DSAP, as we do for other types <= ETHERMTU
   1547 		 * (i.e., other SAP values)?
   1548 		 */
   1549 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
   1550 		gen_not(b0);
   1551 		b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H, (bpf_int32)
   1552 			     ((proto << 8) | proto));
   1553 		gen_and(b0, b1);
   1554 		return b1;
   1555 
   1556 	case LLCSAP_IPX:
   1557 		/*
   1558 		 * Check for;
   1559 		 *
   1560 		 *	Ethernet_II frames, which are Ethernet
   1561 		 *	frames with a frame type of ETHERTYPE_IPX;
   1562 		 *
   1563 		 *	Ethernet_802.3 frames, which are 802.3
   1564 		 *	frames (i.e., the type/length field is
   1565 		 *	a length field, <= ETHERMTU, rather than
   1566 		 *	a type field) with the first two bytes
   1567 		 *	after the Ethernet/802.3 header being
   1568 		 *	0xFFFF;
   1569 		 *
   1570 		 *	Ethernet_802.2 frames, which are 802.3
   1571 		 *	frames with an 802.2 LLC header and
   1572 		 *	with the IPX LSAP as the DSAP in the LLC
   1573 		 *	header;
   1574 		 *
   1575 		 *	Ethernet_SNAP frames, which are 802.3
   1576 		 *	frames with an LLC header and a SNAP
   1577 		 *	header and with an OUI of 0x000000
   1578 		 *	(encapsulated Ethernet) and a protocol
   1579 		 *	ID of ETHERTYPE_IPX in the SNAP header.
   1580 		 *
   1581 		 * XXX - should we generate the same code both
   1582 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
   1583 		 */
   1584 
   1585 		/*
   1586 		 * This generates code to check both for the
   1587 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
   1588 		 */
   1589 		b0 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
   1590 		    (bpf_int32)LLCSAP_IPX);
   1591 		b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H,
   1592 		    (bpf_int32)0xFFFF);
   1593 		gen_or(b0, b1);
   1594 
   1595 		/*
   1596 		 * Now we add code to check for SNAP frames with
   1597 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
   1598 		 */
   1599 		b0 = gen_snap(0x000000, ETHERTYPE_IPX, 14);
   1600 		gen_or(b0, b1);
   1601 
   1602 		/*
   1603 		 * Now we generate code to check for 802.3
   1604 		 * frames in general.
   1605 		 */
   1606 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
   1607 		gen_not(b0);
   1608 
   1609 		/*
   1610 		 * Now add the check for 802.3 frames before the
   1611 		 * check for Ethernet_802.2 and Ethernet_802.3,
   1612 		 * as those checks should only be done on 802.3
   1613 		 * frames, not on Ethernet frames.
   1614 		 */
   1615 		gen_and(b0, b1);
   1616 
   1617 		/*
   1618 		 * Now add the check for Ethernet_II frames, and
   1619 		 * do that before checking for the other frame
   1620 		 * types.
   1621 		 */
   1622 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
   1623 		    (bpf_int32)ETHERTYPE_IPX);
   1624 		gen_or(b0, b1);
   1625 		return b1;
   1626 
   1627 	case ETHERTYPE_ATALK:
   1628 	case ETHERTYPE_AARP:
   1629 		/*
   1630 		 * EtherTalk (AppleTalk protocols on Ethernet link
   1631 		 * layer) may use 802.2 encapsulation.
   1632 		 */
   1633 
   1634 		/*
   1635 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
   1636 		 * we check for an Ethernet type field less than
   1637 		 * 1500, which means it's an 802.3 length field.
   1638 		 */
   1639 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
   1640 		gen_not(b0);
   1641 
   1642 		/*
   1643 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
   1644 		 * SNAP packets with an organization code of
   1645 		 * 0x080007 (Apple, for Appletalk) and a protocol
   1646 		 * type of ETHERTYPE_ATALK (Appletalk).
   1647 		 *
   1648 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
   1649 		 * SNAP packets with an organization code of
   1650 		 * 0x000000 (encapsulated Ethernet) and a protocol
   1651 		 * type of ETHERTYPE_AARP (Appletalk ARP).
   1652 		 */
   1653 		if (proto == ETHERTYPE_ATALK)
   1654 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK, 14);
   1655 		else	/* proto == ETHERTYPE_AARP */
   1656 			b1 = gen_snap(0x000000, ETHERTYPE_AARP, 14);
   1657 		gen_and(b0, b1);
   1658 
   1659 		/*
   1660 		 * Check for Ethernet encapsulation (Ethertalk
   1661 		 * phase 1?); we just check for the Ethernet
   1662 		 * protocol type.
   1663 		 */
   1664 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
   1665 
   1666 		gen_or(b0, b1);
   1667 		return b1;
   1668 
   1669 	default:
   1670 		if (proto <= ETHERMTU) {
   1671 			/*
   1672 			 * This is an LLC SAP value, so the frames
   1673 			 * that match would be 802.2 frames.
   1674 			 * Check that the frame is an 802.2 frame
   1675 			 * (i.e., that the length/type field is
   1676 			 * a length field, <= ETHERMTU) and
   1677 			 * then check the DSAP.
   1678 			 */
   1679 			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
   1680 			gen_not(b0);
   1681 			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
   1682 			    (bpf_int32)proto);
   1683 			gen_and(b0, b1);
   1684 			return b1;
   1685 		} else {
   1686 			/*
   1687 			 * This is an Ethernet type, so compare
   1688 			 * the length/type field with it (if
   1689 			 * the frame is an 802.2 frame, the length
   1690 			 * field will be <= ETHERMTU, and, as
   1691 			 * "proto" is > ETHERMTU, this test
   1692 			 * will fail and the frame won't match,
   1693 			 * which is what we want).
   1694 			 */
   1695 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
   1696 			    (bpf_int32)proto);
   1697 		}
   1698 	}
   1699 }
   1700 
   1701 /*
   1702  * Generate code to match a particular packet type.
   1703  *
   1704  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
   1705  * value, if <= ETHERMTU.  We use that to determine whether to
   1706  * match the type field or to check the type field for the special
   1707  * LINUX_SLL_P_802_2 value and then do the appropriate test.
   1708  */
   1709 static struct block *
   1710 gen_linux_sll_linktype(proto)
   1711 	register int proto;
   1712 {
   1713 	struct block *b0, *b1;
   1714 
   1715 	switch (proto) {
   1716 
   1717 	case LLCSAP_ISONS:
   1718 	case LLCSAP_IP:
   1719 	case LLCSAP_NETBEUI:
   1720 		/*
   1721 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
   1722 		 * so we check the DSAP and SSAP.
   1723 		 *
   1724 		 * LLCSAP_IP checks for IP-over-802.2, rather
   1725 		 * than IP-over-Ethernet or IP-over-SNAP.
   1726 		 *
   1727 		 * XXX - should we check both the DSAP and the
   1728 		 * SSAP, like this, or should we check just the
   1729 		 * DSAP, as we do for other types <= ETHERMTU
   1730 		 * (i.e., other SAP values)?
   1731 		 */
   1732 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
   1733 		b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H, (bpf_int32)
   1734 			     ((proto << 8) | proto));
   1735 		gen_and(b0, b1);
   1736 		return b1;
   1737 
   1738 	case LLCSAP_IPX:
   1739 		/*
   1740 		 *	Ethernet_II frames, which are Ethernet
   1741 		 *	frames with a frame type of ETHERTYPE_IPX;
   1742 		 *
   1743 		 *	Ethernet_802.3 frames, which have a frame
   1744 		 *	type of LINUX_SLL_P_802_3;
   1745 		 *
   1746 		 *	Ethernet_802.2 frames, which are 802.3
   1747 		 *	frames with an 802.2 LLC header (i.e, have
   1748 		 *	a frame type of LINUX_SLL_P_802_2) and
   1749 		 *	with the IPX LSAP as the DSAP in the LLC
   1750 		 *	header;
   1751 		 *
   1752 		 *	Ethernet_SNAP frames, which are 802.3
   1753 		 *	frames with an LLC header and a SNAP
   1754 		 *	header and with an OUI of 0x000000
   1755 		 *	(encapsulated Ethernet) and a protocol
   1756 		 *	ID of ETHERTYPE_IPX in the SNAP header.
   1757 		 *
   1758 		 * First, do the checks on LINUX_SLL_P_802_2
   1759 		 * frames; generate the check for either
   1760 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
   1761 		 * then put a check for LINUX_SLL_P_802_2 frames
   1762 		 * before it.
   1763 		 */
   1764 		b0 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
   1765 		    (bpf_int32)LLCSAP_IPX);
   1766 		b1 = gen_snap(0x000000, ETHERTYPE_IPX,
   1767 		    off_linktype + 2);
   1768 		gen_or(b0, b1);
   1769 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
   1770 		gen_and(b0, b1);
   1771 
   1772 		/*
   1773 		 * Now check for 802.3 frames and OR that with
   1774 		 * the previous test.
   1775 		 */
   1776 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
   1777 		gen_or(b0, b1);
   1778 
   1779 		/*
   1780 		 * Now add the check for Ethernet_II frames, and
   1781 		 * do that before checking for the other frame
   1782 		 * types.
   1783 		 */
   1784 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
   1785 		    (bpf_int32)ETHERTYPE_IPX);
   1786 		gen_or(b0, b1);
   1787 		return b1;
   1788 
   1789 	case ETHERTYPE_ATALK:
   1790 	case ETHERTYPE_AARP:
   1791 		/*
   1792 		 * EtherTalk (AppleTalk protocols on Ethernet link
   1793 		 * layer) may use 802.2 encapsulation.
   1794 		 */
   1795 
   1796 		/*
   1797 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
   1798 		 * we check for the 802.2 protocol type in the
   1799 		 * "Ethernet type" field.
   1800 		 */
   1801 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
   1802 
   1803 		/*
   1804 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
   1805 		 * SNAP packets with an organization code of
   1806 		 * 0x080007 (Apple, for Appletalk) and a protocol
   1807 		 * type of ETHERTYPE_ATALK (Appletalk).
   1808 		 *
   1809 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
   1810 		 * SNAP packets with an organization code of
   1811 		 * 0x000000 (encapsulated Ethernet) and a protocol
   1812 		 * type of ETHERTYPE_AARP (Appletalk ARP).
   1813 		 */
   1814 		if (proto == ETHERTYPE_ATALK)
   1815 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK,
   1816 			    off_linktype + 2);
   1817 		else	/* proto == ETHERTYPE_AARP */
   1818 			b1 = gen_snap(0x000000, ETHERTYPE_AARP,
   1819 			    off_linktype + 2);
   1820 		gen_and(b0, b1);
   1821 
   1822 		/*
   1823 		 * Check for Ethernet encapsulation (Ethertalk
   1824 		 * phase 1?); we just check for the Ethernet
   1825 		 * protocol type.
   1826 		 */
   1827 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
   1828 
   1829 		gen_or(b0, b1);
   1830 		return b1;
   1831 
   1832 	default:
   1833 		if (proto <= ETHERMTU) {
   1834 			/*
   1835 			 * This is an LLC SAP value, so the frames
   1836 			 * that match would be 802.2 frames.
   1837 			 * Check for the 802.2 protocol type
   1838 			 * in the "Ethernet type" field, and
   1839 			 * then check the DSAP.
   1840 			 */
   1841 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
   1842 			    LINUX_SLL_P_802_2);
   1843 			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
   1844 			     (bpf_int32)proto);
   1845 			gen_and(b0, b1);
   1846 			return b1;
   1847 		} else {
   1848 			/*
   1849 			 * This is an Ethernet type, so compare
   1850 			 * the length/type field with it (if
   1851 			 * the frame is an 802.2 frame, the length
   1852 			 * field will be <= ETHERMTU, and, as
   1853 			 * "proto" is > ETHERMTU, this test
   1854 			 * will fail and the frame won't match,
   1855 			 * which is what we want).
   1856 			 */
   1857 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
   1858 			    (bpf_int32)proto);
   1859 		}
   1860 	}
   1861 }
   1862 
   1863 static void
   1864 insert_radiotap_load_llprefixlen(b)
   1865 	struct block *b;
   1866 {
   1867 	struct slist *s1, *s2;
   1868 
   1869 	/*
   1870 	 * Prepend to the statements in this block code to load the
   1871 	 * length of the radiotap header into the register assigned
   1872 	 * to hold that length, if one has been assigned.
   1873 	 */
   1874 	if (reg_ll_size != -1) {
   1875 		/*
   1876 		 * The 2 bytes at offsets of 2 and 3 from the beginning
   1877 		 * of the radiotap header are the length of the radiotap
   1878 		 * header; unfortunately, it's little-endian, so we have
   1879 		 * to load it a byte at a time and construct the value.
   1880 		 */
   1881 
   1882 		/*
   1883 		 * Load the high-order byte, at an offset of 3, shift it
   1884 		 * left a byte, and put the result in the X register.
   1885 		 */
   1886 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
   1887 		s1->s.k = 3;
   1888 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
   1889 		sappend(s1, s2);
   1890 		s2->s.k = 8;
   1891 		s2 = new_stmt(BPF_MISC|BPF_TAX);
   1892 		sappend(s1, s2);
   1893 
   1894 		/*
   1895 		 * Load the next byte, at an offset of 2, and OR the
   1896 		 * value from the X register into it.
   1897 		 */
   1898 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
   1899 		sappend(s1, s2);
   1900 		s2->s.k = 2;
   1901 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
   1902 		sappend(s1, s2);
   1903 
   1904 		/*
   1905 		 * Now allocate a register to hold that value and store
   1906 		 * it.
   1907 		 */
   1908 		s2 = new_stmt(BPF_ST);
   1909 		s2->s.k = reg_ll_size;
   1910 		sappend(s1, s2);
   1911 
   1912 		/*
   1913 		 * Now move it into the X register.
   1914 		 */
   1915 		s2 = new_stmt(BPF_MISC|BPF_TAX);
   1916 		sappend(s1, s2);
   1917 
   1918 		/*
   1919 		 * Now append all the existing statements in this
   1920 		 * block to these statements.
   1921 		 */
   1922 		sappend(s1, b->stmts);
   1923 		b->stmts = s1;
   1924 	}
   1925 }
   1926 
   1927 /*
   1928  * At the moment we treat PPI as normal Radiotap encoded
   1929  * packets. The difference is in the function that generates
   1930  * the code at the beginning to compute the header length.
   1931  * Since this code generator of PPI supports bare 802.11
   1932  * encapsulation only (i.e. the encapsulated DLT should be
   1933  * DLT_IEEE802_11) we generate code to check for this too.
   1934  */
   1935 static void
   1936 insert_ppi_load_llprefixlen(b)
   1937 	struct block *b;
   1938 {
   1939 	struct slist *s1, *s2;
   1940 
   1941 	/*
   1942 	 * Prepend to the statements in this block code to load the
   1943 	 * length of the radiotap header into the register assigned
   1944 	 * to hold that length, if one has been assigned.
   1945 	 */
   1946 	if (reg_ll_size != -1) {
   1947 	    /*
   1948 		 * The 2 bytes at offsets of 2 and 3 from the beginning
   1949 		 * of the radiotap header are the length of the radiotap
   1950 		 * header; unfortunately, it's little-endian, so we have
   1951 		 * to load it a byte at a time and construct the value.
   1952 		 */
   1953 
   1954 		/*
   1955 		 * Load the high-order byte, at an offset of 3, shift it
   1956 		 * left a byte, and put the result in the X register.
   1957 		 */
   1958 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
   1959 		s1->s.k = 3;
   1960 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
   1961 		sappend(s1, s2);
   1962 		s2->s.k = 8;
   1963 		s2 = new_stmt(BPF_MISC|BPF_TAX);
   1964 		sappend(s1, s2);
   1965 
   1966 		/*
   1967 		 * Load the next byte, at an offset of 2, and OR the
   1968 		 * value from the X register into it.
   1969 		 */
   1970 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
   1971 		sappend(s1, s2);
   1972 		s2->s.k = 2;
   1973 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
   1974 		sappend(s1, s2);
   1975 
   1976 		/*
   1977 		 * Now allocate a register to hold that value and store
   1978 		 * it.
   1979 		 */
   1980 		s2 = new_stmt(BPF_ST);
   1981 		s2->s.k = reg_ll_size;
   1982 		sappend(s1, s2);
   1983 
   1984 		/*
   1985 		 * Now move it into the X register.
   1986 		 */
   1987 		s2 = new_stmt(BPF_MISC|BPF_TAX);
   1988 		sappend(s1, s2);
   1989 
   1990 		/*
   1991 		 * Now append all the existing statements in this
   1992 		 * block to these statements.
   1993 		 */
   1994 		sappend(s1, b->stmts);
   1995 		b->stmts = s1;
   1996 
   1997 	}
   1998 }
   1999 
   2000 static struct block *
   2001 gen_ppi_dlt_check(void)
   2002 {
   2003 	struct slist *s_load_dlt;
   2004 	struct block *b;
   2005 
   2006 	if (linktype == DLT_PPI)
   2007 	{
   2008 		/* Create the statements that check for the DLT
   2009 		 */
   2010 		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
   2011 		s_load_dlt->s.k = 4;
   2012 
   2013 		b = new_block(JMP(BPF_JEQ));
   2014 
   2015 		b->stmts = s_load_dlt;
   2016 		b->s.k = SWAPLONG(DLT_IEEE802_11);
   2017 	}
   2018 	else
   2019 	{
   2020 		b = NULL;
   2021 	}
   2022 
   2023 	return b;
   2024 }
   2025 
   2026 static void
   2027 insert_load_llprefixlen(b)
   2028 	struct block *b;
   2029 {
   2030 	switch (linktype) {
   2031 
   2032 	/*
   2033 	 * At the moment we treat PPI as normal Radiotap encoded
   2034 	 * packets. The difference is in the function that generates
   2035 	 * the code at the beginning to compute the header length.
   2036 	 * Since this code generator of PPI supports bare 802.11
   2037 	 * encapsulation only (i.e. the encapsulated DLT should be
   2038 	 * DLT_IEEE802_11) we generate code to check for this too.
   2039 	 */
   2040 	case DLT_PPI:
   2041 		insert_ppi_load_llprefixlen(b);
   2042 		break;
   2043 
   2044 	case DLT_IEEE802_11_RADIO:
   2045 		insert_radiotap_load_llprefixlen(b);
   2046 		break;
   2047 	}
   2048 }
   2049 
   2050 
   2051 static struct slist *
   2052 gen_radiotap_llprefixlen(void)
   2053 {
   2054 	struct slist *s;
   2055 
   2056 	if (reg_ll_size == -1) {
   2057 		/*
   2058 		 * We haven't yet assigned a register for the length
   2059 		 * of the radiotap header; allocate one.
   2060 		 */
   2061 		reg_ll_size = alloc_reg();
   2062 	}
   2063 
   2064 	/*
   2065 	 * Load the register containing the radiotap length
   2066 	 * into the X register.
   2067 	 */
   2068 	s = new_stmt(BPF_LDX|BPF_MEM);
   2069 	s->s.k = reg_ll_size;
   2070 	return s;
   2071 }
   2072 
   2073 /*
   2074  * At the moment we treat PPI as normal Radiotap encoded
   2075  * packets. The difference is in the function that generates
   2076  * the code at the beginning to compute the header length.
   2077  * Since this code generator of PPI supports bare 802.11
   2078  * encapsulation only (i.e. the encapsulated DLT should be
   2079  * DLT_IEEE802_11) we generate code to check for this too.
   2080  */
   2081 static struct slist *
   2082 gen_ppi_llprefixlen(void)
   2083 {
   2084 	struct slist *s;
   2085 
   2086 	if (reg_ll_size == -1) {
   2087 		/*
   2088 		 * We haven't yet assigned a register for the length
   2089 		 * of the radiotap header; allocate one.
   2090 		 */
   2091 		reg_ll_size = alloc_reg();
   2092 	}
   2093 
   2094 	/*
   2095 	 * Load the register containing the radiotap length
   2096 	 * into the X register.
   2097 	 */
   2098 	s = new_stmt(BPF_LDX|BPF_MEM);
   2099 	s->s.k = reg_ll_size;
   2100 	return s;
   2101 }
   2102 
   2103 
   2104 
   2105 /*
   2106  * Generate code to compute the link-layer header length, if necessary,
   2107  * putting it into the X register, and to return either a pointer to a
   2108  * "struct slist" for the list of statements in that code, or NULL if
   2109  * no code is necessary.
   2110  */
   2111 static struct slist *
   2112 gen_llprefixlen(void)
   2113 {
   2114 	switch (linktype) {
   2115 
   2116 	case DLT_PPI:
   2117 		return gen_ppi_llprefixlen();
   2118 
   2119 
   2120 	case DLT_IEEE802_11_RADIO:
   2121 		return gen_radiotap_llprefixlen();
   2122 
   2123 	default:
   2124 		return NULL;
   2125 	}
   2126 }
   2127 
   2128 /*
   2129  * Generate code to match a particular packet type by matching the
   2130  * link-layer type field or fields in the 802.2 LLC header.
   2131  *
   2132  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
   2133  * value, if <= ETHERMTU.
   2134  */
   2135 static struct block *
   2136 gen_linktype(proto)
   2137 	register int proto;
   2138 {
   2139 	struct block *b0, *b1, *b2;
   2140 
   2141 	/* are we checking MPLS-encapsulated packets? */
   2142 	if (label_stack_depth > 0) {
   2143 		switch (proto) {
   2144 		case ETHERTYPE_IP:
   2145 		case PPP_IP:
   2146 		/* FIXME add other L3 proto IDs */
   2147 			return gen_mpls_linktype(Q_IP);
   2148 
   2149 		case ETHERTYPE_IPV6:
   2150 		case PPP_IPV6:
   2151 		/* FIXME add other L3 proto IDs */
   2152 			return gen_mpls_linktype(Q_IPV6);
   2153 
   2154 		default:
   2155 			bpf_error("unsupported protocol over mpls");
   2156 			/* NOTREACHED */
   2157 		}
   2158 	}
   2159 
   2160 	switch (linktype) {
   2161 
   2162 	case DLT_EN10MB:
   2163 		return gen_ether_linktype(proto);
   2164 		/*NOTREACHED*/
   2165 		break;
   2166 
   2167 	case DLT_C_HDLC:
   2168 		switch (proto) {
   2169 
   2170 		case LLCSAP_ISONS:
   2171 			proto = (proto << 8 | LLCSAP_ISONS);
   2172 			/* fall through */
   2173 
   2174 		default:
   2175 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
   2176 			    (bpf_int32)proto);
   2177 			/*NOTREACHED*/
   2178 			break;
   2179 		}
   2180 		break;
   2181 
   2182 	case DLT_PPI:
   2183 	case DLT_FDDI:
   2184 	case DLT_IEEE802:
   2185 	case DLT_IEEE802_11:
   2186 	case DLT_IEEE802_11_RADIO_AVS:
   2187 	case DLT_IEEE802_11_RADIO:
   2188 	case DLT_PRISM_HEADER:
   2189 	case DLT_ATM_RFC1483:
   2190 	case DLT_ATM_CLIP:
   2191 	case DLT_IP_OVER_FC:
   2192 		return gen_llc_linktype(proto);
   2193 		/*NOTREACHED*/
   2194 		break;
   2195 
   2196 	case DLT_SUNATM:
   2197 		/*
   2198 		 * If "is_lane" is set, check for a LANE-encapsulated
   2199 		 * version of this protocol, otherwise check for an
   2200 		 * LLC-encapsulated version of this protocol.
   2201 		 *
   2202 		 * We assume LANE means Ethernet, not Token Ring.
   2203 		 */
   2204 		if (is_lane) {
   2205 			/*
   2206 			 * Check that the packet doesn't begin with an
   2207 			 * LE Control marker.  (We've already generated
   2208 			 * a test for LANE.)
   2209 			 */
   2210 			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
   2211 			    0xFF00);
   2212 			gen_not(b0);
   2213 
   2214 			/*
   2215 			 * Now generate an Ethernet test.
   2216 			 */
   2217 			b1 = gen_ether_linktype(proto);
   2218 			gen_and(b0, b1);
   2219 			return b1;
   2220 		} else {
   2221 			/*
   2222 			 * Check for LLC encapsulation and then check the
   2223 			 * protocol.
   2224 			 */
   2225 			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
   2226 			b1 = gen_llc_linktype(proto);
   2227 			gen_and(b0, b1);
   2228 			return b1;
   2229 		}
   2230 		/*NOTREACHED*/
   2231 		break;
   2232 
   2233 	case DLT_LINUX_SLL:
   2234 		return gen_linux_sll_linktype(proto);
   2235 		/*NOTREACHED*/
   2236 		break;
   2237 
   2238 	case DLT_SLIP:
   2239 	case DLT_SLIP_BSDOS:
   2240 	case DLT_RAW:
   2241 		/*
   2242 		 * These types don't provide any type field; packets
   2243 		 * are always IPv4 or IPv6.
