1 ======================= 2 Writing an LLVM Backend 3 ======================= 4 5 .. toctree:: 6 :hidden: 7 8 HowToUseInstrMappings 9 10 .. contents:: 11 :local: 12 13 Introduction 14 ============ 15 16 This document describes techniques for writing compiler backends that convert 17 the LLVM Intermediate Representation (IR) to code for a specified machine or 18 other languages. Code intended for a specific machine can take the form of 19 either assembly code or binary code (usable for a JIT compiler). 20 21 The backend of LLVM features a target-independent code generator that may 22 create output for several types of target CPUs --- including X86, PowerPC, 23 ARM, and SPARC. The backend may also be used to generate code targeted at SPUs 24 of the Cell processor or GPUs to support the execution of compute kernels. 25 26 The document focuses on existing examples found in subdirectories of 27 ``llvm/lib/Target`` in a downloaded LLVM release. In particular, this document 28 focuses on the example of creating a static compiler (one that emits text 29 assembly) for a SPARC target, because SPARC has fairly standard 30 characteristics, such as a RISC instruction set and straightforward calling 31 conventions. 32 33 Audience 34 -------- 35 36 The audience for this document is anyone who needs to write an LLVM backend to 37 generate code for a specific hardware or software target. 38 39 Prerequisite Reading 40 -------------------- 41 42 These essential documents must be read before reading this document: 43 44 * `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for 45 the LLVM assembly language. 46 47 * :doc:`CodeGenerator` --- a guide to the components (classes and code 48 generation algorithms) for translating the LLVM internal representation into 49 machine code for a specified target. Pay particular attention to the 50 descriptions of code generation stages: Instruction Selection, Scheduling and 51 Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code 52 Insertion, Late Machine Code Optimizations, and Code Emission. 53 54 * :doc:`TableGenFundamentals` --- a document that describes the TableGen 55 (``tblgen``) application that manages domain-specific information to support 56 LLVM code generation. TableGen processes input from a target description 57 file (``.td`` suffix) and generates C++ code that can be used for code 58 generation. 59 60 * :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as 61 are several ``SelectionDAG`` processing steps. 62 63 To follow the SPARC examples in this document, have a copy of `The SPARC 64 Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for 65 reference. For details about the ARM instruction set, refer to the `ARM 66 Architecture Reference Manual <http://infocenter.arm.com/>`_. For more about 67 the GNU Assembler format (``GAS``), see `Using As 68 <http://sourceware.org/binutils/docs/as/index.html>`_, especially for the 69 assembly printer. "Using As" contains a list of target machine dependent 70 features. 71 72 Basic Steps 73 ----------- 74 75 To write a compiler backend for LLVM that converts the LLVM IR to code for a 76 specified target (machine or other language), follow these steps: 77 78 * Create a subclass of the ``TargetMachine`` class that describes 79 characteristics of your target machine. Copy existing examples of specific 80 ``TargetMachine`` class and header files; for example, start with 81 ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file 82 names for your target. Similarly, change code that references "``Sparc``" to 83 reference your target. 84 85 * Describe the register set of the target. Use TableGen to generate code for 86 register definition, register aliases, and register classes from a 87 target-specific ``RegisterInfo.td`` input file. You should also write 88 additional code for a subclass of the ``TargetRegisterInfo`` class that 89 represents the class register file data used for register allocation and also 90 describes the interactions between registers. 91 92 * Describe the instruction set of the target. Use TableGen to generate code 93 for target-specific instructions from target-specific versions of 94 ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``. You should write 95 additional code for a subclass of the ``TargetInstrInfo`` class to represent 96 machine instructions supported by the target machine. 97 98 * Describe the selection and conversion of the LLVM IR from a Directed Acyclic 99 Graph (DAG) representation of instructions to native target-specific 100 instructions. Use TableGen to generate code that matches patterns and 101 selects instructions based on additional information in a target-specific 102 version of ``TargetInstrInfo.td``. Write code for ``XXXISelDAGToDAG.cpp``, 103 where ``XXX`` identifies the specific target, to perform pattern matching and 104 DAG-to-DAG instruction selection. Also write code in ``XXXISelLowering.cpp`` 105 to replace or remove operations and data types that are not supported 106 natively in a SelectionDAG. 107 108 * Write code for an assembly printer that converts LLVM IR to a GAS format for 109 your target machine. You should add assembly strings to the instructions 110 defined in your target-specific version of ``TargetInstrInfo.td``. You 111 should also write code for a subclass of ``AsmPrinter`` that performs the 112 LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``. 113 114 * Optionally, add support for subtargets (i.e., variants with different 115 capabilities). You should also write code for a subclass of the 116 ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and 117 ``-mattr=`` command-line options. 118 119 * Optionally, add JIT support and create a machine code emitter (subclass of 120 ``TargetJITInfo``) that is used to emit binary code directly into memory. 121 122 In the ``.cpp`` and ``.h``. files, initially stub up these methods and then 123 implement them later. Initially, you may not know which private members that 124 the class will need and which components will need to be subclassed. 125 126 Preliminaries 127 ------------- 128 129 To actually create your compiler backend, you need to create and modify a few 130 files. The absolute minimum is discussed here. But to actually use the LLVM 131 target-independent code generator, you must perform the steps described in the 132 :doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document. 133 134 First, you should create a subdirectory under ``lib/Target`` to hold all the 135 files related to your target. If your target is called "Dummy", create the 136 directory ``lib/Target/Dummy``. 137 138 In this new directory, create a ``Makefile``. It is easiest to copy a 139 ``Makefile`` of another target and modify it. It should at least contain the 140 ``LEVEL``, ``LIBRARYNAME`` and ``TARGET`` variables, and then include 141 ``$(LEVEL)/Makefile.common``. The library can be named ``LLVMDummy`` (for 142 example, see the MIPS target). Alternatively, you can split the library into 143 ``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which should be 144 implemented in a subdirectory below ``lib/Target/Dummy`` (for example, see the 145 PowerPC target). 146 147 Note that these two naming schemes are hardcoded into ``llvm-config``. Using 148 any other naming scheme will confuse ``llvm-config`` and produce a lot of 149 (seemingly unrelated) linker errors when linking ``llc``. 150 151 To make your target actually do something, you need to implement a subclass of 152 ``TargetMachine``. This implementation should typically be in the file 153 ``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target`` 154 directory will be built and should work. To use LLVM's target independent code 155 generator, you should do what all current machine backends do: create a 156 subclass of ``LLVMTargetMachine``. (To create a target from scratch, create a 157 subclass of ``TargetMachine``.) 158 159 To get LLVM to actually build and link your target, you need to add it to the 160 ``TARGETS_TO_BUILD`` variable. To do this, you modify the configure script to 161 know about your target when parsing the ``--enable-targets`` option. Search 162 the configure script for ``TARGETS_TO_BUILD``, add your target to the lists 163 there (some creativity required), and then reconfigure. Alternatively, you can 164 change ``autotools/configure.ac`` and regenerate configure by running 165 ``./autoconf/AutoRegen.sh``. 166 167 Target Machine 168 ============== 169 170 ``LLVMTargetMachine`` is designed as a base class for targets implemented with 171 the LLVM target-independent code generator. The ``LLVMTargetMachine`` class 172 should be specialized by a concrete target class that implements the various 173 virtual methods. ``LLVMTargetMachine`` is defined as a subclass of 174 ``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``. The 175 ``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes 176 numerous command-line options. 177 178 To create a concrete target-specific subclass of ``LLVMTargetMachine``, start 179 by copying an existing ``TargetMachine`` class and header. You should name the 180 files that you create to reflect your specific target. For instance, for the 181 SPARC target, name the files ``SparcTargetMachine.h`` and 182 ``SparcTargetMachine.cpp``. 183 184 For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must 185 have access methods to obtain objects that represent target components. These 186 methods are named ``get*Info``, and are intended to obtain the instruction set 187 (``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout 188 (``getFrameInfo``), and similar information. ``XXXTargetMachine`` must also 189 implement the ``getDataLayout`` method to access an object with target-specific 190 data characteristics, such as data type size and alignment requirements. 191 192 For instance, for the SPARC target, the header file ``SparcTargetMachine.h`` 193 declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that 194 simply return a class member. 