Home | History | Annotate | Download | only in CodeGen
      1 //===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the RABasic function pass, which provides a minimal
     11 // implementation of the basic register allocator.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "regalloc"
     16 #include "llvm/CodeGen/Passes.h"
     17 #include "AllocationOrder.h"
     18 #include "LiveDebugVariables.h"
     19 #include "RegAllocBase.h"
     20 #include "Spiller.h"
     21 #include "llvm/Analysis/AliasAnalysis.h"
     22 #include "llvm/CodeGen/CalcSpillWeights.h"
     23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     24 #include "llvm/CodeGen/LiveRangeEdit.h"
     25 #include "llvm/CodeGen/LiveRegMatrix.h"
     26 #include "llvm/CodeGen/LiveStackAnalysis.h"
     27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     28 #include "llvm/CodeGen/MachineFunctionPass.h"
     29 #include "llvm/CodeGen/MachineInstr.h"
     30 #include "llvm/CodeGen/MachineLoopInfo.h"
     31 #include "llvm/CodeGen/MachineRegisterInfo.h"
     32 #include "llvm/CodeGen/RegAllocRegistry.h"
     33 #include "llvm/CodeGen/VirtRegMap.h"
     34 #include "llvm/PassAnalysisSupport.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 #include "llvm/Target/TargetMachine.h"
     38 #include "llvm/Target/TargetRegisterInfo.h"
     39 #include <cstdlib>
     40 #include <queue>
     41 
     42 using namespace llvm;
     43 
     44 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
     45                                       createBasicRegisterAllocator);
     46 
     47 namespace {
     48   struct CompSpillWeight {
     49     bool operator()(LiveInterval *A, LiveInterval *B) const {
     50       return A->weight < B->weight;
     51     }
     52   };
     53 }
     54 
     55 namespace {
     56 /// RABasic provides a minimal implementation of the basic register allocation
     57 /// algorithm. It prioritizes live virtual registers by spill weight and spills
     58 /// whenever a register is unavailable. This is not practical in production but
     59 /// provides a useful baseline both for measuring other allocators and comparing
     60 /// the speed of the basic algorithm against other styles of allocators.
     61 class RABasic : public MachineFunctionPass, public RegAllocBase
     62 {
     63   // context
     64   MachineFunction *MF;
     65 
     66   // state
     67   OwningPtr<Spiller> SpillerInstance;
     68   std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
     69                       CompSpillWeight> Queue;
     70 
     71   // Scratch space.  Allocated here to avoid repeated malloc calls in
     72   // selectOrSplit().
     73   BitVector UsableRegs;
     74 
     75 public:
     76   RABasic();
     77 
     78   /// Return the pass name.
     79   virtual const char* getPassName() const {
     80     return "Basic Register Allocator";
     81   }
     82 
     83   /// RABasic analysis usage.
     84   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
     85 
     86   virtual void releaseMemory();
     87 
     88   virtual Spiller &spiller() { return *SpillerInstance; }
     89 
     90   virtual float getPriority(LiveInterval *LI) { return LI->weight; }
     91 
     92   virtual void enqueue(LiveInterval *LI) {
     93     Queue.push(LI);
     94   }
     95 
     96   virtual LiveInterval *dequeue() {
     97     if (Queue.empty())
     98       return 0;
     99     LiveInterval *LI = Queue.top();
    100     Queue.pop();
    101     return LI;
    102   }
    103 
    104   virtual unsigned selectOrSplit(LiveInterval &VirtReg,
    105                                  SmallVectorImpl<LiveInterval*> &SplitVRegs);
    106 
    107   /// Perform register allocation.
    108   virtual bool runOnMachineFunction(MachineFunction &mf);
    109 
    110   // Helper for spilling all live virtual registers currently unified under preg
    111   // that interfere with the most recently queried lvr.  Return true if spilling
    112   // was successful, and append any new spilled/split intervals to splitLVRs.