   2244 		 *
   2245 		 * XXX - for IPv4, check for a version number of 4, and,
   2246 		 * for IPv6, check for a version number of 6?
   2247 		 */
   2248 		switch (proto) {
   2249 
   2250 		case ETHERTYPE_IP:
   2251 			/* Check for a version number of 4. */
   2252 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
   2253 #ifdef INET6
   2254 		case ETHERTYPE_IPV6:
   2255 			/* Check for a version number of 6. */
   2256 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
   2257 #endif
   2258 
   2259 		default:
   2260 			return gen_false();		/* always false */
   2261 		}
   2262 		/*NOTREACHED*/
   2263 		break;
   2264 
   2265 	case DLT_PPP:
   2266 	case DLT_PPP_PPPD:
   2267 	case DLT_PPP_SERIAL:
   2268 	case DLT_PPP_ETHER:
   2269 		/*
   2270 		 * We use Ethernet protocol types inside libpcap;
   2271 		 * map them to the corresponding PPP protocol types.
   2272 		 */
   2273 		switch (proto) {
   2274 
   2275 		case ETHERTYPE_IP:
   2276 			proto = PPP_IP;
   2277 			break;
   2278 
   2279 #ifdef INET6
   2280 		case ETHERTYPE_IPV6:
   2281 			proto = PPP_IPV6;
   2282 			break;
   2283 #endif
   2284 
   2285 		case ETHERTYPE_DN:
   2286 			proto = PPP_DECNET;
   2287 			break;
   2288 
   2289 		case ETHERTYPE_ATALK:
   2290 			proto = PPP_APPLE;
   2291 			break;
   2292 
   2293 		case ETHERTYPE_NS:
   2294 			proto = PPP_NS;
   2295 			break;
   2296 
   2297 		case LLCSAP_ISONS:
   2298 			proto = PPP_OSI;
   2299 			break;
   2300 
   2301 		case LLCSAP_8021D:
   2302 			/*
   2303 			 * I'm assuming the "Bridging PDU"s that go
   2304 			 * over PPP are Spanning Tree Protocol
   2305 			 * Bridging PDUs.
   2306 			 */
   2307 			proto = PPP_BRPDU;
   2308 			break;
   2309 
   2310 		case LLCSAP_IPX:
   2311 			proto = PPP_IPX;
   2312 			break;
   2313 		}
   2314 		break;
   2315 
   2316 	case DLT_PPP_BSDOS:
   2317 		/*
   2318 		 * We use Ethernet protocol types inside libpcap;
   2319 		 * map them to the corresponding PPP protocol types.
   2320 		 */
   2321 		switch (proto) {
   2322 
   2323 		case ETHERTYPE_IP:
   2324 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
   2325 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
   2326 			gen_or(b0, b1);
   2327 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
   2328 			gen_or(b1, b0);
   2329 			return b0;
   2330 
   2331 #ifdef INET6
   2332 		case ETHERTYPE_IPV6:
   2333 			proto = PPP_IPV6;
   2334 			/* more to go? */
   2335 			break;
   2336 #endif
   2337 
   2338 		case ETHERTYPE_DN:
   2339 			proto = PPP_DECNET;
   2340 			break;
   2341 
   2342 		case ETHERTYPE_ATALK:
   2343 			proto = PPP_APPLE;
   2344 			break;
   2345 
   2346 		case ETHERTYPE_NS:
   2347 			proto = PPP_NS;
   2348 			break;
   2349 
   2350 		case LLCSAP_ISONS:
   2351 			proto = PPP_OSI;
   2352 			break;
   2353 
   2354 		case LLCSAP_8021D:
   2355 			/*
   2356 			 * I'm assuming the "Bridging PDU"s that go
   2357 			 * over PPP are Spanning Tree Protocol
   2358 			 * Bridging PDUs.
   2359 			 */
   2360 			proto = PPP_BRPDU;
   2361 			break;
   2362 
   2363 		case LLCSAP_IPX:
   2364 			proto = PPP_IPX;
   2365 			break;
   2366 		}
   2367 		break;
   2368 
   2369 	case DLT_NULL:
   2370 	case DLT_LOOP:
   2371 	case DLT_ENC:
   2372 		/*
   2373 		 * For DLT_NULL, the link-layer header is a 32-bit
   2374 		 * word containing an AF_ value in *host* byte order,
   2375 		 * and for DLT_ENC, the link-layer header begins
   2376 		 * with a 32-bit work containing an AF_ value in
   2377 		 * host byte order.
   2378 		 *
   2379 		 * In addition, if we're reading a saved capture file,
   2380 		 * the host byte order in the capture may not be the
   2381 		 * same as the host byte order on this machine.
   2382 		 *
   2383 		 * For DLT_LOOP, the link-layer header is a 32-bit
   2384 		 * word containing an AF_ value in *network* byte order.
   2385 		 *
   2386 		 * XXX - AF_ values may, unfortunately, be platform-
   2387 		 * dependent; for example, FreeBSD's AF_INET6 is 24
   2388 		 * whilst NetBSD's and OpenBSD's is 26.
   2389 		 *
   2390 		 * This means that, when reading a capture file, just
   2391 		 * checking for our AF_INET6 value won't work if the
   2392 		 * capture file came from another OS.
   2393 		 */
   2394 		switch (proto) {
   2395 
   2396 		case ETHERTYPE_IP:
   2397 			proto = AF_INET;
   2398 			break;
   2399 
   2400 #ifdef INET6
   2401 		case ETHERTYPE_IPV6:
   2402 			proto = AF_INET6;
   2403 			break;
   2404 #endif
   2405 
   2406 		default:
   2407 			/*
   2408 			 * Not a type on which we support filtering.
   2409 			 * XXX - support those that have AF_ values
   2410 			 * #defined on this platform, at least?
   2411 			 */
   2412 			return gen_false();
   2413 		}
   2414 
   2415 		if (linktype == DLT_NULL || linktype == DLT_ENC) {
   2416 			/*
   2417 			 * The AF_ value is in host byte order, but
   2418 			 * the BPF interpreter will convert it to
   2419 			 * network byte order.
   2420 			 *
   2421 			 * If this is a save file, and it's from a
   2422 			 * machine with the opposite byte order to
   2423 			 * ours, we byte-swap the AF_ value.
   2424 			 *
   2425 			 * Then we run it through "htonl()", and
   2426 			 * generate code to compare against the result.
   2427 			 */
   2428 			if (bpf_pcap->sf.rfile != NULL &&
   2429 			    bpf_pcap->sf.swapped)
   2430 				proto = SWAPLONG(proto);
   2431 			proto = htonl(proto);
   2432 		}
   2433 		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
   2434 
   2435 #ifdef HAVE_NET_PFVAR_H
   2436 	case DLT_PFLOG:
   2437 		/*
   2438 		 * af field is host byte order in contrast to the rest of
   2439 		 * the packet.
   2440 		 */
   2441 		if (proto == ETHERTYPE_IP)
   2442 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
   2443 			    BPF_B, (bpf_int32)AF_INET));
   2444 #ifdef INET6
   2445 		else if (proto == ETHERTYPE_IPV6)
   2446 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
   2447 			    BPF_B, (bpf_int32)AF_INET6));
   2448 #endif /* INET6 */
   2449 		else
   2450 			return gen_false();
   2451 		/*NOTREACHED*/
   2452 		break;
   2453 #endif /* HAVE_NET_PFVAR_H */
   2454 
   2455 	case DLT_ARCNET:
   2456 	case DLT_ARCNET_LINUX:
   2457 		/*
   2458 		 * XXX should we check for first fragment if the protocol
   2459 		 * uses PHDS?
   2460 		 */
   2461 		switch (proto) {
   2462 
   2463 		default:
   2464 			return gen_false();
   2465 
   2466 #ifdef INET6
   2467 		case ETHERTYPE_IPV6:
   2468 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
   2469 				(bpf_int32)ARCTYPE_INET6));
   2470 #endif /* INET6 */
   2471 
   2472 		case ETHERTYPE_IP:
   2473 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
   2474 				     (bpf_int32)ARCTYPE_IP);
   2475 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
   2476 				     (bpf_int32)ARCTYPE_IP_OLD);
   2477 			gen_or(b0, b1);
   2478 			return (b1);
   2479 
   2480 		case ETHERTYPE_ARP:
   2481 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
   2482 				     (bpf_int32)ARCTYPE_ARP);
   2483 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
   2484 				     (bpf_int32)ARCTYPE_ARP_OLD);
   2485 			gen_or(b0, b1);
   2486 			return (b1);
   2487 
   2488 		case ETHERTYPE_REVARP:
   2489 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
   2490 					(bpf_int32)ARCTYPE_REVARP));
   2491 
   2492 		case ETHERTYPE_ATALK:
   2493 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
   2494 					(bpf_int32)ARCTYPE_ATALK));
   2495 		}
   2496 		/*NOTREACHED*/
   2497 		break;
   2498 
   2499 	case DLT_LTALK:
   2500 		switch (proto) {
   2501 		case ETHERTYPE_ATALK:
   2502 			return gen_true();
   2503 		default:
   2504 			return gen_false();
   2505 		}
   2506 		/*NOTREACHED*/
   2507 		break;
   2508 
   2509 	case DLT_FRELAY:
   2510 		/*
   2511 		 * XXX - assumes a 2-byte Frame Relay header with
   2512 		 * DLCI and flags.  What if the address is longer?
   2513 		 */
   2514 		switch (proto) {
   2515 
   2516 		case ETHERTYPE_IP:
   2517 			/*
   2518 			 * Check for the special NLPID for IP.
   2519 			 */
   2520 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
   2521 
   2522 #ifdef INET6
   2523 		case ETHERTYPE_IPV6:
   2524 			/*
   2525 			 * Check for the special NLPID for IPv6.
   2526 			 */
   2527 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
   2528 #endif
   2529 
   2530 		case LLCSAP_ISONS:
   2531 			/*
   2532 			 * Check for several OSI protocols.
   2533 			 *
   2534 			 * Frame Relay packets typically have an OSI
   2535 			 * NLPID at the beginning; we check for each
   2536 			 * of them.
   2537 			 *
   2538 			 * What we check for is the NLPID and a frame
   2539 			 * control field of UI, i.e. 0x03 followed
   2540 			 * by the NLPID.
   2541 			 */
   2542 			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
   2543 			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
   2544 			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
   2545 			gen_or(b1, b2);
   2546 			gen_or(b0, b2);
   2547 			return b2;
   2548 
   2549 		default:
   2550 			return gen_false();
   2551 		}
   2552 		/*NOTREACHED*/
   2553 		break;
   2554 
   2555         case DLT_JUNIPER_MFR:
   2556         case DLT_JUNIPER_MLFR:
   2557         case DLT_JUNIPER_MLPPP:
   2558 	case DLT_JUNIPER_ATM1:
   2559 	case DLT_JUNIPER_ATM2:
   2560 	case DLT_JUNIPER_PPPOE:
   2561 	case DLT_JUNIPER_PPPOE_ATM:
   2562         case DLT_JUNIPER_GGSN:
   2563         case DLT_JUNIPER_ES:
   2564         case DLT_JUNIPER_MONITOR:
   2565         case DLT_JUNIPER_SERVICES:
   2566         case DLT_JUNIPER_ETHER:
   2567         case DLT_JUNIPER_PPP:
   2568         case DLT_JUNIPER_FRELAY:
   2569         case DLT_JUNIPER_CHDLC:
   2570         case DLT_JUNIPER_VP:
   2571 		/* just lets verify the magic number for now -
   2572 		 * on ATM we may have up to 6 different encapsulations on the wire
   2573 		 * and need a lot of heuristics to figure out that the payload
   2574 		 * might be;
   2575 		 *
   2576 		 * FIXME encapsulation specific BPF_ filters
   2577 		 */
   2578 		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
   2579 
   2580 	case DLT_LINUX_IRDA:
   2581 		bpf_error("IrDA link-layer type filtering not implemented");
   2582 
   2583 	case DLT_DOCSIS:
   2584 		bpf_error("DOCSIS link-layer type filtering not implemented");
   2585 
   2586 	case DLT_LINUX_LAPD:
   2587 		bpf_error("LAPD link-layer type filtering not implemented");
   2588 	}
   2589 
   2590 	/*
   2591 	 * All the types that have no encapsulation should either be
   2592 	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
   2593 	 * all packets are IP packets, or should be handled in some
   2594 	 * special case, if none of them are (if some are and some
   2595 	 * aren't, the lack of encapsulation is a problem, as we'd
   2596 	 * have to find some other way of determining the packet type).
   2597 	 *
   2598 	 * Therefore, if "off_linktype" is -1, there's an error.
   2599 	 */
   2600 	if (off_linktype == (u_int)-1)
   2601 		abort();
   2602 
   2603 	/*
   2604 	 * Any type not handled above should always have an Ethernet
   2605 	 * type at an offset of "off_linktype".  (PPP is partially
   2606 	 * handled above - the protocol type is mapped from the
   2607 	 * Ethernet and LLC types we use internally to the corresponding
   2608 	 * PPP type - but the PPP type is always specified by a value
   2609 	 * at "off_linktype", so we don't have to do the code generation
   2610 	 * above.)
   2611 	 */
   2612 	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
   2613 }
   2614 
   2615 /*
   2616  * Check for an LLC SNAP packet with a given organization code and
   2617  * protocol type; we check the entire contents of the 802.2 LLC and
   2618  * snap headers, checking for DSAP and SSAP of SNAP and a control
   2619  * field of 0x03 in the LLC header, and for the specified organization
   2620  * code and protocol type in the SNAP header.
   2621  */
   2622 static struct block *
   2623 gen_snap(orgcode, ptype, offset)
   2624 	bpf_u_int32 orgcode;
   2625 	bpf_u_int32 ptype;
   2626 	u_int offset;
   2627 {
   2628 	u_char snapblock[8];
   2629 
   2630 	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
   2631 	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
   2632 	snapblock[2] = 0x03;		/* control = UI */
   2633 	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
   2634 	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
   2635 	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
   2636 	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
   2637 	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
   2638 	return gen_bcmp(OR_LINK, offset, 8, snapblock);
   2639 }
   2640 
   2641 /*
   2642  * Generate code to match a particular packet type, for link-layer types
   2643  * using 802.2 LLC headers.
   2644  *
   2645  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
   2646  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
   2647  *
   2648  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
   2649  * value, if <= ETHERMTU.  We use that to determine whether to
   2650  * match the DSAP or both DSAP and LSAP or to check the OUI and
   2651  * protocol ID in a SNAP header.
   2652  */
   2653 static struct block *
   2654 gen_llc_linktype(proto)
   2655 	int proto;
   2656 {
   2657 	/*
   2658 	 * XXX - handle token-ring variable-length header.
   2659 	 */
   2660 	switch (proto) {
   2661 
   2662 	case LLCSAP_IP:
   2663 	case LLCSAP_ISONS:
   2664 	case LLCSAP_NETBEUI:
   2665 		/*
   2666 		 * XXX - should we check both the DSAP and the
   2667 		 * SSAP, like this, or should we check just the
   2668 		 * DSAP, as we do for other types <= ETHERMTU
   2669 		 * (i.e., other SAP values)?
   2670 		 */
   2671 		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_u_int32)
   2672 			     ((proto << 8) | proto));
   2673 
   2674 	case LLCSAP_IPX:
   2675 		/*
   2676 		 * XXX - are there ever SNAP frames for IPX on
   2677 		 * non-Ethernet 802.x networks?
   2678 		 */
   2679 		return gen_cmp(OR_LINK, off_linktype, BPF_B,
   2680 		    (bpf_int32)LLCSAP_IPX);
   2681 
   2682 	case ETHERTYPE_ATALK:
   2683 		/*
   2684 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
   2685 		 * SNAP packets with an organization code of
   2686 		 * 0x080007 (Apple, for Appletalk) and a protocol
   2687 		 * type of ETHERTYPE_ATALK (Appletalk).
   2688 		 *
   2689 		 * XXX - check for an organization code of
   2690 		 * encapsulated Ethernet as well?
   2691 		 */
   2692 		return gen_snap(0x080007, ETHERTYPE_ATALK, off_linktype);
   2693 
   2694 	default:
   2695 		/*
   2696 		 * XXX - we don't have to check for IPX 802.3
   2697 		 * here, but should we check for the IPX Ethertype?
   2698 		 */
   2699 		if (proto <= ETHERMTU) {
   2700 			/*
   2701 			 * This is an LLC SAP value, so check
   2702 			 * the DSAP.
   2703 			 */
   2704 			return gen_cmp(OR_LINK, off_linktype, BPF_B,
   2705 			    (bpf_int32)proto);
   2706 		} else {
   2707 			/*
   2708 			 * This is an Ethernet type; we assume that it's
   2709 			 * unlikely that it'll appear in the right place
   2710 			 * at random, and therefore check only the
   2711 			 * location that would hold the Ethernet type
   2712 			 * in a SNAP frame with an organization code of
   2713 			 * 0x000000 (encapsulated Ethernet).
   2714 			 *
   2715 			 * XXX - if we were to check for the SNAP DSAP and
   2716 			 * LSAP, as per XXX, and were also to check for an
   2717 			 * organization code of 0x000000 (encapsulated
   2718 			 * Ethernet), we'd do
   2719 			 *
   2720 			 *	return gen_snap(0x000000, proto,
   2721 			 *	    off_linktype);
   2722 			 *
   2723 			 * here; for now, we don't, as per the above.
   2724 			 * I don't know whether it's worth the extra CPU
   2725 			 * time to do the right check or not.
   2726 			 */
   2727 			return gen_cmp(OR_LINK, off_linktype+6, BPF_H,
   2728 			    (bpf_int32)proto);
   2729 		}
   2730 	}
   2731 }
   2732 
   2733 static struct block *
   2734 gen_hostop(addr, mask, dir, proto, src_off, dst_off)
   2735 	bpf_u_int32 addr;
   2736 	bpf_u_int32 mask;
   2737 	int dir, proto;
   2738 	u_int src_off, dst_off;
   2739 {
   2740 	struct block *b0, *b1;
   2741 	u_int offset;
   2742 
   2743 	switch (dir) {
   2744 
   2745 	case Q_SRC:
   2746 		offset = src_off;
   2747 		break;
   2748 
   2749 	case Q_DST:
   2750 		offset = dst_off;
   2751 		break;
   2752 
   2753 	case Q_AND:
   2754 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
   2755 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
   2756 		gen_and(b0, b1);
   2757 		return b1;
   2758 
   2759 	case Q_OR:
   2760 	case Q_DEFAULT:
   2761 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
   2762 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
   2763 		gen_or(b0, b1);
   2764 		return b1;
   2765 
   2766 	default:
   2767 		abort();
   2768 	}
   2769 	b0 = gen_linktype(proto);
   2770 	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
   2771 	gen_and(b0, b1);
   2772 	return b1;
   2773 }
   2774 
   2775 #ifdef INET6
   2776 static struct block *
   2777 gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
   2778 	struct in6_addr *addr;
   2779 	struct in6_addr *mask;
   2780 	int dir, proto;
   2781 	u_int src_off, dst_off;
   2782 {
   2783 	struct block *b0, *b1;
   2784 	u_int offset;
   2785 	u_int32_t *a, *m;
   2786 
   2787 	switch (dir) {
   2788 
   2789 	case Q_SRC:
   2790 		offset = src_off;
   2791 		break;
   2792 
   2793 	case Q_DST:
   2794 		offset = dst_off;
   2795 		break;
   2796 
   2797 	case Q_AND:
   2798 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
   2799 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
   2800 		gen_and(b0, b1);
   2801 		return b1;
   2802 
   2803 	case Q_OR:
   2804 	case Q_DEFAULT:
   2805 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
   2806 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
   2807 		gen_or(b0, b1);
   2808 		return b1;
   2809 
   2810 	default:
   2811 		abort();
   2812 	}
   2813 	/* this order is important */
   2814 	a = (u_int32_t *)addr;
   2815 	m = (u_int32_t *)mask;
   2816 	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
   2817 	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
   2818 	gen_and(b0, b1);
   2819 	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
   2820 	gen_and(b0, b1);
   2821 	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
   2822 	gen_and(b0, b1);
   2823 	b0 = gen_linktype(proto);
   2824 	gen_and(b0, b1);
   2825 	return b1;
   2826 }
   2827 #endif /*INET6*/
   2828 
   2829 static struct block *
   2830 gen_ehostop(eaddr, dir)
   2831 	register const u_char *eaddr;
   2832 	register int dir;
   2833 {
   2834 	register struct block *b0, *b1;
   2835 
   2836 	switch (dir) {
   2837 	case Q_SRC:
   2838 		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
   2839 
   2840 	case Q_DST:
   2841 		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
   2842 
   2843 	case Q_AND:
   2844 		b0 = gen_ehostop(eaddr, Q_SRC);
   2845 		b1 = gen_ehostop(eaddr, Q_DST);
   2846 		gen_and(b0, b1);
   2847 		return b1;
   2848 
   2849 	case Q_DEFAULT:
   2850 	case Q_OR:
   2851 		b0 = gen_ehostop(eaddr, Q_SRC);
   2852 		b1 = gen_ehostop(eaddr, Q_DST);
   2853 		gen_or(b0, b1);
   2854 		return b1;
   2855 	}
   2856 	abort();
   2857 	/* NOTREACHED */
   2858 }
   2859 
   2860 /*
   2861  * Like gen_ehostop, but for DLT_FDDI
   2862  */
   2863 static struct block *
   2864 gen_fhostop(eaddr, dir)
   2865 	register const u_char *eaddr;
   2866 	register int dir;
   2867 {
   2868 	struct block *b0, *b1;
   2869 
   2870 	switch (dir) {
   2871 	case Q_SRC:
   2872 #ifdef PCAP_FDDIPAD
   2873 		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
   2874 #else
   2875 		return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
   2876 #endif
   2877 
   2878 	case Q_DST:
   2879 #ifdef PCAP_FDDIPAD
   2880 		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
   2881 #else
   2882 		return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
   2883 #endif
   2884 
   2885 	case Q_AND:
   2886 		b0 = gen_fhostop(eaddr, Q_SRC);
   2887 		b1 = gen_fhostop(eaddr, Q_DST);
   2888 		gen_and(b0, b1);
   2889 		return b1;
   2890 
   2891 	case Q_DEFAULT:
   2892 	case Q_OR:
   2893 		b0 = gen_fhostop(eaddr, Q_SRC);
   2894 		b1 = gen_fhostop(eaddr, Q_DST);
   2895 		gen_or(b0, b1);
   2896 		return b1;
   2897 	}
   2898 	abort();
   2899 	/* NOTREACHED */
   2900 }
   2901 
   2902 /*
   2903  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
   2904  */
   2905 static struct block *
   2906 gen_thostop(eaddr, dir)
   2907 	register const u_char *eaddr;
   2908 	register int dir;
   2909 {
   2910 	register struct block *b0, *b1;
   2911 
   2912 	switch (dir) {
   2913 	case Q_SRC:
   2914 		return gen_bcmp(OR_LINK, 8, 6, eaddr);
   2915 
   2916 	case Q_DST:
   2917 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
   2918 
   2919 	case Q_AND:
   2920 		b0 = gen_thostop(eaddr, Q_SRC);
   2921 		b1 = gen_thostop(eaddr, Q_DST);
   2922 		gen_and(b0, b1);
   2923 		return b1;
   2924 
   2925 	case Q_DEFAULT:
   2926 	case Q_OR:
   2927 		b0 = gen_thostop(eaddr, Q_SRC);
   2928 		b1 = gen_thostop(eaddr, Q_DST);
   2929 		gen_or(b0, b1);
   2930 		return b1;
   2931 	}
   2932 	abort();
   2933 	/* NOTREACHED */
   2934 }
   2935 
   2936 /*
   2937  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN)
   2938  */
   2939 static struct block *
   2940 gen_wlanhostop(eaddr, dir)
   2941 	register const u_char *eaddr;
   2942 	register int dir;
   2943 {
   2944 	register struct block *b0, *b1, *b2;
   2945 	register struct slist *s;
   2946 
   2947 	switch (dir) {
   2948 	case Q_SRC:
   2949 		/*
   2950 		 * Oh, yuk.
   2951 		 *
   2952 		 *	For control frames, there is no SA.
   2953 		 *
   2954 		 *	For management frames, SA is at an
   2955 		 *	offset of 10 from the beginning of
   2956 		 *	the packet.