195 196 .. code-block:: c++ 197 198 namespace llvm { 199 200 class Module; 201 202 class SparcTargetMachine : public LLVMTargetMachine { 203 const DataLayout DataLayout; // Calculates type size & alignment 204 SparcSubtarget Subtarget; 205 SparcInstrInfo InstrInfo; 206 TargetFrameInfo FrameInfo; 207 208 protected: 209 virtual const TargetAsmInfo *createTargetAsmInfo() const; 210 211 public: 212 SparcTargetMachine(const Module &M, const std::string &FS); 213 214 virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; } 215 virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; } 216 virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; } 217 virtual const TargetRegisterInfo *getRegisterInfo() const { 218 return &InstrInfo.getRegisterInfo(); 219 } 220 virtual const DataLayout *getDataLayout() const { return &DataLayout; } 221 static unsigned getModuleMatchQuality(const Module &M); 222 223 // Pass Pipeline Configuration 224 virtual bool addInstSelector(PassManagerBase &PM, bool Fast); 225 virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast); 226 }; 227 228 } // end namespace llvm 229 230 * ``getInstrInfo()`` 231 * ``getRegisterInfo()`` 232 * ``getFrameInfo()`` 233 * ``getDataLayout()`` 234 * ``getSubtargetImpl()`` 235 236 For some targets, you also need to support the following methods: 237 238 * ``getTargetLowering()`` 239 * ``getJITInfo()`` 240 241 In addition, the ``XXXTargetMachine`` constructor should specify a 242 ``TargetDescription`` string that determines the data layout for the target 243 machine, including characteristics such as pointer size, alignment, and 244 endianness. For example, the constructor for ``SparcTargetMachine`` contains 245 the following: 246 247 .. code-block:: c++ 248 249 SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS) 250 : DataLayout("E-p:32:32-f128:128:128"), 251 Subtarget(M, FS), InstrInfo(Subtarget), 252 FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) { 253 } 254 255 Hyphens separate portions of the ``TargetDescription`` string. 256 257 * An upper-case "``E``" in the string indicates a big-endian target data model. 258 A lower-case "``e``" indicates little-endian. 259 260 * "``p:``" is followed by pointer information: size, ABI alignment, and 261 preferred alignment. If only two figures follow "``p:``", then the first 262 value is pointer size, and the second value is both ABI and preferred 263 alignment. 264 265 * Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or 266 "``a``" (corresponding to integer, floating point, vector, or aggregate). 267 "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred 268 alignment. "``f``" is followed by three values: the first indicates the size 269 of a long double, then ABI alignment, and then ABI preferred alignment. 270 271 Target Registration 272 =================== 273 274 You must also register your target with the ``TargetRegistry``, which is what 275 other LLVM tools use to be able to lookup and use your target at runtime. The 276 ``TargetRegistry`` can be used directly, but for most targets there are helper 277 templates which should take care of the work for you. 278 279 All targets should declare a global ``Target`` object which is used to 280 represent the target during registration. Then, in the target's ``TargetInfo`` 281 library, the target should define that object and use the ``RegisterTarget`` 282 template to register the target. For example, the Sparc registration code 283 looks like this: 284 285 .. code-block:: c++ 286 287 Target llvm::TheSparcTarget; 288 289 extern "C" void LLVMInitializeSparcTargetInfo() { 290 RegisterTarget<Triple::sparc, /*HasJIT=*/false> 291 X(TheSparcTarget, "sparc", "Sparc"); 292 } 293 294 This allows the ``TargetRegistry`` to look up the target by name or by target 295 triple. In addition, most targets will also register additional features which 296 are available in separate libraries. These registration steps are separate, 297 because some clients may wish to only link in some parts of the target --- the 298 JIT code generator does not require the use of the assembler printer, for 299 example. Here is an example of registering the Sparc assembly printer: 300 301 .. code-block:: c++ 302 303 extern "C" void LLVMInitializeSparcAsmPrinter() { 304 RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget); 305 } 306 307 For more information, see "`llvm/Target/TargetRegistry.h 308 </doxygen/TargetRegistry_8h-source.html>`_". 309 310 Register Set and Register Classes 311 ================================= 312 313 You should describe a concrete target-specific class that represents the 314 register file of a target machine. This class is called ``XXXRegisterInfo`` 315 (where ``XXX`` identifies the target) and represents the class register file 316 data that is used for register allocation. It also describes the interactions 317 between registers. 318 319 You also need to define register classes to categorize related registers. A 320 register class should be added for groups of registers that are all treated the 321 same way for some instruction. Typical examples are register classes for 322 integer, floating-point, or vector registers. A register allocator allows an 323 instruction to use any register in a specified register class to perform the 324 instruction in a similar manner. Register classes allocate virtual registers 325 to instructions from these sets, and register classes let the 326 target-independent register allocator automatically choose the actual 327 registers. 328 329 Much of the code for registers, including register definition, register 330 aliases, and register classes, is generated by TableGen from 331 ``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc`` 332 and ``XXXGenRegisterInfo.inc`` output files. Some of the code in the 333 implementation of ``XXXRegisterInfo`` requires hand-coding. 334 335 Defining a Register 336 ------------------- 337 338 The ``XXXRegisterInfo.td`` file typically starts with register definitions for 339 a target machine. The ``Register`` class (specified in ``Target.td``) is used 340 to define an object for each register. The specified string ``n`` becomes the 341 ``Name`` of the register. The basic ``Register`` object does not have any 342 subregisters and does not specify any aliases. 343 344 .. code-block:: llvm 345 346 class Register<string n> { 347 string Namespace = ""; 348 string AsmName = n; 349 string Name = n; 350 int SpillSize = 0; 351 int SpillAlignment = 0; 352 list<Register> Aliases = []; 353 list<Register> SubRegs = []; 354 list<int> DwarfNumbers = []; 355 } 356 357 For example, in the ``X86RegisterInfo.td`` file, there are register definitions 358 that utilize the ``Register`` class, such as: 359 360 .. code-block:: llvm 361 362 def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>; 363 364 This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``) 365 that are used by ``gcc``, ``gdb``, or a debug information writer to identify a 366 register. For register ``AL``, ``DwarfRegNum`` takes an array of 3 values 367 representing 3 different modes: the first element is for X86-64, the second for 368 exception handling (EH) on X86-32, and the third is generic. -1 is a special 369 Dwarf number that indicates the gcc number is undefined, and -2 indicates the 370 register number is invalid for this mode. 371 372 From the previously described line in the ``X86RegisterInfo.td`` file, TableGen 373 generates this code in the ``X86GenRegisterInfo.inc`` file: 374 375 .. code-block:: c++ 376 377 static const unsigned GR8[] = { X86::AL, ... }; 378 379 const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 }; 380 381 const TargetRegisterDesc RegisterDescriptors[] = { 382 ... 383 { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ... 384 385 From the register info file, TableGen generates a ``TargetRegisterDesc`` object 386 for each register. ``TargetRegisterDesc`` is defined in 387 ``include/llvm/Target/TargetRegisterInfo.h`` with the following fields: 388 389 .. code-block:: c++ 390 391 struct TargetRegisterDesc { 392 const char *AsmName; // Assembly language name for the register 393 const char *Name; // Printable name for the reg (for debugging) 394 const unsigned *AliasSet; // Register Alias Set 395 const unsigned *SubRegs; // Sub-register set 396 const unsigned *ImmSubRegs; // Immediate sub-register set 397 const unsigned *SuperRegs; // Super-register set 398 }; 399 400 TableGen uses the entire target description file (``.td``) to determine text 401 names for the register (in the ``AsmName`` and ``Name`` fields of 402 ``TargetRegisterDesc``) and the relationships of other registers to the defined 403 register (in the other ``TargetRegisterDesc`` fields). In this example, other 404 definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as 405 aliases for one another, so TableGen generates a null-terminated array 406 (``AL_AliasSet``) for this register alias set. 407 408 The ``Register`` class is commonly used as a base class for more complex 409 classes. In ``Target.td``, the ``Register`` class is the base for the 410 ``RegisterWithSubRegs`` class that is used to define registers that need to 411 specify subregisters in the ``SubRegs`` list, as shown here: 412 413 .. code-block:: llvm 414 415 class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> { 416 let SubRegs = subregs; 417 } 418 419 In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC: 420 a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``, 421 and ``Rd``. SPARC registers are identified by 5-bit ID numbers, which is a 422 feature common to these subclasses. Note the use of "``let``" expressions to 423 override values that are initially defined in a superclass (such as ``SubRegs`` 424 field in the ``Rd`` class). 425 426 .. code-block:: llvm 427 428 class SparcReg<string n> : Register<n> { 429 field bits<5> Num; 430 let Namespace = "SP"; 431 } 432 // Ri - 32-bit integer registers 433 class Ri<bits<5> num, string n> : 434 SparcReg<n> { 435 let Num = num; 436 } 437 // Rf - 32-bit floating-point registers 438 class Rf<bits<5> num, string n> : 439 SparcReg<n> { 440 let Num = num; 441 } 442 // Rd - Slots in the FP register file for 64-bit floating-point values. 443 class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> { 444 let Num = num; 445 let SubRegs = subregs; 446 } 447 448 In the ``SparcRegisterInfo.td`` file, there are register definitions that 449 utilize these subclasses of ``Register``, such as: 450 451 .. code-block:: llvm 452 453 def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>; 454 def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>; 455 ... 