Home | History | Annotate | Download | only in Support
      1 //===-- llvm/Support/CFG.h - Process LLVM structures as graphs --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines specializations of GraphTraits that allow Function and
     11 // BasicBlock graphs to be treated as proper graphs for generic algorithms.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_SUPPORT_CFG_H
     16 #define LLVM_SUPPORT_CFG_H
     17 
     18 #include "llvm/ADT/GraphTraits.h"
     19 #include "llvm/IR/Function.h"
     20 #include "llvm/IR/InstrTypes.h"
     21 
     22 namespace llvm {
     23 
     24 //===----------------------------------------------------------------------===//
     25 // BasicBlock pred_iterator definition
     26 //===----------------------------------------------------------------------===//
     27 
     28 template <class Ptr, class USE_iterator> // Predecessor Iterator
     29 class PredIterator : public std::iterator<std::forward_iterator_tag,
     30                                           Ptr, ptrdiff_t, Ptr*, Ptr*> {
     31   typedef std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*,
     32                                                                     Ptr*> super;
     33   typedef PredIterator<Ptr, USE_iterator> Self;
     34   USE_iterator It;
     35 
     36   inline void advancePastNonTerminators() {
     37     // Loop to ignore non terminator uses (for example BlockAddresses).
     38     while (!It.atEnd() && !isa<TerminatorInst>(*It))
     39       ++It;
     40   }
     41 
     42 public:
     43   typedef typename super::pointer pointer;
     44   typedef typename super::reference reference;
     45 
     46   PredIterator() {}
     47   explicit inline PredIterator(Ptr *bb) : It(bb->use_begin()) {
     48     advancePastNonTerminators();
     49   }
     50   inline PredIterator(Ptr *bb, bool) : It(bb->use_end()) {}
     51 
     52   inline bool operator==(const Self& x) const { return It == x.It; }
     53   inline bool operator!=(const Self& x) const { return !operator==(x); }
     54 
     55   inline reference operator*() const {
     56     assert(!It.atEnd() && "pred_iterator out of range!");
     57     return cast<TerminatorInst>(*It)->getParent();
     58   }
     59   inline pointer *operator->() const { return &operator*(); }
     60 
     61   inline Self& operator++() {   // Preincrement
     62     assert(!It.atEnd() && "pred_iterator out of range!");
     63     ++It; advancePastNonTerminators();
     64     return *this;
     65   }
     66 
     67   inline Self operator++(int) { // Postincrement
     68     Self tmp = *this; ++*this; return tmp;
     69   }
     70 
     71   /// getOperandNo - Return the operand number in the predecessor's
     72   /// terminator of the successor.
     73   unsigned getOperandNo() const {
     74     return It.getOperandNo();
     75   }
     76 
     77   /// getUse - Return the operand Use in the predecessor's terminator
     78   /// of the successor.
     79   Use &getUse() const {
     80     return It.getUse();
     81   }
     82 };
     83 
     84 typedef PredIterator<BasicBlock, Value::use_iterator> pred_iterator;
     85 typedef PredIterator<const BasicBlock,
     86                      Value::const_use_iterator> const_pred_iterator;
     87 
     88 inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
     89 inline const_pred_iterator pred_begin(const BasicBlock *BB) {
     90   return const_pred_iterator(BB);
     91 }
     92 inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
     93 inline const_pred_iterator pred_end(const BasicBlock *BB) {
     94   return const_pred_iterator(BB, true);
     95 }
     96 
     97 
     98 
     99 //===----------------------------------------------------------------------===//
    100 // BasicBlock succ_iterator definition
    101 //===----------------------------------------------------------------------===//
    102 
    103 template <class Term_, class BB_>           // Successor Iterator
    104 class SuccIterator : public std::iterator<std::bidirectional_iterator_tag,
    105                                           BB_, ptrdiff_t, BB_*, BB_*> {
    106   const Term_ Term;
    107   unsigned idx;
    108   typedef std::iterator<std::bidirectional_iterator_tag, BB_, ptrdiff_t, BB_*,
    109                                                                     BB_*> super;
    110   typedef SuccIterator<Term_, BB_> Self;
    111 
    112   inline bool index_is_valid(int idx) {
    113     return idx >= 0 && (unsigned) idx < Term->getNumSuccessors();
    114   }
    115 
    116 public:
    117   typedef typename super::pointer pointer;
    118   typedef typename super::reference reference;
    119   // TODO: This can be random access iterator, only operator[] missing.