   2957 		 *
   2958 		 *	For data frames, SA is at an offset
   2959 		 *	of 10 from the beginning of the packet
   2960 		 *	if From DS is clear, at an offset of
   2961 		 *	16 from the beginning of the packet
   2962 		 *	if From DS is set and To DS is clear,
   2963 		 *	and an offset of 24 from the beginning
   2964 		 *	of the packet if From DS is set and To DS
   2965 		 *	is set.
   2966 		 */
   2967 
   2968 		/*
   2969 		 * Generate the tests to be done for data frames
   2970 		 * with From DS set.
   2971 		 *
   2972 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
   2973 		 */
   2974 		s = gen_load_a(OR_LINK, 1, BPF_B);
   2975 		b1 = new_block(JMP(BPF_JSET));
   2976 		b1->s.k = 0x01;	/* To DS */
   2977 		b1->stmts = s;
   2978 
   2979 		/*
   2980 		 * If To DS is set, the SA is at 24.
   2981 		 */
   2982 		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
   2983 		gen_and(b1, b0);
   2984 
   2985 		/*
   2986 		 * Now, check for To DS not set, i.e. check
   2987 		 * "!(link[1] & 0x01)".
   2988 		 */
   2989 		s = gen_load_a(OR_LINK, 1, BPF_B);
   2990 		b2 = new_block(JMP(BPF_JSET));
   2991 		b2->s.k = 0x01;	/* To DS */
   2992 		b2->stmts = s;
   2993 		gen_not(b2);
   2994 
   2995 		/*
   2996 		 * If To DS is not set, the SA is at 16.
   2997 		 */
   2998 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
   2999 		gen_and(b2, b1);
   3000 
   3001 		/*
   3002 		 * Now OR together the last two checks.  That gives
   3003 		 * the complete set of checks for data frames with
   3004 		 * From DS set.
   3005 		 */
   3006 		gen_or(b1, b0);
   3007 
   3008 		/*
   3009 		 * Now check for From DS being set, and AND that with
   3010 		 * the ORed-together checks.
   3011 		 */
   3012 		s = gen_load_a(OR_LINK, 1, BPF_B);
   3013 		b1 = new_block(JMP(BPF_JSET));
   3014 		b1->s.k = 0x02;	/* From DS */
   3015 		b1->stmts = s;
   3016 		gen_and(b1, b0);
   3017 
   3018 		/*
   3019 		 * Now check for data frames with From DS not set.
   3020 		 */
   3021 		s = gen_load_a(OR_LINK, 1, BPF_B);
   3022 		b2 = new_block(JMP(BPF_JSET));
   3023 		b2->s.k = 0x02;	/* From DS */
   3024 		b2->stmts = s;
   3025 		gen_not(b2);
   3026 
   3027 		/*
   3028 		 * If From DS isn't set, the SA is at 10.
   3029 		 */
   3030 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
   3031 		gen_and(b2, b1);
   3032 
   3033 		/*
   3034 		 * Now OR together the checks for data frames with
   3035 		 * From DS not set and for data frames with From DS
   3036 		 * set; that gives the checks done for data frames.
   3037 		 */
   3038 		gen_or(b1, b0);
   3039 
   3040 		/*
   3041 		 * Now check for a data frame.
   3042 		 * I.e, check "link[0] & 0x08".
   3043 		 */
   3044 		gen_load_a(OR_LINK, 0, BPF_B);
   3045 		b1 = new_block(JMP(BPF_JSET));
   3046 		b1->s.k = 0x08;
   3047 		b1->stmts = s;
   3048 
   3049 		/*
   3050 		 * AND that with the checks done for data frames.
   3051 		 */
   3052 		gen_and(b1, b0);
   3053 
   3054 		/*
   3055 		 * If the high-order bit of the type value is 0, this
   3056 		 * is a management frame.
   3057 		 * I.e, check "!(link[0] & 0x08)".
   3058 		 */
   3059 		s = gen_load_a(OR_LINK, 0, BPF_B);
   3060 		b2 = new_block(JMP(BPF_JSET));
   3061 		b2->s.k = 0x08;
   3062 		b2->stmts = s;
   3063 		gen_not(b2);
   3064 
   3065 		/*
   3066 		 * For management frames, the SA is at 10.
   3067 		 */
   3068 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
   3069 		gen_and(b2, b1);
   3070 
   3071 		/*
   3072 		 * OR that with the checks done for data frames.
   3073 		 * That gives the checks done for management and
   3074 		 * data frames.
   3075 		 */
   3076 		gen_or(b1, b0);
   3077 
   3078 		/*
   3079 		 * If the low-order bit of the type value is 1,
   3080 		 * this is either a control frame or a frame
   3081 		 * with a reserved type, and thus not a
   3082 		 * frame with an SA.
   3083 		 *
   3084 		 * I.e., check "!(link[0] & 0x04)".
   3085 		 */
   3086 		s = gen_load_a(OR_LINK, 0, BPF_B);
   3087 		b1 = new_block(JMP(BPF_JSET));
   3088 		b1->s.k = 0x04;
   3089 		b1->stmts = s;
   3090 		gen_not(b1);
   3091 
   3092 		/*
   3093 		 * AND that with the checks for data and management
   3094 		 * frames.
   3095 		 */
   3096 		gen_and(b1, b0);
   3097 		return b0;
   3098 
   3099 	case Q_DST:
   3100 		/*
   3101 		 * Oh, yuk.
   3102 		 *
   3103 		 *	For control frames, there is no DA.
   3104 		 *
   3105 		 *	For management frames, DA is at an
   3106 		 *	offset of 4 from the beginning of
   3107 		 *	the packet.
   3108 		 *
   3109 		 *	For data frames, DA is at an offset
   3110 		 *	of 4 from the beginning of the packet
   3111 		 *	if To DS is clear and at an offset of
   3112 		 *	16 from the beginning of the packet
   3113 		 *	if To DS is set.
   3114 		 */
   3115 
   3116 		/*
   3117 		 * Generate the tests to be done for data frames.
   3118 		 *
   3119 		 * First, check for To DS set, i.e. "link[1] & 0x01".
   3120 		 */
   3121 		s = gen_load_a(OR_LINK, 1, BPF_B);
   3122 		b1 = new_block(JMP(BPF_JSET));
   3123 		b1->s.k = 0x01;	/* To DS */
   3124 		b1->stmts = s;
   3125 
   3126 		/*
   3127 		 * If To DS is set, the DA is at 16.
   3128 		 */
   3129 		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
   3130 		gen_and(b1, b0);
   3131 
   3132 		/*
   3133 		 * Now, check for To DS not set, i.e. check
   3134 		 * "!(link[1] & 0x01)".
   3135 		 */
   3136 		s = gen_load_a(OR_LINK, 1, BPF_B);
   3137 		b2 = new_block(JMP(BPF_JSET));
   3138 		b2->s.k = 0x01;	/* To DS */
   3139 		b2->stmts = s;
   3140 		gen_not(b2);
   3141 
   3142 		/*
   3143 		 * If To DS is not set, the DA is at 4.
   3144 		 */
   3145 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
   3146 		gen_and(b2, b1);
   3147 
   3148 		/*
   3149 		 * Now OR together the last two checks.  That gives
   3150 		 * the complete set of checks for data frames.
   3151 		 */
   3152 		gen_or(b1, b0);
   3153 
   3154 		/*
   3155 		 * Now check for a data frame.
   3156 		 * I.e, check "link[0] & 0x08".
   3157 		 */
   3158 		s = gen_load_a(OR_LINK, 0, BPF_B);
   3159 		b1 = new_block(JMP(BPF_JSET));
   3160 		b1->s.k = 0x08;
   3161 		b1->stmts = s;
   3162 
   3163 		/*
   3164 		 * AND that with the checks done for data frames.
   3165 		 */
   3166 		gen_and(b1, b0);
   3167 
   3168 		/*
   3169 		 * If the high-order bit of the type value is 0, this
   3170 		 * is a management frame.
   3171 		 * I.e, check "!(link[0] & 0x08)".
   3172 		 */
   3173 		s = gen_load_a(OR_LINK, 0, BPF_B);
   3174 		b2 = new_block(JMP(BPF_JSET));
   3175 		b2->s.k = 0x08;
   3176 		b2->stmts = s;
   3177 		gen_not(b2);
   3178 
   3179 		/*
   3180 		 * For management frames, the DA is at 4.
   3181 		 */
   3182 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
   3183 		gen_and(b2, b1);
   3184 
   3185 		/*
   3186 		 * OR that with the checks done for data frames.
   3187 		 * That gives the checks done for management and
   3188 		 * data frames.
   3189 		 */
   3190 		gen_or(b1, b0);
   3191 
   3192 		/*
   3193 		 * If the low-order bit of the type value is 1,
   3194 		 * this is either a control frame or a frame
   3195 		 * with a reserved type, and thus not a
   3196 		 * frame with an SA.
   3197 		 *
   3198 		 * I.e., check "!(link[0] & 0x04)".
   3199 		 */
   3200 		s = gen_load_a(OR_LINK, 0, BPF_B);
   3201 		b1 = new_block(JMP(BPF_JSET));
   3202 		b1->s.k = 0x04;
   3203 		b1->stmts = s;
   3204 		gen_not(b1);
   3205 
   3206 		/*
   3207 		 * AND that with the checks for data and management
   3208 		 * frames.
   3209 		 */
   3210 		gen_and(b1, b0);
   3211 		return b0;
   3212 
   3213 	case Q_AND:
   3214 		b0 = gen_wlanhostop(eaddr, Q_SRC);
   3215 		b1 = gen_wlanhostop(eaddr, Q_DST);
   3216 		gen_and(b0, b1);
   3217 		return b1;
   3218 
   3219 	case Q_DEFAULT:
   3220 	case Q_OR:
   3221 		b0 = gen_wlanhostop(eaddr, Q_SRC);
   3222 		b1 = gen_wlanhostop(eaddr, Q_DST);
   3223 		gen_or(b0, b1);
   3224 		return b1;
   3225 	}
   3226 	abort();
   3227 	/* NOTREACHED */
   3228 }
   3229 
   3230 /*
   3231  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
   3232  * (We assume that the addresses are IEEE 48-bit MAC addresses,
   3233  * as the RFC states.)
   3234  */
   3235 static struct block *
   3236 gen_ipfchostop(eaddr, dir)
   3237 	register const u_char *eaddr;
   3238 	register int dir;
   3239 {
   3240 	register struct block *b0, *b1;
   3241 
   3242 	switch (dir) {
   3243 	case Q_SRC:
   3244 		return gen_bcmp(OR_LINK, 10, 6, eaddr);
   3245 
   3246 	case Q_DST:
   3247 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
   3248 
   3249 	case Q_AND:
   3250 		b0 = gen_ipfchostop(eaddr, Q_SRC);
   3251 		b1 = gen_ipfchostop(eaddr, Q_DST);
   3252 		gen_and(b0, b1);
   3253 		return b1;
   3254 
   3255 	case Q_DEFAULT:
   3256 	case Q_OR:
   3257 		b0 = gen_ipfchostop(eaddr, Q_SRC);
   3258 		b1 = gen_ipfchostop(eaddr, Q_DST);
   3259 		gen_or(b0, b1);
   3260 		return b1;
   3261 	}
   3262 	abort();
   3263 	/* NOTREACHED */
   3264 }
   3265 
   3266 /*
   3267  * This is quite tricky because there may be pad bytes in front of the
   3268  * DECNET header, and then there are two possible data packet formats that
   3269  * carry both src and dst addresses, plus 5 packet types in a format that
   3270  * carries only the src node, plus 2 types that use a different format and
   3271  * also carry just the src node.
   3272  *
   3273  * Yuck.
   3274  *
   3275  * Instead of doing those all right, we just look for data packets with
   3276  * 0 or 1 bytes of padding.  If you want to look at other packets, that
   3277  * will require a lot more hacking.
   3278  *
   3279  * To add support for filtering on DECNET "areas" (network numbers)
   3280  * one would want to add a "mask" argument to this routine.  That would
   3281  * make the filter even more inefficient, although one could be clever
   3282  * and not generate masking instructions if the mask is 0xFFFF.
   3283  */
   3284 static struct block *
   3285 gen_dnhostop(addr, dir)
   3286 	bpf_u_int32 addr;
   3287 	int dir;
   3288 {
   3289 	struct block *b0, *b1, *b2, *tmp;
   3290 	u_int offset_lh;	/* offset if long header is received */
   3291 	u_int offset_sh;	/* offset if short header is received */
   3292 
   3293 	switch (dir) {
   3294 
   3295 	case Q_DST:
   3296 		offset_sh = 1;	/* follows flags */
   3297 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
   3298 		break;
   3299 
   3300 	case Q_SRC:
   3301 		offset_sh = 3;	/* follows flags, dstnode */
   3302 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
   3303 		break;
   3304 
   3305 	case Q_AND:
   3306 		/* Inefficient because we do our Calvinball dance twice */
   3307 		b0 = gen_dnhostop(addr, Q_SRC);
   3308 		b1 = gen_dnhostop(addr, Q_DST);
   3309 		gen_and(b0, b1);
   3310 		return b1;
   3311 
   3312 	case Q_OR:
   3313 	case Q_DEFAULT:
   3314 		/* Inefficient because we do our Calvinball dance twice */
   3315 		b0 = gen_dnhostop(addr, Q_SRC);
   3316 		b1 = gen_dnhostop(addr, Q_DST);
   3317 		gen_or(b0, b1);
   3318 		return b1;
   3319 
   3320 	case Q_ISO:
   3321 		bpf_error("ISO host filtering not implemented");
   3322 
   3323 	default:
   3324 		abort();
   3325 	}
   3326 	b0 = gen_linktype(ETHERTYPE_DN);
   3327 	/* Check for pad = 1, long header case */
   3328 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
   3329 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
   3330 	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
   3331 	    BPF_H, (bpf_int32)ntohs((u_short)addr));
   3332 	gen_and(tmp, b1);
   3333 	/* Check for pad = 0, long header case */
   3334 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
   3335 	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
   3336 	gen_and(tmp, b2);
   3337 	gen_or(b2, b1);
   3338 	/* Check for pad = 1, short header case */
   3339 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
   3340 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
   3341 	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
   3342 	gen_and(tmp, b2);
   3343 	gen_or(b2, b1);
   3344 	/* Check for pad = 0, short header case */
   3345 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
   3346 	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
   3347 	gen_and(tmp, b2);
   3348 	gen_or(b2, b1);
   3349 
   3350 	/* Combine with test for linktype */
   3351 	gen_and(b0, b1);
   3352 	return b1;
   3353 }
   3354 
   3355 /*
   3356  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
   3357  * test the bottom-of-stack bit, and then check the version number
   3358  * field in the IP header.
   3359  */
   3360 static struct block *
   3361 gen_mpls_linktype(proto)
   3362 	int proto;
   3363 {
   3364 	struct block *b0, *b1;
   3365 
   3366         switch (proto) {
   3367 
   3368         case Q_IP:
   3369                 /* match the bottom-of-stack bit */
   3370                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
   3371                 /* match the IPv4 version number */
   3372                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
   3373                 gen_and(b0, b1);
   3374                 return b1;
   3375 
   3376        case Q_IPV6:
   3377                 /* match the bottom-of-stack bit */
   3378                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
   3379                 /* match the IPv4 version number */
   3380                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
   3381                 gen_and(b0, b1);
   3382                 return b1;
   3383 
   3384        default:
   3385                 abort();
   3386         }
   3387 }
   3388 
   3389 static struct block *
   3390 gen_host(addr, mask, proto, dir, type)
   3391 	bpf_u_int32 addr;
   3392 	bpf_u_int32 mask;
   3393 	int proto;
   3394 	int dir;
   3395 	int type;
   3396 {
   3397 	struct block *b0, *b1;
   3398 	const char *typestr;
   3399 
   3400 	if (type == Q_NET)
   3401 		typestr = "net";
   3402 	else
   3403 		typestr = "host";
   3404 
   3405 	switch (proto) {
   3406 
   3407 	case Q_DEFAULT:
   3408 		b0 = gen_host(addr, mask, Q_IP, dir, type);
   3409 		/*
   3410 		 * Only check for non-IPv4 addresses if we're not
   3411 		 * checking MPLS-encapsulated packets.
   3412 		 */
   3413 		if (label_stack_depth == 0) {
   3414 			b1 = gen_host(addr, mask, Q_ARP, dir, type);
   3415 			gen_or(b0, b1);
   3416 			b0 = gen_host(addr, mask, Q_RARP, dir, type);
   3417 			gen_or(b1, b0);
   3418 		}
   3419 		return b0;
   3420 
   3421 	case Q_IP:
   3422 		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
   3423 
   3424 	case Q_RARP:
   3425 		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
   3426 
   3427 	case Q_ARP:
   3428 		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
   3429 
   3430 	case Q_TCP:
   3431 		bpf_error("'tcp' modifier applied to %s", typestr);
   3432 
   3433 	case Q_SCTP:
   3434 		bpf_error("'sctp' modifier applied to %s", typestr);
   3435 
   3436 	case Q_UDP:
   3437 		bpf_error("'udp' modifier applied to %s", typestr);
   3438 
   3439 	case Q_ICMP:
   3440 		bpf_error("'icmp' modifier applied to %s", typestr);
   3441 
   3442 	case Q_IGMP:
   3443 		bpf_error("'igmp' modifier applied to %s", typestr);
   3444 
   3445 	case Q_IGRP:
   3446 		bpf_error("'igrp' modifier applied to %s", typestr);
   3447 
   3448 	case Q_PIM:
   3449 		bpf_error("'pim' modifier applied to %s", typestr);
   3450 
   3451 	case Q_VRRP:
   3452 		bpf_error("'vrrp' modifier applied to %s", typestr);
   3453 
   3454 	case Q_ATALK:
   3455 		bpf_error("ATALK host filtering not implemented");
   3456 
   3457 	case Q_AARP:
   3458 		bpf_error("AARP host filtering not implemented");
   3459 
   3460 	case Q_DECNET:
   3461 		return gen_dnhostop(addr, dir);
   3462 
   3463 	case Q_SCA:
   3464 		bpf_error("SCA host filtering not implemented");
   3465 
   3466 	case Q_LAT:
   3467 		bpf_error("LAT host filtering not implemented");
   3468 
   3469 	case Q_MOPDL:
   3470 		bpf_error("MOPDL host filtering not implemented");
   3471 
   3472 	case Q_MOPRC:
   3473 		bpf_error("MOPRC host filtering not implemented");
   3474 
   3475 #ifdef INET6
   3476 	case Q_IPV6:
   3477 		bpf_error("'ip6' modifier applied to ip host");
   3478 
   3479 	case Q_ICMPV6:
   3480 		bpf_error("'icmp6' modifier applied to %s", typestr);
   3481 #endif /* INET6 */
   3482 
   3483 	case Q_AH:
   3484 		bpf_error("'ah' modifier applied to %s", typestr);
   3485 
   3486 	case Q_ESP:
   3487 		bpf_error("'esp' modifier applied to %s", typestr);
   3488 
   3489 	case Q_ISO:
   3490 		bpf_error("ISO host filtering not implemented");
   3491 
   3492 	case Q_ESIS:
   3493 		bpf_error("'esis' modifier applied to %s", typestr);
   3494 
   3495 	case Q_ISIS:
   3496 		bpf_error("'isis' modifier applied to %s", typestr);
   3497 
   3498 	case Q_CLNP:
   3499 		bpf_error("'clnp' modifier applied to %s", typestr);
   3500 
   3501 	case Q_STP:
   3502 		bpf_error("'stp' modifier applied to %s", typestr);
   3503 
   3504 	case Q_IPX:
   3505 		bpf_error("IPX host filtering not implemented");
   3506 
   3507 	case Q_NETBEUI:
   3508 		bpf_error("'netbeui' modifier applied to %s", typestr);
   3509 
   3510 	case Q_RADIO:
   3511 		bpf_error("'radio' modifier applied to %s", typestr);
   3512 
   3513 	default:
   3514 		abort();
   3515 	}
   3516 	/* NOTREACHED */
   3517 }
   3518 
   3519 #ifdef INET6
   3520 static struct block *
   3521 gen_host6(addr, mask, proto, dir, type)
   3522 	struct in6_addr *addr;
   3523 	struct in6_addr *mask;
   3524 	int proto;
   3525 	int dir;
   3526 	int type;
   3527 {
   3528 	const char *typestr;
   3529 
   3530 	if (type == Q_NET)
   3531 		typestr = "net";
   3532 	else
   3533 		typestr = "host";
   3534 
   3535 	switch (proto) {
   3536 
   3537 	case Q_DEFAULT:
   3538 		return gen_host6(addr, mask, Q_IPV6, dir, type);
   3539 
   3540 	case Q_IP:
   3541 		bpf_error("'ip' modifier applied to ip6 %s", typestr);
   3542 
   3543 	case Q_RARP:
   3544 		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
   3545 
   3546 	case Q_ARP:
   3547 		bpf_error("'arp' modifier applied to ip6 %s", typestr);
   3548 
   3549 	case Q_SCTP:
   3550 		bpf_error("'sctp' modifier applied to %s", typestr);
   3551 
   3552 	case Q_TCP:
   3553 		bpf_error("'tcp' modifier applied to %s", typestr);
   3554 
   3555 	case Q_UDP:
   3556 		bpf_error("'udp' modifier applied to %s", typestr);
   3557 
   3558 	case Q_ICMP:
   3559 		bpf_error("'icmp' modifier applied to %s", typestr);
   3560 
   3561 	case Q_IGMP:
   3562 		bpf_error("'igmp' modifier applied to %s", typestr);
   3563 
   3564 	case Q_IGRP:
   3565 		bpf_error("'igrp' modifier applied to %s", typestr);
   3566 
   3567 	case Q_PIM:
   3568 		bpf_error("'pim' modifier applied to %s", typestr);
   3569 
   3570 	case Q_VRRP:
   3571 		bpf_error("'vrrp' modifier applied to %s", typestr);
   3572 
   3573 	case Q_ATALK:
   3574 		bpf_error("ATALK host filtering not implemented");
   3575 
   3576 	case Q_AARP:
   3577 		bpf_error("AARP host filtering not implemented");
   3578 
   3579 	case Q_DECNET:
   3580 		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
   3581 
   3582 	case Q_SCA:
   3583 		bpf_error("SCA host filtering not implemented");
   3584 
   3585 	case Q_LAT:
   3586 		bpf_error("LAT host filtering not implemented");
   3587 
   3588 	case Q_MOPDL:
   3589 		bpf_error("MOPDL host filtering not implemented");
   3590 
   3591 	case Q_MOPRC:
   3592 		bpf_error("MOPRC host filtering not implemented");
   3593 
   3594 	case Q_IPV6:
   3595 		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
   3596 
   3597 	case Q_ICMPV6:
   3598 		bpf_error("'icmp6' modifier applied to %s", typestr);
   3599 
   3600 	case Q_AH:
   3601 		bpf_error("'ah' modifier applied to %s", typestr);
   3602 
   3603 	case Q_ESP:
   3604 		bpf_error("'esp' modifier applied to %s", typestr);
   3605 
   3606 	case Q_ISO:
   3607 		bpf_error("ISO host filtering not implemented");
   3608 
   3609 	case Q_ESIS:
   3610 		bpf_error("'esis' modifier applied to %s", typestr);
   3611 
   3612 	case Q_ISIS:
   3613 		bpf_error("'isis' modifier applied to %s", typestr);
   3614 
   3615 	case Q_CLNP:
   3616 		bpf_error("'clnp' modifier applied to %s", typestr);
   3617 
   3618 	case Q_STP:
   3619 		bpf_error("'stp' modifier applied to %s", typestr);
   3620 
   3621 	case Q_IPX:
   3622 		bpf_error("IPX host filtering not implemented");
   3623 
   3624 	case Q_NETBEUI:
   3625 		bpf_error("'netbeui' modifier applied to %s", typestr);
   3626 
   3627 	case Q_RADIO:
   3628 		bpf_error("'radio' modifier applied to %s", typestr);
   3629 
   3630 	default:
   3631 		abort();
   3632 	}
   3633 	/* NOTREACHED */
   3634 }
   3635 #endif /*INET6*/
   3636 
   3637 #ifndef INET6
   3638 static struct block *
   3639 gen_gateway(eaddr, alist, proto, dir)
   3640 	const u_char *eaddr;
   3641 	bpf_u_int32 **alist;
   3642 	int proto;
   3643 	int dir;
   3644 {
   3645 	struct block *b0, *b1, *tmp;
   3646 
   3647 	if (dir != 0)
   3648 		bpf_error("direction applied to 'gateway'");
   3649 
   3650 	switch (proto) {
   3651 	case Q_DEFAULT:
   3652 	case Q_IP:
   3653 	case Q_ARP:
   3654 	case Q_RARP:
   3655                 switch (linktype) {
   3656                 case DLT_EN10MB:
   3657                     b0 = gen_ehostop(eaddr, Q_OR);
   3658                     break;
   3659                 case DLT_FDDI:
   3660                     b0 = gen_fhostop(eaddr, Q_OR);
   3661                     break;
   3662 		case DLT_IEEE802:
   3663                     b0 = gen_thostop(eaddr, Q_OR);
   3664                     break;
   3665 		case DLT_IEEE802_11:
   3666 		case DLT_IEEE802_11_RADIO_AVS:
   3667 		case DLT_PPI:
   3668 		case DLT_IEEE802_11_RADIO:
   3669 		case DLT_PRISM_HEADER:
   3670                     b0 = gen_wlanhostop(eaddr, Q_OR);
   3671                     break;
   3672                 case DLT_SUNATM:
   3673                     if (is_lane) {
   3674 			/*
   3675 			 * Check that the packet doesn't begin with an
   3676 			 * LE Control marker.  (We've already generated
   3677 			 * a test for LANE.)