456 def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>; 457 def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>; 458 ... 459 def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>; 460 def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>; 461 462 The last two registers shown above (``D0`` and ``D1``) are double-precision 463 floating-point registers that are aliases for pairs of single-precision 464 floating-point sub-registers. In addition to aliases, the sub-register and 465 super-register relationships of the defined register are in fields of a 466 register's ``TargetRegisterDesc``. 467 468 Defining a Register Class 469 ------------------------- 470 471 The ``RegisterClass`` class (specified in ``Target.td``) is used to define an 472 object that represents a group of related registers and also defines the 473 default allocation order of the registers. A target description file 474 ``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes 475 using the following class: 476 477 .. code-block:: llvm 478 479 class RegisterClass<string namespace, 480 list<ValueType> regTypes, int alignment, dag regList> { 481 string Namespace = namespace; 482 list<ValueType> RegTypes = regTypes; 483 int Size = 0; // spill size, in bits; zero lets tblgen pick the size 484 int Alignment = alignment; 485 486 // CopyCost is the cost of copying a value between two registers 487 // default value 1 means a single instruction 488 // A negative value means copying is extremely expensive or impossible 489 int CopyCost = 1; 490 dag MemberList = regList; 491 492 // for register classes that are subregisters of this class 493 list<RegisterClass> SubRegClassList = []; 494 495 code MethodProtos = [{}]; // to insert arbitrary code 496 code MethodBodies = [{}]; 497 } 498 499 To define a ``RegisterClass``, use the following 4 arguments: 500 501 * The first argument of the definition is the name of the namespace. 502 503 * The second argument is a list of ``ValueType`` register type values that are 504 defined in ``include/llvm/CodeGen/ValueTypes.td``. Defined values include 505 integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean), 506 floating-point types (``f32``, ``f64``), and vector types (for example, 507 ``v8i16`` for an ``8 x i16`` vector). All registers in a ``RegisterClass`` 508 must have the same ``ValueType``, but some registers may store vector data in 509 different configurations. For example a register that can process a 128-bit 510 vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4 511 32-bit integers, and so on. 512 513 * The third argument of the ``RegisterClass`` definition specifies the 514 alignment required of the registers when they are stored or loaded to 515 memory. 516 517 * The final argument, ``regList``, specifies which registers are in this class. 518 If an alternative allocation order method is not specified, then ``regList`` 519 also defines the order of allocation used by the register allocator. Besides 520 simply listing registers with ``(add R0, R1, ...)``, more advanced set 521 operators are available. See ``include/llvm/Target/Target.td`` for more 522 information. 523 524 In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined: 525 ``FPRegs``, ``DFPRegs``, and ``IntRegs``. For all three register classes, the 526 first argument defines the namespace with the string "``SP``". ``FPRegs`` 527 defines a group of 32 single-precision floating-point registers (``F0`` to 528 ``F31``); ``DFPRegs`` defines a group of 16 double-precision registers 529 (``D0-D15``). 530 531 .. code-block:: llvm 532 533 // F0, F1, F2, ..., F31 534 def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>; 535 536 def DFPRegs : RegisterClass<"SP", [f64], 64, 537 (add D0, D1, D2, D3, D4, D5, D6, D7, D8, 538 D9, D10, D11, D12, D13, D14, D15)>; 539 540 def IntRegs : RegisterClass<"SP", [i32], 32, 541 (add L0, L1, L2, L3, L4, L5, L6, L7, 542 I0, I1, I2, I3, I4, I5, 543 O0, O1, O2, O3, O4, O5, O7, 544 G1, 545 // Non-allocatable regs: 546 G2, G3, G4, 547 O6, // stack ptr 548 I6, // frame ptr 549 I7, // return address 550 G0, // constant zero 551 G5, G6, G7 // reserved for kernel 552 )>; 553 554 Using ``SparcRegisterInfo.td`` with TableGen generates several output files 555 that are intended for inclusion in other source code that you write. 556 ``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should 557 be included in the header file for the implementation of the SPARC register 558 implementation that you write (``SparcRegisterInfo.h``). In 559 ``SparcGenRegisterInfo.h.inc`` a new structure is defined called 560 ``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base. It also 561 specifies types, based upon the defined register classes: ``DFPRegsClass``, 562 ``FPRegsClass``, and ``IntRegsClass``. 563 564 ``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is 565 included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register 566 implementation. The code below shows only the generated integer registers and 567 associated register classes. The order of registers in ``IntRegs`` reflects 568 the order in the definition of ``IntRegs`` in the target description file. 569 570 .. code-block:: c++ 571 572 // IntRegs Register Class... 573 static const unsigned IntRegs[] = { 574 SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5, 575 SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3, 576 SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3, 577 SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3, 578 SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5, 579 SP::G6, SP::G7, 580 }; 581 582 // IntRegsVTs Register Class Value Types... 583 static const MVT::ValueType IntRegsVTs[] = { 584 MVT::i32, MVT::Other 585 }; 586 587 namespace SP { // Register class instances 588 DFPRegsClass DFPRegsRegClass; 589 FPRegsClass FPRegsRegClass; 590 IntRegsClass IntRegsRegClass; 591 ... 592 // IntRegs Sub-register Classess... 593 static const TargetRegisterClass* const IntRegsSubRegClasses [] = { 594 NULL 595 }; 596 ... 597 // IntRegs Super-register Classess... 598 static const TargetRegisterClass* const IntRegsSuperRegClasses [] = { 599 NULL 600 }; 601 ... 602 // IntRegs Register Class sub-classes... 603 static const TargetRegisterClass* const IntRegsSubclasses [] = { 604 NULL 605 }; 606 ... 607 // IntRegs Register Class super-classes... 608 static const TargetRegisterClass* const IntRegsSuperclasses [] = { 609 NULL 610 }; 611 612 IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID, 613 IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses, 614 IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {} 615 } 616 617 The register allocators will avoid using reserved registers, and callee saved 618 registers are not used until all the volatile registers have been used. That 619 is usually good enough, but in some cases it may be necessary to provide custom 620 allocation orders. 621 622 Implement a subclass of ``TargetRegisterInfo`` 623 ---------------------------------------------- 624 625 The final step is to hand code portions of ``XXXRegisterInfo``, which 626 implements the interface described in ``TargetRegisterInfo.h`` (see 627 :ref:`TargetRegisterInfo`). These functions return ``0``, ``NULL``, or 628 ``false``, unless overridden. Here is a list of functions that are overridden 629 for the SPARC implementation in ``SparcRegisterInfo.cpp``: 630 631 * ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the 632 order of the desired callee-save stack frame offset. 633 634 * ``getReservedRegs`` --- Returns a bitset indexed by physical register 635 numbers, indicating if a particular register is unavailable. 636 637 * ``hasFP`` --- Return a Boolean indicating if a function should have a 638 dedicated frame pointer register. 639 640 * ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo 641 instructions are used, this can be called to eliminate them. 642 643 * ``eliminateFrameIndex`` --- Eliminate abstract frame indices from 644 instructions that may use them. 645 646 * ``emitPrologue`` --- Insert prologue code into the function. 647 648 * ``emitEpilogue`` --- Insert epilogue code into the function. 649 650 .. _instruction-set: 651 652 Instruction Set 653 =============== 654 655 During the early stages of code generation, the LLVM IR code is converted to a 656 ``SelectionDAG`` with nodes that are instances of the ``SDNode`` class 657 containing target instructions. An ``SDNode`` has an opcode, operands, type 658 requirements, and operation properties. For example, is an operation 659 commutative, does an operation load from memory. The various operation node 660 types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file 661 (values of the ``NodeType`` enum in the ``ISD`` namespace). 662 663 TableGen uses the following target description (``.td``) input files to 664 generate much of the code for instruction definition: 665 666 * ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and 667 other fundamental classes are defined. 668 669 * ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection 670 generators, contains ``SDTC*`` classes (selection DAG type constraint), 671 definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``, 672 ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``, 673 ``PatFrag``, ``PatLeaf``, ``ComplexPattern``. 674 675 * ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific 676 instructions. 677 678 * ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates, 679 condition codes, and instructions of an instruction set. For architecture 680 modifications, a different file name may be used. For example, for Pentium 681 with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with 682 MMX, this file is ``X86InstrMMX.td``. 683 684 There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of 685 the target. The ``XXX.td`` file includes the other ``.td`` input files, but 686 its contents are only directly important for subtargets. 687 688 You should describe a concrete target-specific class ``XXXInstrInfo`` that 689 represents machine instructions supported by a target machine. 