Home | History | Annotate | Download | only in AsmPrinter
      1 //===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains support for writing DWARF exception info into asm files.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "DwarfException.h"
     15 #include "llvm/ADT/SmallString.h"
     16 #include "llvm/ADT/StringExtras.h"
     17 #include "llvm/ADT/Twine.h"
     18 #include "llvm/CodeGen/AsmPrinter.h"
     19 #include "llvm/CodeGen/MachineFrameInfo.h"
     20 #include "llvm/CodeGen/MachineFunction.h"
     21 #include "llvm/CodeGen/MachineModuleInfo.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/Module.h"
     24 #include "llvm/MC/MCAsmInfo.h"
     25 #include "llvm/MC/MCContext.h"
     26 #include "llvm/MC/MCExpr.h"
     27 #include "llvm/MC/MCSection.h"
     28 #include "llvm/MC/MCStreamer.h"
     29 #include "llvm/MC/MCSymbol.h"
     30 #include "llvm/Support/Dwarf.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/FormattedStream.h"
     33 #include "llvm/Target/Mangler.h"
     34 #include "llvm/Target/TargetFrameLowering.h"
     35 #include "llvm/Target/TargetLoweringObjectFile.h"
     36 #include "llvm/Target/TargetOptions.h"
     37 #include "llvm/Target/TargetRegisterInfo.h"
     38 using namespace llvm;
     39 
     40 DwarfException::DwarfException(AsmPrinter *A)
     41   : Asm(A), MMI(Asm->MMI) {}
     42 
     43 DwarfException::~DwarfException() {}
     44 
     45 /// SharedTypeIds - How many leading type ids two landing pads have in common.
     46 unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
     47                                        const LandingPadInfo *R) {
     48   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
     49   unsigned LSize = LIds.size(), RSize = RIds.size();
     50   unsigned MinSize = LSize < RSize ? LSize : RSize;
     51   unsigned Count = 0;
     52 
     53   for (; Count != MinSize; ++Count)
     54     if (LIds[Count] != RIds[Count])
     55       return Count;
     56 
     57   return Count;
     58 }
     59 
     60 /// PadLT - Order landing pads lexicographically by type id.
     61 bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
     62   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
     63   unsigned LSize = LIds.size(), RSize = RIds.size();
     64   unsigned MinSize = LSize < RSize ? LSize : RSize;
     65 
     66   for (unsigned i = 0; i != MinSize; ++i)
     67     if (LIds[i] != RIds[i])
     68       return LIds[i] < RIds[i];
     69 
     70   return LSize < RSize;
     71 }
     72 
     73 /// ComputeActionsTable - Compute the actions table and gather the first action
     74 /// index for each landing pad site.
     75 unsigned DwarfException::
     76 ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
     77                     SmallVectorImpl<ActionEntry> &Actions,
     78                     SmallVectorImpl<unsigned> &FirstActions) {
     79 
     80   // The action table follows the call-site table in the LSDA. The individual
     81   // records are of two types:
     82   //
     83   //   * Catch clause
     84   //   * Exception specification
     85   //
     86   // The two record kinds have the same format, with only small differences.
     87   // They are distinguished by the "switch value" field: Catch clauses
     88   // (TypeInfos) have strictly positive switch values, and exception
     89   // specifications (FilterIds) have strictly negative switch values. Value 0
     90   // indicates a catch-all clause.
     91   //
     92   // Negative type IDs index into FilterIds. Positive type IDs index into
     93   // TypeInfos.  The value written for a positive type ID is just the type ID
     94   // itself.  For a negative type ID, however, the value written is the
     95   // (negative) byte offset of the corresponding FilterIds entry.  The byte
     96   // offset is usually equal to the type ID (because the FilterIds entries are
     97   // written using a variable width encoding, which outputs one byte per entry
     98   // as long as the value written is not too large) but can differ.  This kind
     99   // of complication does not occur for positive type IDs because type infos are
    100   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
    101   // offset corresponding to FilterIds[i].