   3678 			 */
   3679 			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
   3680 			    0xFF00);
   3681 			gen_not(b1);
   3682 
   3683 			/*
   3684 			 * Now check the MAC address.
   3685 			 */
   3686 			b0 = gen_ehostop(eaddr, Q_OR);
   3687 			gen_and(b1, b0);
   3688                     }
   3689                     break;
   3690 		case DLT_IP_OVER_FC:
   3691                     b0 = gen_ipfchostop(eaddr, Q_OR);
   3692                     break;
   3693                 default:
   3694                     bpf_error(
   3695 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/Fibre Channel");
   3696                 }
   3697 		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
   3698 		while (*alist) {
   3699 			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
   3700 			    Q_HOST);
   3701 			gen_or(b1, tmp);
   3702 			b1 = tmp;
   3703 		}
   3704 		gen_not(b1);
   3705 		gen_and(b0, b1);
   3706 		return b1;
   3707 	}
   3708 	bpf_error("illegal modifier of 'gateway'");
   3709 	/* NOTREACHED */
   3710 }
   3711 #endif
   3712 
   3713 struct block *
   3714 gen_proto_abbrev(proto)
   3715 	int proto;
   3716 {
   3717 	struct block *b0;
   3718 	struct block *b1;
   3719 
   3720 	switch (proto) {
   3721 
   3722 	case Q_SCTP:
   3723 		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
   3724 #ifdef INET6
   3725 		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
   3726 		gen_or(b0, b1);
   3727 #endif
   3728 		break;
   3729 
   3730 	case Q_TCP:
   3731 		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
   3732 #ifdef INET6
   3733 		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
   3734 		gen_or(b0, b1);
   3735 #endif
   3736 		break;
   3737 
   3738 	case Q_UDP:
   3739 		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
   3740 #ifdef INET6
   3741 		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
   3742 		gen_or(b0, b1);
   3743 #endif
   3744 		break;
   3745 
   3746 	case Q_ICMP:
   3747 		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
   3748 		break;
   3749 
   3750 #ifndef	IPPROTO_IGMP
   3751 #define	IPPROTO_IGMP	2
   3752 #endif
   3753 
   3754 	case Q_IGMP:
   3755 		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
   3756 		break;
   3757 
   3758 #ifndef	IPPROTO_IGRP
   3759 #define	IPPROTO_IGRP	9
   3760 #endif
   3761 	case Q_IGRP:
   3762 		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
   3763 		break;
   3764 
   3765 #ifndef IPPROTO_PIM
   3766 #define IPPROTO_PIM	103
   3767 #endif
   3768 
   3769 	case Q_PIM:
   3770 		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
   3771 #ifdef INET6
   3772 		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
   3773 		gen_or(b0, b1);
   3774 #endif
   3775 		break;
   3776 
   3777 #ifndef IPPROTO_VRRP
   3778 #define IPPROTO_VRRP	112
   3779 #endif
   3780 
   3781 	case Q_VRRP:
   3782 		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
   3783 		break;
   3784 
   3785 	case Q_IP:
   3786 		b1 =  gen_linktype(ETHERTYPE_IP);
   3787 		break;
   3788 
   3789 	case Q_ARP:
   3790 		b1 =  gen_linktype(ETHERTYPE_ARP);
   3791 		break;
   3792 
   3793 	case Q_RARP:
   3794 		b1 =  gen_linktype(ETHERTYPE_REVARP);
   3795 		break;
   3796 
   3797 	case Q_LINK:
   3798 		bpf_error("link layer applied in wrong context");
   3799 
   3800 	case Q_ATALK:
   3801 		b1 =  gen_linktype(ETHERTYPE_ATALK);
   3802 		break;
   3803 
   3804 	case Q_AARP:
   3805 		b1 =  gen_linktype(ETHERTYPE_AARP);
   3806 		break;
   3807 
   3808 	case Q_DECNET:
   3809 		b1 =  gen_linktype(ETHERTYPE_DN);
   3810 		break;
   3811 
   3812 	case Q_SCA:
   3813 		b1 =  gen_linktype(ETHERTYPE_SCA);
   3814 		break;
   3815 
   3816 	case Q_LAT:
   3817 		b1 =  gen_linktype(ETHERTYPE_LAT);
   3818 		break;
   3819 
   3820 	case Q_MOPDL:
   3821 		b1 =  gen_linktype(ETHERTYPE_MOPDL);
   3822 		break;
   3823 
   3824 	case Q_MOPRC:
   3825 		b1 =  gen_linktype(ETHERTYPE_MOPRC);
   3826 		break;
   3827 
   3828 #ifdef INET6
   3829 	case Q_IPV6:
   3830 		b1 = gen_linktype(ETHERTYPE_IPV6);
   3831 		break;
   3832 
   3833 #ifndef IPPROTO_ICMPV6
   3834 #define IPPROTO_ICMPV6	58
   3835 #endif
   3836 	case Q_ICMPV6:
   3837 		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
   3838 		break;
   3839 #endif /* INET6 */
   3840 
   3841 #ifndef IPPROTO_AH
   3842 #define IPPROTO_AH	51
   3843 #endif
   3844 	case Q_AH:
   3845 		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
   3846 #ifdef INET6
   3847 		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
   3848 		gen_or(b0, b1);
   3849 #endif
   3850 		break;
   3851 
   3852 #ifndef IPPROTO_ESP
   3853 #define IPPROTO_ESP	50
   3854 #endif
   3855 	case Q_ESP:
   3856 		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
   3857 #ifdef INET6
   3858 		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
   3859 		gen_or(b0, b1);
   3860 #endif
   3861 		break;
   3862 
   3863 	case Q_ISO:
   3864 		b1 = gen_linktype(LLCSAP_ISONS);
   3865 		break;
   3866 
   3867 	case Q_ESIS:
   3868 		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
   3869 		break;
   3870 
   3871 	case Q_ISIS:
   3872 		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
   3873 		break;
   3874 
   3875 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
   3876 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
   3877 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
   3878 		gen_or(b0, b1);
   3879 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
   3880 		gen_or(b0, b1);
   3881 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
   3882 		gen_or(b0, b1);
   3883 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
   3884 		gen_or(b0, b1);
   3885 		break;
   3886 
   3887 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
   3888 		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
   3889 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
   3890 		gen_or(b0, b1);
   3891 		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
   3892 		gen_or(b0, b1);
   3893 		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
   3894 		gen_or(b0, b1);
   3895 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
   3896 		gen_or(b0, b1);
   3897 		break;
   3898 
   3899 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
   3900 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
   3901 		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
   3902 		gen_or(b0, b1);
   3903 		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
   3904 		gen_or(b0, b1);
   3905 		break;
   3906 
   3907 	case Q_ISIS_LSP:
   3908 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
   3909 		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
   3910 		gen_or(b0, b1);
   3911 		break;
   3912 
   3913 	case Q_ISIS_SNP:
   3914 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
   3915 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
   3916 		gen_or(b0, b1);
   3917 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
   3918 		gen_or(b0, b1);
   3919 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
   3920 		gen_or(b0, b1);
   3921 		break;
   3922 
   3923 	case Q_ISIS_CSNP:
   3924 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
   3925 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
   3926 		gen_or(b0, b1);
   3927 		break;
   3928 
   3929 	case Q_ISIS_PSNP:
   3930 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
   3931 		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
   3932 		gen_or(b0, b1);
   3933 		break;
   3934 
   3935 	case Q_CLNP:
   3936 		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
   3937 		break;
   3938 
   3939 	case Q_STP:
   3940 		b1 = gen_linktype(LLCSAP_8021D);
   3941 		break;
   3942 
   3943 	case Q_IPX:
   3944 		b1 = gen_linktype(LLCSAP_IPX);
   3945 		break;
   3946 
   3947 	case Q_NETBEUI:
   3948 		b1 = gen_linktype(LLCSAP_NETBEUI);
   3949 		break;
   3950 
   3951 	case Q_RADIO:
   3952 		bpf_error("'radio' is not a valid protocol type");
   3953 
   3954 	default:
   3955 		abort();
   3956 	}
   3957 	return b1;
   3958 }
   3959 
   3960 static struct block *
   3961 gen_ipfrag()
   3962 {
   3963 	struct slist *s;
   3964 	struct block *b;
   3965 
   3966 	/* not ip frag */
   3967 	s = gen_load_a(OR_NET, 6, BPF_H);
   3968 	b = new_block(JMP(BPF_JSET));
   3969 	b->s.k = 0x1fff;
   3970 	b->stmts = s;
   3971 	gen_not(b);
   3972 
   3973 	return b;
   3974 }
   3975 
   3976 /*
   3977  * Generate a comparison to a port value in the transport-layer header
   3978  * at the specified offset from the beginning of that header.
   3979  *
   3980  * XXX - this handles a variable-length prefix preceding the link-layer
   3981  * header, such as the radiotap or AVS radio prefix, but doesn't handle
   3982  * variable-length link-layer headers (such as Token Ring or 802.11
   3983  * headers).
   3984  */
   3985 static struct block *
   3986 gen_portatom(off, v)
   3987 	int off;
   3988 	bpf_int32 v;
   3989 {
   3990 	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
   3991 }
   3992 
   3993 #ifdef INET6
   3994 static struct block *
   3995 gen_portatom6(off, v)
   3996 	int off;
   3997 	bpf_int32 v;
   3998 {
   3999 	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
   4000 }
   4001 #endif/*INET6*/
   4002 
   4003 struct block *
   4004 gen_portop(port, proto, dir)
   4005 	int port, proto, dir;
   4006 {
   4007 	struct block *b0, *b1, *tmp;
   4008 
   4009 	/* ip proto 'proto' */
   4010 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
   4011 	b0 = gen_ipfrag();
   4012 	gen_and(tmp, b0);
   4013 
   4014 	switch (dir) {
   4015 	case Q_SRC:
   4016 		b1 = gen_portatom(0, (bpf_int32)port);
   4017 		break;
   4018 
   4019 	case Q_DST:
   4020 		b1 = gen_portatom(2, (bpf_int32)port);
   4021 		break;
   4022 
   4023 	case Q_OR:
   4024 	case Q_DEFAULT:
   4025 		tmp = gen_portatom(0, (bpf_int32)port);
   4026 		b1 = gen_portatom(2, (bpf_int32)port);
   4027 		gen_or(tmp, b1);
   4028 		break;
   4029 
   4030 	case Q_AND:
   4031 		tmp = gen_portatom(0, (bpf_int32)port);
   4032 		b1 = gen_portatom(2, (bpf_int32)port);
   4033 		gen_and(tmp, b1);
   4034 		break;
   4035 
   4036 	default:
   4037 		abort();
   4038 	}
   4039 	gen_and(b0, b1);
   4040 
   4041 	return b1;
   4042 }
   4043 
   4044 static struct block *
   4045 gen_port(port, ip_proto, dir)
   4046 	int port;
   4047 	int ip_proto;
   4048 	int dir;
   4049 {
   4050 	struct block *b0, *b1, *tmp;
   4051 
   4052 	/*
   4053 	 * ether proto ip
   4054 	 *
   4055 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
   4056 	 * not LLC encapsulation with LLCSAP_IP.
   4057 	 *
   4058 	 * For IEEE 802 networks - which includes 802.5 token ring
   4059 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
   4060 	 * says that SNAP encapsulation is used, not LLC encapsulation
   4061 	 * with LLCSAP_IP.
   4062 	 *
   4063 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
   4064 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
   4065 	 * encapsulation with LLCSAP_IP.
   4066 	 *
   4067 	 * So we always check for ETHERTYPE_IP.
   4068 	 */
   4069 	b0 =  gen_linktype(ETHERTYPE_IP);
   4070 
   4071 	switch (ip_proto) {
   4072 	case IPPROTO_UDP:
   4073 	case IPPROTO_TCP:
   4074 	case IPPROTO_SCTP:
   4075 		b1 = gen_portop(port, ip_proto, dir);
   4076 		break;
   4077 
   4078 	case PROTO_UNDEF:
   4079 		tmp = gen_portop(port, IPPROTO_TCP, dir);
   4080 		b1 = gen_portop(port, IPPROTO_UDP, dir);
   4081 		gen_or(tmp, b1);
   4082 		tmp = gen_portop(port, IPPROTO_SCTP, dir);
   4083 		gen_or(tmp, b1);
   4084 		break;
   4085 
   4086 	default:
   4087 		abort();
   4088 	}
   4089 	gen_and(b0, b1);
   4090 	return b1;
   4091 }
   4092 
   4093 #ifdef INET6
   4094 struct block *
   4095 gen_portop6(port, proto, dir)
   4096 	int port, proto, dir;
   4097 {
   4098 	struct block *b0, *b1, *tmp;
   4099 
   4100 	/* ip6 proto 'proto' */
   4101 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
   4102 
   4103 	switch (dir) {
   4104 	case Q_SRC:
   4105 		b1 = gen_portatom6(0, (bpf_int32)port);
   4106 		break;
   4107 
   4108 	case Q_DST:
   4109 		b1 = gen_portatom6(2, (bpf_int32)port);
   4110 		break;
   4111 
   4112 	case Q_OR:
   4113 	case Q_DEFAULT:
   4114 		tmp = gen_portatom6(0, (bpf_int32)port);
   4115 		b1 = gen_portatom6(2, (bpf_int32)port);
   4116 		gen_or(tmp, b1);
   4117 		break;
   4118 
   4119 	case Q_AND:
   4120 		tmp = gen_portatom6(0, (bpf_int32)port);
   4121 		b1 = gen_portatom6(2, (bpf_int32)port);
   4122 		gen_and(tmp, b1);
   4123 		break;
   4124 
   4125 	default:
   4126 		abort();
   4127 	}
   4128 	gen_and(b0, b1);
   4129 
   4130 	return b1;
   4131 }
   4132 
   4133 static struct block *
   4134 gen_port6(port, ip_proto, dir)
   4135 	int port;
   4136 	int ip_proto;
   4137 	int dir;
   4138 {
   4139 	struct block *b0, *b1, *tmp;
   4140 
   4141 	/* link proto ip6 */
   4142 	b0 =  gen_linktype(ETHERTYPE_IPV6);
   4143 
   4144 	switch (ip_proto) {
   4145 	case IPPROTO_UDP:
   4146 	case IPPROTO_TCP:
   4147 	case IPPROTO_SCTP:
   4148 		b1 = gen_portop6(port, ip_proto, dir);
   4149 		break;
   4150 
   4151 	case PROTO_UNDEF:
   4152 		tmp = gen_portop6(port, IPPROTO_TCP, dir);
   4153 		b1 = gen_portop6(port, IPPROTO_UDP, dir);
   4154 		gen_or(tmp, b1);
   4155 		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
   4156 		gen_or(tmp, b1);
   4157 		break;
   4158 
   4159 	default:
   4160 		abort();
   4161 	}
   4162 	gen_and(b0, b1);
   4163 	return b1;
   4164 }
   4165 #endif /* INET6 */
   4166 
   4167 /* gen_portrange code */
   4168 static struct block *
   4169 gen_portrangeatom(off, v1, v2)
   4170 	int off;
   4171 	bpf_int32 v1, v2;
   4172 {
   4173 	struct block *b1, *b2;
   4174 
   4175 	if (v1 > v2) {
   4176 		/*
   4177 		 * Reverse the order of the ports, so v1 is the lower one.
   4178 		 */
   4179 		bpf_int32 vtemp;
   4180 
   4181 		vtemp = v1;
   4182 		v1 = v2;
   4183 		v2 = vtemp;
   4184 	}
   4185 
   4186 	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
   4187 	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
   4188 
   4189 	gen_and(b1, b2);
   4190 
   4191 	return b2;
   4192 }
   4193 
   4194 struct block *
   4195 gen_portrangeop(port1, port2, proto, dir)
   4196 	int port1, port2;
   4197 	int proto;
   4198 	int dir;
   4199 {
   4200 	struct block *b0, *b1, *tmp;
   4201 
   4202 	/* ip proto 'proto' */
   4203 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
   4204 	b0 = gen_ipfrag();
   4205 	gen_and(tmp, b0);
   4206 
   4207 	switch (dir) {
   4208 	case Q_SRC:
   4209 		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
   4210 		break;
   4211 
   4212 	case Q_DST:
   4213 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
   4214 		break;
   4215 
   4216 	case Q_OR:
   4217 	case Q_DEFAULT:
   4218 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
   4219 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
   4220 		gen_or(tmp, b1);
   4221 		break;
   4222 
   4223 	case Q_AND:
   4224 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
   4225 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
   4226 		gen_and(tmp, b1);
   4227 		break;
   4228 
   4229 	default:
   4230 		abort();
   4231 	}
   4232 	gen_and(b0, b1);
   4233 
   4234 	return b1;
   4235 }
   4236 
   4237 static struct block *
   4238 gen_portrange(port1, port2, ip_proto, dir)
   4239 	int port1, port2;
   4240 	int ip_proto;
   4241 	int dir;
   4242 {
   4243 	struct block *b0, *b1, *tmp;
   4244 
   4245 	/* link proto ip */
   4246 	b0 =  gen_linktype(ETHERTYPE_IP);
   4247 
   4248 	switch (ip_proto) {
   4249 	case IPPROTO_UDP:
   4250 	case IPPROTO_TCP:
   4251 	case IPPROTO_SCTP:
   4252 		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
   4253 		break;
   4254 
   4255 	case PROTO_UNDEF:
   4256 		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
   4257 		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
   4258 		gen_or(tmp, b1);
   4259 		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
   4260 		gen_or(tmp, b1);
   4261 		break;
   4262 
   4263 	default:
   4264 		abort();
   4265 	}
   4266 	gen_and(b0, b1);
   4267 	return b1;
   4268 }
   4269 
   4270 #ifdef INET6
   4271 static struct block *
   4272 gen_portrangeatom6(off, v1, v2)
   4273 	int off;
   4274 	bpf_int32 v1, v2;
   4275 {
   4276 	struct block *b1, *b2;
   4277 
   4278 	if (v1 > v2) {
   4279 		/*
   4280 		 * Reverse the order of the ports, so v1 is the lower one.
   4281 		 */
   4282 		bpf_int32 vtemp;
   4283 
   4284 		vtemp = v1;
   4285 		v1 = v2;
   4286 		v2 = vtemp;
   4287 	}
   4288 
   4289 	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
   4290 	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
   4291 
   4292 	gen_and(b1, b2);
   4293 
   4294 	return b2;
   4295 }
   4296 
   4297 struct block *
   4298 gen_portrangeop6(port1, port2, proto, dir)
   4299 	int port1, port2;
   4300 	int proto;
   4301 	int dir;
   4302 {
   4303 	struct block *b0, *b1, *tmp;
   4304 
   4305 	/* ip6 proto 'proto' */
   4306 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
   4307 
   4308 	switch (dir) {
   4309 	case Q_SRC:
   4310 		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
   4311 		break;
   4312 
   4313 	case Q_DST:
   4314 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
   4315 		break;
   4316 
   4317 	case Q_OR:
   4318 	case Q_DEFAULT:
   4319 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
   4320 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
   4321 		gen_or(tmp, b1);
   4322 		break;
   4323 
   4324 	case Q_AND:
   4325 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
   4326 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
   4327 		gen_and(tmp, b1);
   4328 		break;
   4329 
   4330 	default:
   4331 		abort();
   4332 	}
   4333 	gen_and(b0, b1);
   4334 
   4335 	return b1;
   4336 }
   4337 
   4338 static struct block *
   4339 gen_portrange6(port1, port2, ip_proto, dir)
   4340 	int port1, port2;
   4341 	int ip_proto;
   4342 	int dir;
   4343 {
   4344 	struct block *b0, *b1, *tmp;
   4345 
   4346 	/* link proto ip6 */
   4347 	b0 =  gen_linktype(ETHERTYPE_IPV6);
   4348 
   4349 	switch (ip_proto) {
   4350 	case IPPROTO_UDP:
   4351 	case IPPROTO_TCP:
   4352 	case IPPROTO_SCTP:
   4353 		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
   4354 		break;
   4355 
   4356 	case PROTO_UNDEF:
   4357 		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
   4358 		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
   4359 		gen_or(tmp, b1);
   4360 		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
   4361 		gen_or(tmp, b1);
   4362 		break;
   4363 
   4364 	default:
   4365 		abort();
   4366 	}
   4367 	gen_and(b0, b1);
   4368 	return b1;
   4369 }
   4370 #endif /* INET6 */
   4371 
   4372 static int
   4373 lookup_proto(name, proto)
   4374 	register const char *name;
   4375 	register int proto;
   4376 {
   4377 	register int v;
   4378 
   4379 	switch (proto) {
   4380 
   4381 	case Q_DEFAULT:
   4382 	case Q_IP:
   4383 	case Q_IPV6:
   4384 		v = pcap_nametoproto(name);
   4385 		if (v == PROTO_UNDEF)
   4386 			bpf_error("unknown ip proto '%s'", name);
   4387 		break;
   4388 
   4389 	case Q_LINK:
   4390 		/* XXX should look up h/w protocol type based on linktype */
   4391 		v = pcap_nametoeproto(name);
   4392 		if (v == PROTO_UNDEF) {
   4393 			v = pcap_nametollc(name);
   4394 			if (v == PROTO_UNDEF)
   4395 				bpf_error("unknown ether proto '%s'", name);
   4396 		}
   4397 		break;
   4398 
   4399 	case Q_ISO:
   4400 		if (strcmp(name, "esis") == 0)
   4401 			v = ISO9542_ESIS;
   4402 		else if (strcmp(name, "isis") == 0)
   4403 			v = ISO10589_ISIS;
   4404 		else if (strcmp(name, "clnp") == 0)
   4405 			v = ISO8473_CLNP;
   4406 		else
   4407 			bpf_error("unknown osi proto '%s'", name);
   4408 		break;
   4409 
   4410 	default:
   4411 		v = PROTO_UNDEF;
   4412 		break;
   4413 	}
   4414 	return v;
   4415 }
   4416 
   4417 #if 0
   4418 struct stmt *
   4419 gen_joinsp(s, n)
   4420 	struct stmt **s;
   4421 	int n;
   4422 {
   4423 	return NULL;
   4424 }
   4425 #endif
   4426 
   4427 static struct block *
   4428 gen_protochain(v, proto, dir)
   4429 	int v;
   4430 	int proto;
   4431 	int dir;
   4432 {
   4433 #ifdef NO_PROTOCHAIN
   4434 	return gen_proto(v, proto, dir);
   4435 #else
   4436 	struct block *b0, *b;
   4437 	struct slist *s[100];
   4438 	int fix2, fix3, fix4, fix5;
   4439 	int ahcheck, again, end;
   4440 	int i, max;
   4441 	int reg2 = alloc_reg();
   4442 
   4443 	memset(s, 0, sizeof(s));
   4444 	fix2 = fix3 = fix4 = fix5 = 0;
   4445 
   4446 	switch (proto) {
   4447 	case Q_IP:
   4448 	case Q_IPV6:
   4449 		break;
   4450 	case Q_DEFAULT:
   4451 		b0 = gen_protochain(v, Q_IP, dir);
   4452 		b = gen_protochain(v, Q_IPV6, dir);
   4453 		gen_or(b0, b);
   4454 		return b;
   4455 	default:
   4456 		bpf_error("bad protocol applied for 'protochain'");
   4457 		/*NOTREACHED*/
   4458 	}
   4459 
   4460 	/*
   4461 	 * We don't handle variable-length radiotap here headers yet.
   4462 	 * We might want to add BPF instructions to do the protochain
   4463 	 * work, to simplify that and, on platforms that have a BPF
   4464 	 * interpreter with the new instructions, let the filtering
   4465 	 * be done in the kernel.  (We already require a modified BPF
   4466 	 * engine to do the protochain stuff, to support backward
   4467 	 * branches, and backward branch support is unlikely to appear
   4468 	 * in kernel BPF engines.)