690 ``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of 691 which describes one instruction. An instruction descriptor defines: 692 693 * Opcode mnemonic 694 * Number of operands 695 * List of implicit register definitions and uses 696 * Target-independent properties (such as memory access, is commutable) 697 * Target-specific flags 698 699 The Instruction class (defined in ``Target.td``) is mostly used as a base for 700 more complex instruction classes. 701 702 .. code-block:: llvm 703 704 class Instruction { 705 string Namespace = ""; 706 dag OutOperandList; // A dag containing the MI def operand list. 707 dag InOperandList; // A dag containing the MI use operand list. 708 string AsmString = ""; // The .s format to print the instruction with. 709 list<dag> Pattern; // Set to the DAG pattern for this instruction. 710 list<Register> Uses = []; 711 list<Register> Defs = []; 712 list<Predicate> Predicates = []; // predicates turned into isel match code 713 ... remainder not shown for space ... 714 } 715 716 A ``SelectionDAG`` node (``SDNode``) should contain an object representing a 717 target-specific instruction that is defined in ``XXXInstrInfo.td``. The 718 instruction objects should represent instructions from the architecture manual 719 of the target machine (such as the SPARC Architecture Manual for the SPARC 720 target). 721 722 A single instruction from the architecture manual is often modeled as multiple 723 target instructions, depending upon its operands. For example, a manual might 724 describe an add instruction that takes a register or an immediate operand. An 725 LLVM target could model this with two instructions named ``ADDri`` and 726 ``ADDrr``. 727 728 You should define a class for each instruction category and define each opcode 729 as a subclass of the category with appropriate parameters such as the fixed 730 binary encoding of opcodes and extended opcodes. You should map the register 731 bits to the bits of the instruction in which they are encoded (for the JIT). 732 Also you should specify how the instruction should be printed when the 733 automatic assembly printer is used. 734 735 As is described in the SPARC Architecture Manual, Version 8, there are three 736 major 32-bit formats for instructions. Format 1 is only for the ``CALL`` 737 instruction. Format 2 is for branch on condition codes and ``SETHI`` (set high 738 bits of a register) instructions. Format 3 is for other instructions. 739 740 Each of these formats has corresponding classes in ``SparcInstrFormat.td``. 741 ``InstSP`` is a base class for other instruction classes. Additional base 742 classes are specified for more precise formats: for example in 743 ``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for 744 branches. There are three other base classes: ``F3_1`` for register/register 745 operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for 746 floating-point operations. ``SparcInstrInfo.td`` also adds the base class 747 ``Pseudo`` for synthetic SPARC instructions. 748 749 ``SparcInstrInfo.td`` largely consists of operand and instruction definitions 750 for the SPARC target. In ``SparcInstrInfo.td``, the following target 751 description file entry, ``LDrr``, defines the Load Integer instruction for a 752 Word (the ``LD`` SPARC opcode) from a memory address to a register. The first 753 parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this 754 category of operation. The second parameter (``000000``\ :sub:`2`) is the 755 specific operation value for ``LD``/Load Word. The third parameter is the 756 output destination, which is a register operand and defined in the ``Register`` 757 target description file (``IntRegs``). 758 759 .. code-block:: llvm 760 761 def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr), 762 "ld [$addr], $dst", 763 [(set i32:$dst, (load ADDRrr:$addr))]>; 764 765 The fourth parameter is the input source, which uses the address operand 766 ``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``: 767 768 .. code-block:: llvm 769 770 def MEMrr : Operand<i32> { 771 let PrintMethod = "printMemOperand"; 772 let MIOperandInfo = (ops IntRegs, IntRegs); 773 } 774 775 The fifth parameter is a string that is used by the assembly printer and can be 776 left as an empty string until the assembly printer interface is implemented. 777 The sixth and final parameter is the pattern used to match the instruction 778 during the SelectionDAG Select Phase described in :doc:`CodeGenerator`. 779 This parameter is detailed in the next section, :ref:`instruction-selector`. 780 781 Instruction class definitions are not overloaded for different operand types, 782 so separate versions of instructions are needed for register, memory, or 783 immediate value operands. For example, to perform a Load Integer instruction 784 for a Word from an immediate operand to a register, the following instruction 785 class is defined: 786 787 .. code-block:: llvm 788 789 def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr), 790 "ld [$addr], $dst", 791 [(set i32:$dst, (load ADDRri:$addr))]>; 792 793 Writing these definitions for so many similar instructions can involve a lot of 794 cut and paste. In ``.td`` files, the ``multiclass`` directive enables the 795 creation of templates to define several instruction classes at once (using the 796 ``defm`` directive). For example in ``SparcInstrInfo.td``, the ``multiclass`` 797 pattern ``F3_12`` is defined to create 2 instruction classes each time 798 ``F3_12`` is invoked: 799 800 .. code-block:: llvm 801 802 multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> { 803 def rr : F3_1 <2, Op3Val, 804 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), 805 !strconcat(OpcStr, " $b, $c, $dst"), 806 [(set i32:$dst, (OpNode i32:$b, i32:$c))]>; 807 def ri : F3_2 <2, Op3Val, 808 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), 809 !strconcat(OpcStr, " $b, $c, $dst"), 810 [(set i32:$dst, (OpNode i32:$b, simm13:$c))]>; 811 } 812 813 So when the ``defm`` directive is used for the ``XOR`` and ``ADD`` 814 instructions, as seen below, it creates four instruction objects: ``XORrr``, 815 ``XORri``, ``ADDrr``, and ``ADDri``. 816 817 .. code-block:: llvm 818 819 defm XOR : F3_12<"xor", 0b000011, xor>; 820 defm ADD : F3_12<"add", 0b000000, add>; 821 822 ``SparcInstrInfo.td`` also includes definitions for condition codes that are 823 referenced by branch instructions. The following definitions in 824 ``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code. 825 For example, the 10\ :sup:`th` bit represents the "greater than" condition for 826 integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for 827 floats. 828 829 .. code-block:: llvm 830 831 def ICC_NE : ICC_VAL< 9>; // Not Equal 832 def ICC_E : ICC_VAL< 1>; // Equal 833 def ICC_G : ICC_VAL<10>; // Greater 834 ... 835 def FCC_U : FCC_VAL<23>; // Unordered 836 def FCC_G : FCC_VAL<22>; // Greater 837 def FCC_UG : FCC_VAL<21>; // Unordered or Greater 838 ... 839 840 (Note that ``Sparc.h`` also defines enums that correspond to the same SPARC 841 condition codes. Care must be taken to ensure the values in ``Sparc.h`` 842 correspond to the values in ``SparcInstrInfo.td``. I.e., ``SPCC::ICC_NE = 9``, 843 ``SPCC::FCC_U = 23`` and so on.) 844 845 Instruction Operand Mapping 846 --------------------------- 847 848 The code generator backend maps instruction operands to fields in the 849 instruction. Operands are assigned to unbound fields in the instruction in the 850 order they are defined. Fields are bound when they are assigned a value. For 851 example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1`` 852 format instruction having three operands. 853 854 .. code-block:: llvm 855 856 def XNORrr : F3_1<2, 0b000111, 857 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), 858 "xnor $b, $c, $dst", 859 [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>; 860 861 The instruction templates in ``SparcInstrFormats.td`` show the base class for 862 ``F3_1`` is ``InstSP``. 863 864 .. code-block:: llvm 865 866 class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction { 867 field bits<32> Inst; 868 let Namespace = "SP"; 869 bits<2> op; 870 let Inst{31-30} = op; 871 dag OutOperandList = outs; 872 dag InOperandList = ins; 873 let AsmString = asmstr; 874 let Pattern = pattern; 875 } 876 877 ``InstSP`` leaves the ``op`` field unbound. 878 879 .. code-block:: llvm 880 881 class F3<dag outs, dag ins, string asmstr, list<dag> pattern> 882 : InstSP<outs, ins, asmstr, pattern> { 883 bits<5> rd; 884 bits<6> op3; 885 bits<5> rs1; 886 let op{1} = 1; // Op = 2 or 3 887 let Inst{29-25} = rd; 888 let Inst{24-19} = op3; 889 let Inst{18-14} = rs1; 890 } 891 892 ``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1`` 893 fields. ``F3`` format instructions will bind the operands ``rd``, ``op3``, and 894 ``rs1`` fields. 895 896 .. code-block:: llvm 897 898 class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins, 899 string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> { 900 bits<8> asi = 0; // asi not currently used 901 bits<5> rs2; 902 let op = opVal; 903 let op3 = op3val; 904 let Inst{13} = 0; // i field = 0 905 let Inst{12-5} = asi; // address space identifier 906 let Inst{4-0} = rs2; 907 } 908 909 ``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields. ``F3_1`` 910 format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2`` 911 fields. This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``, 912 and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively. 913 914 TableGen will also generate a function called getNamedOperandIdx() which 915 can be used to look up an operand's index in a MachineInstr based on its 916 TableGen name. Setting the UseNamedOperandTable bit in an instruction's 917 TableGen definition will add all of its operands to an enumeration in the 918 llvm::XXX:OpName namespace and also add an entry for it into the OperandMap 919 table, which can be queried using getNamedOperandIdx() 920 921 .. code-block:: llvm 922 923 int DstIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::dst); // => 0 924 int BIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::b); // => 1 925 int CIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::c); // => 2 926 int DIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::d); // => -1 927 928 ... 