    102 
    103   const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
    104   SmallVector<int, 16> FilterOffsets;
    105   FilterOffsets.reserve(FilterIds.size());
    106   int Offset = -1;
    107 
    108   for (std::vector<unsigned>::const_iterator
    109          I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
    110     FilterOffsets.push_back(Offset);
    111     Offset -= MCAsmInfo::getULEB128Size(*I);
    112   }
    113 
    114   FirstActions.reserve(LandingPads.size());
    115 
    116   int FirstAction = 0;
    117   unsigned SizeActions = 0;
    118   const LandingPadInfo *PrevLPI = 0;
    119 
    120   for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
    121          I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
    122     const LandingPadInfo *LPI = *I;
    123     const std::vector<int> &TypeIds = LPI->TypeIds;
    124     unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
    125     unsigned SizeSiteActions = 0;
    126 
    127     if (NumShared < TypeIds.size()) {
    128       unsigned SizeAction = 0;
    129       unsigned PrevAction = (unsigned)-1;
    130 
    131       if (NumShared) {
    132         unsigned SizePrevIds = PrevLPI->TypeIds.size();
    133         assert(Actions.size());
    134         PrevAction = Actions.size() - 1;
    135         SizeAction =
    136           MCAsmInfo::getSLEB128Size(Actions[PrevAction].NextAction) +
    137           MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
    138 
    139         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
    140           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
    141           SizeAction -=
    142             MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
    143           SizeAction += -Actions[PrevAction].NextAction;
    144           PrevAction = Actions[PrevAction].Previous;
    145         }
    146       }
    147 
    148       // Compute the actions.
    149       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
    150         int TypeID = TypeIds[J];
    151         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
    152         int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
    153         unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
    154 
    155         int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
    156         SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
    157         SizeSiteActions += SizeAction;
    158 
    159         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
    160         Actions.push_back(Action);
    161         PrevAction = Actions.size() - 1;
    162       }
    163 
    164       // Record the first action of the landing pad site.
    165       FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
    166     } // else identical - re-use previous FirstAction
    167 
    168     // Information used when created the call-site table. The action record
    169     // field of the call site record is the offset of the first associated
    170     // action record, relative to the start of the actions table. This value is
    171     // biased by 1 (1 indicating the start of the actions table), and 0
    172     // indicates that there are no actions.
    173     FirstActions.push_back(FirstAction);
    174 
    175     // Compute this sites contribution to size.
    176     SizeActions += SizeSiteActions;
    177 
    178     PrevLPI = LPI;
    179   }
    180 
    181   return SizeActions;
    182 }
    183 
    184 /// CallToNoUnwindFunction - Return `true' if this is a call to a function
    185 /// marked `nounwind'. Return `false' otherwise.
    186 bool DwarfException::CallToNoUnwindFunction(const MachineInstr *MI) {
    187   assert(MI->isCall() && "This should be a call instruction!");
    188 
    189   bool MarkedNoUnwind = false;
    190   bool SawFunc = false;
    191 
    192   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
    193     const MachineOperand &MO = MI->getOperand(I);
    194 
    195     if (!MO.isGlobal()) continue;
    196 
    197     const Function *F = dyn_cast<Function>(MO.getGlobal());
    198     if (F == 0) continue;
    199 
    200     if (SawFunc) {
    201       // Be conservative. If we have more than one function operand for this
    202       // call, then we can't make the assumption that it's the callee and
    203       // not a parameter to the call.
    204       //
    205       // FIXME: Determine if there's a way to say that `F' is the callee or
    206       // parameter.
    207       MarkedNoUnwind = false;
    208       break;
    209     }
    210 
    211     MarkedNoUnwind = F->doesNotThrow();
    212     SawFunc = true;
    213   }
    214 
    215   return MarkedNoUnwind;
    216 }
    217 
    218 /// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke
    219 /// has a try-range containing the call, a non-zero landing pad, and an
    220 /// appropriate action.  The entry for an ordinary call has a try-range
    221 /// containing the call and zero for the landing pad and the action.  Calls
    222 /// marked 'nounwind' have no entry and must not be contained in the try-range
    223 /// of any entry - they form gaps in the table.  Entries must be ordered by
    224 /// try-range address.
