Home | History | Annotate | Download | only in docs
      1 =======================
      2 Writing an LLVM Backend
      3 =======================
      4 
      5 .. toctree::
      6    :hidden:
      7 
      8    HowToUseInstrMappings
      9 
     10 .. contents::
     11    :local:
     12 
     13 Introduction
     14 ============
     15 
     16 This document describes techniques for writing compiler backends that convert
     17 the LLVM Intermediate Representation (IR) to code for a specified machine or
     18 other languages.  Code intended for a specific machine can take the form of
     19 either assembly code or binary code (usable for a JIT compiler).
     20 
     21 The backend of LLVM features a target-independent code generator that may
     22 create output for several types of target CPUs --- including X86, PowerPC,
     23 ARM, and SPARC.  The backend may also be used to generate code targeted at SPUs
     24 of the Cell processor or GPUs to support the execution of compute kernels.
     25 
     26 The document focuses on existing examples found in subdirectories of
     27 ``llvm/lib/Target`` in a downloaded LLVM release.  In particular, this document
     28 focuses on the example of creating a static compiler (one that emits text
     29 assembly) for a SPARC target, because SPARC has fairly standard
     30 characteristics, such as a RISC instruction set and straightforward calling
     31 conventions.
     32 
     33 Audience
     34 --------
     35 
     36 The audience for this document is anyone who needs to write an LLVM backend to
     37 generate code for a specific hardware or software target.
     38 
     39 Prerequisite Reading
     40 --------------------
     41 
     42 These essential documents must be read before reading this document:
     43 
     44 * `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for
     45   the LLVM assembly language.
     46 
     47 * :doc:`CodeGenerator` --- a guide to the components (classes and code
     48   generation algorithms) for translating the LLVM internal representation into
     49   machine code for a specified target.  Pay particular attention to the
     50   descriptions of code generation stages: Instruction Selection, Scheduling and
     51   Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code
     52   Insertion, Late Machine Code Optimizations, and Code Emission.
     53 
     54 * :doc:`TableGenFundamentals` --- a document that describes the TableGen
     55   (``tblgen``) application that manages domain-specific information to support
     56   LLVM code generation.  TableGen processes input from a target description
     57   file (``.td`` suffix) and generates C++ code that can be used for code
     58   generation.
     59 
     60 * :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as
     61   are several ``SelectionDAG`` processing steps.
     62 
     63 To follow the SPARC examples in this document, have a copy of `The SPARC
     64 Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for
     65 reference.  For details about the ARM instruction set, refer to the `ARM
     66 Architecture Reference Manual <http://infocenter.arm.com/>`_.  For more about
     67 the GNU Assembler format (``GAS``), see `Using As
     68 <http://sourceware.org/binutils/docs/as/index.html>`_, especially for the
     69 assembly printer.  "Using As" contains a list of target machine dependent
     70 features.
     71 
     72 Basic Steps
     73 -----------
     74 
     75 To write a compiler backend for LLVM that converts the LLVM IR to code for a
     76 specified target (machine or other language), follow these steps:
     77 
     78 * Create a subclass of the ``TargetMachine`` class that describes
     79   characteristics of your target machine.  Copy existing examples of specific
     80   ``TargetMachine`` class and header files; for example, start with
     81   ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file
     82   names for your target.  Similarly, change code that references "``Sparc``" to
     83   reference your target.
     84 
     85 * Describe the register set of the target.  Use TableGen to generate code for
     86   register definition, register aliases, and register classes from a
     87   target-specific ``RegisterInfo.td`` input file.  You should also write
     88   additional code for a subclass of the ``TargetRegisterInfo`` class that
     89   represents the class register file data used for register allocation and also
     90   describes the interactions between registers.
     91 
     92 * Describe the instruction set of the target.  Use TableGen to generate code
     93   for target-specific instructions from target-specific versions of
     94   ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``.  You should write
     95   additional code for a subclass of the ``TargetInstrInfo`` class to represent
     96   machine instructions supported by the target machine.
     97 
     98 * Describe the selection and conversion of the LLVM IR from a Directed Acyclic
     99   Graph (DAG) representation of instructions to native target-specific
    100   instructions.  Use TableGen to generate code that matches patterns and
    101   selects instructions based on additional information in a target-specific
    102   version of ``TargetInstrInfo.td``.  Write code for ``XXXISelDAGToDAG.cpp``,
    103   where ``XXX`` identifies the specific target, to perform pattern matching and
    104   DAG-to-DAG instruction selection.  Also write code in ``XXXISelLowering.cpp``
    105   to replace or remove operations and data types that are not supported
    106   natively in a SelectionDAG.
    107 
    108 * Write code for an assembly printer that converts LLVM IR to a GAS format for
    109   your target machine.  You should add assembly strings to the instructions
    110   defined in your target-specific version of ``TargetInstrInfo.td``.  You
    111   should also write code for a subclass of ``AsmPrinter`` that performs the
    112   LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``.
    113 
    114 * Optionally, add support for subtargets (i.e., variants with different
    115   capabilities).  You should also write code for a subclass of the
    116   ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and
    117   ``-mattr=`` command-line options.
    118 
    119 * Optionally, add JIT support and create a machine code emitter (subclass of
    120   ``TargetJITInfo``) that is used to emit binary code directly into memory.
    121 
    122 In the ``.cpp`` and ``.h``. files, initially stub up these methods and then
    123 implement them later.  Initially, you may not know which private members that
    124 the class will need and which components will need to be subclassed.
    125 
    126 Preliminaries
    127 -------------
    128 
    129 To actually create your compiler backend, you need to create and modify a few
    130 files.  The absolute minimum is discussed here.  But to actually use the LLVM
    131 target-independent code generator, you must perform the steps described in the
    132 :doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document.
    133 
    134 First, you should create a subdirectory under ``lib/Target`` to hold all the
    135 files related to your target.  If your target is called "Dummy", create the
    136 directory ``lib/Target/Dummy``.
    137 
    138 In this new directory, create a ``Makefile``.  It is easiest to copy a
    139 ``Makefile`` of another target and modify it.  It should at least contain the
    140 ``LEVEL``, ``LIBRARYNAME`` and ``TARGET`` variables, and then include
    141 ``$(LEVEL)/Makefile.common``.  The library can be named ``LLVMDummy`` (for
    142 example, see the MIPS target).  Alternatively, you can split the library into
    143 ``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which should be
    144 implemented in a subdirectory below ``lib/Target/Dummy`` (for example, see the
    145 PowerPC target).
    146 
    147 Note that these two naming schemes are hardcoded into ``llvm-config``.  Using
    148 any other naming scheme will confuse ``llvm-config`` and produce a lot of
    149 (seemingly unrelated) linker errors when linking ``llc``.
    150 
    151 To make your target actually do something, you need to implement a subclass of
    152 ``TargetMachine``.  This implementation should typically be in the file
    153 ``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target``
    154 directory will be built and should work.  To use LLVM's target independent code
    155 generator, you should do what all current machine backends do: create a
    156 subclass of ``LLVMTargetMachine``.  (To create a target from scratch, create a
    157 subclass of ``TargetMachine``.)
    158 
    159 To get LLVM to actually build and link your target, you need to add it to the
    160 ``TARGETS_TO_BUILD`` variable.  To do this, you modify the configure script to
    161 know about your target when parsing the ``--enable-targets`` option.  Search
    162 the configure script for ``TARGETS_TO_BUILD``, add your target to the lists
    163 there (some creativity required), and then reconfigure.  Alternatively, you can
    164 change ``autotools/configure.ac`` and regenerate configure by running
    165 ``./autoconf/AutoRegen.sh``.
    166 
    167 Target Machine
    168 ==============
    169 
    170 ``LLVMTargetMachine`` is designed as a base class for targets implemented with
    171 the LLVM target-independent code generator.  The ``LLVMTargetMachine`` class
    172 should be specialized by a concrete target class that implements the various
    173 virtual methods.  ``LLVMTargetMachine`` is defined as a subclass of
    174 ``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``.  The
    175 ``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes
    176 numerous command-line options.
    177 
    178 To create a concrete target-specific subclass of ``LLVMTargetMachine``, start
    179 by copying an existing ``TargetMachine`` class and header.  You should name the
    180 files that you create to reflect your specific target.  For instance, for the
    181 SPARC target, name the files ``SparcTargetMachine.h`` and
    182 ``SparcTargetMachine.cpp``.
    183 
    184 For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must
    185 have access methods to obtain objects that represent target components.  These
    186 methods are named ``get*Info``, and are intended to obtain the instruction set
    187 (``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout
    188 (``getFrameInfo``), and similar information.  ``XXXTargetMachine`` must also
    189 implement the ``getDataLayout`` method to access an object with target-specific
    190 data characteristics, such as data type size and alignment requirements.
    191 
    192 For instance, for the SPARC target, the header file ``SparcTargetMachine.h``
    193 declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that
    194 simply return a class member.