929 930 The entries in the OpName enum are taken verbatim from the TableGen definitions, 931 so operands with lowercase names will have lower case entries in the enum. 932 933 To include the getNamedOperandIdx() function in your backend, you will need 934 to define a few preprocessor macros in XXXInstrInfo.cpp and XXXInstrInfo.h. 935 For example: 936 937 XXXInstrInfo.cpp: 938 939 .. code-block:: c++ 940 941 #define GET_INSTRINFO_NAMED_OPS // For getNamedOperandIdx() function 942 #include "XXXGenInstrInfo.inc" 943 944 XXXInstrInfo.h: 945 946 .. code-block:: c++ 947 948 #define GET_INSTRINFO_OPERAND_ENUM // For OpName enum 949 #include "XXXGenInstrInfo.inc" 950 951 namespace XXX { 952 int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex); 953 } // End namespace XXX 954 955 Instruction Relation Mapping 956 ---------------------------- 957 958 This TableGen feature is used to relate instructions with each other. It is 959 particularly useful when you have multiple instruction formats and need to 960 switch between them after instruction selection. This entire feature is driven 961 by relation models which can be defined in ``XXXInstrInfo.td`` files 962 according to the target-specific instruction set. Relation models are defined 963 using ``InstrMapping`` class as a base. TableGen parses all the models 964 and generates instruction relation maps using the specified information. 965 Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file 966 along with the functions to query them. For the detailed information on how to 967 use this feature, please refer to :doc:`HowToUseInstrMappings`. 968 969 Implement a subclass of ``TargetInstrInfo`` 970 ------------------------------------------- 971 972 The final step is to hand code portions of ``XXXInstrInfo``, which implements 973 the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`). 974 These functions return ``0`` or a Boolean or they assert, unless overridden. 975 Here's a list of functions that are overridden for the SPARC implementation in 976 ``SparcInstrInfo.cpp``: 977 978 * ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct 979 load from a stack slot, return the register number of the destination and the 980 ``FrameIndex`` of the stack slot. 981 982 * ``isStoreToStackSlot`` --- If the specified machine instruction is a direct 983 store to a stack slot, return the register number of the destination and the 984 ``FrameIndex`` of the stack slot. 985 986 * ``copyPhysReg`` --- Copy values between a pair of physical registers. 987 988 * ``storeRegToStackSlot`` --- Store a register value to a stack slot. 989 990 * ``loadRegFromStackSlot`` --- Load a register value from a stack slot. 991 992 * ``storeRegToAddr`` --- Store a register value to memory. 993 994 * ``loadRegFromAddr`` --- Load a register value from memory. 995 996 * ``foldMemoryOperand`` --- Attempt to combine instructions of any load or 997 store instruction for the specified operand(s). 998 999 Branch Folding and If Conversion 1000 -------------------------------- 1001 1002 Performance can be improved by combining instructions or by eliminating 1003 instructions that are never reached. The ``AnalyzeBranch`` method in 1004 ``XXXInstrInfo`` may be implemented to examine conditional instructions and 1005 remove unnecessary instructions. ``AnalyzeBranch`` looks at the end of a 1006 machine basic block (MBB) for opportunities for improvement, such as branch 1007 folding and if conversion. The ``BranchFolder`` and ``IfConverter`` machine 1008 function passes (see the source files ``BranchFolding.cpp`` and 1009 ``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch`` 1010 to improve the control flow graph that represents the instructions. 1011 1012 Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be 1013 examined as models for your own ``AnalyzeBranch`` implementation. Since SPARC 1014 does not implement a useful ``AnalyzeBranch``, the ARM target implementation is 1015 shown below. 1016 1017 ``AnalyzeBranch`` returns a Boolean value and takes four parameters: 1018 1019 * ``MachineBasicBlock &MBB`` --- The incoming block to be examined. 1020 1021 * ``MachineBasicBlock *&TBB`` --- A destination block that is returned. For a 1022 conditional branch that evaluates to true, ``TBB`` is the destination. 1023 1024 * ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to 1025 false, ``FBB`` is returned as the destination. 1026 1027 * ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a 1028 condition for a conditional branch. 1029 1030 In the simplest case, if a block ends without a branch, then it falls through 1031 to the successor block. No destination blocks are specified for either ``TBB`` 1032 or ``FBB``, so both parameters return ``NULL``. The start of the 1033 ``AnalyzeBranch`` (see code below for the ARM target) shows the function 1034 parameters and the code for the simplest case. 1035 1036 .. code-block:: c++ 1037 1038 bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 1039 MachineBasicBlock *&TBB, 1040 MachineBasicBlock *&FBB, 1041 std::vector<MachineOperand> &Cond) const 1042 { 1043 MachineBasicBlock::iterator I = MBB.end(); 1044 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) 1045 return false; 1046 1047 If a block ends with a single unconditional branch instruction, then 1048 ``AnalyzeBranch`` (shown below) should return the destination of that branch in 1049 the ``TBB`` parameter. 1050 1051 .. code-block:: c++ 1052 1053 if (LastOpc == ARM::B || LastOpc == ARM::tB) { 1054 TBB = LastInst->getOperand(0).getMBB(); 1055 return false; 1056 } 1057 1058 If a block ends with two unconditional branches, then the second branch is 1059 never reached. In that situation, as shown below, remove the last branch 1060 instruction and return the penultimate branch in the ``TBB`` parameter. 1061 1062 .. code-block:: c++ 1063 1064 if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) && 1065 (LastOpc == ARM::B || LastOpc == ARM::tB)) { 1066 TBB = SecondLastInst->getOperand(0).getMBB(); 1067 I = LastInst; 1068 I->eraseFromParent(); 1069 return false; 1070 } 1071 1072 A block may end with a single conditional branch instruction that falls through 1073 to successor block if the condition evaluates to false. In that case, 1074 ``AnalyzeBranch`` (shown below) should return the destination of that 1075 conditional branch in the ``TBB`` parameter and a list of operands in the 1076 ``Cond`` parameter to evaluate the condition. 1077 1078 .. code-block:: c++ 1079 1080 if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) { 1081 // Block ends with fall-through condbranch. 1082 TBB = LastInst->getOperand(0).getMBB(); 1083 Cond.push_back(LastInst->getOperand(1)); 1084 Cond.push_back(LastInst->getOperand(2)); 1085 return false; 1086 } 1087 1088 If a block ends with both a conditional branch and an ensuing unconditional 1089 branch, then ``AnalyzeBranch`` (shown below) should return the conditional 1090 branch destination (assuming it corresponds to a conditional evaluation of 1091 "``true``") in the ``TBB`` parameter and the unconditional branch destination 1092 in the ``FBB`` (corresponding to a conditional evaluation of "``false``"). A 1093 list of operands to evaluate the condition should be returned in the ``Cond`` 1094 parameter. 1095 1096 .. code-block:: c++ 1097 1098 unsigned SecondLastOpc = SecondLastInst->getOpcode(); 1099 1100 if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) || 1101 (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) { 1102 TBB = SecondLastInst->getOperand(0).getMBB(); 1103 Cond.push_back(SecondLastInst->getOperand(1)); 1104 Cond.push_back(SecondLastInst->getOperand(2)); 1105 FBB = LastInst->getOperand(0).getMBB(); 1106 return false; 1107 } 1108 1109 For the last two cases (ending with a single conditional branch or ending with 1110 one conditional and one unconditional branch), the operands returned in the 1111 ``Cond`` parameter can be passed to methods of other instructions to create new 1112 branches or perform other operations. An implementation of ``AnalyzeBranch`` 1113 requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage 1114 subsequent operations. 1115 1116 ``AnalyzeBranch`` should return false indicating success in most circumstances. 1117 ``AnalyzeBranch`` should only return true when the method is stumped about what 1118 to do, for example, if a block has three terminating branches. 1119 ``AnalyzeBranch`` may return true if it encounters a terminator it cannot 1120 handle, such as an indirect branch. 1121 1122 .. _instruction-selector: 1123 1124 Instruction Selector 1125 ==================== 1126 1127 LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of 1128 the ``SelectionDAG`` ideally represent native target instructions. During code 1129 generation, instruction selection passes are performed to convert non-native 1130 DAG instructions into native target-specific instructions. The pass described 1131 in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG 1132 instruction selection. Optionally, a pass may be defined (in 1133 ``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch 1134 instructions. Later, the code in ``XXXISelLowering.cpp`` replaces or removes 1135 operations and data types not supported natively (legalizes) in a 1136 ``SelectionDAG``. 1137 1138 TableGen generates code for instruction selection using the following target 1139 description input files: 1140 1141 * ``XXXInstrInfo.td`` --- Contains definitions of instructions in a 1142 target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is 1143 included in ``XXXISelDAGToDAG.cpp``. 1144 1145 * ``XXXCallingConv.td`` --- Contains the calling and return value conventions 1146 for the target architecture, and it generates ``XXXGenCallingConv.inc``, 1147 which is included in ``XXXISelLowering.cpp``. 1148 1149 The implementation of an instruction selection pass must include a header that 1150 declares the ``FunctionPass`` class or a subclass of ``FunctionPass``. In 1151 ``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction 1152 selection pass into the queue of passes to run. 1153 1154 The LLVM static compiler (``llc``) is an excellent tool for visualizing the 1155 contents of DAGs. To display the ``SelectionDAG`` before or after specific 1156 processing phases, use the command line options for ``llc``, described at 1157 :ref:`SelectionDAG-Process`. 