    120 
    121   explicit inline SuccIterator(Term_ T) : Term(T), idx(0) {// begin iterator
    122   }
    123   inline SuccIterator(Term_ T, bool)                       // end iterator
    124     : Term(T) {
    125     if (Term)
    126       idx = Term->getNumSuccessors();
    127     else
    128       // Term == NULL happens, if a basic block is not fully constructed and
    129       // consequently getTerminator() returns NULL. In this case we construct a
    130       // SuccIterator which describes a basic block that has zero successors.
    131       // Defining SuccIterator for incomplete and malformed CFGs is especially
    132       // useful for debugging.
    133       idx = 0;
    134   }
    135 
    136   inline const Self &operator=(const Self &I) {
    137     assert(Term == I.Term &&"Cannot assign iterators to two different blocks!");
    138     idx = I.idx;
    139     return *this;
    140   }
    141 
    142   /// getSuccessorIndex - This is used to interface between code that wants to
    143   /// operate on terminator instructions directly.
    144   unsigned getSuccessorIndex() const { return idx; }
    145 
    146   inline bool operator==(const Self& x) const { return idx == x.idx; }
    147   inline bool operator!=(const Self& x) const { return !operator==(x); }
    148 
    149   inline reference operator*() const { return Term->getSuccessor(idx); }
    150   inline pointer operator->() const { return operator*(); }
    151 
    152   inline Self& operator++() { ++idx; return *this; } // Preincrement
    153 
    154   inline Self operator++(int) { // Postincrement
    155     Self tmp = *this; ++*this; return tmp;
    156   }
    157 
    158   inline Self& operator--() { --idx; return *this; }  // Predecrement
    159   inline Self operator--(int) { // Postdecrement
    160     Self tmp = *this; --*this; return tmp;
    161   }
    162 
    163   inline bool operator<(const Self& x) const {
    164     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
    165     return idx < x.idx;
    166   }
    167 
    168   inline bool operator<=(const Self& x) const {
    169     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
    170     return idx <= x.idx;
    171   }
    172   inline bool operator>=(const Self& x) const {
    173     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
    174     return idx >= x.idx;
    175   }
    176 
    177   inline bool operator>(const Self& x) const {
    178     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
    179     return idx > x.idx;
    180   }
    181 
    182   inline Self& operator+=(int Right) {
    183     unsigned new_idx = idx + Right;
    184     assert(index_is_valid(new_idx) && "Iterator index out of bound");
    185     idx = new_idx;
    186     return *this;
    187   }
    188 
    189   inline Self operator+(int Right) {
    190     Self tmp = *this;
    191     tmp += Right;
    192     return tmp;
    193   }
    194 
    195   inline Self& operator-=(int Right) {
    196     return operator+=(-Right);
    197   }
    198 
    199   inline Self operator-(int Right) {
    200     return operator+(-Right);
    201   }
    202 
    203   inline int operator-(const Self& x) {
    204     assert(Term == x.Term && "Cannot work on iterators of different blocks!");
    205     int distance = idx - x.idx;
    206     return distance;
    207   }
    208 
    209   // This works for read access, however write access is difficult as changes
    210   // to Term are only possible with Term->setSuccessor(idx). Pointers that can
    211   // be modified are not available.
    212   //
    213   // inline pointer operator[](int offset) {
    214   //  Self tmp = *this;
    215   //  tmp += offset;
    216   //  return tmp.operator*();
    217   // }
    218 
    219   /// Get the source BB of this iterator.
    220   inline BB_ *getSource() {
    221     assert(Term && "Source not available, if basic block was malformed");
    222     return Term->getParent();
    223   }
    224 };
    225 
    226 typedef SuccIterator<TerminatorInst*, BasicBlock> succ_iterator;
    227 typedef SuccIterator<const TerminatorInst*,
    228                      const BasicBlock> succ_const_iterator;
    229 
    230 inline succ_iterator succ_begin(BasicBlock *BB) {
    231   return succ_iterator(BB->getTerminator());
    232 }
    233 inline succ_const_iterator succ_begin(const BasicBlock *BB) {
    234   return succ_const_iterator(BB->getTerminator());
    235 }
    236 inline succ_iterator succ_end(BasicBlock *BB) {
    237   return succ_iterator(BB->getTerminator(), true);
    238 }
    239 inline succ_const_iterator succ_end(const BasicBlock *BB) {
    240   return succ_const_iterator(BB->getTerminator(), true);
    241 }
    242 
    243 template <typename T, typename U> struct isPodLike<SuccIterator<T, U> > {
    244   static const bool value = isPodLike<T>::value;
    245 };
    246 
    247 
    248 
    249 //===--------------------------------------------------------------------===//
    250 // GraphTraits specializations for basic block graphs (CFGs)
    251 //===--------------------------------------------------------------------===//
    252 
    253 // Provide specializations of GraphTraits to be able to treat a function as a
    254 // graph of basic blocks...