    195 
    196 .. code-block:: c++
    197 
    198   namespace llvm {
    199 
    200   class Module;
    201 
    202   class SparcTargetMachine : public LLVMTargetMachine {
    203     const DataLayout DataLayout;       // Calculates type size & alignment
    204     SparcSubtarget Subtarget;
    205     SparcInstrInfo InstrInfo;
    206     TargetFrameInfo FrameInfo;
    207 
    208   protected:
    209     virtual const TargetAsmInfo *createTargetAsmInfo() const;
    210 
    211   public:
    212     SparcTargetMachine(const Module &M, const std::string &FS);
    213 
    214     virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
    215     virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
    216     virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
    217     virtual const TargetRegisterInfo *getRegisterInfo() const {
    218       return &InstrInfo.getRegisterInfo();
    219     }
    220     virtual const DataLayout *getDataLayout() const { return &DataLayout; }
    221     static unsigned getModuleMatchQuality(const Module &M);
    222 
    223     // Pass Pipeline Configuration
    224     virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
    225     virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
    226   };
    227 
    228   } // end namespace llvm
    229 
    230 * ``getInstrInfo()``
    231 * ``getRegisterInfo()``
    232 * ``getFrameInfo()``
    233 * ``getDataLayout()``
    234 * ``getSubtargetImpl()``
    235 
    236 For some targets, you also need to support the following methods:
    237 
    238 * ``getTargetLowering()``
    239 * ``getJITInfo()``
    240 
    241 In addition, the ``XXXTargetMachine`` constructor should specify a
    242 ``TargetDescription`` string that determines the data layout for the target
    243 machine, including characteristics such as pointer size, alignment, and
    244 endianness.  For example, the constructor for ``SparcTargetMachine`` contains
    245 the following:
    246 
    247 .. code-block:: c++
    248 
    249   SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
    250     : DataLayout("E-p:32:32-f128:128:128"),
    251       Subtarget(M, FS), InstrInfo(Subtarget),
    252       FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
    253   }
    254 
    255 Hyphens separate portions of the ``TargetDescription`` string.
    256 
    257 * An upper-case "``E``" in the string indicates a big-endian target data model.
    258   A lower-case "``e``" indicates little-endian.
    259 
    260 * "``p:``" is followed by pointer information: size, ABI alignment, and
    261   preferred alignment.  If only two figures follow "``p:``", then the first
    262   value is pointer size, and the second value is both ABI and preferred
    263   alignment.
    264 
    265 * Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or
    266   "``a``" (corresponding to integer, floating point, vector, or aggregate).
    267   "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred
    268   alignment. "``f``" is followed by three values: the first indicates the size
    269   of a long double, then ABI alignment, and then ABI preferred alignment.
    270 
    271 Target Registration
    272 ===================
    273 
    274 You must also register your target with the ``TargetRegistry``, which is what
    275 other LLVM tools use to be able to lookup and use your target at runtime.  The
    276 ``TargetRegistry`` can be used directly, but for most targets there are helper
    277 templates which should take care of the work for you.
    278 
    279 All targets should declare a global ``Target`` object which is used to
    280 represent the target during registration.  Then, in the target's ``TargetInfo``
    281 library, the target should define that object and use the ``RegisterTarget``
    282 template to register the target.  For example, the Sparc registration code
    283 looks like this:
    284 
    285 .. code-block:: c++
    286 
    287   Target llvm::TheSparcTarget;
    288 
    289   extern "C" void LLVMInitializeSparcTargetInfo() {
    290     RegisterTarget<Triple::sparc, /*HasJIT=*/false>
    291       X(TheSparcTarget, "sparc", "Sparc");
    292   }
    293 
    294 This allows the ``TargetRegistry`` to look up the target by name or by target
    295 triple.  In addition, most targets will also register additional features which
    296 are available in separate libraries.  These registration steps are separate,
    297 because some clients may wish to only link in some parts of the target --- the
    298 JIT code generator does not require the use of the assembler printer, for
    299 example.  Here is an example of registering the Sparc assembly printer:
    300 
    301 .. code-block:: c++
    302 
    303   extern "C" void LLVMInitializeSparcAsmPrinter() {
    304     RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget);
    305   }
    306 
    307 For more information, see "`llvm/Target/TargetRegistry.h
    308 </doxygen/TargetRegistry_8h-source.html>`_".
    309 
    310 Register Set and Register Classes
    311 =================================
    312 
    313 You should describe a concrete target-specific class that represents the
    314 register file of a target machine.  This class is called ``XXXRegisterInfo``
    315 (where ``XXX`` identifies the target) and represents the class register file
    316 data that is used for register allocation.  It also describes the interactions
    317 between registers.
    318 
    319 You also need to define register classes to categorize related registers.  A
    320 register class should be added for groups of registers that are all treated the
    321 same way for some instruction.  Typical examples are register classes for
    322 integer, floating-point, or vector registers.  A register allocator allows an
    323 instruction to use any register in a specified register class to perform the
    324 instruction in a similar manner.  Register classes allocate virtual registers
    325 to instructions from these sets, and register classes let the
    326 target-independent register allocator automatically choose the actual
    327 registers.
    328 
    329 Much of the code for registers, including register definition, register
    330 aliases, and register classes, is generated by TableGen from
    331 ``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc``
    332 and ``XXXGenRegisterInfo.inc`` output files.  Some of the code in the
    333 implementation of ``XXXRegisterInfo`` requires hand-coding.
    334 
    335 Defining a Register
    336 -------------------
    337 
    338 The ``XXXRegisterInfo.td`` file typically starts with register definitions for
    339 a target machine.  The ``Register`` class (specified in ``Target.td``) is used
    340 to define an object for each register.  The specified string ``n`` becomes the
    341 ``Name`` of the register.  The basic ``Register`` object does not have any
    342 subregisters and does not specify any aliases.
    343 
    344 .. code-block:: llvm
    345 
    346   class Register<string n> {
    347     string Namespace = "";
    348     string AsmName = n;
    349     string Name = n;
    350     int SpillSize = 0;
    351     int SpillAlignment = 0;
    352     list<Register> Aliases = [];
    353     list<Register> SubRegs = [];
    354     list<int> DwarfNumbers = [];
    355   }
    356 
    357 For example, in the ``X86RegisterInfo.td`` file, there are register definitions
    358 that utilize the ``Register`` class, such as:
    359 
    360 .. code-block:: llvm
    361 
    362   def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;
    363 
    364 This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``)
    365 that are used by ``gcc``, ``gdb``, or a debug information writer to identify a
    366 register.  For register ``AL``, ``DwarfRegNum`` takes an array of 3 values
    367 representing 3 different modes: the first element is for X86-64, the second for
    368 exception handling (EH) on X86-32, and the third is generic. -1 is a special
    369 Dwarf number that indicates the gcc number is undefined, and -2 indicates the
    370 register number is invalid for this mode.
    371 
    372 From the previously described line in the ``X86RegisterInfo.td`` file, TableGen
    373 generates this code in the ``X86GenRegisterInfo.inc`` file:
    374 
    375 .. code-block:: c++
    376 
    377   static const unsigned GR8[] = { X86::AL, ... };
    378 
    379   const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
    380 
    381   const TargetRegisterDesc RegisterDescriptors[] = {
    382     ...
    383   { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
    384 
    385 From the register info file, TableGen generates a ``TargetRegisterDesc`` object
    386 for each register.  ``TargetRegisterDesc`` is defined in
    387 ``include/llvm/Target/TargetRegisterInfo.h`` with the following fields:
    388 
    389 .. code-block:: c++
    390 
    391   struct TargetRegisterDesc {
    392     const char     *AsmName;      // Assembly language name for the register
    393     const char     *Name;         // Printable name for the reg (for debugging)
    394     const unsigned *AliasSet;     // Register Alias Set
    395     const unsigned *SubRegs;      // Sub-register set
    396     const unsigned *ImmSubRegs;   // Immediate sub-register set
    397     const unsigned *SuperRegs;    // Super-register set
    398   };
    399 
    400 TableGen uses the entire target description file (``.td``) to determine text
    401 names for the register (in the ``AsmName`` and ``Name`` fields of
    402 ``TargetRegisterDesc``) and the relationships of other registers to the defined
    403 register (in the other ``TargetRegisterDesc`` fields).  In this example, other
    404 definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as
    405 aliases for one another, so TableGen generates a null-terminated array
    406 (``AL_AliasSet``) for this register alias set.
    407 
    408 The ``Register`` class is commonly used as a base class for more complex
    409 classes.  In ``Target.td``, the ``Register`` class is the base for the
    410 ``RegisterWithSubRegs`` class that is used to define registers that need to
    411 specify subregisters in the ``SubRegs`` list, as shown here:
    412 
    413 .. code-block:: llvm
    414 
    415   class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
    416     let SubRegs = subregs;
    417   }
    418 
    419 In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC:
    420 a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``,
    421 and ``Rd``.  SPARC registers are identified by 5-bit ID numbers, which is a
    422 feature common to these subclasses.  Note the use of "``let``" expressions to
    423 override values that are initially defined in a superclass (such as ``SubRegs``
    424 field in the ``Rd`` class).
    425 
    426 .. code-block:: llvm
    427 
    428   class SparcReg<string n> : Register<n> {
    429     field bits<5> Num;
    430     let Namespace = "SP";
    431   }
    432   // Ri - 32-bit integer registers
    433   class Ri<bits<5> num, string n> :
    434   SparcReg<n> {
    435     let Num = num;
    436   }
    437   // Rf - 32-bit floating-point registers
    438   class Rf<bits<5> num, string n> :
    439   SparcReg<n> {
    440     let Num = num;
    441   }
    442   // Rd - Slots in the FP register file for 64-bit floating-point values.
    443   class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> {
    444     let Num = num;
    445     let SubRegs = subregs;
    446   }
    447 
    448 In the ``SparcRegisterInfo.td`` file, there are register definitions that
    449 utilize these subclasses of ``Register``, such as:
    450 
    451 .. code-block:: llvm
    452 
    453   def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
    454   def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
    455   ...
    456   def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>;
    457   def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>;
    458   ...
    459   def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>;
    460   def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>;
    461 
    462 The last two registers shown above (``D0`` and ``D1``) are double-precision
    463 floating-point registers that are aliases for pairs of single-precision
    464 floating-point sub-registers.  In addition to aliases, the sub-register and
    465 super-register relationships of the defined register are in fields of a
    466 register's ``TargetRegisterDesc``.