    225 void DwarfException::
    226 ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
    227                      const RangeMapType &PadMap,
    228                      const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
    229                      const SmallVectorImpl<unsigned> &FirstActions) {
    230   // The end label of the previous invoke or nounwind try-range.
    231   MCSymbol *LastLabel = 0;
    232 
    233   // Whether there is a potentially throwing instruction (currently this means
    234   // an ordinary call) between the end of the previous try-range and now.
    235   bool SawPotentiallyThrowing = false;
    236 
    237   // Whether the last CallSite entry was for an invoke.
    238   bool PreviousIsInvoke = false;
    239 
    240   // Visit all instructions in order of address.
    241   for (MachineFunction::const_iterator I = Asm->MF->begin(), E = Asm->MF->end();
    242        I != E; ++I) {
    243     for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
    244          MI != E; ++MI) {
    245       if (!MI->isLabel()) {
    246         if (MI->isCall())
    247           SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI);
    248         continue;
    249       }
    250 
    251       // End of the previous try-range?
    252       MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
    253       if (BeginLabel == LastLabel)
    254         SawPotentiallyThrowing = false;
    255 
    256       // Beginning of a new try-range?
    257       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
    258       if (L == PadMap.end())
    259         // Nope, it was just some random label.
    260         continue;
    261 
    262       const PadRange &P = L->second;
    263       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
    264       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
    265              "Inconsistent landing pad map!");
    266 
    267       // For Dwarf exception handling (SjLj handling doesn't use this). If some
    268       // instruction between the previous try-range and this one may throw,
    269       // create a call-site entry with no landing pad for the region between the
    270       // try-ranges.
    271       if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
    272         CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
    273         CallSites.push_back(Site);
    274         PreviousIsInvoke = false;
    275       }
    276 
    277       LastLabel = LandingPad->EndLabels[P.RangeIndex];
    278       assert(BeginLabel && LastLabel && "Invalid landing pad!");
    279 
    280       if (!LandingPad->LandingPadLabel) {
    281         // Create a gap.
    282         PreviousIsInvoke = false;
    283       } else {
    284         // This try-range is for an invoke.
    285         CallSiteEntry Site = {
    286           BeginLabel,
    287           LastLabel,
    288           LandingPad->LandingPadLabel,
    289           FirstActions[P.PadIndex]
    290         };
    291 
    292         // Try to merge with the previous call-site. SJLJ doesn't do this
    293         if (PreviousIsInvoke && Asm->MAI->isExceptionHandlingDwarf()) {
    294           CallSiteEntry &Prev = CallSites.back();
    295           if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
    296             // Extend the range of the previous entry.
    297             Prev.EndLabel = Site.EndLabel;
    298             continue;
    299           }
    300         }
    301 
    302         // Otherwise, create a new call-site.
    303         if (Asm->MAI->isExceptionHandlingDwarf())
    304           CallSites.push_back(Site);
    305         else {
    306           // SjLj EH must maintain the call sites in the order assigned
    307           // to them by the SjLjPrepare pass.
    308           unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
    309           if (CallSites.size() < SiteNo)
    310             CallSites.resize(SiteNo);
    311           CallSites[SiteNo - 1] = Site;
    312         }
    313         PreviousIsInvoke = true;
    314       }
    315     }
    316   }
    317 
    318   // If some instruction between the previous try-range and the end of the
    319   // function may throw, create a call-site entry with no landing pad for the
    320   // region following the try-range.
    321   if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
    322     CallSiteEntry Site = { LastLabel, 0, 0, 0 };
    323     CallSites.push_back(Site);
    324   }
    325 }
    326 
    327 /// EmitExceptionTable - Emit landing pads and actions.
    328 ///
    329 /// The general organization of the table is complex, but the basic concepts are
    330 /// easy.  First there is a header which describes the location and organization
    331 /// of the three components that follow.
    332 ///
    333 ///  1. The landing pad site information describes the range of code covered by
    334 ///     the try.  In our case it's an accumulation of the ranges covered by the
    335 ///     invokes in the try.  There is also a reference to the landing pad that
    336 ///     handles the exception once processed.  Finally an index into the actions
    337 ///     table.