   4469 	 */
   4470 	if (linktype == DLT_IEEE802_11_RADIO)
   4471 		bpf_error("'protochain' not supported with radiotap headers");
   4472 
   4473 	if (linktype == DLT_PPI)
   4474 		bpf_error("'protochain' not supported with PPI headers");
   4475 
   4476 	no_optimize = 1; /*this code is not compatible with optimzer yet */
   4477 
   4478 	/*
   4479 	 * s[0] is a dummy entry to protect other BPF insn from damage
   4480 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
   4481 	 * hard to find interdependency made by jump table fixup.
   4482 	 */
   4483 	i = 0;
   4484 	s[i] = new_stmt(0);	/*dummy*/
   4485 	i++;
   4486 
   4487 	switch (proto) {
   4488 	case Q_IP:
   4489 		b0 = gen_linktype(ETHERTYPE_IP);
   4490 
   4491 		/* A = ip->ip_p */
   4492 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
   4493 		s[i]->s.k = off_ll + off_nl + 9;
   4494 		i++;
   4495 		/* X = ip->ip_hl << 2 */
   4496 		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
   4497 		s[i]->s.k = off_ll + off_nl;
   4498 		i++;
   4499 		break;
   4500 #ifdef INET6
   4501 	case Q_IPV6:
   4502 		b0 = gen_linktype(ETHERTYPE_IPV6);
   4503 
   4504 		/* A = ip6->ip_nxt */
   4505 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
   4506 		s[i]->s.k = off_ll + off_nl + 6;
   4507 		i++;
   4508 		/* X = sizeof(struct ip6_hdr) */
   4509 		s[i] = new_stmt(BPF_LDX|BPF_IMM);
   4510 		s[i]->s.k = 40;
   4511 		i++;
   4512 		break;
   4513 #endif
   4514 	default:
   4515 		bpf_error("unsupported proto to gen_protochain");
   4516 		/*NOTREACHED*/
   4517 	}
   4518 
   4519 	/* again: if (A == v) goto end; else fall through; */
   4520 	again = i;
   4521 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
   4522 	s[i]->s.k = v;
   4523 	s[i]->s.jt = NULL;		/*later*/
   4524 	s[i]->s.jf = NULL;		/*update in next stmt*/
   4525 	fix5 = i;
   4526 	i++;
   4527 
   4528 #ifndef IPPROTO_NONE
   4529 #define IPPROTO_NONE	59
   4530 #endif
   4531 	/* if (A == IPPROTO_NONE) goto end */
   4532 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
   4533 	s[i]->s.jt = NULL;	/*later*/
   4534 	s[i]->s.jf = NULL;	/*update in next stmt*/
   4535 	s[i]->s.k = IPPROTO_NONE;
   4536 	s[fix5]->s.jf = s[i];
   4537 	fix2 = i;
   4538 	i++;
   4539 
   4540 #ifdef INET6
   4541 	if (proto == Q_IPV6) {
   4542 		int v6start, v6end, v6advance, j;
   4543 
   4544 		v6start = i;
   4545 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
   4546 		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
   4547 		s[i]->s.jt = NULL;	/*later*/
   4548 		s[i]->s.jf = NULL;	/*update in next stmt*/
   4549 		s[i]->s.k = IPPROTO_HOPOPTS;
   4550 		s[fix2]->s.jf = s[i];
   4551 		i++;
   4552 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
   4553 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
   4554 		s[i]->s.jt = NULL;	/*later*/
   4555 		s[i]->s.jf = NULL;	/*update in next stmt*/
   4556 		s[i]->s.k = IPPROTO_DSTOPTS;
   4557 		i++;
   4558 		/* if (A == IPPROTO_ROUTING) goto v6advance */
   4559 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
   4560 		s[i]->s.jt = NULL;	/*later*/
   4561 		s[i]->s.jf = NULL;	/*update in next stmt*/
   4562 		s[i]->s.k = IPPROTO_ROUTING;
   4563 		i++;
   4564 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
   4565 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
   4566 		s[i]->s.jt = NULL;	/*later*/
   4567 		s[i]->s.jf = NULL;	/*later*/
   4568 		s[i]->s.k = IPPROTO_FRAGMENT;
   4569 		fix3 = i;
   4570 		v6end = i;
   4571 		i++;
   4572 
   4573 		/* v6advance: */
   4574 		v6advance = i;
   4575 
   4576 		/*
   4577 		 * in short,
   4578 		 * A = P[X];
   4579 		 * X = X + (P[X + 1] + 1) * 8;
   4580 		 */
   4581 		/* A = X */
   4582 		s[i] = new_stmt(BPF_MISC|BPF_TXA);
   4583 		i++;
   4584 		/* A = P[X + packet head] */
   4585 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
   4586 		s[i]->s.k = off_ll + off_nl;
   4587 		i++;
   4588 		/* MEM[reg2] = A */
   4589 		s[i] = new_stmt(BPF_ST);
   4590 		s[i]->s.k = reg2;
   4591 		i++;
   4592 		/* A = X */
   4593 		s[i] = new_stmt(BPF_MISC|BPF_TXA);
   4594 		i++;
   4595 		/* A += 1 */
   4596 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
   4597 		s[i]->s.k = 1;
   4598 		i++;
   4599 		/* X = A */
   4600 		s[i] = new_stmt(BPF_MISC|BPF_TAX);
   4601 		i++;
   4602 		/* A = P[X + packet head]; */
   4603 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
   4604 		s[i]->s.k = off_ll + off_nl;
   4605 		i++;
   4606 		/* A += 1 */
   4607 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
   4608 		s[i]->s.k = 1;
   4609 		i++;
   4610 		/* A *= 8 */
   4611 		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
   4612 		s[i]->s.k = 8;
   4613 		i++;
   4614 		/* X = A; */
   4615 		s[i] = new_stmt(BPF_MISC|BPF_TAX);
   4616 		i++;
   4617 		/* A = MEM[reg2] */
   4618 		s[i] = new_stmt(BPF_LD|BPF_MEM);
   4619 		s[i]->s.k = reg2;
   4620 		i++;
   4621 
   4622 		/* goto again; (must use BPF_JA for backward jump) */
   4623 		s[i] = new_stmt(BPF_JMP|BPF_JA);
   4624 		s[i]->s.k = again - i - 1;
   4625 		s[i - 1]->s.jf = s[i];
   4626 		i++;
   4627 
   4628 		/* fixup */
   4629 		for (j = v6start; j <= v6end; j++)
   4630 			s[j]->s.jt = s[v6advance];
   4631 	} else
   4632 #endif
   4633 	{
   4634 		/* nop */
   4635 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
   4636 		s[i]->s.k = 0;
   4637 		s[fix2]->s.jf = s[i];
   4638 		i++;
   4639 	}
   4640 
   4641 	/* ahcheck: */
   4642 	ahcheck = i;
   4643 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
   4644 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
   4645 	s[i]->s.jt = NULL;	/*later*/
   4646 	s[i]->s.jf = NULL;	/*later*/
   4647 	s[i]->s.k = IPPROTO_AH;
   4648 	if (fix3)
   4649 		s[fix3]->s.jf = s[ahcheck];
   4650 	fix4 = i;
   4651 	i++;
   4652 
   4653 	/*
   4654 	 * in short,
   4655 	 * A = P[X];
   4656 	 * X = X + (P[X + 1] + 2) * 4;
   4657 	 */
   4658 	/* A = X */
   4659 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
   4660 	i++;
   4661 	/* A = P[X + packet head]; */
   4662 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
   4663 	s[i]->s.k = off_ll + off_nl;
   4664 	i++;
   4665 	/* MEM[reg2] = A */
   4666 	s[i] = new_stmt(BPF_ST);
   4667 	s[i]->s.k = reg2;
   4668 	i++;
   4669 	/* A = X */
   4670 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
   4671 	i++;
   4672 	/* A += 1 */
   4673 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
   4674 	s[i]->s.k = 1;
   4675 	i++;
   4676 	/* X = A */
   4677 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
   4678 	i++;
   4679 	/* A = P[X + packet head] */
   4680 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
   4681 	s[i]->s.k = off_ll + off_nl;
   4682 	i++;
   4683 	/* A += 2 */
   4684 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
   4685 	s[i]->s.k = 2;
   4686 	i++;
   4687 	/* A *= 4 */
   4688 	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
   4689 	s[i]->s.k = 4;
   4690 	i++;
   4691 	/* X = A; */
   4692 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
   4693 	i++;
   4694 	/* A = MEM[reg2] */
   4695 	s[i] = new_stmt(BPF_LD|BPF_MEM);
   4696 	s[i]->s.k = reg2;
   4697 	i++;
   4698 
   4699 	/* goto again; (must use BPF_JA for backward jump) */
   4700 	s[i] = new_stmt(BPF_JMP|BPF_JA);
   4701 	s[i]->s.k = again - i - 1;
   4702 	i++;
   4703 
   4704 	/* end: nop */
   4705 	end = i;
   4706 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
   4707 	s[i]->s.k = 0;
   4708 	s[fix2]->s.jt = s[end];
   4709 	s[fix4]->s.jf = s[end];
   4710 	s[fix5]->s.jt = s[end];
   4711 	i++;
   4712 
   4713 	/*
   4714 	 * make slist chain
   4715 	 */
   4716 	max = i;
   4717 	for (i = 0; i < max - 1; i++)
   4718 		s[i]->next = s[i + 1];
   4719 	s[max - 1]->next = NULL;
   4720 
   4721 	/*
   4722 	 * emit final check
   4723 	 */
   4724 	b = new_block(JMP(BPF_JEQ));
   4725 	b->stmts = s[1];	/*remember, s[0] is dummy*/
   4726 	b->s.k = v;
   4727 
   4728 	free_reg(reg2);
   4729 
   4730 	gen_and(b0, b);
   4731 	return b;
   4732 #endif
   4733 }
   4734 
   4735 
   4736 /*
   4737  * Generate code that checks whether the packet is a packet for protocol
   4738  * <proto> and whether the type field in that protocol's header has
   4739  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
   4740  * IP packet and checks the protocol number in the IP header against <v>.
   4741  *
   4742  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
   4743  * against Q_IP and Q_IPV6.
   4744  */
   4745 static struct block *
   4746 gen_proto(v, proto, dir)
   4747 	int v;
   4748 	int proto;
   4749 	int dir;
   4750 {
   4751 	struct block *b0, *b1;
   4752 
   4753 	if (dir != Q_DEFAULT)
   4754 		bpf_error("direction applied to 'proto'");
   4755 
   4756 	switch (proto) {
   4757 	case Q_DEFAULT:
   4758 #ifdef INET6
   4759 		b0 = gen_proto(v, Q_IP, dir);
   4760 		b1 = gen_proto(v, Q_IPV6, dir);
   4761 		gen_or(b0, b1);
   4762 		return b1;
   4763 #else
   4764 		/*FALLTHROUGH*/
   4765 #endif
   4766 	case Q_IP:
   4767 		/*
   4768 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
   4769 		 * not LLC encapsulation with LLCSAP_IP.
   4770 		 *
   4771 		 * For IEEE 802 networks - which includes 802.5 token ring
   4772 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
   4773 		 * says that SNAP encapsulation is used, not LLC encapsulation
   4774 		 * with LLCSAP_IP.
   4775 		 *
   4776 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
   4777 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
   4778 		 * encapsulation with LLCSAP_IP.
   4779 		 *
   4780 		 * So we always check for ETHERTYPE_IP.
   4781 		 */
   4782 		b0 = gen_linktype(ETHERTYPE_IP);
   4783 #ifndef CHASE_CHAIN
   4784 		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
   4785 #else
   4786 		b1 = gen_protochain(v, Q_IP);
   4787 #endif
   4788 		gen_and(b0, b1);
   4789 		return b1;
   4790 
   4791 	case Q_ISO:
   4792 		switch (linktype) {
   4793 
   4794 		case DLT_FRELAY:
   4795 			/*
   4796 			 * Frame Relay packets typically have an OSI
   4797 			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
   4798 			 * generates code to check for all the OSI
   4799 			 * NLPIDs, so calling it and then adding a check
   4800 			 * for the particular NLPID for which we're
   4801 			 * looking is bogus, as we can just check for
   4802 			 * the NLPID.
   4803 			 *
   4804 			 * What we check for is the NLPID and a frame
   4805 			 * control field value of UI, i.e. 0x03 followed
   4806 			 * by the NLPID.
   4807 			 *
   4808 			 * XXX - assumes a 2-byte Frame Relay header with
   4809 			 * DLCI and flags.  What if the address is longer?
   4810 			 *
   4811 			 * XXX - what about SNAP-encapsulated frames?
   4812 			 */
   4813 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
   4814 			/*NOTREACHED*/
   4815 			break;
   4816 
   4817 		case DLT_C_HDLC:
   4818 			/*
   4819 			 * Cisco uses an Ethertype lookalike - for OSI,
   4820 			 * it's 0xfefe.
   4821 			 */
   4822 			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
   4823 			/* OSI in C-HDLC is stuffed with a fudge byte */
   4824 			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
   4825 			gen_and(b0, b1);
   4826 			return b1;
   4827 
   4828 		default:
   4829 			b0 = gen_linktype(LLCSAP_ISONS);
   4830 			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
   4831 			gen_and(b0, b1);
   4832 			return b1;
   4833 		}
   4834 
   4835 	case Q_ISIS:
   4836 		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
   4837 		/*
   4838 		 * 4 is the offset of the PDU type relative to the IS-IS
   4839 		 * header.
   4840 		 */
   4841 		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
   4842 		gen_and(b0, b1);
   4843 		return b1;
   4844 
   4845 	case Q_ARP:
   4846 		bpf_error("arp does not encapsulate another protocol");
   4847 		/* NOTREACHED */
   4848 
   4849 	case Q_RARP:
   4850 		bpf_error("rarp does not encapsulate another protocol");
   4851 		/* NOTREACHED */
   4852 
   4853 	case Q_ATALK:
   4854 		bpf_error("atalk encapsulation is not specifiable");
   4855 		/* NOTREACHED */
   4856 
   4857 	case Q_DECNET:
   4858 		bpf_error("decnet encapsulation is not specifiable");
   4859 		/* NOTREACHED */
   4860 
   4861 	case Q_SCA:
   4862 		bpf_error("sca does not encapsulate another protocol");
   4863 		/* NOTREACHED */
   4864 
   4865 	case Q_LAT:
   4866 		bpf_error("lat does not encapsulate another protocol");
   4867 		/* NOTREACHED */
   4868 
   4869 	case Q_MOPRC:
   4870 		bpf_error("moprc does not encapsulate another protocol");
   4871 		/* NOTREACHED */
   4872 
   4873 	case Q_MOPDL:
   4874 		bpf_error("mopdl does not encapsulate another protocol");
   4875 		/* NOTREACHED */
   4876 
   4877 	case Q_LINK:
   4878 		return gen_linktype(v);
   4879 
   4880 	case Q_UDP:
   4881 		bpf_error("'udp proto' is bogus");
   4882 		/* NOTREACHED */
   4883 
   4884 	case Q_TCP:
   4885 		bpf_error("'tcp proto' is bogus");
   4886 		/* NOTREACHED */
   4887 
   4888 	case Q_SCTP:
   4889 		bpf_error("'sctp proto' is bogus");
   4890 		/* NOTREACHED */
   4891 
   4892 	case Q_ICMP:
   4893 		bpf_error("'icmp proto' is bogus");
   4894 		/* NOTREACHED */
   4895 
   4896 	case Q_IGMP:
   4897 		bpf_error("'igmp proto' is bogus");
   4898 		/* NOTREACHED */
   4899 
   4900 	case Q_IGRP:
   4901 		bpf_error("'igrp proto' is bogus");
   4902 		/* NOTREACHED */
   4903 
   4904 	case Q_PIM:
   4905 		bpf_error("'pim proto' is bogus");
   4906 		/* NOTREACHED */
   4907 
   4908 	case Q_VRRP:
   4909 		bpf_error("'vrrp proto' is bogus");
   4910 		/* NOTREACHED */
   4911 
   4912 #ifdef INET6
   4913 	case Q_IPV6:
   4914 		b0 = gen_linktype(ETHERTYPE_IPV6);
   4915 #ifndef CHASE_CHAIN
   4916 		b1 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
   4917 #else
   4918 		b1 = gen_protochain(v, Q_IPV6);
   4919 #endif
   4920 		gen_and(b0, b1);
   4921 		return b1;
   4922 
   4923 	case Q_ICMPV6:
   4924 		bpf_error("'icmp6 proto' is bogus");
   4925 #endif /* INET6 */
   4926 
   4927 	case Q_AH:
   4928 		bpf_error("'ah proto' is bogus");
   4929 
   4930 	case Q_ESP:
   4931 		bpf_error("'ah proto' is bogus");
   4932 
   4933 	case Q_STP:
   4934 		bpf_error("'stp proto' is bogus");
   4935 
   4936 	case Q_IPX:
   4937 		bpf_error("'ipx proto' is bogus");
   4938 
   4939 	case Q_NETBEUI:
   4940 		bpf_error("'netbeui proto' is bogus");
   4941 
   4942 	case Q_RADIO:
   4943 		bpf_error("'radio proto' is bogus");
   4944 
   4945 	default:
   4946 		abort();
   4947 		/* NOTREACHED */
   4948 	}
   4949 	/* NOTREACHED */
   4950 }
   4951 
   4952 struct block *
   4953 gen_scode(name, q)
   4954 	register const char *name;
   4955 	struct qual q;
   4956 {
   4957 	int proto = q.proto;
   4958 	int dir = q.dir;
   4959 	int tproto;
   4960 	u_char *eaddr;
   4961 	bpf_u_int32 mask, addr;
   4962 #ifndef INET6
   4963 	bpf_u_int32 **alist;
   4964 #else
   4965 	int tproto6;
   4966 	struct sockaddr_in *sin4;
   4967 	struct sockaddr_in6 *sin6;
   4968 	struct addrinfo *res, *res0;
   4969 	struct in6_addr mask128;
   4970 #endif /*INET6*/
   4971 	struct block *b, *tmp;
   4972 	int port, real_proto;
   4973 	int port1, port2;
   4974 
   4975 	switch (q.addr) {
   4976 
   4977 	case Q_NET:
   4978 		addr = pcap_nametonetaddr(name);
   4979 		if (addr == 0)
   4980 			bpf_error("unknown network '%s'", name);
   4981 		/* Left justify network addr and calculate its network mask */
   4982 		mask = 0xffffffff;
   4983 		while (addr && (addr & 0xff000000) == 0) {
   4984 			addr <<= 8;
   4985 			mask <<= 8;
   4986 		}
   4987 		return gen_host(addr, mask, proto, dir, q.addr);
   4988 
   4989 	case Q_DEFAULT:
   4990 	case Q_HOST:
   4991 		if (proto == Q_LINK) {
   4992 			switch (linktype) {
   4993 
   4994 			case DLT_EN10MB:
   4995 				eaddr = pcap_ether_hostton(name);
   4996 				if (eaddr == NULL)
   4997 					bpf_error(
   4998 					    "unknown ether host '%s'", name);
   4999 				b = gen_ehostop(eaddr, dir);
   5000 				free(eaddr);
   5001 				return b;
   5002 
   5003 			case DLT_FDDI:
   5004 				eaddr = pcap_ether_hostton(name);
   5005 				if (eaddr == NULL)
   5006 					bpf_error(
   5007 					    "unknown FDDI host '%s'", name);
   5008 				b = gen_fhostop(eaddr, dir);
   5009 				free(eaddr);
   5010 				return b;
   5011 
   5012 			case DLT_IEEE802:
   5013 				eaddr = pcap_ether_hostton(name);
   5014 				if (eaddr == NULL)
   5015 					bpf_error(
   5016 					    "unknown token ring host '%s'", name);
   5017 				b = gen_thostop(eaddr, dir);
   5018 				free(eaddr);
   5019 				return b;
   5020 
   5021 			case DLT_IEEE802_11:
   5022 			case DLT_IEEE802_11_RADIO_AVS:
   5023 			case DLT_IEEE802_11_RADIO:
   5024 			case DLT_PRISM_HEADER:
   5025 			case DLT_PPI:
   5026 				eaddr = pcap_ether_hostton(name);
   5027 				if (eaddr == NULL)
   5028 					bpf_error(
   5029 					    "unknown 802.11 host '%s'", name);
   5030 				b = gen_wlanhostop(eaddr, dir);
   5031 				free(eaddr);
   5032 				return b;
   5033 
   5034 			case DLT_IP_OVER_FC:
   5035 				eaddr = pcap_ether_hostton(name);
   5036 				if (eaddr == NULL)
   5037 					bpf_error(
   5038 					    "unknown Fibre Channel host '%s'", name);
   5039 				b = gen_ipfchostop(eaddr, dir);
   5040 				free(eaddr);
   5041 				return b;
   5042 
   5043 			case DLT_SUNATM:
   5044 				if (!is_lane)
   5045 					break;
   5046 
   5047 				/*
   5048 				 * Check that the packet doesn't begin
   5049 				 * with an LE Control marker.  (We've
   5050 				 * already generated a test for LANE.)