    467 
    468 Defining a Register Class
    469 -------------------------
    470 
    471 The ``RegisterClass`` class (specified in ``Target.td``) is used to define an
    472 object that represents a group of related registers and also defines the
    473 default allocation order of the registers.  A target description file
    474 ``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes
    475 using the following class:
    476 
    477 .. code-block:: llvm
    478 
    479   class RegisterClass<string namespace,
    480   list<ValueType> regTypes, int alignment, dag regList> {
    481     string Namespace = namespace;
    482     list<ValueType> RegTypes = regTypes;
    483     int Size = 0;  // spill size, in bits; zero lets tblgen pick the size
    484     int Alignment = alignment;
    485 
    486     // CopyCost is the cost of copying a value between two registers
    487     // default value 1 means a single instruction
    488     // A negative value means copying is extremely expensive or impossible
    489     int CopyCost = 1;
    490     dag MemberList = regList;
    491 
    492     // for register classes that are subregisters of this class
    493     list<RegisterClass> SubRegClassList = [];
    494 
    495     code MethodProtos = [{}];  // to insert arbitrary code
    496     code MethodBodies = [{}];
    497   }
    498 
    499 To define a ``RegisterClass``, use the following 4 arguments:
    500 
    501 * The first argument of the definition is the name of the namespace.
    502 
    503 * The second argument is a list of ``ValueType`` register type values that are
    504   defined in ``include/llvm/CodeGen/ValueTypes.td``.  Defined values include
    505   integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean),
    506   floating-point types (``f32``, ``f64``), and vector types (for example,
    507   ``v8i16`` for an ``8 x i16`` vector).  All registers in a ``RegisterClass``
    508   must have the same ``ValueType``, but some registers may store vector data in
    509   different configurations.  For example a register that can process a 128-bit
    510   vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4
    511   32-bit integers, and so on.
    512 
    513 * The third argument of the ``RegisterClass`` definition specifies the
    514   alignment required of the registers when they are stored or loaded to
    515   memory.
    516 
    517 * The final argument, ``regList``, specifies which registers are in this class.
    518   If an alternative allocation order method is not specified, then ``regList``
    519   also defines the order of allocation used by the register allocator.  Besides
    520   simply listing registers with ``(add R0, R1, ...)``, more advanced set
    521   operators are available.  See ``include/llvm/Target/Target.td`` for more
    522   information.
    523 
    524 In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined:
    525 ``FPRegs``, ``DFPRegs``, and ``IntRegs``.  For all three register classes, the
    526 first argument defines the namespace with the string "``SP``".  ``FPRegs``
    527 defines a group of 32 single-precision floating-point registers (``F0`` to
    528 ``F31``); ``DFPRegs`` defines a group of 16 double-precision registers
    529 (``D0-D15``).
    530 
    531 .. code-block:: llvm
    532 
    533   // F0, F1, F2, ..., F31
    534   def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;
    535 
    536   def DFPRegs : RegisterClass<"SP", [f64], 64,
    537                               (add D0, D1, D2, D3, D4, D5, D6, D7, D8,
    538                                    D9, D10, D11, D12, D13, D14, D15)>;
    539 
    540   def IntRegs : RegisterClass<"SP", [i32], 32,
    541       (add L0, L1, L2, L3, L4, L5, L6, L7,
    542            I0, I1, I2, I3, I4, I5,
    543            O0, O1, O2, O3, O4, O5, O7,
    544            G1,
    545            // Non-allocatable regs:
    546            G2, G3, G4,
    547            O6,        // stack ptr
    548            I6,        // frame ptr
    549            I7,        // return address
    550            G0,        // constant zero
    551            G5, G6, G7 // reserved for kernel
    552       )>;
    553 
    554 Using ``SparcRegisterInfo.td`` with TableGen generates several output files
    555 that are intended for inclusion in other source code that you write.
    556 ``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should
    557 be included in the header file for the implementation of the SPARC register
    558 implementation that you write (``SparcRegisterInfo.h``).  In
    559 ``SparcGenRegisterInfo.h.inc`` a new structure is defined called
    560 ``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base.  It also
    561 specifies types, based upon the defined register classes: ``DFPRegsClass``,
    562 ``FPRegsClass``, and ``IntRegsClass``.
    563 
    564 ``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is
    565 included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register
    566 implementation.  The code below shows only the generated integer registers and
    567 associated register classes.  The order of registers in ``IntRegs`` reflects
    568 the order in the definition of ``IntRegs`` in the target description file.
    569 
    570 .. code-block:: c++
    571 
    572   // IntRegs Register Class...
    573   static const unsigned IntRegs[] = {
    574     SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
    575     SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
    576     SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
    577     SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
    578     SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
    579     SP::G6, SP::G7,
    580   };
    581 
    582   // IntRegsVTs Register Class Value Types...
    583   static const MVT::ValueType IntRegsVTs[] = {
    584     MVT::i32, MVT::Other
    585   };
    586 
    587   namespace SP {   // Register class instances
    588     DFPRegsClass    DFPRegsRegClass;
    589     FPRegsClass     FPRegsRegClass;
    590     IntRegsClass    IntRegsRegClass;
    591   ...
    592     // IntRegs Sub-register Classess...
    593     static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
    594       NULL
    595     };
    596   ...
    597     // IntRegs Super-register Classess...
    598     static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
    599       NULL
    600     };
    601   ...
    602     // IntRegs Register Class sub-classes...
    603     static const TargetRegisterClass* const IntRegsSubclasses [] = {
    604       NULL
    605     };
    606   ...
    607     // IntRegs Register Class super-classes...
    608     static const TargetRegisterClass* const IntRegsSuperclasses [] = {
    609       NULL
    610     };
    611 
    612     IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
    613       IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
    614       IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
    615   }
    616 
    617 The register allocators will avoid using reserved registers, and callee saved
    618 registers are not used until all the volatile registers have been used.  That
    619 is usually good enough, but in some cases it may be necessary to provide custom
    620 allocation orders.
    621 
    622 Implement a subclass of ``TargetRegisterInfo``
    623 ----------------------------------------------
    624 
    625 The final step is to hand code portions of ``XXXRegisterInfo``, which
    626 implements the interface described in ``TargetRegisterInfo.h`` (see
    627 :ref:`TargetRegisterInfo`).  These functions return ``0``, ``NULL``, or
    628 ``false``, unless overridden.  Here is a list of functions that are overridden
    629 for the SPARC implementation in ``SparcRegisterInfo.cpp``:
    630 
    631 * ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the
    632   order of the desired callee-save stack frame offset.
    633 
    634 * ``getReservedRegs`` --- Returns a bitset indexed by physical register
    635   numbers, indicating if a particular register is unavailable.
    636 
    637 * ``hasFP`` --- Return a Boolean indicating if a function should have a
    638   dedicated frame pointer register.
    639 
    640 * ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo
    641   instructions are used, this can be called to eliminate them.
    642 
    643 * ``eliminateFrameIndex`` --- Eliminate abstract frame indices from
    644   instructions that may use them.
    645 
    646 * ``emitPrologue`` --- Insert prologue code into the function.
    647 
    648 * ``emitEpilogue`` --- Insert epilogue code into the function.
    649 
    650 .. _instruction-set:
    651 
    652 Instruction Set
    653 ===============
    654 
    655 During the early stages of code generation, the LLVM IR code is converted to a
    656 ``SelectionDAG`` with nodes that are instances of the ``SDNode`` class
    657 containing target instructions.  An ``SDNode`` has an opcode, operands, type
    658 requirements, and operation properties.  For example, is an operation
    659 commutative, does an operation load from memory.  The various operation node
    660 types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file
    661 (values of the ``NodeType`` enum in the ``ISD`` namespace).
    662 
    663 TableGen uses the following target description (``.td``) input files to
    664 generate much of the code for instruction definition:
    665 
    666 * ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and
    667   other fundamental classes are defined.
    668 
    669 * ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection
    670   generators, contains ``SDTC*`` classes (selection DAG type constraint),
    671   definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``,
    672   ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``,
    673   ``PatFrag``, ``PatLeaf``, ``ComplexPattern``.
    674 
    675 * ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific
    676   instructions.
    677 
    678 * ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates,
    679   condition codes, and instructions of an instruction set.  For architecture
    680   modifications, a different file name may be used.  For example, for Pentium
    681   with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with
    682   MMX, this file is ``X86InstrMMX.td``.
    683 
    684 There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of
    685 the target.  The ``XXX.td`` file includes the other ``.td`` input files, but
    686 its contents are only directly important for subtargets.
    687 
    688 You should describe a concrete target-specific class ``XXXInstrInfo`` that
    689 represents machine instructions supported by a target machine.
    690 ``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of
    691 which describes one instruction.  An instruction descriptor defines:
    692 
    693 * Opcode mnemonic
    694 * Number of operands
    695 * List of implicit register definitions and uses
    696 * Target-independent properties (such as memory access, is commutable)
    697 * Target-specific flags
    698 
    699 The Instruction class (defined in ``Target.td``) is mostly used as a base for
    700 more complex instruction classes.
    701 
    702 .. code-block:: llvm
    703 
    704   class Instruction {
    705     string Namespace = "";
    706     dag OutOperandList;    // A dag containing the MI def operand list.
    707     dag InOperandList;     // A dag containing the MI use operand list.
    708     string AsmString = ""; // The .s format to print the instruction with.
    709     list<dag> Pattern;     // Set to the DAG pattern for this instruction.
    710     list<Register> Uses = [];
    711     list<Register> Defs = [];
    712     list<Predicate> Predicates = [];  // predicates turned into isel match code
    713     ... remainder not shown for space ...
    714   }
    715 
    716 A ``SelectionDAG`` node (``SDNode``) should contain an object representing a
    717 target-specific instruction that is defined in ``XXXInstrInfo.td``.  The
    718 instruction objects should represent instructions from the architecture manual
    719 of the target machine (such as the SPARC Architecture Manual for the SPARC
    720 target).