    338 ///  2. The action table, in our case, is composed of pairs of type IDs and next
    339 ///     action offset.  Starting with the action index from the landing pad
    340 ///     site, each type ID is checked for a match to the current exception.  If
    341 ///     it matches then the exception and type id are passed on to the landing
    342 ///     pad.  Otherwise the next action is looked up.  This chain is terminated
    343 ///     with a next action of zero.  If no type id is found then the frame is
    344 ///     unwound and handling continues.
    345 ///  3. Type ID table contains references to all the C++ typeinfo for all
    346 ///     catches in the function.  This tables is reverse indexed base 1.
    347 void DwarfException::EmitExceptionTable() {
    348   const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
    349   const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
    350   const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
    351 
    352   // Sort the landing pads in order of their type ids.  This is used to fold
    353   // duplicate actions.
    354   SmallVector<const LandingPadInfo *, 64> LandingPads;
    355   LandingPads.reserve(PadInfos.size());
    356 
    357   for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
    358     LandingPads.push_back(&PadInfos[i]);
    359 
    360   std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
    361 
    362   // Compute the actions table and gather the first action index for each
    363   // landing pad site.
    364   SmallVector<ActionEntry, 32> Actions;
    365   SmallVector<unsigned, 64> FirstActions;
    366   unsigned SizeActions=ComputeActionsTable(LandingPads, Actions, FirstActions);
    367 
    368   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
    369   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
    370   // try-ranges for them need be deduced when using DWARF exception handling.
    371   RangeMapType PadMap;
    372   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
    373     const LandingPadInfo *LandingPad = LandingPads[i];
    374     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
    375       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
    376       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
    377       PadRange P = { i, j };
    378       PadMap[BeginLabel] = P;
    379     }
    380   }
    381 
    382   // Compute the call-site table.
    383   SmallVector<CallSiteEntry, 64> CallSites;
    384   ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
    385 
    386   // Final tallies.
    387 
    388   // Call sites.
    389   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
    390   bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
    391 
    392   unsigned CallSiteTableLength;
    393   if (IsSJLJ)
    394     CallSiteTableLength = 0;
    395   else {
    396     unsigned SiteStartSize  = 4; // dwarf::DW_EH_PE_udata4
    397     unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4
    398     unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4
    399     CallSiteTableLength =
    400       CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize);
    401   }
    402 
    403   for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
    404     CallSiteTableLength += MCAsmInfo::getULEB128Size(CallSites[i].Action);
    405     if (IsSJLJ)
    406       CallSiteTableLength += MCAsmInfo::getULEB128Size(i);
    407   }
    408 
    409   // Type infos.
    410   const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
    411   unsigned TTypeEncoding;
    412   unsigned TypeFormatSize;
    413 
    414   if (!HaveTTData) {
    415     // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
    416     // that we're omitting that bit.
    417     TTypeEncoding = dwarf::DW_EH_PE_omit;
    418     // dwarf::DW_EH_PE_absptr
    419     TypeFormatSize = Asm->getDataLayout().getPointerSize();
    420   } else {
    421     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
    422     // pick a type encoding for them.  We're about to emit a list of pointers to
    423     // typeinfo objects at the end of the LSDA.  However, unless we're in static
    424     // mode, this reference will require a relocation by the dynamic linker.
    425     //
    426     // Because of this, we have a couple of options:
    427     //
    428     //   1) If we are in -static mode, we can always use an absolute reference
    429     //      from the LSDA, because the static linker will resolve it.
    430     //
    431     //   2) Otherwise, if the LSDA section is writable, we can output the direct
    432     //      reference to the typeinfo and allow the dynamic linker to relocate
    433     //      it.  Since it is in a writable section, the dynamic linker won't
    434     //      have a problem.
    435     //
    436     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
    437     //      we need to use some form of indirection.  For example, on Darwin,
    438     //      we can output a statically-relocatable reference to a dyld stub. The
    439     //      offset to the stub is constant, but the contents are in a section
    440     //      that is updated by the dynamic linker.  This is easy enough, but we
    441     //      need to tell the personality function of the unwinder to indirect
    442     //      through the dyld stub.