1158 1159 To describe instruction selector behavior, you should add patterns for lowering 1160 LLVM code into a ``SelectionDAG`` as the last parameter of the instruction 1161 definitions in ``XXXInstrInfo.td``. For example, in ``SparcInstrInfo.td``, 1162 this entry defines a register store operation, and the last parameter describes 1163 a pattern with the store DAG operator. 1164 1165 .. code-block:: llvm 1166 1167 def STrr : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src), 1168 "st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>; 1169 1170 ``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``: 1171 1172 .. code-block:: llvm 1173 1174 def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>; 1175 1176 The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function 1177 defined in an implementation of the Instructor Selector (such as 1178 ``SparcISelDAGToDAG.cpp``). 1179 1180 In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined 1181 below: 1182 1183 .. code-block:: llvm 1184 1185 def store : PatFrag<(ops node:$val, node:$ptr), 1186 (st node:$val, node:$ptr), [{ 1187 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) 1188 return !ST->isTruncatingStore() && 1189 ST->getAddressingMode() == ISD::UNINDEXED; 1190 return false; 1191 }]>; 1192 1193 ``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the 1194 ``SelectCode`` method that is used to call the appropriate processing method 1195 for an instruction. In this example, ``SelectCode`` calls ``Select_ISD_STORE`` 1196 for the ``ISD::STORE`` opcode. 1197 1198 .. code-block:: c++ 1199 1200 SDNode *SelectCode(SDValue N) { 1201 ... 1202 MVT::ValueType NVT = N.getNode()->getValueType(0); 1203 switch (N.getOpcode()) { 1204 case ISD::STORE: { 1205 switch (NVT) { 1206 default: 1207 return Select_ISD_STORE(N); 1208 break; 1209 } 1210 break; 1211 } 1212 ... 1213 1214 The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``, 1215 code for ``STrr`` is created for ``Select_ISD_STORE``. The ``Emit_22`` method 1216 is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this 1217 instruction. 1218 1219 .. code-block:: c++ 1220 1221 SDNode *Select_ISD_STORE(const SDValue &N) { 1222 SDValue Chain = N.getOperand(0); 1223 if (Predicate_store(N.getNode())) { 1224 SDValue N1 = N.getOperand(1); 1225 SDValue N2 = N.getOperand(2); 1226 SDValue CPTmp0; 1227 SDValue CPTmp1; 1228 1229 // Pattern: (st:void i32:i32:$src, 1230 // ADDRrr:i32:$addr)<<P:Predicate_store>> 1231 // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src) 1232 // Pattern complexity = 13 cost = 1 size = 0 1233 if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) && 1234 N1.getNode()->getValueType(0) == MVT::i32 && 1235 N2.getNode()->getValueType(0) == MVT::i32) { 1236 return Emit_22(N, SP::STrr, CPTmp0, CPTmp1); 1237 } 1238 ... 1239 1240 The SelectionDAG Legalize Phase 1241 ------------------------------- 1242 1243 The Legalize phase converts a DAG to use types and operations that are natively 1244 supported by the target. For natively unsupported types and operations, you 1245 need to add code to the target-specific ``XXXTargetLowering`` implementation to 1246 convert unsupported types and operations to supported ones. 1247 1248 In the constructor for the ``XXXTargetLowering`` class, first use the 1249 ``addRegisterClass`` method to specify which types are supported and which 1250 register classes are associated with them. The code for the register classes 1251 are generated by TableGen from ``XXXRegisterInfo.td`` and placed in 1252 ``XXXGenRegisterInfo.h.inc``. For example, the implementation of the 1253 constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``) 1254 starts with the following code: 1255 1256 .. code-block:: c++ 1257 1258 addRegisterClass(MVT::i32, SP::IntRegsRegisterClass); 1259 addRegisterClass(MVT::f32, SP::FPRegsRegisterClass); 1260 addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass); 1261 1262 You should examine the node types in the ``ISD`` namespace 1263 (``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations 1264 the target natively supports. For operations that do **not** have native 1265 support, add a callback to the constructor for the ``XXXTargetLowering`` class, 1266 so the instruction selection process knows what to do. The ``TargetLowering`` 1267 class callback methods (declared in ``llvm/Target/TargetLowering.h``) are: 1268 1269 * ``setOperationAction`` --- General operation. 1270 * ``setLoadExtAction`` --- Load with extension. 1271 * ``setTruncStoreAction`` --- Truncating store. 1272 * ``setIndexedLoadAction`` --- Indexed load. 1273 * ``setIndexedStoreAction`` --- Indexed store. 1274 * ``setConvertAction`` --- Type conversion. 1275 * ``setCondCodeAction`` --- Support for a given condition code. 1276 1277 Note: on older releases, ``setLoadXAction`` is used instead of 1278 ``setLoadExtAction``. Also, on older releases, ``setCondCodeAction`` may not 1279 be supported. Examine your release to see what methods are specifically 1280 supported. 1281 1282 These callbacks are used to determine that an operation does or does not work 1283 with a specified type (or types). And in all cases, the third parameter is a 1284 ``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or 1285 ``Legal``. ``SparcISelLowering.cpp`` contains examples of all four 1286 ``LegalAction`` values. 1287 1288 Promote 1289 ^^^^^^^ 1290 1291 For an operation without native support for a given type, the specified type 1292 may be promoted to a larger type that is supported. For example, SPARC does 1293 not support a sign-extending load for Boolean values (``i1`` type), so in 1294 ``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes 1295 ``i1`` type values to a large type before loading. 1296 1297 .. code-block:: c++ 1298 1299 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 1300 1301 Expand 1302 ^^^^^^ 1303 1304 For a type without native support, a value may need to be broken down further, 1305 rather than promoted. For an operation without native support, a combination 1306 of other operations may be used to similar effect. In SPARC, the 1307 floating-point sine and cosine trig operations are supported by expansion to 1308 other operations, as indicated by the third parameter, ``Expand``, to 1309 ``setOperationAction``: 1310 1311 .. code-block:: c++ 1312 1313 setOperationAction(ISD::FSIN, MVT::f32, Expand); 1314 setOperationAction(ISD::FCOS, MVT::f32, Expand); 1315 1316 Custom 1317 ^^^^^^ 1318 1319 For some operations, simple type promotion or operation expansion may be 1320 insufficient. In some cases, a special intrinsic function must be implemented. 1321 1322 For example, a constant value may require special treatment, or an operation 1323 may require spilling and restoring registers in the stack and working with 1324 register allocators. 1325 1326 As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion 1327 from a floating point value to a signed integer, first the 1328 ``setOperationAction`` should be called with ``Custom`` as the third parameter: 1329 1330 .. code-block:: c++ 1331 1332 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 1333 1334 In the ``LowerOperation`` method, for each ``Custom`` operation, a case 1335 statement should be added to indicate what function to call. In the following 1336 code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method: 1337 1338 .. code-block:: c++ 1339 1340 SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { 1341 switch (Op.getOpcode()) { 1342 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1343 ... 1344 } 1345 } 1346 1347 Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to 1348 convert the floating-point value to an integer. 1349 1350 .. code-block:: c++ 1351 1352 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) { 1353 assert(Op.getValueType() == MVT::i32); 1354 Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0)); 1355 return DAG.getNode(ISD::BITCAST, MVT::i32, Op); 1356 } 1357 1358 Legal 1359 ^^^^^ 1360 1361 The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation 1362 **is** natively supported. ``Legal`` represents the default condition, so it 1363 is rarely used. In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an 1364 operation to count the bits set in an integer) is natively supported only for 1365 SPARC v9. The following code enables the ``Expand`` conversion technique for 1366 non-v9 SPARC implementations. 1367 1368 .. code-block:: c++ 1369 1370 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 1371 ... 1372 if (TM.getSubtarget<SparcSubtarget>().isV9()) 1373 setOperationAction(ISD::CTPOP, MVT::i32, Legal); 1374 1375 Calling Conventions 1376 ------------------- 1377 1378 To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses 1379 interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in 1380 ``lib/Target/TargetCallingConv.td``. TableGen can take the target descriptor 1381 file ``XXXGenCallingConv.td`` and generate the header file 1382 ``XXXGenCallingConv.inc``, which is typically included in 1383 ``XXXISelLowering.cpp``. You can use the interfaces in 1384 ``TargetCallingConv.td`` to specify: 1385 1386 * The order of parameter allocation. 1387 1388 * Where parameters and return values are placed (that is, on the stack or in 1389 registers). 1390 1391 * Which registers may be used. 1392 1393 * Whether the caller or callee unwinds the stack. 1394 1395 The following example demonstrates the use of the ``CCIfType`` and 1396 ``CCAssignToReg`` interfaces. If the ``CCIfType`` predicate is true (that is, 1397 if the current argument is of type ``f32`` or ``f64``), then the action is 1398 performed. In this case, the ``CCAssignToReg`` action assigns the argument 1399 value to the first available register: either ``R0`` or ``R1``. 1400 1401 .. code-block:: llvm 1402 1403 CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>> 1404 1405 ``SparcCallingConv.td`` contains definitions for a target-specific return-value 1406 calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention 1407 (``CC_Sparc32``). The definition of ``RetCC_Sparc32`` (shown below) indicates 1408 which registers are used for specified scalar return types. A single-precision 1409 float is returned to register ``F0``, and a double-precision float goes to 1410 register ``D0``. A 32-bit integer is returned in register ``I0`` or ``I1``. 