    721 
    722 A single instruction from the architecture manual is often modeled as multiple
    723 target instructions, depending upon its operands.  For example, a manual might
    724 describe an add instruction that takes a register or an immediate operand.  An
    725 LLVM target could model this with two instructions named ``ADDri`` and
    726 ``ADDrr``.
    727 
    728 You should define a class for each instruction category and define each opcode
    729 as a subclass of the category with appropriate parameters such as the fixed
    730 binary encoding of opcodes and extended opcodes.  You should map the register
    731 bits to the bits of the instruction in which they are encoded (for the JIT).
    732 Also you should specify how the instruction should be printed when the
    733 automatic assembly printer is used.
    734 
    735 As is described in the SPARC Architecture Manual, Version 8, there are three
    736 major 32-bit formats for instructions.  Format 1 is only for the ``CALL``
    737 instruction.  Format 2 is for branch on condition codes and ``SETHI`` (set high
    738 bits of a register) instructions.  Format 3 is for other instructions.
    739 
    740 Each of these formats has corresponding classes in ``SparcInstrFormat.td``.
    741 ``InstSP`` is a base class for other instruction classes.  Additional base
    742 classes are specified for more precise formats: for example in
    743 ``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for
    744 branches.  There are three other base classes: ``F3_1`` for register/register
    745 operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for
    746 floating-point operations.  ``SparcInstrInfo.td`` also adds the base class
    747 ``Pseudo`` for synthetic SPARC instructions.
    748 
    749 ``SparcInstrInfo.td`` largely consists of operand and instruction definitions
    750 for the SPARC target.  In ``SparcInstrInfo.td``, the following target
    751 description file entry, ``LDrr``, defines the Load Integer instruction for a
    752 Word (the ``LD`` SPARC opcode) from a memory address to a register.  The first
    753 parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this
    754 category of operation.  The second parameter (``000000``\ :sub:`2`) is the
    755 specific operation value for ``LD``/Load Word.  The third parameter is the
    756 output destination, which is a register operand and defined in the ``Register``
    757 target description file (``IntRegs``).
    758 
    759 .. code-block:: llvm
    760 
    761   def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
    762                    "ld [$addr], $dst",
    763                    [(set i32:$dst, (load ADDRrr:$addr))]>;
    764 
    765 The fourth parameter is the input source, which uses the address operand
    766 ``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``:
    767 
    768 .. code-block:: llvm
    769 
    770   def MEMrr : Operand<i32> {
    771     let PrintMethod = "printMemOperand";
    772     let MIOperandInfo = (ops IntRegs, IntRegs);
    773   }
    774 
    775 The fifth parameter is a string that is used by the assembly printer and can be
    776 left as an empty string until the assembly printer interface is implemented.
    777 The sixth and final parameter is the pattern used to match the instruction
    778 during the SelectionDAG Select Phase described in :doc:`CodeGenerator`.
    779 This parameter is detailed in the next section, :ref:`instruction-selector`.
    780 
    781 Instruction class definitions are not overloaded for different operand types,
    782 so separate versions of instructions are needed for register, memory, or
    783 immediate value operands.  For example, to perform a Load Integer instruction
    784 for a Word from an immediate operand to a register, the following instruction
    785 class is defined:
    786 
    787 .. code-block:: llvm
    788 
    789   def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
    790                    "ld [$addr], $dst",
    791                    [(set i32:$dst, (load ADDRri:$addr))]>;
    792 
    793 Writing these definitions for so many similar instructions can involve a lot of
    794 cut and paste.  In ``.td`` files, the ``multiclass`` directive enables the
    795 creation of templates to define several instruction classes at once (using the
    796 ``defm`` directive).  For example in ``SparcInstrInfo.td``, the ``multiclass``
    797 pattern ``F3_12`` is defined to create 2 instruction classes each time
    798 ``F3_12`` is invoked:
    799 
    800 .. code-block:: llvm
    801 
    802   multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
    803     def rr  : F3_1 <2, Op3Val,
    804                    (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    805                    !strconcat(OpcStr, " $b, $c, $dst"),
    806                    [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
    807     def ri  : F3_2 <2, Op3Val,
    808                    (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
    809                    !strconcat(OpcStr, " $b, $c, $dst"),
    810                    [(set i32:$dst, (OpNode i32:$b, simm13:$c))]>;
    811   }
    812 
    813 So when the ``defm`` directive is used for the ``XOR`` and ``ADD``
    814 instructions, as seen below, it creates four instruction objects: ``XORrr``,
    815 ``XORri``, ``ADDrr``, and ``ADDri``.
    816 
    817 .. code-block:: llvm
    818 
    819   defm XOR   : F3_12<"xor", 0b000011, xor>;
    820   defm ADD   : F3_12<"add", 0b000000, add>;
    821 
    822 ``SparcInstrInfo.td`` also includes definitions for condition codes that are
    823 referenced by branch instructions.  The following definitions in
    824 ``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code.
    825 For example, the 10\ :sup:`th` bit represents the "greater than" condition for
    826 integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for
    827 floats.
    828 
    829 .. code-block:: llvm
    830 
    831   def ICC_NE  : ICC_VAL< 9>;  // Not Equal
    832   def ICC_E   : ICC_VAL< 1>;  // Equal
    833   def ICC_G   : ICC_VAL<10>;  // Greater
    834   ...
    835   def FCC_U   : FCC_VAL<23>;  // Unordered
    836   def FCC_G   : FCC_VAL<22>;  // Greater
    837   def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
    838   ...
    839 
    840 (Note that ``Sparc.h`` also defines enums that correspond to the same SPARC
    841 condition codes.  Care must be taken to ensure the values in ``Sparc.h``
    842 correspond to the values in ``SparcInstrInfo.td``.  I.e., ``SPCC::ICC_NE = 9``,
    843 ``SPCC::FCC_U = 23`` and so on.)
    844 
    845 Instruction Operand Mapping
    846 ---------------------------
    847 
    848 The code generator backend maps instruction operands to fields in the
    849 instruction.  Operands are assigned to unbound fields in the instruction in the
    850 order they are defined.  Fields are bound when they are assigned a value.  For
    851 example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1``
    852 format instruction having three operands.
    853 
    854 .. code-block:: llvm
    855 
    856   def XNORrr  : F3_1<2, 0b000111,
    857                      (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    858                      "xnor $b, $c, $dst",
    859                      [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
    860 
    861 The instruction templates in ``SparcInstrFormats.td`` show the base class for
    862 ``F3_1`` is ``InstSP``.
    863 
    864 .. code-block:: llvm
    865 
    866   class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
    867     field bits<32> Inst;
    868     let Namespace = "SP";
    869     bits<2> op;
    870     let Inst{31-30} = op;
    871     dag OutOperandList = outs;
    872     dag InOperandList = ins;
    873     let AsmString   = asmstr;
    874     let Pattern = pattern;
    875   }
    876 
    877 ``InstSP`` leaves the ``op`` field unbound.
    878 
    879 .. code-block:: llvm
    880 
    881   class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
    882       : InstSP<outs, ins, asmstr, pattern> {
    883     bits<5> rd;
    884     bits<6> op3;
    885     bits<5> rs1;
    886     let op{1} = 1;   // Op = 2 or 3
    887     let Inst{29-25} = rd;
    888     let Inst{24-19} = op3;
    889     let Inst{18-14} = rs1;
    890   }
    891 
    892 ``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1``
    893 fields.  ``F3`` format instructions will bind the operands ``rd``, ``op3``, and
    894 ``rs1`` fields.
    895 
    896 .. code-block:: llvm
    897 
    898   class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
    899              string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
    900     bits<8> asi = 0; // asi not currently used
    901     bits<5> rs2;
    902     let op         = opVal;
    903     let op3        = op3val;
    904     let Inst{13}   = 0;     // i field = 0
    905     let Inst{12-5} = asi;   // address space identifier
    906     let Inst{4-0}  = rs2;
    907   }
    908 
    909 ``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields.  ``F3_1``
    910 format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2``
    911 fields.  This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``,
    912 and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively.
    913 
    914 TableGen will also generate a function called getNamedOperandIdx() which
    915 can be used to look up an operand's index in a MachineInstr based on its
    916 TableGen name.  Setting the UseNamedOperandTable bit in an instruction's
    917 TableGen definition will add all of its operands to an enumeration in the
    918 llvm::XXX:OpName namespace and also add an entry for it into the OperandMap
    919 table, which can be queried using getNamedOperandIdx()
    920 
    921 .. code-block:: llvm
    922 
    923   int DstIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::dst); // => 0
    924   int BIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::b);     // => 1
    925   int CIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::c);     // => 2
    926   int DIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::d);     // => -1
    927 
    928   ...
    929 
    930 The entries in the OpName enum are taken verbatim from the TableGen definitions,
    931 so operands with lowercase names will have lower case entries in the enum.
    932 
    933 To include the getNamedOperandIdx() function in your backend, you will need
    934 to define a few preprocessor macros in XXXInstrInfo.cpp and XXXInstrInfo.h.
    935 For example:
    936 
    937 XXXInstrInfo.cpp:
    938 
    939 .. code-block:: c++ 
    940 
    941   #define GET_INSTRINFO_NAMED_OPS // For getNamedOperandIdx() function
    942   #include "XXXGenInstrInfo.inc"
    943 
    944 XXXInstrInfo.h:
    945 
    946 .. code-block:: c++
    947 
    948   #define GET_INSTRINFO_OPERAND_ENUM // For OpName enum
    949   #include "XXXGenInstrInfo.inc"
    950 
    951   namespace XXX {
    952     int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex);
    953   } // End namespace XXX
    954 
    955 Instruction Relation Mapping
    956 ----------------------------
    957 
    958 This TableGen feature is used to relate instructions with each other.  It is
    959 particularly useful when you have multiple instruction formats and need to
    960 switch between them after instruction selection.  This entire feature is driven
    961 by relation models which can be defined in ``XXXInstrInfo.td`` files
    962 according to the target-specific instruction set.  Relation models are defined
    963 using ``InstrMapping`` class as a base.  TableGen parses all the models
    964 and generates instruction relation maps using the specified information.