   5051 				 */
   5052 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
   5053 				    BPF_H, 0xFF00);
   5054 				gen_not(tmp);
   5055 
   5056 				eaddr = pcap_ether_hostton(name);
   5057 				if (eaddr == NULL)
   5058 					bpf_error(
   5059 					    "unknown ether host '%s'", name);
   5060 				b = gen_ehostop(eaddr, dir);
   5061 				gen_and(tmp, b);
   5062 				free(eaddr);
   5063 				return b;
   5064 			}
   5065 
   5066 			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
   5067 		} else if (proto == Q_DECNET) {
   5068 			unsigned short dn_addr = __pcap_nametodnaddr(name);
   5069 			/*
   5070 			 * I don't think DECNET hosts can be multihomed, so
   5071 			 * there is no need to build up a list of addresses
   5072 			 */
   5073 			return (gen_host(dn_addr, 0, proto, dir, q.addr));
   5074 		} else {
   5075 #ifndef INET6
   5076 			alist = pcap_nametoaddr(name);
   5077 			if (alist == NULL || *alist == NULL)
   5078 				bpf_error("unknown host '%s'", name);
   5079 			tproto = proto;
   5080 			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
   5081 				tproto = Q_IP;
   5082 			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
   5083 			while (*alist) {
   5084 				tmp = gen_host(**alist++, 0xffffffff,
   5085 					       tproto, dir, q.addr);
   5086 				gen_or(b, tmp);
   5087 				b = tmp;
   5088 			}
   5089 			return b;
   5090 #else
   5091 			memset(&mask128, 0xff, sizeof(mask128));
   5092 			res0 = res = pcap_nametoaddrinfo(name);
   5093 			if (res == NULL)
   5094 				bpf_error("unknown host '%s'", name);
   5095 			b = tmp = NULL;
   5096 			tproto = tproto6 = proto;
   5097 			if (off_linktype == -1 && tproto == Q_DEFAULT) {
   5098 				tproto = Q_IP;
   5099 				tproto6 = Q_IPV6;
   5100 			}
   5101 			for (res = res0; res; res = res->ai_next) {
   5102 				switch (res->ai_family) {
   5103 				case AF_INET:
   5104 					if (tproto == Q_IPV6)
   5105 						continue;
   5106 
   5107 					sin4 = (struct sockaddr_in *)
   5108 						res->ai_addr;
   5109 					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
   5110 						0xffffffff, tproto, dir, q.addr);
   5111 					break;
   5112 				case AF_INET6:
   5113 					if (tproto6 == Q_IP)
   5114 						continue;
   5115 
   5116 					sin6 = (struct sockaddr_in6 *)
   5117 						res->ai_addr;
   5118 					tmp = gen_host6(&sin6->sin6_addr,
   5119 						&mask128, tproto6, dir, q.addr);
   5120 					break;
   5121 				default:
   5122 					continue;
   5123 				}
   5124 				if (b)
   5125 					gen_or(b, tmp);
   5126 				b = tmp;
   5127 			}
   5128 			freeaddrinfo(res0);
   5129 			if (b == NULL) {
   5130 				bpf_error("unknown host '%s'%s", name,
   5131 				    (proto == Q_DEFAULT)
   5132 					? ""
   5133 					: " for specified address family");
   5134 			}
   5135 			return b;
   5136 #endif /*INET6*/
   5137 		}
   5138 
   5139 	case Q_PORT:
   5140 		if (proto != Q_DEFAULT &&
   5141 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
   5142 			bpf_error("illegal qualifier of 'port'");
   5143 		if (pcap_nametoport(name, &port, &real_proto) == 0)
   5144 			bpf_error("unknown port '%s'", name);
   5145 		if (proto == Q_UDP) {
   5146 			if (real_proto == IPPROTO_TCP)
   5147 				bpf_error("port '%s' is tcp", name);
   5148 			else if (real_proto == IPPROTO_SCTP)
   5149 				bpf_error("port '%s' is sctp", name);
   5150 			else
   5151 				/* override PROTO_UNDEF */
   5152 				real_proto = IPPROTO_UDP;
   5153 		}
   5154 		if (proto == Q_TCP) {
   5155 			if (real_proto == IPPROTO_UDP)
   5156 				bpf_error("port '%s' is udp", name);
   5157 
   5158 			else if (real_proto == IPPROTO_SCTP)
   5159 				bpf_error("port '%s' is sctp", name);
   5160 			else
   5161 				/* override PROTO_UNDEF */
   5162 				real_proto = IPPROTO_TCP;
   5163 		}
   5164 		if (proto == Q_SCTP) {
   5165 			if (real_proto == IPPROTO_UDP)
   5166 				bpf_error("port '%s' is udp", name);
   5167 
   5168 			else if (real_proto == IPPROTO_TCP)
   5169 				bpf_error("port '%s' is tcp", name);
   5170 			else
   5171 				/* override PROTO_UNDEF */
   5172 				real_proto = IPPROTO_SCTP;
   5173 		}
   5174 #ifndef INET6
   5175 		return gen_port(port, real_proto, dir);
   5176 #else
   5177 		b = gen_port(port, real_proto, dir);
   5178 		gen_or(gen_port6(port, real_proto, dir), b);
   5179 		return b;
   5180 #endif /* INET6 */
   5181 
   5182 	case Q_PORTRANGE:
   5183 		if (proto != Q_DEFAULT &&
   5184 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
   5185 			bpf_error("illegal qualifier of 'portrange'");
   5186 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
   5187 			bpf_error("unknown port in range '%s'", name);
   5188 		if (proto == Q_UDP) {
   5189 			if (real_proto == IPPROTO_TCP)
   5190 				bpf_error("port in range '%s' is tcp", name);
   5191 			else if (real_proto == IPPROTO_SCTP)
   5192 				bpf_error("port in range '%s' is sctp", name);
   5193 			else
   5194 				/* override PROTO_UNDEF */
   5195 				real_proto = IPPROTO_UDP;
   5196 		}
   5197 		if (proto == Q_TCP) {
   5198 			if (real_proto == IPPROTO_UDP)
   5199 				bpf_error("port in range '%s' is udp", name);
   5200 			else if (real_proto == IPPROTO_SCTP)
   5201 				bpf_error("port in range '%s' is sctp", name);
   5202 			else
   5203 				/* override PROTO_UNDEF */
   5204 				real_proto = IPPROTO_TCP;
   5205 		}
   5206 		if (proto == Q_SCTP) {
   5207 			if (real_proto == IPPROTO_UDP)
   5208 				bpf_error("port in range '%s' is udp", name);
   5209 			else if (real_proto == IPPROTO_TCP)
   5210 				bpf_error("port in range '%s' is tcp", name);
   5211 			else
   5212 				/* override PROTO_UNDEF */
   5213 				real_proto = IPPROTO_SCTP;
   5214 		}
   5215 #ifndef INET6
   5216 		return gen_portrange(port1, port2, real_proto, dir);
   5217 #else
   5218 		b = gen_portrange(port1, port2, real_proto, dir);
   5219 		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
   5220 		return b;
   5221 #endif /* INET6 */
   5222 
   5223 	case Q_GATEWAY:
   5224 #ifndef INET6
   5225 		eaddr = pcap_ether_hostton(name);
   5226 		if (eaddr == NULL)
   5227 			bpf_error("unknown ether host: %s", name);
   5228 
   5229 		alist = pcap_nametoaddr(name);
   5230 		if (alist == NULL || *alist == NULL)
   5231 			bpf_error("unknown host '%s'", name);
   5232 		b = gen_gateway(eaddr, alist, proto, dir);
   5233 		free(eaddr);
   5234 		return b;
   5235 #else
   5236 		bpf_error("'gateway' not supported in this configuration");
   5237 #endif /*INET6*/
   5238 
   5239 	case Q_PROTO:
   5240 		real_proto = lookup_proto(name, proto);
   5241 		if (real_proto >= 0)
   5242 			return gen_proto(real_proto, proto, dir);
   5243 		else
   5244 			bpf_error("unknown protocol: %s", name);
   5245 
   5246 	case Q_PROTOCHAIN:
   5247 		real_proto = lookup_proto(name, proto);
   5248 		if (real_proto >= 0)
   5249 			return gen_protochain(real_proto, proto, dir);
   5250 		else
   5251 			bpf_error("unknown protocol: %s", name);
   5252 
   5253 
   5254 	case Q_UNDEF:
   5255 		syntax();
   5256 		/* NOTREACHED */
   5257 	}
   5258 	abort();
   5259 	/* NOTREACHED */
   5260 }
   5261 
   5262 struct block *
   5263 gen_mcode(s1, s2, masklen, q)
   5264 	register const char *s1, *s2;
   5265 	register int masklen;
   5266 	struct qual q;
   5267 {
   5268 	register int nlen, mlen;
   5269 	bpf_u_int32 n, m;
   5270 
   5271 	nlen = __pcap_atoin(s1, &n);
   5272 	/* Promote short ipaddr */
   5273 	n <<= 32 - nlen;
   5274 
   5275 	if (s2 != NULL) {
   5276 		mlen = __pcap_atoin(s2, &m);
   5277 		/* Promote short ipaddr */
   5278 		m <<= 32 - mlen;
   5279 		if ((n & ~m) != 0)
   5280 			bpf_error("non-network bits set in \"%s mask %s\"",
   5281 			    s1, s2);
   5282 	} else {
   5283 		/* Convert mask len to mask */
   5284 		if (masklen > 32)
   5285 			bpf_error("mask length must be <= 32");
   5286 		if (masklen == 0) {
   5287 			/*
   5288 			 * X << 32 is not guaranteed by C to be 0; it's
   5289 			 * undefined.
   5290 			 */
   5291 			m = 0;
   5292 		} else
   5293 			m = 0xffffffff << (32 - masklen);
   5294 		if ((n & ~m) != 0)
   5295 			bpf_error("non-network bits set in \"%s/%d\"",
   5296 			    s1, masklen);
   5297 	}
   5298 
   5299 	switch (q.addr) {
   5300 
   5301 	case Q_NET:
   5302 		return gen_host(n, m, q.proto, q.dir, q.addr);
   5303 
   5304 	default:
   5305 		bpf_error("Mask syntax for networks only");
   5306 		/* NOTREACHED */
   5307 	}
   5308 	/* NOTREACHED */
   5309 	return NULL;
   5310 }
   5311 
   5312 struct block *
   5313 gen_ncode(s, v, q)
   5314 	register const char *s;
   5315 	bpf_u_int32 v;
   5316 	struct qual q;
   5317 {
   5318 	bpf_u_int32 mask;
   5319 	int proto = q.proto;
   5320 	int dir = q.dir;
   5321 	register int vlen;
   5322 
   5323 	if (s == NULL)
   5324 		vlen = 32;
   5325 	else if (q.proto == Q_DECNET)
   5326 		vlen = __pcap_atodn(s, &v);
   5327 	else
   5328 		vlen = __pcap_atoin(s, &v);
   5329 
   5330 	switch (q.addr) {
   5331 
   5332 	case Q_DEFAULT:
   5333 	case Q_HOST:
   5334 	case Q_NET:
   5335 		if (proto == Q_DECNET)
   5336 			return gen_host(v, 0, proto, dir, q.addr);
   5337 		else if (proto == Q_LINK) {
   5338 			bpf_error("illegal link layer address");
   5339 		} else {
   5340 			mask = 0xffffffff;
   5341 			if (s == NULL && q.addr == Q_NET) {
   5342 				/* Promote short net number */
   5343 				while (v && (v & 0xff000000) == 0) {
   5344 					v <<= 8;
   5345 					mask <<= 8;
   5346 				}
   5347 			} else {
   5348 				/* Promote short ipaddr */
   5349 				v <<= 32 - vlen;
   5350 				mask <<= 32 - vlen;
   5351 			}
   5352 			return gen_host(v, mask, proto, dir, q.addr);
   5353 		}
   5354 
   5355 	case Q_PORT:
   5356 		if (proto == Q_UDP)
   5357 			proto = IPPROTO_UDP;
   5358 		else if (proto == Q_TCP)
   5359 			proto = IPPROTO_TCP;
   5360 		else if (proto == Q_SCTP)
   5361 			proto = IPPROTO_SCTP;
   5362 		else if (proto == Q_DEFAULT)
   5363 			proto = PROTO_UNDEF;
   5364 		else
   5365 			bpf_error("illegal qualifier of 'port'");
   5366 
   5367 #ifndef INET6
   5368 		return gen_port((int)v, proto, dir);
   5369 #else
   5370 	    {
   5371 		struct block *b;
   5372 		b = gen_port((int)v, proto, dir);
   5373 		gen_or(gen_port6((int)v, proto, dir), b);
   5374 		return b;
   5375 	    }
   5376 #endif /* INET6 */
   5377 
   5378 	case Q_PORTRANGE:
   5379 		if (proto == Q_UDP)
   5380 			proto = IPPROTO_UDP;
   5381 		else if (proto == Q_TCP)
   5382 			proto = IPPROTO_TCP;
   5383 		else if (proto == Q_SCTP)
   5384 			proto = IPPROTO_SCTP;
   5385 		else if (proto == Q_DEFAULT)
   5386 			proto = PROTO_UNDEF;
   5387 		else
   5388 			bpf_error("illegal qualifier of 'portrange'");
   5389 
   5390 #ifndef INET6
   5391 		return gen_portrange((int)v, (int)v, proto, dir);
   5392 #else
   5393 	    {
   5394 		struct block *b;
   5395 		b = gen_portrange((int)v, (int)v, proto, dir);
   5396 		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
   5397 		return b;
   5398 	    }
   5399 #endif /* INET6 */
   5400 
   5401 	case Q_GATEWAY:
   5402 		bpf_error("'gateway' requires a name");
   5403 		/* NOTREACHED */
   5404 
   5405 	case Q_PROTO:
   5406 		return gen_proto((int)v, proto, dir);
   5407 
   5408 	case Q_PROTOCHAIN:
   5409 		return gen_protochain((int)v, proto, dir);
   5410 
   5411 	case Q_UNDEF:
   5412 		syntax();
   5413 		/* NOTREACHED */
   5414 
   5415 	default:
   5416 		abort();
   5417 		/* NOTREACHED */
   5418 	}
   5419 	/* NOTREACHED */
   5420 }
   5421 
   5422 #ifdef INET6
   5423 struct block *
   5424 gen_mcode6(s1, s2, masklen, q)
   5425 	register const char *s1, *s2;
   5426 	register int masklen;
   5427 	struct qual q;
   5428 {
   5429 	struct addrinfo *res;
   5430 	struct in6_addr *addr;
   5431 	struct in6_addr mask;
   5432 	struct block *b;
   5433 	u_int32_t *a, *m;
   5434 
   5435 	if (s2)
   5436 		bpf_error("no mask %s supported", s2);
   5437 
   5438 	res = pcap_nametoaddrinfo(s1);
   5439 	if (!res)
   5440 		bpf_error("invalid ip6 address %s", s1);
   5441 	if (res->ai_next)
   5442 		bpf_error("%s resolved to multiple address", s1);
   5443 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
   5444 
   5445 	if (sizeof(mask) * 8 < masklen)
   5446 		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
   5447 	memset(&mask, 0, sizeof(mask));
   5448 	memset(&mask, 0xff, masklen / 8);
   5449 	if (masklen % 8) {
   5450 		mask.s6_addr[masklen / 8] =
   5451 			(0xff << (8 - masklen % 8)) & 0xff;
   5452 	}
   5453 
   5454 	a = (u_int32_t *)addr;
   5455 	m = (u_int32_t *)&mask;
   5456 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
   5457 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
   5458 		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
   5459 	}
   5460 
   5461 	switch (q.addr) {
   5462 
   5463 	case Q_DEFAULT:
   5464 	case Q_HOST:
   5465 		if (masklen != 128)
   5466 			bpf_error("Mask syntax for networks only");
   5467 		/* FALLTHROUGH */
   5468 
   5469 	case Q_NET:
   5470 		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
   5471 		freeaddrinfo(res);
   5472 		return b;
   5473 
   5474 	default:
   5475 		bpf_error("invalid qualifier against IPv6 address");
   5476 		/* NOTREACHED */
   5477 	}
   5478 	return NULL;
   5479 }
   5480 #endif /*INET6*/
   5481 
   5482 struct block *
   5483 gen_ecode(eaddr, q)
   5484 	register const u_char *eaddr;
   5485 	struct qual q;
   5486 {
   5487 	struct block *b, *tmp;
   5488 
   5489 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
   5490             switch (linktype) {
   5491             case DLT_EN10MB:
   5492                 return gen_ehostop(eaddr, (int)q.dir);
   5493             case DLT_FDDI:
   5494                 return gen_fhostop(eaddr, (int)q.dir);
   5495             case DLT_IEEE802:
   5496                 return gen_thostop(eaddr, (int)q.dir);
   5497 			case DLT_IEEE802_11:
   5498 			case DLT_IEEE802_11_RADIO_AVS:
   5499 			case DLT_IEEE802_11_RADIO:
   5500 			case DLT_PRISM_HEADER:
   5501 			case DLT_PPI:
   5502 				return gen_wlanhostop(eaddr, (int)q.dir);
   5503 			case DLT_SUNATM:
   5504 				if (is_lane) {
   5505 					/*
   5506 					 * Check that the packet doesn't begin with an
   5507 					 * LE Control marker.  (We've already generated
   5508 					 * a test for LANE.)
   5509 					 */
   5510 					tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
   5511 						0xFF00);
   5512 					gen_not(tmp);
   5513 
   5514 					/*
   5515 					 * Now check the MAC address.
   5516 					 */
   5517 					b = gen_ehostop(eaddr, (int)q.dir);
   5518 					gen_and(tmp, b);
   5519 					return b;
   5520 				}
   5521 				break;
   5522 			case DLT_IP_OVER_FC:
   5523                 return gen_ipfchostop(eaddr, (int)q.dir);
   5524             default:
   5525 				bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
   5526                 break;
   5527             }
   5528 	}
   5529 	bpf_error("ethernet address used in non-ether expression");
   5530 	/* NOTREACHED */
   5531 	return NULL;
   5532 }
   5533 
   5534 void
   5535 sappend(s0, s1)
   5536 	struct slist *s0, *s1;
   5537 {
   5538 	/*
   5539 	 * This is definitely not the best way to do this, but the
   5540 	 * lists will rarely get long.
   5541 	 */
   5542 	while (s0->next)
   5543 		s0 = s0->next;
   5544 	s0->next = s1;
   5545 }
   5546 
   5547 static struct slist *
   5548 xfer_to_x(a)
   5549 	struct arth *a;
   5550 {
   5551 	struct slist *s;
   5552 
   5553 	s = new_stmt(BPF_LDX|BPF_MEM);
   5554 	s->s.k = a->regno;
   5555 	return s;
   5556 }
   5557 
   5558 static struct slist *
   5559 xfer_to_a(a)
   5560 	struct arth *a;
   5561 {
   5562 	struct slist *s;
   5563 
   5564 	s = new_stmt(BPF_LD|BPF_MEM);
   5565 	s->s.k = a->regno;
   5566 	return s;
   5567 }
   5568 
   5569 /*
   5570  * Modify "index" to use the value stored into its register as an
   5571  * offset relative to the beginning of the header for the protocol
   5572  * "proto", and allocate a register and put an item "size" bytes long
   5573  * (1, 2, or 4) at that offset into that register, making it the register
   5574  * for "index".
   5575  */
   5576 struct arth *
   5577 gen_load(proto, inst, size)
   5578 	int proto;
   5579 	struct arth *inst;
   5580 	int size;
   5581 {
   5582 	struct slist *s, *tmp;
   5583 	struct block *b;
   5584 	int regno = alloc_reg();
   5585 
   5586 	free_reg(inst->regno);
   5587 	switch (size) {
   5588 
   5589 	default:
   5590 		bpf_error("data size must be 1, 2, or 4");
   5591 
   5592 	case 1:
   5593 		size = BPF_B;
   5594 		break;
   5595 
   5596 	case 2:
   5597 		size = BPF_H;
   5598 		break;
   5599 
   5600 	case 4:
   5601 		size = BPF_W;
   5602 		break;
   5603 	}
   5604 	switch (proto) {
   5605 	default:
   5606 		bpf_error("unsupported index operation");
   5607 
   5608 	case Q_RADIO:
   5609 		/*
   5610 		 * The offset is relative to the beginning of the packet
   5611 		 * data, if we have a radio header.  (If we don't, this
   5612 		 * is an error.)
   5613 		 */
   5614 		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
   5615 		    linktype != DLT_IEEE802_11_RADIO &&
   5616 		    linktype != DLT_PRISM_HEADER)
   5617 			bpf_error("radio information not present in capture");
   5618 
   5619 		/*
   5620 		 * Load into the X register the offset computed into the
   5621 		 * register specifed by "index".
   5622 		 */
   5623 		s = xfer_to_x(inst);
   5624 
   5625 		/*
   5626 		 * Load the item at that offset.
   5627 		 */
   5628 		tmp = new_stmt(BPF_LD|BPF_IND|size);
   5629 		sappend(s, tmp);
   5630 		sappend(inst->s, s);
   5631 		break;
   5632 
   5633 	case Q_LINK:
   5634 		/*
   5635 		 * The offset is relative to the beginning of
   5636 		 * the link-layer header.
   5637 		 *
   5638 		 * XXX - what about ATM LANE?  Should the index be
   5639 		 * relative to the beginning of the AAL5 frame, so
   5640 		 * that 0 refers to the beginning of the LE Control
   5641 		 * field, or relative to the beginning of the LAN
   5642 		 * frame, so that 0 refers, for Ethernet LANE, to
   5643 		 * the beginning of the destination address?
   5644 		 */
   5645 		s = gen_llprefixlen();
   5646 
   5647 		/*
   5648 		 * If "s" is non-null, it has code to arrange that the
   5649 		 * X register contains the length of the prefix preceding
   5650 		 * the link-layer header.  Add to it the offset computed
   5651 		 * into the register specified by "index", and move that
   5652 		 * into the X register.  Otherwise, just load into the X
   5653 		 * register the offset computed into the register specifed
   5654 		 * by "index".
   5655 		 */
   5656 		if (s != NULL) {
   5657 			sappend(s, xfer_to_a(inst));
   5658 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
   5659 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
   5660 		} else
   5661 			s = xfer_to_x(inst);
   5662 
   5663 		/*
   5664 		 * Load the item at the sum of the offset we've put in the
   5665 		 * X register and the offset of the start of the link
   5666 		 * layer header (which is 0 if the radio header is
   5667 		 * variable-length; that header length is what we put
   5668 		 * into the X register and then added to the index).
   5669 		 */
   5670 		tmp = new_stmt(BPF_LD|BPF_IND|size);
   5671 		tmp->s.k = off_ll;
   5672 		sappend(s, tmp);
   5673 		sappend(inst->s, s);
   5674 		break;
   5675 
   5676 	case Q_IP:
   5677 	case Q_ARP:
   5678 	case Q_RARP:
   5679 	case Q_ATALK:
   5680 	case Q_DECNET:
   5681 	case Q_SCA:
   5682 	case Q_LAT:
   5683 	case Q_MOPRC:
   5684 	case Q_MOPDL:
   5685 #ifdef INET6
   5686 	case Q_IPV6:
   5687 #endif
   5688 		/*
   5689 		 * The offset is relative to the beginning of
   5690 		 * the network-layer header.
   5691 		 * XXX - are there any cases where we want
   5692 		 * off_nl_nosnap?
   5693 		 */
   5694 		s = gen_llprefixlen();
   5695 
   5696 		/*
   5697 		 * If "s" is non-null, it has code to arrange that the
   5698 		 * X register contains the length of the prefix preceding
   5699 		 * the link-layer header.  Add to it the offset computed
   5700 		 * into the register specified by "index", and move that
   5701 		 * into the X register.  Otherwise, just load into the X
   5702 		 * register the offset computed into the register specifed
   5703 		 * by "index".
   5704 		 */
   5705 		if (s != NULL) {
   5706 			sappend(s, xfer_to_a(inst));
   5707 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
   5708 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
   5709 		} else
   5710 			s = xfer_to_x(inst);
   5711 
   5712 		/*
   5713 		 * Load the item at the sum of the offset we've put in the
   5714 		 * X register, the offset of the start of the network
   5715 		 * layer header, and the offset of the start of the link
   5716 		 * layer header (which is 0 if the radio header is
   5717 		 * variable-length; that header length is what we put
   5718 		 * into the X register and then added to the index).
   5719 		 */
   5720 		tmp = new_stmt(BPF_LD|BPF_IND|size);
   5721 		tmp->s.k = off_ll + off_nl;
   5722 		sappend(s, tmp);
   5723 		sappend(inst->s, s);
   5724 
   5725 		/*
   5726 		 * Do the computation only if the packet contains
   5727 		 * the protocol in question.
   5728 		 */
   5729 		b = gen_proto_abbrev(proto);
   5730 		if (inst->b)
   5731 			gen_and(inst->b, b);
   5732 		inst->b = b;
   5733 		break;
   5734 
   5735 	case Q_SCTP:
   5736 	case Q_TCP:
   5737 	case Q_UDP:
   5738 	case Q_ICMP:
   5739 	case Q_IGMP:
   5740 	case Q_IGRP:
   5741 	case Q_PIM:
   5742 	case Q_VRRP:
   5743 		/*
   5744 		 * The offset is relative to the beginning of
   5745 		 * the transport-layer header.
   5746 		 *
   5747 		 * Load the X register with the length of the IPv4 header
   5748 		 * (plus the offset of the link-layer header, if it's
   5749 		 * a variable-length header), in bytes.
   5750 		 *
   5751 		 * XXX - are there any cases where we want
   5752 		 * off_nl_nosnap?
   5753 		 * XXX - we should, if we're built with
   5754 		 * IPv6 support, generate code to load either
   5755 		 * IPv4, IPv6, or both, as appropriate.
   5756 		 */
   5757 		s = gen_loadx_iphdrlen();
   5758 
   5759 		/*
   5760 		 * The X register now contains the sum of the length
   5761 		 * of any variable-length header preceding the link-layer
   5762 		 * header and the length of the network-layer header.
   5763 		 * Load into the A register the offset relative to
   5764 		 * the beginning of the transport layer header,
   5765 		 * add the X register to that, move that to the
   5766 		 * X register, and load with an offset from the
   5767 		 * X register equal to the offset of the network
   5768 		 * layer header relative to the beginning of
   5769 		 * the link-layer header plus the length of any
   5770 		 * fixed-length header preceding the link-layer
   5771 		 * header.
   5772 		 */
   5773 		sappend(s, xfer_to_a(inst));
   5774 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
   5775 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
   5776 		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
   5777 		tmp->s.k = off_ll + off_nl;
   5778 		sappend(inst->s, s);
   5779 
   5780 		/*
   5781 		 * Do the computation only if the packet contains
   5782 		 * the protocol in question - which is true only
   5783 		 * if this is an IP datagram and is the first or
   5784 		 * only fragment of that datagram.