1411 1412 .. code-block:: llvm 1413 1414 def RetCC_Sparc32 : CallingConv<[ 1415 CCIfType<[i32], CCAssignToReg<[I0, I1]>>, 1416 CCIfType<[f32], CCAssignToReg<[F0]>>, 1417 CCIfType<[f64], CCAssignToReg<[D0]>> 1418 ]>; 1419 1420 The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces 1421 ``CCAssignToStack``, which assigns the value to a stack slot with the specified 1422 size and alignment. In the example below, the first parameter, 4, indicates 1423 the size of the slot, and the second parameter, also 4, indicates the stack 1424 alignment along 4-byte units. (Special cases: if size is zero, then the ABI 1425 size is used; if alignment is zero, then the ABI alignment is used.) 1426 1427 .. code-block:: llvm 1428 1429 def CC_Sparc32 : CallingConv<[ 1430 // All arguments get passed in integer registers if there is space. 1431 CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>, 1432 CCAssignToStack<4, 4> 1433 ]>; 1434 1435 ``CCDelegateTo`` is another commonly used interface, which tries to find a 1436 specified sub-calling convention, and, if a match is found, it is invoked. In 1437 the following example (in ``X86CallingConv.td``), the definition of 1438 ``RetCC_X86_32_C`` ends with ``CCDelegateTo``. After the current value is 1439 assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is 1440 invoked. 1441 1442 .. code-block:: llvm 1443 1444 def RetCC_X86_32_C : CallingConv<[ 1445 CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>, 1446 CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>, 1447 CCDelegateTo<RetCC_X86Common> 1448 ]>; 1449 1450 ``CCIfCC`` is an interface that attempts to match the given name to the current 1451 calling convention. If the name identifies the current calling convention, 1452 then a specified action is invoked. In the following example (in 1453 ``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then 1454 ``RetCC_X86_32_Fast`` is invoked. If the ``SSECall`` calling convention is in 1455 use, then ``RetCC_X86_32_SSE`` is invoked. 1456 1457 .. code-block:: llvm 1458 1459 def RetCC_X86_32 : CallingConv<[ 1460 CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>, 1461 CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>, 1462 CCDelegateTo<RetCC_X86_32_C> 1463 ]>; 1464 1465 Other calling convention interfaces include: 1466 1467 * ``CCIf <predicate, action>`` --- If the predicate matches, apply the action. 1468 1469 * ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``" 1470 attribute, then apply the action. 1471 1472 * ``CCIfNest <action>`` --- If the argument is marked with the "``nest``" 1473 attribute, then apply the action. 1474 1475 * ``CCIfNotVarArg <action>`` --- If the current function does not take a 1476 variable number of arguments, apply the action. 1477 1478 * ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to 1479 ``CCAssignToReg``, but with a shadow list of registers. 1480 1481 * ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the 1482 minimum specified size and alignment. 1483 1484 * ``CCPromoteToType <type>`` --- Promote the current value to the specified 1485 type. 1486 1487 * ``CallingConv <[actions]>`` --- Define each calling convention that is 1488 supported. 1489 1490 Assembly Printer 1491 ================ 1492 1493 During the code emission stage, the code generator may utilize an LLVM pass to 1494 produce assembly output. To do this, you want to implement the code for a 1495 printer that converts LLVM IR to a GAS-format assembly language for your target 1496 machine, using the following steps: 1497 1498 * Define all the assembly strings for your target, adding them to the 1499 instructions defined in the ``XXXInstrInfo.td`` file. (See 1500 :ref:`instruction-set`.) TableGen will produce an output file 1501 (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction`` 1502 method for the ``XXXAsmPrinter`` class. 1503 1504 * Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of 1505 the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``). 1506 1507 * Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for 1508 ``TargetAsmInfo`` properties and sometimes new implementations for methods. 1509 1510 * Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that 1511 performs the LLVM-to-assembly conversion. 1512 1513 The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the 1514 ``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``. Similarly, 1515 ``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo`` 1516 replacement values that override the default values in ``TargetAsmInfo.cpp``. 1517 For example in ``SparcTargetAsmInfo.cpp``: 1518 1519 .. code-block:: c++ 1520 1521 SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) { 1522 Data16bitsDirective = "\t.half\t"; 1523 Data32bitsDirective = "\t.word\t"; 1524 Data64bitsDirective = 0; // .xword is only supported by V9. 1525 ZeroDirective = "\t.skip\t"; 1526 CommentString = "!"; 1527 ConstantPoolSection = "\t.section \".rodata\",#alloc\n"; 1528 } 1529 1530 The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example 1531 where the target specific ``TargetAsmInfo`` class uses an overridden methods: 1532 ``ExpandInlineAsm``. 1533 1534 A target-specific implementation of ``AsmPrinter`` is written in 1535 ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts 1536 the LLVM to printable assembly. The implementation must include the following 1537 headers that have declarations for the ``AsmPrinter`` and 1538 ``MachineFunctionPass`` classes. The ``MachineFunctionPass`` is a subclass of 1539 ``FunctionPass``. 1540 1541 .. code-block:: c++ 1542 1543 #include "llvm/CodeGen/AsmPrinter.h" 1544 #include "llvm/CodeGen/MachineFunctionPass.h" 1545 1546 As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set 1547 up the ``AsmPrinter``. In ``SparcAsmPrinter``, a ``Mangler`` object is 1548 instantiated to process variable names. 1549 1550 In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in 1551 ``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``. In 1552 ``MachineFunctionPass``, the ``runOnFunction`` method invokes 1553 ``runOnMachineFunction``. Target-specific implementations of 1554 ``runOnMachineFunction`` differ, but generally do the following to process each 1555 machine function: 1556 1557 * Call ``SetupMachineFunction`` to perform initialization. 1558 1559 * Call ``EmitConstantPool`` to print out (to the output stream) constants which 1560 have been spilled to memory. 1561 1562 * Call ``EmitJumpTableInfo`` to print out jump tables used by the current 1563 function. 1564 1565 * Print out the label for the current function. 1566 1567 * Print out the code for the function, including basic block labels and the 1568 assembly for the instruction (using ``printInstruction``) 1569 1570 The ``XXXAsmPrinter`` implementation must also include the code generated by 1571 TableGen that is output in the ``XXXGenAsmWriter.inc`` file. The code in 1572 ``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction`` 1573 method that may call these methods: 1574 1575 * ``printOperand`` 1576 * ``printMemOperand`` 1577 * ``printCCOperand`` (for conditional statements) 1578 * ``printDataDirective`` 1579 * ``printDeclare`` 1580 * ``printImplicitDef`` 1581 * ``printInlineAsm`` 1582 1583 The implementations of ``printDeclare``, ``printImplicitDef``, 1584 ``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally 1585 adequate for printing assembly and do not need to be overridden. 1586 1587 The ``printOperand`` method is implemented with a long ``switch``/``case`` 1588 statement for the type of operand: register, immediate, basic block, external 1589 symbol, global address, constant pool index, or jump table index. For an 1590 instruction with a memory address operand, the ``printMemOperand`` method 1591 should be implemented to generate the proper output. Similarly, 1592 ``printCCOperand`` should be used to print a conditional operand. 1593 1594 ``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be 1595 called to shut down the assembly printer. During ``doFinalization``, global 1596 variables and constants are printed to output. 1597 1598 Subtarget Support 1599 ================= 1600 1601 Subtarget support is used to inform the code generation process of instruction 1602 set variations for a given chip set. For example, the LLVM SPARC 1603 implementation provided covers three major versions of the SPARC microprocessor 1604 architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a 1605 64-bit architecture), and the UltraSPARC architecture. V8 has 16 1606 double-precision floating-point registers that are also usable as either 32 1607 single-precision or 8 quad-precision registers. V8 is also purely big-endian. 1608 V9 has 32 double-precision floating-point registers that are also usable as 16 1609 quad-precision registers, but cannot be used as single-precision registers. 1610 The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set 1611 extensions. 1612 1613 If subtarget support is needed, you should implement a target-specific 1614 ``XXXSubtarget`` class for your architecture. This class should process the 1615 command-line options ``-mcpu=`` and ``-mattr=``. 1616 1617 TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to 1618 generate code in ``SparcGenSubtarget.inc``. In ``Target.td``, shown below, the 1619 ``SubtargetFeature`` interface is defined. The first 4 string parameters of 1620 the ``SubtargetFeature`` interface are a feature name, an attribute set by the 1621 feature, the value of the attribute, and a description of the feature. (The 1622 fifth parameter is a list of features whose presence is implied, and its 1623 default value is an empty array.) 1624 1625 .. code-block:: llvm 1626 1627 class SubtargetFeature<string n, string a, string v, string d, 1628 list<SubtargetFeature> i = []> { 1629 string Name = n; 1630 string Attribute = a; 1631 string Value = v; 1632 string Desc = d; 1633 list<SubtargetFeature> Implies = i; 1634 } 1635 1636 In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the 1637 following features. 1638 1639 .. code-block:: llvm 1640 1641 def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true", 1642 "Enable SPARC-V9 instructions">; 1643 def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8", 1644 "V8DeprecatedInsts", "true", 1645 "Enable deprecated V8 instructions in V9 mode">; 1646 def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true", 1647 "Enable UltraSPARC Visual Instruction Set extensions">; 1648 1649 Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to 1650 define particular SPARC processor subtypes that may have the previously 1651 described features. 