    443     //
    444     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
    445     // somewhere.  This predicate should be moved to a shared location that is
    446     // in target-independent code.
    447     //
    448     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
    449     TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding);
    450   }
    451 
    452   // Begin the exception table.
    453   // Sometimes we want not to emit the data into separate section (e.g. ARM
    454   // EHABI). In this case LSDASection will be NULL.
    455   if (LSDASection)
    456     Asm->OutStreamer.SwitchSection(LSDASection);
    457   Asm->EmitAlignment(2);
    458 
    459   // Emit the LSDA.
    460   MCSymbol *GCCETSym =
    461     Asm->OutContext.GetOrCreateSymbol(Twine("GCC_except_table")+
    462                                       Twine(Asm->getFunctionNumber()));
    463   Asm->OutStreamer.EmitLabel(GCCETSym);
    464   Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("exception",
    465                                                 Asm->getFunctionNumber()));
    466 
    467   if (IsSJLJ)
    468     Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("_LSDA_",
    469                                                   Asm->getFunctionNumber()));
    470 
    471   // Emit the LSDA header.
    472   Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
    473   Asm->EmitEncodingByte(TTypeEncoding, "@TType");
    474 
    475   // The type infos need to be aligned. GCC does this by inserting padding just
    476   // before the type infos. However, this changes the size of the exception
    477   // table, so you need to take this into account when you output the exception
    478   // table size. However, the size is output using a variable length encoding.
    479   // So by increasing the size by inserting padding, you may increase the number
    480   // of bytes used for writing the size. If it increases, say by one byte, then
    481   // you now need to output one less byte of padding to get the type infos
    482   // aligned. However this decreases the size of the exception table. This
    483   // changes the value you have to output for the exception table size. Due to
    484   // the variable length encoding, the number of bytes used for writing the
    485   // length may decrease. If so, you then have to increase the amount of
    486   // padding. And so on. If you look carefully at the GCC code you will see that
    487   // it indeed does this in a loop, going on and on until the values stabilize.
    488   // We chose another solution: don't output padding inside the table like GCC
    489   // does, instead output it before the table.
    490   unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
    491   unsigned CallSiteTableLengthSize =
    492     MCAsmInfo::getULEB128Size(CallSiteTableLength);
    493   unsigned TTypeBaseOffset =
    494     sizeof(int8_t) +                            // Call site format
    495     CallSiteTableLengthSize +                   // Call site table length size
    496     CallSiteTableLength +                       // Call site table length
    497     SizeActions +                               // Actions size
    498     SizeTypes;
    499   unsigned TTypeBaseOffsetSize = MCAsmInfo::getULEB128Size(TTypeBaseOffset);
    500   unsigned TotalSize =
    501     sizeof(int8_t) +                            // LPStart format
    502     sizeof(int8_t) +                            // TType format
    503     (HaveTTData ? TTypeBaseOffsetSize : 0) +    // TType base offset size
    504     TTypeBaseOffset;                            // TType base offset
    505   unsigned SizeAlign = (4 - TotalSize) & 3;
    506 
    507   if (HaveTTData) {
    508     // Account for any extra padding that will be added to the call site table
    509     // length.
    510     Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign);
    511     SizeAlign = 0;
    512   }
    513 
    514   bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
    515 
    516   // SjLj Exception handling
    517   if (IsSJLJ) {
    518     Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
    519 
    520     // Add extra padding if it wasn't added to the TType base offset.
    521     Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
    522 
    523     // Emit the landing pad site information.
    524     unsigned idx = 0;
    525     for (SmallVectorImpl<CallSiteEntry>::const_iterator
    526          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
    527       const CallSiteEntry &S = *I;
    528 
    529       // Offset of the landing pad, counted in 16-byte bundles relative to the
    530       // @LPStart address.
    531       if (VerboseAsm) {
    532         Asm->OutStreamer.AddComment(">> Call Site " + Twine(idx) + " <<");
    533         Asm->OutStreamer.AddComment("  On exception at call site "+Twine(idx));
    534       }
    535       Asm->EmitULEB128(idx);
    536 
    537       // Offset of the first associated action record, relative to the start of
    538       // the action table. This value is biased by 1 (1 indicates the start of
    539       // the action table), and 0 indicates that there are no actions.