   5785 		 */
   5786 		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
   5787 		if (inst->b)
   5788 			gen_and(inst->b, b);
   5789 #ifdef INET6
   5790 		gen_and(gen_proto_abbrev(Q_IP), b);
   5791 #endif
   5792 		inst->b = b;
   5793 		break;
   5794 #ifdef INET6
   5795 	case Q_ICMPV6:
   5796 		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
   5797 		/*NOTREACHED*/
   5798 #endif
   5799 	}
   5800 	inst->regno = regno;
   5801 	s = new_stmt(BPF_ST);
   5802 	s->s.k = regno;
   5803 	sappend(inst->s, s);
   5804 
   5805 	return inst;
   5806 }
   5807 
   5808 struct block *
   5809 gen_relation(code, a0, a1, reversed)
   5810 	int code;
   5811 	struct arth *a0, *a1;
   5812 	int reversed;
   5813 {
   5814 	struct slist *s0, *s1, *s2;
   5815 	struct block *b, *tmp;
   5816 
   5817 	s0 = xfer_to_x(a1);
   5818 	s1 = xfer_to_a(a0);
   5819 	if (code == BPF_JEQ) {
   5820 		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
   5821 		b = new_block(JMP(code));
   5822 		sappend(s1, s2);
   5823 	}
   5824 	else
   5825 		b = new_block(BPF_JMP|code|BPF_X);
   5826 	if (reversed)
   5827 		gen_not(b);
   5828 
   5829 	sappend(s0, s1);
   5830 	sappend(a1->s, s0);
   5831 	sappend(a0->s, a1->s);
   5832 
   5833 	b->stmts = a0->s;
   5834 
   5835 	free_reg(a0->regno);
   5836 	free_reg(a1->regno);
   5837 
   5838 	/* 'and' together protocol checks */
   5839 	if (a0->b) {
   5840 		if (a1->b) {
   5841 			gen_and(a0->b, tmp = a1->b);
   5842 		}
   5843 		else
   5844 			tmp = a0->b;
   5845 	} else
   5846 		tmp = a1->b;
   5847 
   5848 	if (tmp)
   5849 		gen_and(tmp, b);
   5850 
   5851 	return b;
   5852 }
   5853 
   5854 struct arth *
   5855 gen_loadlen()
   5856 {
   5857 	int regno = alloc_reg();
   5858 	struct arth *a = (struct arth *)newchunk(sizeof(*a));
   5859 	struct slist *s;
   5860 
   5861 	s = new_stmt(BPF_LD|BPF_LEN);
   5862 	s->next = new_stmt(BPF_ST);
   5863 	s->next->s.k = regno;
   5864 	a->s = s;
   5865 	a->regno = regno;
   5866 
   5867 	return a;
   5868 }
   5869 
   5870 struct arth *
   5871 gen_loadi(val)
   5872 	int val;
   5873 {
   5874 	struct arth *a;
   5875 	struct slist *s;
   5876 	int reg;
   5877 
   5878 	a = (struct arth *)newchunk(sizeof(*a));
   5879 
   5880 	reg = alloc_reg();
   5881 
   5882 	s = new_stmt(BPF_LD|BPF_IMM);
   5883 	s->s.k = val;
   5884 	s->next = new_stmt(BPF_ST);
   5885 	s->next->s.k = reg;
   5886 	a->s = s;
   5887 	a->regno = reg;
   5888 
   5889 	return a;
   5890 }
   5891 
   5892 struct arth *
   5893 gen_neg(a)
   5894 	struct arth *a;
   5895 {
   5896 	struct slist *s;
   5897 
   5898 	s = xfer_to_a(a);
   5899 	sappend(a->s, s);
   5900 	s = new_stmt(BPF_ALU|BPF_NEG);
   5901 	s->s.k = 0;
   5902 	sappend(a->s, s);
   5903 	s = new_stmt(BPF_ST);
   5904 	s->s.k = a->regno;
   5905 	sappend(a->s, s);
   5906 
   5907 	return a;
   5908 }
   5909 
   5910 struct arth *
   5911 gen_arth(code, a0, a1)
   5912 	int code;
   5913 	struct arth *a0, *a1;
   5914 {
   5915 	struct slist *s0, *s1, *s2;
   5916 
   5917 	s0 = xfer_to_x(a1);
   5918 	s1 = xfer_to_a(a0);
   5919 	s2 = new_stmt(BPF_ALU|BPF_X|code);
   5920 
   5921 	sappend(s1, s2);
   5922 	sappend(s0, s1);
   5923 	sappend(a1->s, s0);
   5924 	sappend(a0->s, a1->s);
   5925 
   5926 	free_reg(a0->regno);
   5927 	free_reg(a1->regno);
   5928 
   5929 	s0 = new_stmt(BPF_ST);
   5930 	a0->regno = s0->s.k = alloc_reg();
   5931 	sappend(a0->s, s0);
   5932 
   5933 	return a0;
   5934 }
   5935 
   5936 /*
   5937  * Here we handle simple allocation of the scratch registers.
   5938  * If too many registers are alloc'd, the allocator punts.
   5939  */
   5940 static int regused[BPF_MEMWORDS];
   5941 static int curreg;
   5942 
   5943 /*
   5944  * Return the next free register.
   5945  */
   5946 static int
   5947 alloc_reg()
   5948 {
   5949 	int n = BPF_MEMWORDS;
   5950 
   5951 	while (--n >= 0) {
   5952 		if (regused[curreg])
   5953 			curreg = (curreg + 1) % BPF_MEMWORDS;
   5954 		else {
   5955 			regused[curreg] = 1;
   5956 			return curreg;
   5957 		}
   5958 	}
   5959 	bpf_error("too many registers needed to evaluate expression");
   5960 	/* NOTREACHED */
   5961 	return 0;
   5962 }
   5963 
   5964 /*
   5965  * Return a register to the table so it can
   5966  * be used later.
   5967  */
   5968 static void
   5969 free_reg(n)
   5970 	int n;
   5971 {
   5972 	regused[n] = 0;
   5973 }
   5974 
   5975 static struct block *
   5976 gen_len(jmp, n)
   5977 	int jmp, n;
   5978 {
   5979 	struct slist *s;
   5980 	struct block *b;
   5981 
   5982 	s = new_stmt(BPF_LD|BPF_LEN);
   5983 	b = new_block(JMP(jmp));
   5984 	b->stmts = s;
   5985 	b->s.k = n;
   5986 
   5987 	return b;
   5988 }
   5989 
   5990 struct block *
   5991 gen_greater(n)
   5992 	int n;
   5993 {
   5994 	return gen_len(BPF_JGE, n);
   5995 }
   5996 
   5997 /*
   5998  * Actually, this is less than or equal.
   5999  */
   6000 struct block *
   6001 gen_less(n)
   6002 	int n;
   6003 {
   6004 	struct block *b;
   6005 
   6006 	b = gen_len(BPF_JGT, n);
   6007 	gen_not(b);
   6008 
   6009 	return b;
   6010 }
   6011 
   6012 /*
   6013  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
   6014  * the beginning of the link-layer header.
   6015  * XXX - that means you can't test values in the radiotap header, but
   6016  * as that header is difficult if not impossible to parse generally
   6017  * without a loop, that might not be a severe problem.  A new keyword
   6018  * "radio" could be added for that, although what you'd really want
   6019  * would be a way of testing particular radio header values, which
   6020  * would generate code appropriate to the radio header in question.
   6021  */
   6022 struct block *
   6023 gen_byteop(op, idx, val)
   6024 	int op, idx, val;
   6025 {
   6026 	struct block *b;
   6027 	struct slist *s;
   6028 
   6029 	switch (op) {
   6030 	default:
   6031 		abort();
   6032 
   6033 	case '=':
   6034 		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
   6035 
   6036 	case '<':
   6037 		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
   6038 		return b;
   6039 
   6040 	case '>':
   6041 		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
   6042 		return b;
   6043 
   6044 	case '|':
   6045 		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
   6046 		break;
   6047 
   6048 	case '&':
   6049 		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
   6050 		break;
   6051 	}
   6052 	s->s.k = val;
   6053 	b = new_block(JMP(BPF_JEQ));
   6054 	b->stmts = s;
   6055 	gen_not(b);
   6056 
   6057 	return b;
   6058 }
   6059 
   6060 static u_char abroadcast[] = { 0x0 };
   6061 
   6062 struct block *
   6063 gen_broadcast(proto)
   6064 	int proto;
   6065 {
   6066 	bpf_u_int32 hostmask;
   6067 	struct block *b0, *b1, *b2;
   6068 	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
   6069 
   6070 	switch (proto) {
   6071 
   6072 	case Q_DEFAULT:
   6073 	case Q_LINK:
   6074                 switch (linktype) {
   6075                 case DLT_ARCNET:
   6076                 case DLT_ARCNET_LINUX:
   6077                     return gen_ahostop(abroadcast, Q_DST);
   6078                 case DLT_EN10MB:
   6079                     return gen_ehostop(ebroadcast, Q_DST);
   6080                 case DLT_FDDI:
   6081                     return gen_fhostop(ebroadcast, Q_DST);
   6082                 case DLT_IEEE802:
   6083                     return gen_thostop(ebroadcast, Q_DST);
   6084                 case DLT_IEEE802_11:
   6085                 case DLT_IEEE802_11_RADIO_AVS:
   6086                 case DLT_IEEE802_11_RADIO:
   6087 				case DLT_PPI:
   6088                 case DLT_PRISM_HEADER:
   6089                     return gen_wlanhostop(ebroadcast, Q_DST);
   6090                 case DLT_IP_OVER_FC:
   6091                     return gen_ipfchostop(ebroadcast, Q_DST);
   6092                 case DLT_SUNATM:
   6093                     if (is_lane) {
   6094 			/*
   6095 			 * Check that the packet doesn't begin with an
   6096 			 * LE Control marker.  (We've already generated
   6097 			 * a test for LANE.)
   6098 			 */
   6099 			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
   6100 			    0xFF00);
   6101 			gen_not(b1);
   6102 
   6103 			/*
   6104 			 * Now check the MAC address.
   6105 			 */
   6106 			b0 = gen_ehostop(ebroadcast, Q_DST);
   6107 			gen_and(b1, b0);
   6108 			return b0;
   6109                     }
   6110                     break;
   6111                 default:
   6112                     bpf_error("not a broadcast link");
   6113                 }
   6114 		break;
   6115 
   6116 	case Q_IP:
   6117 		b0 = gen_linktype(ETHERTYPE_IP);
   6118 		hostmask = ~netmask;
   6119 		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
   6120 		b2 = gen_mcmp(OR_NET, 16, BPF_W,
   6121 			      (bpf_int32)(~0 & hostmask), hostmask);
   6122 		gen_or(b1, b2);
   6123 		gen_and(b0, b2);
   6124 		return b2;
   6125 	}
   6126 	bpf_error("only link-layer/IP broadcast filters supported");
   6127 	/* NOTREACHED */
   6128 	return NULL;
   6129 }
   6130 
   6131 /*
   6132  * Generate code to test the low-order bit of a MAC address (that's
   6133  * the bottom bit of the *first* byte).
   6134  */
   6135 static struct block *
   6136 gen_mac_multicast(offset)
   6137 	int offset;
   6138 {
   6139 	register struct block *b0;
   6140 	register struct slist *s;
   6141 
   6142 	/* link[offset] & 1 != 0 */
   6143 	s = gen_load_a(OR_LINK, offset, BPF_B);
   6144 	b0 = new_block(JMP(BPF_JSET));
   6145 	b0->s.k = 1;
   6146 	b0->stmts = s;
   6147 	return b0;
   6148 }
   6149 
   6150 struct block *
   6151 gen_multicast(proto)
   6152 	int proto;
   6153 {
   6154 	register struct block *b0, *b1, *b2;
   6155 	register struct slist *s;
   6156 
   6157 	switch (proto) {
   6158 
   6159 	case Q_DEFAULT:
   6160 	case Q_LINK:
   6161                 switch (linktype) {
   6162                 case DLT_ARCNET:
   6163                 case DLT_ARCNET_LINUX:
   6164                     /* all ARCnet multicasts use the same address */
   6165                     return gen_ahostop(abroadcast, Q_DST);
   6166                 case  DLT_EN10MB:
   6167                     /* ether[0] & 1 != 0 */
   6168                     return gen_mac_multicast(0);
   6169                 case DLT_FDDI:
   6170                     /*
   6171                      * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
   6172                      *
   6173                      * XXX - was that referring to bit-order issues?
   6174                      */
   6175                     /* fddi[1] & 1 != 0 */
   6176                     return gen_mac_multicast(1);
   6177                 case DLT_IEEE802:
   6178                     /* tr[2] & 1 != 0 */
   6179                     return gen_mac_multicast(2);
   6180                 case DLT_IEEE802_11:
   6181                 case DLT_IEEE802_11_RADIO_AVS:
   6182 				case DLT_PPI:
   6183                 case DLT_IEEE802_11_RADIO:
   6184                 case DLT_PRISM_HEADER:
   6185                     /*
   6186                      * Oh, yuk.
   6187                      *
   6188                      *	For control frames, there is no DA.
   6189                      *
   6190                      *	For management frames, DA is at an
   6191                      *	offset of 4 from the beginning of
   6192                      *	the packet.
   6193                      *
   6194                      *	For data frames, DA is at an offset
   6195                      *	of 4 from the beginning of the packet
   6196                      *	if To DS is clear and at an offset of
   6197                      *	16 from the beginning of the packet
   6198                      *	if To DS is set.
   6199                      */
   6200 
   6201                     /*
   6202                      * Generate the tests to be done for data frames.
   6203                      *
   6204                      * First, check for To DS set, i.e. "link[1] & 0x01".
   6205                      */
   6206                     s = gen_load_a(OR_LINK, 1, BPF_B);
   6207                     b1 = new_block(JMP(BPF_JSET));
   6208                     b1->s.k = 0x01;	/* To DS */
   6209                     b1->stmts = s;
   6210 
   6211                     /*
   6212                      * If To DS is set, the DA is at 16.
   6213                      */
   6214                     b0 = gen_mac_multicast(16);
   6215                     gen_and(b1, b0);
   6216 
   6217                     /*
   6218                      * Now, check for To DS not set, i.e. check
   6219                      * "!(link[1] & 0x01)".
   6220                      */
   6221                     s = gen_load_a(OR_LINK, 1, BPF_B);
   6222                     b2 = new_block(JMP(BPF_JSET));
   6223                     b2->s.k = 0x01;	/* To DS */
   6224                     b2->stmts = s;
   6225                     gen_not(b2);
   6226 
   6227                     /*
   6228                      * If To DS is not set, the DA is at 4.
   6229                      */
   6230                     b1 = gen_mac_multicast(4);
   6231                     gen_and(b2, b1);
   6232 
   6233                     /*
   6234                      * Now OR together the last two checks.  That gives
   6235                      * the complete set of checks for data frames.
   6236                      */
   6237                     gen_or(b1, b0);
   6238 
   6239                     /*
   6240                      * Now check for a data frame.
   6241                      * I.e, check "link[0] & 0x08".
   6242                      */
   6243                     s = gen_load_a(OR_LINK, 0, BPF_B);
   6244                     b1 = new_block(JMP(BPF_JSET));
   6245                     b1->s.k = 0x08;
   6246                     b1->stmts = s;
   6247 
   6248                     /*
   6249                      * AND that with the checks done for data frames.
   6250                      */
   6251                     gen_and(b1, b0);
   6252 
   6253                     /*
   6254                      * If the high-order bit of the type value is 0, this
   6255                      * is a management frame.
   6256                      * I.e, check "!(link[0] & 0x08)".
   6257                      */
   6258                     s = gen_load_a(OR_LINK, 0, BPF_B);
   6259                     b2 = new_block(JMP(BPF_JSET));
   6260                     b2->s.k = 0x08;
   6261                     b2->stmts = s;
   6262                     gen_not(b2);
   6263 
   6264                     /*
   6265                      * For management frames, the DA is at 4.
   6266                      */
   6267                     b1 = gen_mac_multicast(4);
   6268                     gen_and(b2, b1);
   6269 
   6270                     /*
   6271                      * OR that with the checks done for data frames.
   6272                      * That gives the checks done for management and
   6273                      * data frames.
   6274                      */
   6275                     gen_or(b1, b0);
   6276 
   6277                     /*
   6278                      * If the low-order bit of the type value is 1,
   6279                      * this is either a control frame or a frame
   6280                      * with a reserved type, and thus not a
   6281                      * frame with an SA.
   6282                      *
   6283                      * I.e., check "!(link[0] & 0x04)".
   6284                      */
   6285                     s = gen_load_a(OR_LINK, 0, BPF_B);
   6286                     b1 = new_block(JMP(BPF_JSET));
   6287                     b1->s.k = 0x04;
   6288                     b1->stmts = s;
   6289                     gen_not(b1);
   6290 
   6291                     /*
   6292                      * AND that with the checks for data and management
   6293                      * frames.
   6294                      */
   6295                     gen_and(b1, b0);
   6296                     return b0;
   6297                 case DLT_IP_OVER_FC:
   6298                     b0 = gen_mac_multicast(2);
   6299                     return b0;
   6300                 case DLT_SUNATM:
   6301                     if (is_lane) {
   6302 			/*
   6303 			 * Check that the packet doesn't begin with an
   6304 			 * LE Control marker.  (We've already generated
   6305 			 * a test for LANE.)
   6306 			 */
   6307 			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
   6308 			    0xFF00);
   6309 			gen_not(b1);
   6310 
   6311 			/* ether[off_mac] & 1 != 0 */
   6312 			b0 = gen_mac_multicast(off_mac);
   6313 			gen_and(b1, b0);
   6314 			return b0;
   6315                     }
   6316                     break;
   6317                 default:
   6318                     break;
   6319                 }
   6320                 /* Link not known to support multicasts */
   6321                 break;
   6322 
   6323 	case Q_IP:
   6324 		b0 = gen_linktype(ETHERTYPE_IP);
   6325 		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
   6326 		gen_and(b0, b1);
   6327 		return b1;
   6328 
   6329 #ifdef INET6
   6330 	case Q_IPV6:
   6331 		b0 = gen_linktype(ETHERTYPE_IPV6);
   6332 		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
   6333 		gen_and(b0, b1);
   6334 		return b1;
   6335 #endif /* INET6 */
   6336 	}
   6337 	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
   6338 	/* NOTREACHED */
   6339 	return NULL;
   6340 }
   6341 
   6342 /*
   6343  * generate command for inbound/outbound.  It's here so we can
   6344  * make it link-type specific.  'dir' = 0 implies "inbound",
   6345  * = 1 implies "outbound".
   6346  */
   6347 struct block *
   6348 gen_inbound(dir)
   6349 	int dir;
   6350 {
   6351 	register struct block *b0;
   6352 
   6353 	/*
   6354 	 * Only some data link types support inbound/outbound qualifiers.
   6355 	 */
   6356 	switch (linktype) {
   6357 	case DLT_SLIP:
   6358 		b0 = gen_relation(BPF_JEQ,
   6359 			  gen_load(Q_LINK, gen_loadi(0), 1),
   6360 			  gen_loadi(0),
   6361 			  dir);
   6362 		break;
   6363 
   6364 	case DLT_LINUX_SLL:
   6365 		if (dir) {
   6366 			/*
   6367 			 * Match packets sent by this machine.
   6368 			 */
   6369 			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
   6370 		} else {
   6371 			/*
   6372 			 * Match packets sent to this machine.
   6373 			 * (No broadcast or multicast packets, or
   6374 			 * packets sent to some other machine and
   6375 			 * received promiscuously.)
   6376 			 *
   6377 			 * XXX - packets sent to other machines probably
   6378 			 * shouldn't be matched, but what about broadcast
   6379 			 * or multicast packets we received?
   6380 			 */
   6381 			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_HOST);
   6382 		}
   6383 		break;
   6384 
   6385 #ifdef HAVE_NET_PFVAR_H
   6386 	case DLT_PFLOG:
   6387 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
   6388 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
   6389 		break;
   6390 #endif
   6391 
   6392 	case DLT_PPP_PPPD:
   6393 		if (dir) {
   6394 			/* match outgoing packets */
   6395 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
   6396 		} else {
   6397 			/* match incoming packets */
   6398 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
   6399 		}
   6400 		break;
   6401 
   6402         case DLT_JUNIPER_MFR:
   6403         case DLT_JUNIPER_MLFR:
   6404         case DLT_JUNIPER_MLPPP:
   6405 	case DLT_JUNIPER_ATM1:
   6406 	case DLT_JUNIPER_ATM2:
   6407 	case DLT_JUNIPER_PPPOE:
   6408 	case DLT_JUNIPER_PPPOE_ATM:
   6409         case DLT_JUNIPER_GGSN:
   6410         case DLT_JUNIPER_ES:
   6411         case DLT_JUNIPER_MONITOR:
   6412         case DLT_JUNIPER_SERVICES:
   6413         case DLT_JUNIPER_ETHER:
   6414         case DLT_JUNIPER_PPP:
   6415         case DLT_JUNIPER_FRELAY:
   6416         case DLT_JUNIPER_CHDLC:
   6417         case DLT_JUNIPER_VP:
   6418 		/* juniper flags (including direction) are stored
   6419 		 * the byte after the 3-byte magic number */
   6420 		if (dir) {
   6421 			/* match outgoing packets */
   6422 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
   6423 		} else {
   6424 			/* match incoming packets */
   6425 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
   6426 		}
   6427 	    break;
   6428 
   6429 	default:
   6430 		bpf_error("inbound/outbound not supported on linktype %d",
   6431 		    linktype);
   6432 		b0 = NULL;
   6433 		/* NOTREACHED */
   6434 	}
   6435 	return (b0);
   6436 }
   6437 
   6438 #ifdef HAVE_NET_PFVAR_H
   6439 /* PF firewall log matched interface */
   6440 struct block *
   6441 gen_pf_ifname(const char *ifname)
   6442 {
   6443 	struct block *b0;
   6444 	u_int len, off;
   6445 
   6446 	if (linktype == DLT_PFLOG) {
   6447 		len = sizeof(((struct pfloghdr *)0)->ifname);
   6448 		off = offsetof(struct pfloghdr, ifname);
   6449 	} else {
   6450 		bpf_error("ifname not supported on linktype 0x%x", linktype);
   6451 		/* NOTREACHED */
   6452 	}
   6453 	if (strlen(ifname) >= len) {
   6454 		bpf_error("ifname interface names can only be %d characters",
   6455 		    len-1);
   6456 		/* NOTREACHED */
   6457 	}
   6458 	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
   6459 	return (b0);
   6460 }
   6461 
   6462 /* PF firewall log ruleset name */
   6463 struct block *
   6464 gen_pf_ruleset(char *ruleset)
   6465 {
   6466 	struct block *b0;
   6467 
   6468 	if (linktype != DLT_PFLOG) {
   6469 		bpf_error("ruleset not supported on linktype 0x%x", linktype);
   6470 		/* NOTREACHED */
   6471 	}
   6472 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
   6473 		bpf_error("ruleset names can only be %ld characters",
   6474 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
   6475 		/* NOTREACHED */
   6476 	}
   6477 	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
   6478 	    strlen(ruleset), (const u_char *)ruleset);
   6479 	return (b0);
   6480 }
   6481 
   6482 /* PF firewall log rule number */
   6483 struct block *
   6484 gen_pf_rnr(int rnr)
   6485 {
   6486 	struct block *b0;
   6487 
   6488 	if (linktype == DLT_PFLOG) {
   6489 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
   6490 			 (bpf_int32)rnr);
   6491 	} else {
   6492 		bpf_error("rnr not supported on linktype 0x%x", linktype);
   6493 		/* NOTREACHED */
   6494 	}
   6495 
   6496 	return (b0);
   6497 }
   6498 
   6499 /* PF firewall log sub-rule number */
   6500 struct block *
   6501 gen_pf_srnr(int srnr)
   6502 {
   6503 	struct block *b0;
   6504 
   6505 	if (linktype != DLT_PFLOG) {
   6506 		bpf_error("srnr not supported on linktype 0x%x", linktype);
   6507 		/* NOTREACHED */
   6508 	}
   6509 
   6510 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
   6511 	    (bpf_int32)srnr);
   6512 	return (b0);
   6513 }
   6514 
   6515 /* PF firewall log reason code */
   6516 struct block *
   6517 gen_pf_reason(int reason)
   6518 {
   6519 	struct block *b0;
   6520 
   6521 	if (linktype == DLT_PFLOG) {
   6522 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
   6523 		    (bpf_int32)reason);
   6524 	} else {
   6525 		bpf_error("reason not supported on linktype 0x%x", linktype);
   6526 		/* NOTREACHED */
   6527 	}
   6528 
   6529 	return (b0);
   6530 }
   6531 
   6532 /* PF firewall log action */
   6533 struct block *
   6534 gen_pf_action(int action)
   6535 {
   6536 	struct block *b0;
   6537 
   6538 	if (linktype == DLT_PFLOG) {
   6539 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
   6540 		    (bpf_int32)action);
   6541 	} else {
   6542 		bpf_error("action not supported on linktype 0x%x", linktype);
   6543 		/* NOTREACHED */
   6544 	}
   6545 
   6546 	return (b0);
   6547 }
   6548 #else /* !HAVE_NET_PFVAR_H */
   6549 struct block *
   6550 gen_pf_ifname(const char *ifname)
   6551 {
   6552 	bpf_error("libpcap was compiled without pf support");
   6553 	/* NOTREACHED */
   6554 	return (NULL);
   6555 }
   6556 
   6557 struct block *
   6558 gen_pf_ruleset(char *ruleset)
   6559 {
   6560 	bpf_error("libpcap was compiled on a machine without pf support");
   6561 	/* NOTREACHED */
   6562 	return (NULL);
   6563 }
   6564 
   6565 struct block *
   6566 gen_pf_rnr(int rnr)
   6567 {
   6568 	bpf_error("libpcap was compiled on a machine without pf support");
   6569 	/* NOTREACHED */
   6570 	return (NULL);
   6571 }
   6572 
   6573 struct block *
   6574 gen_pf_srnr(int srnr)
   6575 {
   6576 	bpf_error("libpcap was compiled on a machine without pf support");
   6577 	/* NOTREACHED */
   6578 	return (NULL);
   6579 }
   6580 
   6581 struct block *
   6582 gen_pf_reason(int reason)
   6583 {
   6584 	bpf_error("libpcap was compiled on a machine without pf support");
   6585 	/* NOTREACHED */
   6586 	return (NULL);
   6587 }
   6588 
   6589 struct block *
   6590 gen_pf_action(int action)
   6591 {
   6592 	bpf_error("libpcap was compiled on a machine without pf support");
   6593 	/* NOTREACHED */
   6594 	return (NULL);
   6595 }
   6596 #endif /* HAVE_NET_PFVAR_H */
   6597 
   6598 struct block *
   6599 gen_acode(eaddr, q)
   6600 	register const u_char *eaddr;
   6601 	struct qual q;
   6602 {
   6603 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
   6604 		if (linktype == DLT_ARCNET || linktype == DLT_ARCNET_LINUX)
   6605 			return gen_ahostop(eaddr, (int)q.dir);
   6606 	}
   6607 	bpf_error("ARCnet address used in non-arc expression");
   6608 	/* NOTREACHED */
   6609 	return NULL;
   6610 }
   6611 
   6612 static struct block *
   6613 gen_ahostop(eaddr, dir)
   6614 	register const u_char *eaddr;
   6615 	register int dir;
   6616 {
   6617 	register struct block *b0, *b1;
   6618 
   6619 	switch (dir) {
   6620 	/* src comes first, different from Ethernet */
   6621 	case Q_SRC:
   6622 		return gen_bcmp(OR_LINK, 0, 1, eaddr);
   6623 
   6624 	case Q_DST:
   6625 		return gen_bcmp(OR_LINK, 1, 1, eaddr);
   6626 
   6627 	case Q_AND:
   6628 		b0 = gen_ahostop(eaddr, Q_SRC);
   6629 		b1 = gen_ahostop(eaddr, Q_DST);
   6630 		gen_and(b0, b1);
   6631 		return b1;
   6632 
   6633 	case Q_DEFAULT:
   6634 	case Q_OR:
   6635 		b0 = gen_ahostop(eaddr, Q_SRC);
   6636 		b1 = gen_ahostop(eaddr, Q_DST);
   6637 		gen_or(b0, b1);
   6638 		return b1;
   6639 	}
   6640 	abort();
   6641 	/* NOTREACHED */
   6642 }
   6643 
   6644 /*
   6645  * support IEEE 802.1Q VLAN trunk over ethernet
   6646  */
   6647 struct block *
   6648 gen_vlan(vlan_num)
   6649 	int vlan_num;
   6650 {
   6651 	struct	block	*b0, *b1;
   6652 
   6653 	/* can't check for VLAN-encapsulated packets inside MPLS */
   6654 	if (label_stack_depth > 0)
   6655 		bpf_error("no VLAN match after MPLS");
   6656 
   6657 	/*
   6658 	 * Change the offsets to point to the type and data fields within
   6659 	 * the VLAN packet.  Just increment the offsets, so that we
   6660 	 * can support a hierarchy, e.g. "vlan 300 && vlan 200" to
   6661 	 * capture VLAN 200 encapsulated within VLAN 100.