    965 Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file
    966 along with the functions to query them.  For the detailed information on how to
    967 use this feature, please refer to :doc:`HowToUseInstrMappings`.
    968 
    969 Implement a subclass of ``TargetInstrInfo``
    970 -------------------------------------------
    971 
    972 The final step is to hand code portions of ``XXXInstrInfo``, which implements
    973 the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`).
    974 These functions return ``0`` or a Boolean or they assert, unless overridden.
    975 Here's a list of functions that are overridden for the SPARC implementation in
    976 ``SparcInstrInfo.cpp``:
    977 
    978 * ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct
    979   load from a stack slot, return the register number of the destination and the
    980   ``FrameIndex`` of the stack slot.
    981 
    982 * ``isStoreToStackSlot`` --- If the specified machine instruction is a direct
    983   store to a stack slot, return the register number of the destination and the
    984   ``FrameIndex`` of the stack slot.
    985 
    986 * ``copyPhysReg`` --- Copy values between a pair of physical registers.
    987 
    988 * ``storeRegToStackSlot`` --- Store a register value to a stack slot.
    989 
    990 * ``loadRegFromStackSlot`` --- Load a register value from a stack slot.
    991 
    992 * ``storeRegToAddr`` --- Store a register value to memory.
    993 
    994 * ``loadRegFromAddr`` --- Load a register value from memory.
    995 
    996 * ``foldMemoryOperand`` --- Attempt to combine instructions of any load or
    997   store instruction for the specified operand(s).
    998 
    999 Branch Folding and If Conversion
   1000 --------------------------------
   1001 
   1002 Performance can be improved by combining instructions or by eliminating
   1003 instructions that are never reached.  The ``AnalyzeBranch`` method in
   1004 ``XXXInstrInfo`` may be implemented to examine conditional instructions and
   1005 remove unnecessary instructions.  ``AnalyzeBranch`` looks at the end of a
   1006 machine basic block (MBB) for opportunities for improvement, such as branch
   1007 folding and if conversion.  The ``BranchFolder`` and ``IfConverter`` machine
   1008 function passes (see the source files ``BranchFolding.cpp`` and
   1009 ``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch``
   1010 to improve the control flow graph that represents the instructions.
   1011 
   1012 Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be
   1013 examined as models for your own ``AnalyzeBranch`` implementation.  Since SPARC
   1014 does not implement a useful ``AnalyzeBranch``, the ARM target implementation is
   1015 shown below.
   1016 
   1017 ``AnalyzeBranch`` returns a Boolean value and takes four parameters:
   1018 
   1019 * ``MachineBasicBlock &MBB`` --- The incoming block to be examined.
   1020 
   1021 * ``MachineBasicBlock *&TBB`` --- A destination block that is returned.  For a
   1022   conditional branch that evaluates to true, ``TBB`` is the destination.
   1023 
   1024 * ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to
   1025   false, ``FBB`` is returned as the destination.
   1026 
   1027 * ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a
   1028   condition for a conditional branch.
   1029 
   1030 In the simplest case, if a block ends without a branch, then it falls through
   1031 to the successor block.  No destination blocks are specified for either ``TBB``
   1032 or ``FBB``, so both parameters return ``NULL``.  The start of the
   1033 ``AnalyzeBranch`` (see code below for the ARM target) shows the function
   1034 parameters and the code for the simplest case.
   1035 
   1036 .. code-block:: c++
   1037 
   1038   bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
   1039                                    MachineBasicBlock *&TBB,
   1040                                    MachineBasicBlock *&FBB,
   1041                                    std::vector<MachineOperand> &Cond) const
   1042   {
   1043     MachineBasicBlock::iterator I = MBB.end();
   1044     if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
   1045       return false;
   1046 
   1047 If a block ends with a single unconditional branch instruction, then
   1048 ``AnalyzeBranch`` (shown below) should return the destination of that branch in
   1049 the ``TBB`` parameter.
   1050 
   1051 .. code-block:: c++
   1052 
   1053     if (LastOpc == ARM::B || LastOpc == ARM::tB) {
   1054       TBB = LastInst->getOperand(0).getMBB();
   1055       return false;
   1056     }
   1057 
   1058 If a block ends with two unconditional branches, then the second branch is
   1059 never reached.  In that situation, as shown below, remove the last branch
   1060 instruction and return the penultimate branch in the ``TBB`` parameter.
   1061 
   1062 .. code-block:: c++
   1063 
   1064     if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) &&
   1065         (LastOpc == ARM::B || LastOpc == ARM::tB)) {
   1066       TBB = SecondLastInst->getOperand(0).getMBB();
   1067       I = LastInst;
   1068       I->eraseFromParent();
   1069       return false;
   1070     }
   1071 
   1072 A block may end with a single conditional branch instruction that falls through
   1073 to successor block if the condition evaluates to false.  In that case,
   1074 ``AnalyzeBranch`` (shown below) should return the destination of that
   1075 conditional branch in the ``TBB`` parameter and a list of operands in the
   1076 ``Cond`` parameter to evaluate the condition.
   1077 
   1078 .. code-block:: c++
   1079 
   1080     if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
   1081       // Block ends with fall-through condbranch.
   1082       TBB = LastInst->getOperand(0).getMBB();
   1083       Cond.push_back(LastInst->getOperand(1));
   1084       Cond.push_back(LastInst->getOperand(2));
   1085       return false;
   1086     }
   1087 
   1088 If a block ends with both a conditional branch and an ensuing unconditional
   1089 branch, then ``AnalyzeBranch`` (shown below) should return the conditional
   1090 branch destination (assuming it corresponds to a conditional evaluation of
   1091 "``true``") in the ``TBB`` parameter and the unconditional branch destination
   1092 in the ``FBB`` (corresponding to a conditional evaluation of "``false``").  A
   1093 list of operands to evaluate the condition should be returned in the ``Cond``
   1094 parameter.
   1095 
   1096 .. code-block:: c++
   1097 
   1098     unsigned SecondLastOpc = SecondLastInst->getOpcode();
   1099 
   1100     if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
   1101         (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
   1102       TBB =  SecondLastInst->getOperand(0).getMBB();
   1103       Cond.push_back(SecondLastInst->getOperand(1));
   1104       Cond.push_back(SecondLastInst->getOperand(2));
   1105       FBB = LastInst->getOperand(0).getMBB();
   1106       return false;
   1107     }
   1108 
   1109 For the last two cases (ending with a single conditional branch or ending with
   1110 one conditional and one unconditional branch), the operands returned in the
   1111 ``Cond`` parameter can be passed to methods of other instructions to create new
   1112 branches or perform other operations.  An implementation of ``AnalyzeBranch``
   1113 requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage
   1114 subsequent operations.
   1115 
   1116 ``AnalyzeBranch`` should return false indicating success in most circumstances.
   1117 ``AnalyzeBranch`` should only return true when the method is stumped about what
   1118 to do, for example, if a block has three terminating branches.
   1119 ``AnalyzeBranch`` may return true if it encounters a terminator it cannot
   1120 handle, such as an indirect branch.
   1121 
   1122 .. _instruction-selector:
   1123 
   1124 Instruction Selector
   1125 ====================
   1126 
   1127 LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of
   1128 the ``SelectionDAG`` ideally represent native target instructions.  During code
   1129 generation, instruction selection passes are performed to convert non-native
   1130 DAG instructions into native target-specific instructions.  The pass described
   1131 in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG
   1132 instruction selection.  Optionally, a pass may be defined (in
   1133 ``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch
   1134 instructions.  Later, the code in ``XXXISelLowering.cpp`` replaces or removes
   1135 operations and data types not supported natively (legalizes) in a
   1136 ``SelectionDAG``.
   1137 
   1138 TableGen generates code for instruction selection using the following target
   1139 description input files:
   1140 
   1141 * ``XXXInstrInfo.td`` --- Contains definitions of instructions in a
   1142   target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is
   1143   included in ``XXXISelDAGToDAG.cpp``.
   1144 
   1145 * ``XXXCallingConv.td`` --- Contains the calling and return value conventions
   1146   for the target architecture, and it generates ``XXXGenCallingConv.inc``,
   1147   which is included in ``XXXISelLowering.cpp``.
   1148 
   1149 The implementation of an instruction selection pass must include a header that
   1150 declares the ``FunctionPass`` class or a subclass of ``FunctionPass``.  In
   1151 ``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction
   1152 selection pass into the queue of passes to run.
   1153 
   1154 The LLVM static compiler (``llc``) is an excellent tool for visualizing the
   1155 contents of DAGs.  To display the ``SelectionDAG`` before or after specific
   1156 processing phases, use the command line options for ``llc``, described at
   1157 :ref:`SelectionDAG-Process`.
   1158 
   1159 To describe instruction selector behavior, you should add patterns for lowering
   1160 LLVM code into a ``SelectionDAG`` as the last parameter of the instruction
   1161 definitions in ``XXXInstrInfo.td``.  For example, in ``SparcInstrInfo.td``,
   1162 this entry defines a register store operation, and the last parameter describes
   1163 a pattern with the store DAG operator.