1652 1653 .. code-block:: llvm 1654 1655 class Proc<string Name, list<SubtargetFeature> Features> 1656 : Processor<Name, NoItineraries, Features>; 1657 1658 def : Proc<"generic", []>; 1659 def : Proc<"v8", []>; 1660 def : Proc<"supersparc", []>; 1661 def : Proc<"sparclite", []>; 1662 def : Proc<"f934", []>; 1663 def : Proc<"hypersparc", []>; 1664 def : Proc<"sparclite86x", []>; 1665 def : Proc<"sparclet", []>; 1666 def : Proc<"tsc701", []>; 1667 def : Proc<"v9", [FeatureV9]>; 1668 def : Proc<"ultrasparc", [FeatureV9, FeatureV8Deprecated]>; 1669 def : Proc<"ultrasparc3", [FeatureV9, FeatureV8Deprecated]>; 1670 def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>; 1671 1672 From ``Target.td`` and ``Sparc.td`` files, the resulting 1673 ``SparcGenSubtarget.inc`` specifies enum values to identify the features, 1674 arrays of constants to represent the CPU features and CPU subtypes, and the 1675 ``ParseSubtargetFeatures`` method that parses the features string that sets 1676 specified subtarget options. The generated ``SparcGenSubtarget.inc`` file 1677 should be included in the ``SparcSubtarget.cpp``. The target-specific 1678 implementation of the ``XXXSubtarget`` method should follow this pseudocode: 1679 1680 .. code-block:: c++ 1681 1682 XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) { 1683 // Set the default features 1684 // Determine default and user specified characteristics of the CPU 1685 // Call ParseSubtargetFeatures(FS, CPU) to parse the features string 1686 // Perform any additional operations 1687 } 1688 1689 JIT Support 1690 =========== 1691 1692 The implementation of a target machine optionally includes a Just-In-Time (JIT) 1693 code generator that emits machine code and auxiliary structures as binary 1694 output that can be written directly to memory. To do this, implement JIT code 1695 generation by performing the following steps: 1696 1697 * Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass 1698 that transforms target-machine instructions into relocatable machine 1699 code. 1700 1701 * Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for 1702 target-specific code-generation activities, such as emitting machine code and 1703 stubs. 1704 1705 * Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object 1706 through its ``getJITInfo`` method. 1707 1708 There are several different approaches to writing the JIT support code. For 1709 instance, TableGen and target descriptor files may be used for creating a JIT 1710 code generator, but are not mandatory. For the Alpha and PowerPC target 1711 machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which 1712 contains the binary coding of machine instructions and the 1713 ``getBinaryCodeForInstr`` method to access those codes. Other JIT 1714 implementations do not. 1715 1716 Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the 1717 ``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the 1718 ``MachineCodeEmitter`` class containing code for several callback functions 1719 that write data (in bytes, words, strings, etc.) to the output stream. 1720 1721 Machine Code Emitter 1722 -------------------- 1723 1724 In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is 1725 implemented as a function pass (subclass of ``MachineFunctionPass``). The 1726 target-specific implementation of ``runOnMachineFunction`` (invoked by 1727 ``runOnFunction`` in ``MachineFunctionPass``) iterates through the 1728 ``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and 1729 emit binary code. ``emitInstruction`` is largely implemented with case 1730 statements on the instruction types defined in ``XXXInstrInfo.h``. For 1731 example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built 1732 around the following ``switch``/``case`` statements: 1733 1734 .. code-block:: c++ 1735 1736 switch (Desc->TSFlags & X86::FormMask) { 1737 case X86II::Pseudo: // for not yet implemented instructions 1738 ... // or pseudo-instructions 1739 break; 1740 case X86II::RawFrm: // for instructions with a fixed opcode value 1741 ... 1742 break; 1743 case X86II::AddRegFrm: // for instructions that have one register operand 1744 ... // added to their opcode 1745 break; 1746 case X86II::MRMDestReg:// for instructions that use the Mod/RM byte 1747 ... // to specify a destination (register) 1748 break; 1749 case X86II::MRMDestMem:// for instructions that use the Mod/RM byte 1750 ... // to specify a destination (memory) 1751 break; 1752 case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte 1753 ... // to specify a source (register) 1754 break; 1755 case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte 1756 ... // to specify a source (memory) 1757 break; 1758 case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on 1759 case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and 1760 case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field 1761 case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data 1762 ... 1763 break; 1764 case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on 1765 case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and 1766 case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field 1767 case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data 1768 ... 1769 break; 1770 case X86II::MRMInitReg: // for instructions whose source and 1771 ... // destination are the same register 1772 break; 1773 } 1774 1775 The implementations of these case statements often first emit the opcode and 1776 then get the operand(s). Then depending upon the operand, helper methods may 1777 be called to process the operand(s). For example, in ``X86CodeEmitter.cpp``, 1778 for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is 1779 the opcode added to the register operand. Then an object representing the 1780 machine operand, ``MO1``, is extracted. The helper methods such as 1781 ``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``, 1782 ``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type. 1783 (``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``, 1784 ``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``, 1785 and ``emitJumpTableAddress`` that emit the data into the output stream.) 1786 1787 .. code-block:: c++ 1788 1789 case X86II::AddRegFrm: 1790 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg())); 1791 1792 if (CurOp != NumOps) { 1793 const MachineOperand &MO1 = MI.getOperand(CurOp++); 1794 unsigned Size = X86InstrInfo::sizeOfImm(Desc); 1795 if (MO1.isImmediate()) 1796 emitConstant(MO1.getImm(), Size); 1797 else { 1798 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word 1799 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); 1800 if (Opcode == X86::MOV64ri) 1801 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag? 1802 if (MO1.isGlobalAddress()) { 1803 bool NeedStub = isa<Function>(MO1.getGlobal()); 1804 bool isLazy = gvNeedsLazyPtr(MO1.getGlobal()); 1805 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, 1806 NeedStub, isLazy); 1807 } else if (MO1.isExternalSymbol()) 1808 emitExternalSymbolAddress(MO1.getSymbolName(), rt); 1809 else if (MO1.isConstantPoolIndex()) 1810 emitConstPoolAddress(MO1.getIndex(), rt); 1811 else if (MO1.isJumpTableIndex()) 1812 emitJumpTableAddress(MO1.getIndex(), rt); 1813 } 1814 } 1815 break; 1816 1817 In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which 1818 is a ``RelocationType`` enum that may be used to relocate addresses (for 1819 example, a global address with a PIC base offset). The ``RelocationType`` enum 1820 for that target is defined in the short target-specific ``XXXRelocations.h`` 1821 file. The ``RelocationType`` is used by the ``relocate`` method defined in 1822 ``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols. 1823 1824 For example, ``X86Relocations.h`` specifies the following relocation types for 1825 the X86 addresses. In all four cases, the relocated value is added to the 1826 value already in memory. For ``reloc_pcrel_word`` and ``reloc_picrel_word``, 1827 there is an additional initial adjustment. 1828 1829 .. code-block:: c++ 1830 1831 enum RelocationType { 1832 reloc_pcrel_word = 0, // add reloc value after adjusting for the PC loc 1833 reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base 1834 reloc_absolute_word = 2, // absolute relocation; no additional adjustment 1835 reloc_absolute_dword = 3 // absolute relocation; no additional adjustment 1836 }; 1837 1838 Target JIT Info 1839 --------------- 1840 1841 ``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific 1842 code-generation activities, such as emitting machine code and stubs. At 1843 minimum, a target-specific version of ``XXXJITInfo`` implements the following: 1844 1845 * ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a 1846 function that is used for compilation. 1847 1848 * ``emitFunctionStub`` --- Returns a native function with a specified address 1849 for a callback function. 1850 1851 * ``relocate`` --- Changes the addresses of referenced globals, based on 1852 relocation types. 1853 1854 * Callback function that are wrappers to a function stub that is used when the 1855 real target is not initially known. 1856 1857 ``getLazyResolverFunction`` is generally trivial to implement. It makes the 1858 incoming parameter as the global ``JITCompilerFunction`` and returns the 1859 callback function that will be used a function wrapper. For the Alpha target 1860 (in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is 1861 simply: 1862 1863 .. code-block:: c++ 1864 1865 TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction( 1866 JITCompilerFn F) { 1867 JITCompilerFunction = F; 1868 return AlphaCompilationCallback; 1869 } 1870 1871 For the X86 target, the ``getLazyResolverFunction`` implementation is a little 1872 more complicated, because it returns a different callback function for 1873 processors with SSE instructions and XMM registers. 1874 1875 The callback function initially saves and later restores the callee register 1876 values, incoming arguments, and frame and return address. The callback 1877 function needs low-level access to the registers or stack, so it is typically 1878 implemented with assembler. 1879 1880