   6662 	 *
   6663 	 * XXX - this is a bit of a kludge.  If we were to split the
   6664 	 * compiler into a parser that parses an expression and
   6665 	 * generates an expression tree, and a code generator that
   6666 	 * takes an expression tree (which could come from our
   6667 	 * parser or from some other parser) and generates BPF code,
   6668 	 * we could perhaps make the offsets parameters of routines
   6669 	 * and, in the handler for an "AND" node, pass to subnodes
   6670 	 * other than the VLAN node the adjusted offsets.
   6671 	 *
   6672 	 * This would mean that "vlan" would, instead of changing the
   6673 	 * behavior of *all* tests after it, change only the behavior
   6674 	 * of tests ANDed with it.  That would change the documented
   6675 	 * semantics of "vlan", which might break some expressions.
   6676 	 * However, it would mean that "(vlan and ip) or ip" would check
   6677 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
   6678 	 * checking only for VLAN-encapsulated IP, so that could still
   6679 	 * be considered worth doing; it wouldn't break expressions
   6680 	 * that are of the form "vlan and ..." or "vlan N and ...",
   6681 	 * which I suspect are the most common expressions involving
   6682 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
   6683 	 * would really want, now, as all the "or ..." tests would
   6684 	 * be done assuming a VLAN, even though the "or" could be viewed
   6685 	 * as meaning "or, if this isn't a VLAN packet...".
   6686 	 */
   6687 	orig_linktype = off_linktype;	/* save original values */
   6688 	orig_nl = off_nl;
   6689 
   6690 	switch (linktype) {
   6691 
   6692 	case DLT_EN10MB:
   6693 		off_linktype += 4;
   6694 		off_nl_nosnap += 4;
   6695 		off_nl += 4;
   6696 		break;
   6697 
   6698 	default:
   6699 		bpf_error("no VLAN support for data link type %d",
   6700 		      linktype);
   6701 		/*NOTREACHED*/
   6702 	}
   6703 
   6704 	/* check for VLAN */
   6705 	b0 = gen_cmp(OR_LINK, orig_linktype, BPF_H, (bpf_int32)ETHERTYPE_8021Q);
   6706 
   6707 	/* If a specific VLAN is requested, check VLAN id */
   6708 	if (vlan_num >= 0) {
   6709 		b1 = gen_mcmp(OR_LINK, orig_nl, BPF_H, (bpf_int32)vlan_num,
   6710 		    0x0fff);
   6711 		gen_and(b0, b1);
   6712 		b0 = b1;
   6713 	}
   6714 
   6715 	return (b0);
   6716 }
   6717 
   6718 /*
   6719  * support for MPLS
   6720  */
   6721 struct block *
   6722 gen_mpls(label_num)
   6723 	int label_num;
   6724 {
   6725 	struct	block	*b0,*b1;
   6726 
   6727 	/*
   6728 	 * Change the offsets to point to the type and data fields within
   6729 	 * the MPLS packet.  Just increment the offsets, so that we
   6730 	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
   6731 	 * capture packets with an outer label of 100000 and an inner
   6732 	 * label of 1024.
   6733 	 *
   6734 	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
   6735 	 */
   6736         orig_nl = off_nl;
   6737 
   6738         if (label_stack_depth > 0) {
   6739             /* just match the bottom-of-stack bit clear */
   6740             b0 = gen_mcmp(OR_LINK, orig_nl-2, BPF_B, 0, 0x01);
   6741         } else {
   6742             /*
   6743              * Indicate that we're checking MPLS-encapsulated headers,
   6744              * to make sure higher level code generators don't try to
   6745              * match against IP-related protocols such as Q_ARP, Q_RARP
   6746              * etc.
   6747              */
   6748             switch (linktype) {
   6749 
   6750             case DLT_C_HDLC: /* fall through */
   6751             case DLT_EN10MB:
   6752                     b0 = gen_linktype(ETHERTYPE_MPLS);
   6753                     break;
   6754 
   6755             case DLT_PPP:
   6756                     b0 = gen_linktype(PPP_MPLS_UCAST);
   6757                     break;
   6758 
   6759                     /* FIXME add other DLT_s ...
   6760                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
   6761                      * leave it for now */
   6762 
   6763             default:
   6764                     bpf_error("no MPLS support for data link type %d",
   6765                           linktype);
   6766                     b0 = NULL;
   6767                     /*NOTREACHED*/
   6768                     break;
   6769             }
   6770         }
   6771 
   6772 	/* If a specific MPLS label is requested, check it */
   6773 	if (label_num >= 0) {
   6774 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
   6775 		b1 = gen_mcmp(OR_LINK, orig_nl, BPF_W, (bpf_int32)label_num,
   6776 		    0xfffff000); /* only compare the first 20 bits */
   6777 		gen_and(b0, b1);
   6778 		b0 = b1;
   6779 	}
   6780 
   6781         off_nl_nosnap += 4;
   6782         off_nl += 4;
   6783         label_stack_depth++;
   6784 	return (b0);
   6785 }
   6786 
   6787 /*
   6788  * Support PPPOE discovery and session.
   6789  */
   6790 struct block *
   6791 gen_pppoed()
   6792 {
   6793 	/* check for PPPoE discovery */
   6794 	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
   6795 }
   6796 
   6797 struct block *
   6798 gen_pppoes()
   6799 {
   6800 	struct block *b0;
   6801 
   6802 	/*
   6803 	 * Test against the PPPoE session link-layer type.
   6804 	 */
   6805 	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
   6806 
   6807 	/*
   6808 	 * Change the offsets to point to the type and data fields within
   6809 	 * the PPP packet.
   6810 	 *
   6811 	 * XXX - this is a bit of a kludge.  If we were to split the
   6812 	 * compiler into a parser that parses an expression and
   6813 	 * generates an expression tree, and a code generator that
   6814 	 * takes an expression tree (which could come from our
   6815 	 * parser or from some other parser) and generates BPF code,
   6816 	 * we could perhaps make the offsets parameters of routines
   6817 	 * and, in the handler for an "AND" node, pass to subnodes
   6818 	 * other than the PPPoE node the adjusted offsets.
   6819 	 *
   6820 	 * This would mean that "pppoes" would, instead of changing the
   6821 	 * behavior of *all* tests after it, change only the behavior
   6822 	 * of tests ANDed with it.  That would change the documented
   6823 	 * semantics of "pppoes", which might break some expressions.
   6824 	 * However, it would mean that "(pppoes and ip) or ip" would check
   6825 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
   6826 	 * checking only for VLAN-encapsulated IP, so that could still
   6827 	 * be considered worth doing; it wouldn't break expressions
   6828 	 * that are of the form "pppoes and ..." which I suspect are the
   6829 	 * most common expressions involving "pppoes".  "pppoes or ..."
   6830 	 * doesn't necessarily do what the user would really want, now,
   6831 	 * as all the "or ..." tests would be done assuming PPPoE, even
   6832 	 * though the "or" could be viewed as meaning "or, if this isn't
   6833 	 * a PPPoE packet...".
   6834 	 */
   6835 	orig_linktype = off_linktype;	/* save original values */
   6836 	orig_nl = off_nl;
   6837 
   6838 	/*
   6839 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
   6840 	 * PPPoE header, followed by PPP payload, so we set the
   6841 	 * offsets to the network layer offset plus 6 bytes for
   6842 	 * the PPPoE header plus the values appropriate for PPP when
   6843 	 * encapsulated in Ethernet (which means there's no HDLC
   6844 	 * encapsulation).
   6845 	 */
   6846 	off_linktype = orig_nl + 6;
   6847 	off_nl = orig_nl + 6 + 2;
   6848 	off_nl_nosnap = orig_nl + 6 + 2;
   6849 
   6850 	/*
   6851 	 * Set the link-layer type to PPP, as all subsequent tests will
   6852 	 * be on the encapsulated PPP header.
   6853 	 */
   6854 	linktype = DLT_PPP;
   6855 
   6856 	return b0;
   6857 }
   6858 
   6859 struct block *
   6860 gen_atmfield_code(atmfield, jvalue, jtype, reverse)
   6861 	int atmfield;
   6862 	bpf_int32 jvalue;
   6863 	bpf_u_int32 jtype;
   6864 	int reverse;
   6865 {
   6866 	struct block *b0;
   6867 
   6868 	switch (atmfield) {
   6869 
   6870 	case A_VPI:
   6871 		if (!is_atm)
   6872 			bpf_error("'vpi' supported only on raw ATM");
   6873 		if (off_vpi == (u_int)-1)
   6874 			abort();
   6875 		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
   6876 		    reverse, jvalue);
   6877 		break;
   6878 
   6879 	case A_VCI:
   6880 		if (!is_atm)
   6881 			bpf_error("'vci' supported only on raw ATM");
   6882 		if (off_vci == (u_int)-1)
   6883 			abort();
   6884 		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
   6885 		    reverse, jvalue);
   6886 		break;
   6887 
   6888 	case A_PROTOTYPE:
   6889 		if (off_proto == (u_int)-1)
   6890 			abort();	/* XXX - this isn't on FreeBSD */
   6891 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
   6892 		    reverse, jvalue);
   6893 		break;
   6894 
   6895 	case A_MSGTYPE:
   6896 		if (off_payload == (u_int)-1)
   6897 			abort();
   6898 		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
   6899 		    0xffffffff, jtype, reverse, jvalue);
   6900 		break;
   6901 
   6902 	case A_CALLREFTYPE:
   6903 		if (!is_atm)
   6904 			bpf_error("'callref' supported only on raw ATM");
   6905 		if (off_proto == (u_int)-1)
   6906 			abort();
   6907 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
   6908 		    jtype, reverse, jvalue);
   6909 		break;
   6910 
   6911 	default:
   6912 		abort();
   6913 	}
   6914 	return b0;
   6915 }
   6916 
   6917 struct block *
   6918 gen_atmtype_abbrev(type)
   6919 	int type;
   6920 {
   6921 	struct block *b0, *b1;
   6922 
   6923 	switch (type) {
   6924 
   6925 	case A_METAC:
   6926 		/* Get all packets in Meta signalling Circuit */
   6927 		if (!is_atm)
   6928 			bpf_error("'metac' supported only on raw ATM");
   6929 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
   6930 		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
   6931 		gen_and(b0, b1);
   6932 		break;
   6933 
   6934 	case A_BCC:
   6935 		/* Get all packets in Broadcast Circuit*/
   6936 		if (!is_atm)
   6937 			bpf_error("'bcc' supported only on raw ATM");
   6938 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
   6939 		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
   6940 		gen_and(b0, b1);
   6941 		break;
   6942 
   6943 	case A_OAMF4SC:
   6944 		/* Get all cells in Segment OAM F4 circuit*/
   6945 		if (!is_atm)
   6946 			bpf_error("'oam4sc' supported only on raw ATM");
   6947 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
   6948 		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
   6949 		gen_and(b0, b1);
   6950 		break;
   6951 
   6952 	case A_OAMF4EC:
   6953 		/* Get all cells in End-to-End OAM F4 Circuit*/
   6954 		if (!is_atm)
   6955 			bpf_error("'oam4ec' supported only on raw ATM");
   6956 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
   6957 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
   6958 		gen_and(b0, b1);
   6959 		break;
   6960 
   6961 	case A_SC:
   6962 		/*  Get all packets in connection Signalling Circuit */
   6963 		if (!is_atm)
   6964 			bpf_error("'sc' supported only on raw ATM");
   6965 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
   6966 		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
   6967 		gen_and(b0, b1);
   6968 		break;
   6969 
   6970 	case A_ILMIC:
   6971 		/* Get all packets in ILMI Circuit */
   6972 		if (!is_atm)
   6973 			bpf_error("'ilmic' supported only on raw ATM");
   6974 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
   6975 		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
   6976 		gen_and(b0, b1);
   6977 		break;
   6978 
   6979 	case A_LANE:
   6980 		/* Get all LANE packets */
   6981 		if (!is_atm)
   6982 			bpf_error("'lane' supported only on raw ATM");
   6983 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
   6984 
   6985 		/*
   6986 		 * Arrange that all subsequent tests assume LANE
   6987 		 * rather than LLC-encapsulated packets, and set
   6988 		 * the offsets appropriately for LANE-encapsulated
   6989 		 * Ethernet.
   6990 		 *
   6991 		 * "off_mac" is the offset of the Ethernet header,
   6992 		 * which is 2 bytes past the ATM pseudo-header
   6993 		 * (skipping the pseudo-header and 2-byte LE Client
   6994 		 * field).  The other offsets are Ethernet offsets
   6995 		 * relative to "off_mac".
   6996 		 */
   6997 		is_lane = 1;
   6998 		off_mac = off_payload + 2;	/* MAC header */
   6999 		off_linktype = off_mac + 12;
   7000 		off_nl = off_mac + 14;		/* Ethernet II */
   7001 		off_nl_nosnap = off_mac + 17;	/* 802.3+802.2 */
   7002 		break;
   7003 
   7004 	case A_LLC:
   7005 		/* Get all LLC-encapsulated packets */
   7006 		if (!is_atm)
   7007 			bpf_error("'llc' supported only on raw ATM");
   7008 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
   7009 		is_lane = 0;
   7010 		break;
   7011 
   7012 	default:
   7013 		abort();
   7014 	}
   7015 	return b1;
   7016 }
   7017 
   7018 /*
   7019  * Filtering for MTP2 messages based on li value
   7020  * FISU, length is null
   7021  * LSSU, length is 1 or 2
   7022  * MSU, length is 3 or more
   7023  */
   7024 struct block *
   7025 gen_mtp2type_abbrev(type)
   7026 	int type;
   7027 {
   7028 	struct block *b0, *b1;
   7029 
   7030 	switch (type) {
   7031 
   7032 	case M_FISU:
   7033 		if ( (linktype != DLT_MTP2) &&
   7034 		     (linktype != DLT_MTP2_WITH_PHDR) )
   7035 			bpf_error("'fisu' supported only on MTP2");
   7036 		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
   7037 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
   7038 		break;
   7039 
   7040 	case M_LSSU:
   7041 		if ( (linktype != DLT_MTP2) &&
   7042 		     (linktype != DLT_MTP2_WITH_PHDR) )
   7043 			bpf_error("'lssu' supported only on MTP2");
   7044 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
   7045 		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
   7046 		gen_and(b1, b0);
   7047 		break;
   7048 
   7049 	case M_MSU:
   7050 		if ( (linktype != DLT_MTP2) &&
   7051 		     (linktype != DLT_MTP2_WITH_PHDR) )
   7052 			bpf_error("'msu' supported only on MTP2");
   7053 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
   7054 		break;
   7055 
   7056 	default:
   7057 		abort();
   7058 	}
   7059 	return b0;
   7060 }
   7061 
   7062 struct block *
   7063 gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
   7064 	int mtp3field;
   7065 	bpf_u_int32 jvalue;
   7066 	bpf_u_int32 jtype;
   7067 	int reverse;
   7068 {
   7069 	struct block *b0;
   7070 	bpf_u_int32 val1 , val2 , val3;
   7071 
   7072 	switch (mtp3field) {
   7073 
   7074 	case M_SIO:
   7075 		if (off_sio == (u_int)-1)
   7076 			bpf_error("'sio' supported only on SS7");
   7077 		/* sio coded on 1 byte so max value 255 */
   7078 		if(jvalue > 255)
   7079 		        bpf_error("sio value %u too big; max value = 255",
   7080 		            jvalue);
   7081 		b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
   7082 		    (u_int)jtype, reverse, (u_int)jvalue);
   7083 		break;
   7084 
   7085         case M_OPC:
   7086 	        if (off_opc == (u_int)-1)
   7087 			bpf_error("'opc' supported only on SS7");
   7088 		/* opc coded on 14 bits so max value 16383 */
   7089 		if (jvalue > 16383)
   7090 		        bpf_error("opc value %u too big; max value = 16383",
   7091 		            jvalue);
   7092 		/* the following instructions are made to convert jvalue
   7093 		 * to the form used to write opc in an ss7 message*/
   7094 		val1 = jvalue & 0x00003c00;
   7095 		val1 = val1 >>10;
   7096 		val2 = jvalue & 0x000003fc;
   7097 		val2 = val2 <<6;
   7098 		val3 = jvalue & 0x00000003;
   7099 		val3 = val3 <<22;
   7100 		jvalue = val1 + val2 + val3;
   7101 		b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
   7102 		    (u_int)jtype, reverse, (u_int)jvalue);
   7103 		break;
   7104 
   7105 	case M_DPC:
   7106 	        if (off_dpc == (u_int)-1)
   7107 			bpf_error("'dpc' supported only on SS7");
   7108 		/* dpc coded on 14 bits so max value 16383 */
   7109 		if (jvalue > 16383)
   7110 		        bpf_error("dpc value %u too big; max value = 16383",
   7111 		            jvalue);
   7112 		/* the following instructions are made to convert jvalue
   7113 		 * to the forme used to write dpc in an ss7 message*/
   7114 		val1 = jvalue & 0x000000ff;
   7115 		val1 = val1 << 24;
   7116 		val2 = jvalue & 0x00003f00;
   7117 		val2 = val2 << 8;
   7118 		jvalue = val1 + val2;
   7119 		b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
   7120 		    (u_int)jtype, reverse, (u_int)jvalue);
   7121 		break;
   7122 
   7123 	case M_SLS:
   7124 	        if (off_sls == (u_int)-1)
   7125 			bpf_error("'sls' supported only on SS7");
   7126 		/* sls coded on 4 bits so max value 15 */
   7127 		if (jvalue > 15)
   7128 		         bpf_error("sls value %u too big; max value = 15",
   7129 		             jvalue);
   7130 		/* the following instruction is made to convert jvalue
   7131 		 * to the forme used to write sls in an ss7 message*/
   7132 		jvalue = jvalue << 4;
   7133 		b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
   7134 		    (u_int)jtype,reverse, (u_int)jvalue);
   7135 		break;
   7136 
   7137 	default:
   7138 		abort();
   7139 	}
   7140 	return b0;
   7141 }
   7142 
   7143 static struct block *
   7144 gen_msg_abbrev(type)
   7145 	int type;
   7146 {
   7147 	struct block *b1;
   7148 
   7149 	/*
   7150 	 * Q.2931 signalling protocol messages for handling virtual circuits
   7151 	 * establishment and teardown
   7152 	 */
   7153 	switch (type) {
   7154 
   7155 	case A_SETUP:
   7156 		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
   7157 		break;
   7158 
   7159 	case A_CALLPROCEED:
   7160 		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
   7161 		break;
   7162 
   7163 	case A_CONNECT:
   7164 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
   7165 		break;
   7166 
   7167 	case A_CONNECTACK:
   7168 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
   7169 		break;
   7170 
   7171 	case A_RELEASE:
   7172 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
   7173 		break;
   7174 
   7175 	case A_RELEASE_DONE:
   7176 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
   7177 		break;
   7178 
   7179 	default:
   7180 		abort();
   7181 	}
   7182 	return b1;
   7183 }
   7184 
   7185 struct block *
   7186 gen_atmmulti_abbrev(type)
   7187 	int type;
   7188 {
   7189 	struct block *b0, *b1;
   7190 
   7191 	switch (type) {
   7192 
   7193 	case A_OAM:
   7194 		if (!is_atm)
   7195 			bpf_error("'oam' supported only on raw ATM");
   7196 		b1 = gen_atmmulti_abbrev(A_OAMF4);
   7197 		break;
   7198 
   7199 	case A_OAMF4:
   7200 		if (!is_atm)
   7201 			bpf_error("'oamf4' supported only on raw ATM");
   7202 		/* OAM F4 type */
   7203 		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
   7204 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
   7205 		gen_or(b0, b1);
   7206 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
   7207 		gen_and(b0, b1);
   7208 		break;
   7209 
   7210 	case A_CONNECTMSG:
   7211 		/*
   7212 		 * Get Q.2931 signalling messages for switched
   7213 		 * virtual connection
   7214 		 */
   7215 		if (!is_atm)
   7216 			bpf_error("'connectmsg' supported only on raw ATM");
   7217 		b0 = gen_msg_abbrev(A_SETUP);
   7218 		b1 = gen_msg_abbrev(A_CALLPROCEED);
   7219 		gen_or(b0, b1);
   7220 		b0 = gen_msg_abbrev(A_CONNECT);
   7221 		gen_or(b0, b1);
   7222 		b0 = gen_msg_abbrev(A_CONNECTACK);
   7223 		gen_or(b0, b1);
   7224 		b0 = gen_msg_abbrev(A_RELEASE);
   7225 		gen_or(b0, b1);
   7226 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
   7227 		gen_or(b0, b1);
   7228 		b0 = gen_atmtype_abbrev(A_SC);
   7229 		gen_and(b0, b1);
   7230 		break;
   7231 
   7232 	case A_METACONNECT:
   7233 		if (!is_atm)
   7234 			bpf_error("'metaconnect' supported only on raw ATM");
   7235 		b0 = gen_msg_abbrev(A_SETUP);
   7236 		b1 = gen_msg_abbrev(A_CALLPROCEED);
   7237 		gen_or(b0, b1);
   7238 		b0 = gen_msg_abbrev(A_CONNECT);
   7239 		gen_or(b0, b1);
   7240 		b0 = gen_msg_abbrev(A_RELEASE);
   7241 		gen_or(b0, b1);
   7242 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
   7243 		gen_or(b0, b1);
   7244 		b0 = gen_atmtype_abbrev(A_METAC);
   7245 		gen_and(b0, b1);
   7246 		break;
   7247 
   7248 	default:
   7249 		abort();
   7250 	}
   7251 	return b1;
   7252 }
   7253