   1164 
   1165 .. code-block:: llvm
   1166 
   1167   def STrr  : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
   1168                    "st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>;
   1169 
   1170 ``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``:
   1171 
   1172 .. code-block:: llvm
   1173 
   1174   def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
   1175 
   1176 The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function
   1177 defined in an implementation of the Instructor Selector (such as
   1178 ``SparcISelDAGToDAG.cpp``).
   1179 
   1180 In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined
   1181 below:
   1182 
   1183 .. code-block:: llvm
   1184 
   1185   def store : PatFrag<(ops node:$val, node:$ptr),
   1186                       (st node:$val, node:$ptr), [{
   1187     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
   1188       return !ST->isTruncatingStore() &&
   1189              ST->getAddressingMode() == ISD::UNINDEXED;
   1190     return false;
   1191   }]>;
   1192 
   1193 ``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the
   1194 ``SelectCode`` method that is used to call the appropriate processing method
   1195 for an instruction.  In this example, ``SelectCode`` calls ``Select_ISD_STORE``
   1196 for the ``ISD::STORE`` opcode.
   1197 
   1198 .. code-block:: c++
   1199 
   1200   SDNode *SelectCode(SDValue N) {
   1201     ...
   1202     MVT::ValueType NVT = N.getNode()->getValueType(0);
   1203     switch (N.getOpcode()) {
   1204     case ISD::STORE: {
   1205       switch (NVT) {
   1206       default:
   1207         return Select_ISD_STORE(N);
   1208         break;
   1209       }
   1210       break;
   1211     }
   1212     ...
   1213 
   1214 The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``,
   1215 code for ``STrr`` is created for ``Select_ISD_STORE``.  The ``Emit_22`` method
   1216 is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this
   1217 instruction.
   1218 
   1219 .. code-block:: c++
   1220 
   1221   SDNode *Select_ISD_STORE(const SDValue &N) {
   1222     SDValue Chain = N.getOperand(0);
   1223     if (Predicate_store(N.getNode())) {
   1224       SDValue N1 = N.getOperand(1);
   1225       SDValue N2 = N.getOperand(2);
   1226       SDValue CPTmp0;
   1227       SDValue CPTmp1;
   1228 
   1229       // Pattern: (st:void i32:i32:$src,
   1230       //           ADDRrr:i32:$addr)<<P:Predicate_store>>
   1231       // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
   1232       // Pattern complexity = 13  cost = 1  size = 0
   1233       if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
   1234           N1.getNode()->getValueType(0) == MVT::i32 &&
   1235           N2.getNode()->getValueType(0) == MVT::i32) {
   1236         return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
   1237       }
   1238   ...
   1239 
   1240 The SelectionDAG Legalize Phase
   1241 -------------------------------
   1242 
   1243 The Legalize phase converts a DAG to use types and operations that are natively
   1244 supported by the target.  For natively unsupported types and operations, you
   1245 need to add code to the target-specific ``XXXTargetLowering`` implementation to
   1246 convert unsupported types and operations to supported ones.
   1247 
   1248 In the constructor for the ``XXXTargetLowering`` class, first use the
   1249 ``addRegisterClass`` method to specify which types are supported and which
   1250 register classes are associated with them.  The code for the register classes
   1251 are generated by TableGen from ``XXXRegisterInfo.td`` and placed in
   1252 ``XXXGenRegisterInfo.h.inc``.  For example, the implementation of the
   1253 constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``)
   1254 starts with the following code:
   1255 
   1256 .. code-block:: c++
   1257 
   1258   addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
   1259   addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
   1260   addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
   1261 
   1262 You should examine the node types in the ``ISD`` namespace
   1263 (``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations
   1264 the target natively supports.  For operations that do **not** have native
   1265 support, add a callback to the constructor for the ``XXXTargetLowering`` class,
   1266 so the instruction selection process knows what to do.  The ``TargetLowering``
   1267 class callback methods (declared in ``llvm/Target/TargetLowering.h``) are:
   1268 
   1269 * ``setOperationAction`` --- General operation.
   1270 * ``setLoadExtAction`` --- Load with extension.
   1271 * ``setTruncStoreAction`` --- Truncating store.
   1272 * ``setIndexedLoadAction`` --- Indexed load.
   1273 * ``setIndexedStoreAction`` --- Indexed store.
   1274 * ``setConvertAction`` --- Type conversion.
   1275 * ``setCondCodeAction`` --- Support for a given condition code.
   1276 
   1277 Note: on older releases, ``setLoadXAction`` is used instead of
   1278 ``setLoadExtAction``.  Also, on older releases, ``setCondCodeAction`` may not
   1279 be supported.  Examine your release to see what methods are specifically
   1280 supported.
   1281 
   1282 These callbacks are used to determine that an operation does or does not work
   1283 with a specified type (or types).  And in all cases, the third parameter is a
   1284 ``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or
   1285 ``Legal``.  ``SparcISelLowering.cpp`` contains examples of all four
   1286 ``LegalAction`` values.
   1287 
   1288 Promote
   1289 ^^^^^^^
   1290 
   1291 For an operation without native support for a given type, the specified type
   1292 may be promoted to a larger type that is supported.  For example, SPARC does
   1293 not support a sign-extending load for Boolean values (``i1`` type), so in
   1294 ``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes
   1295 ``i1`` type values to a large type before loading.
   1296 
   1297 .. code-block:: c++
   1298 
   1299   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
   1300 
   1301 Expand
   1302 ^^^^^^
   1303 
   1304 For a type without native support, a value may need to be broken down further,
   1305 rather than promoted.  For an operation without native support, a combination
   1306 of other operations may be used to similar effect.  In SPARC, the
   1307 floating-point sine and cosine trig operations are supported by expansion to
   1308 other operations, as indicated by the third parameter, ``Expand``, to
   1309 ``setOperationAction``:
   1310 
   1311 .. code-block:: c++
   1312 
   1313   setOperationAction(ISD::FSIN, MVT::f32, Expand);
   1314   setOperationAction(ISD::FCOS, MVT::f32, Expand);
   1315 
   1316 Custom
   1317 ^^^^^^
   1318 
   1319 For some operations, simple type promotion or operation expansion may be
   1320 insufficient.  In some cases, a special intrinsic function must be implemented.
   1321 
   1322 For example, a constant value may require special treatment, or an operation
   1323 may require spilling and restoring registers in the stack and working with
   1324 register allocators.
   1325 
   1326 As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion
   1327 from a floating point value to a signed integer, first the
   1328 ``setOperationAction`` should be called with ``Custom`` as the third parameter:
   1329 
   1330 .. code-block:: c++
   1331 
   1332   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
   1333 
   1334 In the ``LowerOperation`` method, for each ``Custom`` operation, a case
   1335 statement should be added to indicate what function to call.  In the following
   1336 code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method:
   1337 
   1338 .. code-block:: c++
   1339 
   1340   SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
   1341     switch (Op.getOpcode()) {
   1342     case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
   1343     ...
   1344     }
   1345   }
   1346 
   1347 Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to
   1348 convert the floating-point value to an integer.
   1349 
   1350 .. code-block:: c++
   1351 
   1352   static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
   1353     assert(Op.getValueType() == MVT::i32);
   1354     Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
   1355     return DAG.getNode(ISD::BITCAST, MVT::i32, Op);
   1356   }
   1357 
   1358 Legal
   1359 ^^^^^
   1360 
   1361 The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation
   1362 **is** natively supported.  ``Legal`` represents the default condition, so it
   1363 is rarely used.  In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an
   1364 operation to count the bits set in an integer) is natively supported only for
   1365 SPARC v9.  The following code enables the ``Expand`` conversion technique for
   1366 non-v9 SPARC implementations.
   1367 
   1368 .. code-block:: c++
   1369 
   1370   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
   1371   ...
   1372   if (TM.getSubtarget<SparcSubtarget>().isV9())
   1373     setOperationAction(ISD::CTPOP, MVT::i32, Legal);
   1374 
   1375 Calling Conventions
   1376 -------------------
   1377 
   1378 To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses
   1379 interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in
   1380 ``lib/Target/TargetCallingConv.td``.  TableGen can take the target descriptor
   1381 file ``XXXGenCallingConv.td`` and generate the header file
   1382 ``XXXGenCallingConv.inc``, which is typically included in
   1383 ``XXXISelLowering.cpp``.  You can use the interfaces in
   1384 ``TargetCallingConv.td`` to specify:
   1385 
   1386 * The order of parameter allocation.
   1387 
   1388 * Where parameters and return values are placed (that is, on the stack or in
   1389   registers).
   1390 
   1391 * Which registers may be used.
   1392 
   1393 * Whether the caller or callee unwinds the stack.
   1394 
   1395 The following example demonstrates the use of the ``CCIfType`` and
   1396 ``CCAssignToReg`` interfaces.  If the ``CCIfType`` predicate is true (that is,
   1397 if the current argument is of type ``f32`` or ``f64``), then the action is
   1398 performed.  In this case, the ``CCAssignToReg`` action assigns the argument
   1399 value to the first available register: either ``R0`` or ``R1``.
   1400 
   1401 .. code-block:: llvm
   1402 
   1403   CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>
   1404 
   1405 ``SparcCallingConv.td`` contains definitions for a target-specific return-value
   1406 calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention
   1407 (``CC_Sparc32``).  The definition of ``RetCC_Sparc32`` (shown below) indicates
   1408 which registers are used for specified scalar return types.  A single-precision
   1409 float is returned to register ``F0``, and a double-precision float goes to
   1410 register ``D0``.  A 32-bit integer is returned in register ``I0`` or ``I1``.