    540       if (VerboseAsm) {
    541         if (S.Action == 0)
    542           Asm->OutStreamer.AddComment("  Action: cleanup");
    543         else
    544           Asm->OutStreamer.AddComment("  Action: " +
    545                                       Twine((S.Action - 1) / 2 + 1));
    546       }
    547       Asm->EmitULEB128(S.Action);
    548     }
    549   } else {
    550     // DWARF Exception handling
    551     assert(Asm->MAI->isExceptionHandlingDwarf());
    552 
    553     // The call-site table is a list of all call sites that may throw an
    554     // exception (including C++ 'throw' statements) in the procedure
    555     // fragment. It immediately follows the LSDA header. Each entry indicates,
    556     // for a given call, the first corresponding action record and corresponding
    557     // landing pad.
    558     //
    559     // The table begins with the number of bytes, stored as an LEB128
    560     // compressed, unsigned integer. The records immediately follow the record
    561     // count. They are sorted in increasing call-site address. Each record
    562     // indicates:
    563     //
    564     //   * The position of the call-site.
    565     //   * The position of the landing pad.
    566     //   * The first action record for that call site.
    567     //
    568     // A missing entry in the call-site table indicates that a call is not
    569     // supposed to throw.
    570 
    571     // Emit the landing pad call site table.
    572     Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
    573 
    574     // Add extra padding if it wasn't added to the TType base offset.
    575     Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
    576 
    577     unsigned Entry = 0;
    578     for (SmallVectorImpl<CallSiteEntry>::const_iterator
    579          I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
    580       const CallSiteEntry &S = *I;
    581 
    582       MCSymbol *EHFuncBeginSym =
    583         Asm->GetTempSymbol("eh_func_begin", Asm->getFunctionNumber());
    584 
    585       MCSymbol *BeginLabel = S.BeginLabel;
    586       if (BeginLabel == 0)
    587         BeginLabel = EHFuncBeginSym;
    588       MCSymbol *EndLabel = S.EndLabel;
    589       if (EndLabel == 0)
    590         EndLabel = Asm->GetTempSymbol("eh_func_end", Asm->getFunctionNumber());
    591 
    592 
    593       // Offset of the call site relative to the previous call site, counted in
    594       // number of 16-byte bundles. The first call site is counted relative to
    595       // the start of the procedure fragment.
    596       if (VerboseAsm)
    597         Asm->OutStreamer.AddComment(">> Call Site " + Twine(++Entry) + " <<");
    598       Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4);
    599       if (VerboseAsm)
    600         Asm->OutStreamer.AddComment(Twine("  Call between ") +
    601                                     BeginLabel->getName() + " and " +
    602                                     EndLabel->getName());
    603       Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
    604 
    605       // Offset of the landing pad, counted in 16-byte bundles relative to the
    606       // @LPStart address.
    607       if (!S.PadLabel) {
    608         if (VerboseAsm)
    609           Asm->OutStreamer.AddComment("    has no landing pad");
    610         Asm->OutStreamer.EmitIntValue(0, 4/*size*/);
    611       } else {
    612         if (VerboseAsm)
    613           Asm->OutStreamer.AddComment(Twine("    jumps to ") +
    614                                       S.PadLabel->getName());
    615         Asm->EmitLabelDifference(S.PadLabel, EHFuncBeginSym, 4);
    616       }
    617 
    618       // Offset of the first associated action record, relative to the start of
    619       // the action table. This value is biased by 1 (1 indicates the start of
    620       // the action table), and 0 indicates that there are no actions.
    621       if (VerboseAsm) {
    622         if (S.Action == 0)
    623           Asm->OutStreamer.AddComment("  On action: cleanup");
    624         else
    625           Asm->OutStreamer.AddComment("  On action: " +
    626                                       Twine((S.Action - 1) / 2 + 1));
    627       }
    628       Asm->EmitULEB128(S.Action);
    629     }
    630   }
    631 
    632   // Emit the Action Table.