    255 
    256 template <> struct GraphTraits<BasicBlock*> {
    257   typedef BasicBlock NodeType;
    258   typedef succ_iterator ChildIteratorType;
    259 
    260   static NodeType *getEntryNode(BasicBlock *BB) { return BB; }
    261   static inline ChildIteratorType child_begin(NodeType *N) {
    262     return succ_begin(N);
    263   }
    264   static inline ChildIteratorType child_end(NodeType *N) {
    265     return succ_end(N);
    266   }
    267 };
    268 
    269 template <> struct GraphTraits<const BasicBlock*> {
    270   typedef const BasicBlock NodeType;
    271   typedef succ_const_iterator ChildIteratorType;
    272 
    273   static NodeType *getEntryNode(const BasicBlock *BB) { return BB; }
    274 
    275   static inline ChildIteratorType child_begin(NodeType *N) {
    276     return succ_begin(N);
    277   }
    278   static inline ChildIteratorType child_end(NodeType *N) {
    279     return succ_end(N);
    280   }
    281 };
    282 
    283 // Provide specializations of GraphTraits to be able to treat a function as a
    284 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
    285 // a function is considered to be when traversing the predecessor edges of a BB
    286 // instead of the successor edges.
    287 //
    288 template <> struct GraphTraits<Inverse<BasicBlock*> > {
    289   typedef BasicBlock NodeType;
    290   typedef pred_iterator ChildIteratorType;
    291   static NodeType *getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
    292   static inline ChildIteratorType child_begin(NodeType *N) {
    293     return pred_begin(N);
    294   }
    295   static inline ChildIteratorType child_end(NodeType *N) {
    296     return pred_end(N);
    297   }
    298 };
    299 
    300 template <> struct GraphTraits<Inverse<const BasicBlock*> > {
    301   typedef const BasicBlock NodeType;
    302   typedef const_pred_iterator ChildIteratorType;
    303   static NodeType *getEntryNode(Inverse<const BasicBlock*> G) {
    304     return G.Graph;
    305   }
    306   static inline ChildIteratorType child_begin(NodeType *N) {
    307     return pred_begin(N);
    308   }
    309   static inline ChildIteratorType child_end(NodeType *N) {
    310     return pred_end(N);
    311   }
    312 };
    313 
    314 
    315 
    316 //===--------------------------------------------------------------------===//
    317 // GraphTraits specializations for function basic block graphs (CFGs)
    318 //===--------------------------------------------------------------------===//
    319 
    320 // Provide specializations of GraphTraits to be able to treat a function as a
    321 // graph of basic blocks... these are the same as the basic block iterators,
    322 // except that the root node is implicitly the first node of the function.
    323 //
    324 template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
    325   static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); }
    326 
    327   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
    328   typedef Function::iterator nodes_iterator;
    329   static nodes_iterator nodes_begin(Function *F) { return F->begin(); }
    330   static nodes_iterator nodes_end  (Function *F) { return F->end(); }
    331   static size_t         size       (Function *F) { return F->size(); }
    332 };
    333 template <> struct GraphTraits<const Function*> :
    334   public GraphTraits<const BasicBlock*> {
    335   static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();}
    336 
    337   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
    338   typedef Function::const_iterator nodes_iterator;
    339   static nodes_iterator nodes_begin(const Function *F) { return F->begin(); }
    340   static nodes_iterator nodes_end  (const Function *F) { return F->end(); }
    341   static size_t         size       (const Function *F) { return F->size(); }
    342 };
    343 
    344 
    345 // Provide specializations of GraphTraits to be able to treat a function as a
    346 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
    347 // a function is considered to be when traversing the predecessor edges of a BB
    348 // instead of the successor edges.
    349 //
    350 template <> struct GraphTraits<Inverse<Function*> > :
    351   public GraphTraits<Inverse<BasicBlock*> > {
    352   static NodeType *getEntryNode(Inverse<Function*> G) {
    353     return &G.Graph->getEntryBlock();
    354   }
    355 };
    356 template <> struct GraphTraits<Inverse<const Function*> > :
    357   public GraphTraits<Inverse<const BasicBlock*> > {
    358   static NodeType *getEntryNode(Inverse<const Function *> G) {
    359     return &G.Graph->getEntryBlock();
    360   }
    361 };
    362 
    363 } // End llvm namespace
    364 
    365 #endif
    366