   1411 
   1412 .. code-block:: llvm
   1413 
   1414   def RetCC_Sparc32 : CallingConv<[
   1415     CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
   1416     CCIfType<[f32], CCAssignToReg<[F0]>>,
   1417     CCIfType<[f64], CCAssignToReg<[D0]>>
   1418   ]>;
   1419 
   1420 The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces
   1421 ``CCAssignToStack``, which assigns the value to a stack slot with the specified
   1422 size and alignment.  In the example below, the first parameter, 4, indicates
   1423 the size of the slot, and the second parameter, also 4, indicates the stack
   1424 alignment along 4-byte units.  (Special cases: if size is zero, then the ABI
   1425 size is used; if alignment is zero, then the ABI alignment is used.)
   1426 
   1427 .. code-block:: llvm
   1428 
   1429   def CC_Sparc32 : CallingConv<[
   1430     // All arguments get passed in integer registers if there is space.
   1431     CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
   1432     CCAssignToStack<4, 4>
   1433   ]>;
   1434 
   1435 ``CCDelegateTo`` is another commonly used interface, which tries to find a
   1436 specified sub-calling convention, and, if a match is found, it is invoked.  In
   1437 the following example (in ``X86CallingConv.td``), the definition of
   1438 ``RetCC_X86_32_C`` ends with ``CCDelegateTo``.  After the current value is
   1439 assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is
   1440 invoked.
   1441 
   1442 .. code-block:: llvm
   1443 
   1444   def RetCC_X86_32_C : CallingConv<[
   1445     CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
   1446     CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
   1447     CCDelegateTo<RetCC_X86Common>
   1448   ]>;
   1449 
   1450 ``CCIfCC`` is an interface that attempts to match the given name to the current
   1451 calling convention.  If the name identifies the current calling convention,
   1452 then a specified action is invoked.  In the following example (in
   1453 ``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then
   1454 ``RetCC_X86_32_Fast`` is invoked.  If the ``SSECall`` calling convention is in
   1455 use, then ``RetCC_X86_32_SSE`` is invoked.
   1456 
   1457 .. code-block:: llvm
   1458 
   1459   def RetCC_X86_32 : CallingConv<[
   1460     CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
   1461     CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
   1462     CCDelegateTo<RetCC_X86_32_C>
   1463   ]>;
   1464 
   1465 Other calling convention interfaces include:
   1466 
   1467 * ``CCIf <predicate, action>`` --- If the predicate matches, apply the action.
   1468 
   1469 * ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``"
   1470   attribute, then apply the action.
   1471 
   1472 * ``CCIfNest <action>`` --- If the argument is marked with the "``nest``"
   1473   attribute, then apply the action.
   1474 
   1475 * ``CCIfNotVarArg <action>`` --- If the current function does not take a
   1476   variable number of arguments, apply the action.
   1477 
   1478 * ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to
   1479   ``CCAssignToReg``, but with a shadow list of registers.
   1480 
   1481 * ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the
   1482   minimum specified size and alignment.
   1483 
   1484 * ``CCPromoteToType <type>`` --- Promote the current value to the specified
   1485   type.
   1486 
   1487 * ``CallingConv <[actions]>`` --- Define each calling convention that is
   1488   supported.
   1489 
   1490 Assembly Printer
   1491 ================
   1492 
   1493 During the code emission stage, the code generator may utilize an LLVM pass to
   1494 produce assembly output.  To do this, you want to implement the code for a
   1495 printer that converts LLVM IR to a GAS-format assembly language for your target
   1496 machine, using the following steps:
   1497 
   1498 * Define all the assembly strings for your target, adding them to the
   1499   instructions defined in the ``XXXInstrInfo.td`` file.  (See
   1500   :ref:`instruction-set`.)  TableGen will produce an output file
   1501   (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction``
   1502   method for the ``XXXAsmPrinter`` class.
   1503 
   1504 * Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of
   1505   the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``).
   1506 
   1507 * Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for
   1508   ``TargetAsmInfo`` properties and sometimes new implementations for methods.
   1509 
   1510 * Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that
   1511   performs the LLVM-to-assembly conversion.
   1512 
   1513 The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the
   1514 ``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``.  Similarly,
   1515 ``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo``
   1516 replacement values that override the default values in ``TargetAsmInfo.cpp``.
   1517 For example in ``SparcTargetAsmInfo.cpp``:
   1518 
   1519 .. code-block:: c++
   1520 
   1521   SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
   1522     Data16bitsDirective = "\t.half\t";
   1523     Data32bitsDirective = "\t.word\t";
   1524     Data64bitsDirective = 0;  // .xword is only supported by V9.
   1525     ZeroDirective = "\t.skip\t";
   1526     CommentString = "!";
   1527     ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
   1528   }
   1529 
   1530 The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example
   1531 where the target specific ``TargetAsmInfo`` class uses an overridden methods:
   1532 ``ExpandInlineAsm``.
   1533 
   1534 A target-specific implementation of ``AsmPrinter`` is written in
   1535 ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts
   1536 the LLVM to printable assembly.  The implementation must include the following
   1537 headers that have declarations for the ``AsmPrinter`` and
   1538 ``MachineFunctionPass`` classes.  The ``MachineFunctionPass`` is a subclass of
   1539 ``FunctionPass``.
   1540 
   1541 .. code-block:: c++
   1542 
   1543   #include "llvm/CodeGen/AsmPrinter.h"
   1544   #include "llvm/CodeGen/MachineFunctionPass.h"
   1545 
   1546 As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set
   1547 up the ``AsmPrinter``.  In ``SparcAsmPrinter``, a ``Mangler`` object is
   1548 instantiated to process variable names.
   1549 
   1550 In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in
   1551 ``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``.  In
   1552 ``MachineFunctionPass``, the ``runOnFunction`` method invokes
   1553 ``runOnMachineFunction``.  Target-specific implementations of
   1554 ``runOnMachineFunction`` differ, but generally do the following to process each
   1555 machine function:
   1556 
   1557 * Call ``SetupMachineFunction`` to perform initialization.
   1558 
   1559 * Call ``EmitConstantPool`` to print out (to the output stream) constants which
   1560   have been spilled to memory.
   1561 
   1562 * Call ``EmitJumpTableInfo`` to print out jump tables used by the current
   1563   function.
   1564 
   1565 * Print out the label for the current function.
   1566 
   1567 * Print out the code for the function, including basic block labels and the
   1568   assembly for the instruction (using ``printInstruction``)
   1569 
   1570 The ``XXXAsmPrinter`` implementation must also include the code generated by
   1571 TableGen that is output in the ``XXXGenAsmWriter.inc`` file.  The code in
   1572 ``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction``
   1573 method that may call these methods:
   1574 
   1575 * ``printOperand``
   1576 * ``printMemOperand``
   1577 * ``printCCOperand`` (for conditional statements)
   1578 * ``printDataDirective``
   1579 * ``printDeclare``
   1580 * ``printImplicitDef``
   1581 * ``printInlineAsm``
   1582 
   1583 The implementations of ``printDeclare``, ``printImplicitDef``,
   1584 ``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally
   1585 adequate for printing assembly and do not need to be overridden.
   1586 
   1587 The ``printOperand`` method is implemented with a long ``switch``/``case``
   1588 statement for the type of operand: register, immediate, basic block, external
   1589 symbol, global address, constant pool index, or jump table index.  For an
   1590 instruction with a memory address operand, the ``printMemOperand`` method
   1591 should be implemented to generate the proper output.  Similarly,
   1592 ``printCCOperand`` should be used to print a conditional operand.
   1593 
   1594 ``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be
   1595 called to shut down the assembly printer.  During ``doFinalization``, global
   1596 variables and constants are printed to output.
   1597 
   1598 Subtarget Support
   1599 =================
   1600 
   1601 Subtarget support is used to inform the code generation process of instruction
   1602 set variations for a given chip set.  For example, the LLVM SPARC
   1603 implementation provided covers three major versions of the SPARC microprocessor
   1604 architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a
   1605 64-bit architecture), and the UltraSPARC architecture.  V8 has 16
   1606 double-precision floating-point registers that are also usable as either 32
   1607 single-precision or 8 quad-precision registers.  V8 is also purely big-endian.
   1608 V9 has 32 double-precision floating-point registers that are also usable as 16
   1609 quad-precision registers, but cannot be used as single-precision registers.
   1610 The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
   1611 extensions.
   1612 
   1613 If subtarget support is needed, you should implement a target-specific
   1614 ``XXXSubtarget`` class for your architecture.  This class should process the
   1615 command-line options ``-mcpu=`` and ``-mattr=``.
   1616 
   1617 TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to
   1618 generate code in ``SparcGenSubtarget.inc``.  In ``Target.td``, shown below, the
   1619 ``SubtargetFeature`` interface is defined.  The first 4 string parameters of
   1620 the ``SubtargetFeature`` interface are a feature name, an attribute set by the
   1621 feature, the value of the attribute, and a description of the feature.  (The
   1622 fifth parameter is a list of features whose presence is implied, and its
   1623 default value is an empty array.)
   1624 
   1625 .. code-block:: llvm
   1626 
   1627   class SubtargetFeature<string n, string a, string v, string d,
   1628                          list<SubtargetFeature> i = []> {
   1629     string Name = n;
   1630     string Attribute = a;
   1631     string Value = v;
   1632     string Desc = d;
   1633     list<SubtargetFeature> Implies = i;
   1634   }
   1635 
   1636 In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the
   1637 following features.
   1638 
   1639 .. code-block:: llvm
   1640 
   1641   def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
   1642                        "Enable SPARC-V9 instructions">;
   1643   def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8",
   1644                        "V8DeprecatedInsts", "true",
   1645                        "Enable deprecated V8 instructions in V9 mode">;
   1646   def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
   1647                        "Enable UltraSPARC Visual Instruction Set extensions">;
   1648 
   1649 Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to
   1650 define particular SPARC processor subtypes that may have the previously
   1651 described features.