    633   int Entry = 0;
    634   for (SmallVectorImpl<ActionEntry>::const_iterator
    635          I = Actions.begin(), E = Actions.end(); I != E; ++I) {
    636     const ActionEntry &Action = *I;
    637 
    638     if (VerboseAsm) {
    639       // Emit comments that decode the action table.
    640       Asm->OutStreamer.AddComment(">> Action Record " + Twine(++Entry) + " <<");
    641     }
    642 
    643     // Type Filter
    644     //
    645     //   Used by the runtime to match the type of the thrown exception to the
    646     //   type of the catch clauses or the types in the exception specification.
    647     if (VerboseAsm) {
    648       if (Action.ValueForTypeID > 0)
    649         Asm->OutStreamer.AddComment("  Catch TypeInfo " +
    650                                     Twine(Action.ValueForTypeID));
    651       else if (Action.ValueForTypeID < 0)
    652         Asm->OutStreamer.AddComment("  Filter TypeInfo " +
    653                                     Twine(Action.ValueForTypeID));
    654       else
    655         Asm->OutStreamer.AddComment("  Cleanup");
    656     }
    657     Asm->EmitSLEB128(Action.ValueForTypeID);
    658 
    659     // Action Record
    660     //
    661     //   Self-relative signed displacement in bytes of the next action record,
    662     //   or 0 if there is no next action record.
    663     if (VerboseAsm) {
    664       if (Action.NextAction == 0) {
    665         Asm->OutStreamer.AddComment("  No further actions");
    666       } else {
    667         unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
    668         Asm->OutStreamer.AddComment("  Continue to action "+Twine(NextAction));
    669       }
    670     }
    671     Asm->EmitSLEB128(Action.NextAction);
    672   }
    673 
    674   EmitTypeInfos(TTypeEncoding);
    675 
    676   Asm->EmitAlignment(2);
    677 }
    678 
    679 void DwarfException::EmitTypeInfos(unsigned TTypeEncoding) {
    680   const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
    681   const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
    682 
    683   bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
    684 
    685   int Entry = 0;
    686   // Emit the Catch TypeInfos.
    687   if (VerboseAsm && !TypeInfos.empty()) {
    688     Asm->OutStreamer.AddComment(">> Catch TypeInfos <<");
    689     Asm->OutStreamer.AddBlankLine();
    690     Entry = TypeInfos.size();
    691   }
    692 
    693   for (std::vector<const GlobalVariable *>::const_reverse_iterator
    694          I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
    695     const GlobalVariable *GV = *I;
    696     if (VerboseAsm)
    697       Asm->OutStreamer.AddComment("TypeInfo " + Twine(Entry--));
    698     Asm->EmitTTypeReference(GV, TTypeEncoding);
    699   }
    700 
    701   // Emit the Exception Specifications.
    702   if (VerboseAsm && !FilterIds.empty()) {
    703     Asm->OutStreamer.AddComment(">> Filter TypeInfos <<");
    704     Asm->OutStreamer.AddBlankLine();
    705     Entry = 0;
    706   }
    707   for (std::vector<unsigned>::const_iterator
    708          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
    709     unsigned TypeID = *I;
    710     if (VerboseAsm) {
    711       --Entry;
    712       if (TypeID != 0)
    713         Asm->OutStreamer.AddComment("FilterInfo " + Twine(Entry));
    714     }
    715 
    716     Asm->EmitULEB128(TypeID);
    717   }
    718 }
    719 
    720 /// EndModule - Emit all exception information that should come after the
    721 /// content.
    722 void DwarfException::EndModule() {
    723   llvm_unreachable("Should be implemented");
    724 }
    725 
    726 /// BeginFunction - Gather pre-function exception information. Assumes it's
    727 /// being emitted immediately after the function entry point.
    728 void DwarfException::BeginFunction(const MachineFunction *MF) {
    729   llvm_unreachable("Should be implemented");
    730 }
    731 
    732 /// EndFunction - Gather and emit post-function exception information.
    733 ///
    734 void DwarfException::EndFunction() {
    735   llvm_unreachable("Should be implemented");
    736 }
    737