   1652 
   1653 .. code-block:: llvm
   1654 
   1655   class Proc<string Name, list<SubtargetFeature> Features>
   1656     : Processor<Name, NoItineraries, Features>;
   1657 
   1658   def : Proc<"generic",         []>;
   1659   def : Proc<"v8",              []>;
   1660   def : Proc<"supersparc",      []>;
   1661   def : Proc<"sparclite",       []>;
   1662   def : Proc<"f934",            []>;
   1663   def : Proc<"hypersparc",      []>;
   1664   def : Proc<"sparclite86x",    []>;
   1665   def : Proc<"sparclet",        []>;
   1666   def : Proc<"tsc701",          []>;
   1667   def : Proc<"v9",              [FeatureV9]>;
   1668   def : Proc<"ultrasparc",      [FeatureV9, FeatureV8Deprecated]>;
   1669   def : Proc<"ultrasparc3",     [FeatureV9, FeatureV8Deprecated]>;
   1670   def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;
   1671 
   1672 From ``Target.td`` and ``Sparc.td`` files, the resulting
   1673 ``SparcGenSubtarget.inc`` specifies enum values to identify the features,
   1674 arrays of constants to represent the CPU features and CPU subtypes, and the
   1675 ``ParseSubtargetFeatures`` method that parses the features string that sets
   1676 specified subtarget options.  The generated ``SparcGenSubtarget.inc`` file
   1677 should be included in the ``SparcSubtarget.cpp``.  The target-specific
   1678 implementation of the ``XXXSubtarget`` method should follow this pseudocode:
   1679 
   1680 .. code-block:: c++
   1681 
   1682   XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
   1683     // Set the default features
   1684     // Determine default and user specified characteristics of the CPU
   1685     // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
   1686     // Perform any additional operations
   1687   }
   1688 
   1689 JIT Support
   1690 ===========
   1691 
   1692 The implementation of a target machine optionally includes a Just-In-Time (JIT)
   1693 code generator that emits machine code and auxiliary structures as binary
   1694 output that can be written directly to memory.  To do this, implement JIT code
   1695 generation by performing the following steps:
   1696 
   1697 * Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass
   1698   that transforms target-machine instructions into relocatable machine
   1699   code.
   1700 
   1701 * Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for
   1702   target-specific code-generation activities, such as emitting machine code and
   1703   stubs.
   1704 
   1705 * Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object
   1706   through its ``getJITInfo`` method.
   1707 
   1708 There are several different approaches to writing the JIT support code.  For
   1709 instance, TableGen and target descriptor files may be used for creating a JIT
   1710 code generator, but are not mandatory.  For the Alpha and PowerPC target
   1711 machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which
   1712 contains the binary coding of machine instructions and the
   1713 ``getBinaryCodeForInstr`` method to access those codes.  Other JIT
   1714 implementations do not.
   1715 
   1716 Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the
   1717 ``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the
   1718 ``MachineCodeEmitter`` class containing code for several callback functions
   1719 that write data (in bytes, words, strings, etc.) to the output stream.
   1720 
   1721 Machine Code Emitter
   1722 --------------------
   1723 
   1724 In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is
   1725 implemented as a function pass (subclass of ``MachineFunctionPass``).  The
   1726 target-specific implementation of ``runOnMachineFunction`` (invoked by
   1727 ``runOnFunction`` in ``MachineFunctionPass``) iterates through the
   1728 ``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and
   1729 emit binary code.  ``emitInstruction`` is largely implemented with case
   1730 statements on the instruction types defined in ``XXXInstrInfo.h``.  For
   1731 example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built
   1732 around the following ``switch``/``case`` statements:
   1733 
   1734 .. code-block:: c++
   1735 
   1736   switch (Desc->TSFlags & X86::FormMask) {
   1737   case X86II::Pseudo:  // for not yet implemented instructions
   1738      ...               // or pseudo-instructions
   1739      break;
   1740   case X86II::RawFrm:  // for instructions with a fixed opcode value
   1741      ...
   1742      break;
   1743   case X86II::AddRegFrm: // for instructions that have one register operand
   1744      ...                 // added to their opcode
   1745      break;
   1746   case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
   1747      ...                 // to specify a destination (register)
   1748      break;
   1749   case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
   1750      ...                 // to specify a destination (memory)
   1751      break;
   1752   case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
   1753      ...                 // to specify a source (register)
   1754      break;
   1755   case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
   1756      ...                 // to specify a source (memory)
   1757      break;
   1758   case X86II::MRM0r: case X86II::MRM1r:  // for instructions that operate on
   1759   case X86II::MRM2r: case X86II::MRM3r:  // a REGISTER r/m operand and
   1760   case X86II::MRM4r: case X86II::MRM5r:  // use the Mod/RM byte and a field
   1761   case X86II::MRM6r: case X86II::MRM7r:  // to hold extended opcode data
   1762      ...
   1763      break;
   1764   case X86II::MRM0m: case X86II::MRM1m:  // for instructions that operate on
   1765   case X86II::MRM2m: case X86II::MRM3m:  // a MEMORY r/m operand and
   1766   case X86II::MRM4m: case X86II::MRM5m:  // use the Mod/RM byte and a field
   1767   case X86II::MRM6m: case X86II::MRM7m:  // to hold extended opcode data
   1768      ...
   1769      break;
   1770   case X86II::MRMInitReg: // for instructions whose source and
   1771      ...                  // destination are the same register
   1772      break;
   1773   }
   1774 
   1775 The implementations of these case statements often first emit the opcode and
   1776 then get the operand(s).  Then depending upon the operand, helper methods may
   1777 be called to process the operand(s).  For example, in ``X86CodeEmitter.cpp``,
   1778 for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is
   1779 the opcode added to the register operand.  Then an object representing the
   1780 machine operand, ``MO1``, is extracted.  The helper methods such as
   1781 ``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``,
   1782 ``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type.
   1783 (``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``,
   1784 ``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``,
   1785 and ``emitJumpTableAddress`` that emit the data into the output stream.)
   1786 
   1787 .. code-block:: c++
   1788 
   1789   case X86II::AddRegFrm:
   1790     MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
   1791 
   1792     if (CurOp != NumOps) {
   1793       const MachineOperand &MO1 = MI.getOperand(CurOp++);
   1794       unsigned Size = X86InstrInfo::sizeOfImm(Desc);
   1795       if (MO1.isImmediate())
   1796         emitConstant(MO1.getImm(), Size);
   1797       else {
   1798         unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
   1799           : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
   1800         if (Opcode == X86::MOV64ri)
   1801           rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
   1802         if (MO1.isGlobalAddress()) {
   1803           bool NeedStub = isa<Function>(MO1.getGlobal());
   1804           bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
   1805           emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
   1806                             NeedStub, isLazy);
   1807         } else if (MO1.isExternalSymbol())
   1808           emitExternalSymbolAddress(MO1.getSymbolName(), rt);
   1809         else if (MO1.isConstantPoolIndex())
   1810           emitConstPoolAddress(MO1.getIndex(), rt);
   1811         else if (MO1.isJumpTableIndex())
   1812           emitJumpTableAddress(MO1.getIndex(), rt);
   1813       }
   1814     }
   1815     break;
   1816 
   1817 In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which
   1818 is a ``RelocationType`` enum that may be used to relocate addresses (for
   1819 example, a global address with a PIC base offset).  The ``RelocationType`` enum
   1820 for that target is defined in the short target-specific ``XXXRelocations.h``
   1821 file.  The ``RelocationType`` is used by the ``relocate`` method defined in
   1822 ``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols.
   1823 
   1824 For example, ``X86Relocations.h`` specifies the following relocation types for
   1825 the X86 addresses.  In all four cases, the relocated value is added to the
   1826 value already in memory.  For ``reloc_pcrel_word`` and ``reloc_picrel_word``,
   1827 there is an additional initial adjustment.
   1828 
   1829 .. code-block:: c++
   1830 
   1831   enum RelocationType {
   1832     reloc_pcrel_word = 0,    // add reloc value after adjusting for the PC loc
   1833     reloc_picrel_word = 1,   // add reloc value after adjusting for the PIC base
   1834     reloc_absolute_word = 2, // absolute relocation; no additional adjustment
   1835     reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
   1836   };
   1837 
   1838 Target JIT Info
   1839 ---------------
   1840 
   1841 ``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific
   1842 code-generation activities, such as emitting machine code and stubs.  At
   1843 minimum, a target-specific version of ``XXXJITInfo`` implements the following:
   1844 
   1845 * ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a
   1846   function that is used for compilation.
   1847 
   1848 * ``emitFunctionStub`` --- Returns a native function with a specified address
   1849   for a callback function.
   1850 
   1851 * ``relocate`` --- Changes the addresses of referenced globals, based on
   1852   relocation types.
   1853 
   1854 * Callback function that are wrappers to a function stub that is used when the
   1855   real target is not initially known.
   1856 
   1857 ``getLazyResolverFunction`` is generally trivial to implement.  It makes the
   1858 incoming parameter as the global ``JITCompilerFunction`` and returns the
   1859 callback function that will be used a function wrapper.  For the Alpha target
   1860 (in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is
   1861 simply:
   1862 
   1863 .. code-block:: c++
   1864 
   1865   TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
   1866                                               JITCompilerFn F) {
   1867     JITCompilerFunction = F;
   1868     return AlphaCompilationCallback;
   1869   }
   1870 
   1871 For the X86 target, the ``getLazyResolverFunction`` implementation is a little
   1872 more complicated, because it returns a different callback function for
   1873 processors with SSE instructions and XMM registers.
   1874 
   1875 The callback function initially saves and later restores the callee register
   1876 values, incoming arguments, and frame and return address.  The callback
   1877 function needs low-level access to the registers or stack, so it is typically
   1878 implemented with assembler.
   1879 
   1880