    113   bool spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
    114                           SmallVectorImpl<LiveInterval*> &SplitVRegs);
    115 
    116   static char ID;
    117 };
    118 
    119 char RABasic::ID = 0;
    120 
    121 } // end anonymous namespace
    122 
    123 RABasic::RABasic(): MachineFunctionPass(ID) {
    124   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
    125   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
    126   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
    127   initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
    128   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
    129   initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
    130   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
    131   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
    132   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
    133   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
    134   initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
    135 }
    136 
    137 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
    138   AU.setPreservesCFG();
    139   AU.addRequired<AliasAnalysis>();
    140   AU.addPreserved<AliasAnalysis>();
    141   AU.addRequired<LiveIntervals>();
    142   AU.addPreserved<LiveIntervals>();
    143   AU.addPreserved<SlotIndexes>();
    144   AU.addRequired<LiveDebugVariables>();
    145   AU.addPreserved<LiveDebugVariables>();
    146   AU.addRequired<CalculateSpillWeights>();
    147   AU.addRequired<LiveStacks>();
    148   AU.addPreserved<LiveStacks>();
    149   AU.addRequired<MachineBlockFrequencyInfo>();
    150   AU.addPreserved<MachineBlockFrequencyInfo>();
    151   AU.addRequiredID(MachineDominatorsID);
    152   AU.addPreservedID(MachineDominatorsID);
    153   AU.addRequired<MachineLoopInfo>();
    154   AU.addPreserved<MachineLoopInfo>();
    155   AU.addRequired<VirtRegMap>();
    156   AU.addPreserved<VirtRegMap>();
    157   AU.addRequired<LiveRegMatrix>();
    158   AU.addPreserved<LiveRegMatrix>();
    159   MachineFunctionPass::getAnalysisUsage(AU);
    160 }
    161 
    162 void RABasic::releaseMemory() {
    163   SpillerInstance.reset(0);
    164 }
    165 
    166 
    167 // Spill or split all live virtual registers currently unified under PhysReg
    168 // that interfere with VirtReg. The newly spilled or split live intervals are
    169 // returned by appending them to SplitVRegs.
    170 bool RABasic::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
    171                                  SmallVectorImpl<LiveInterval*> &SplitVRegs) {
    172   // Record each interference and determine if all are spillable before mutating
    173   // either the union or live intervals.
    174   SmallVector<LiveInterval*, 8> Intfs;
    175 
    176   // Collect interferences assigned to any alias of the physical register.
    177   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
    178     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
    179     Q.collectInterferingVRegs();
    180     if (Q.seenUnspillableVReg())
    181       return false;
    182     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
    183       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
    184       if (!Intf->isSpillable() || Intf->weight > VirtReg.weight)
    185         return false;
    186       Intfs.push_back(Intf);
    187     }
    188   }
    189   DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
    190         " interferences with " << VirtReg << "\n");
    191   assert(!Intfs.empty() && "expected interference");
    192 
    193   // Spill each interfering vreg allocated to PhysReg or an alias.
    194   for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
    195     LiveInterval &Spill = *Intfs[i];
    196 
    197     // Skip duplicates.
    198     if (!VRM->hasPhys(Spill.reg))
    199       continue;
    200 
    201     // Deallocate the interfering vreg by removing it from the union.
    202     // A LiveInterval instance may not be in a union during modification!
    203     Matrix->unassign(Spill);
    204 
    205     // Spill the extracted interval.
    206     LiveRangeEdit LRE(&Spill, SplitVRegs, *MF, *LIS, VRM);
    207     spiller().spill(LRE);
    208   }
    209   return true;
    210 }
    211 
    212 // Driver for the register assignment and splitting heuristics.
    213 // Manages iteration over the LiveIntervalUnions.
    214 //
    215 // This is a minimal implementation of register assignment and splitting that
    216 // spills whenever we run out of registers.
    217 //
    218 // selectOrSplit can only be called once per live virtual register. We then do a
    219 // single interference test for each register the correct class until we find an
    220 // available register. So, the number of interference tests in the worst case is
    221 // |vregs| * |machineregs|. And since the number of interference tests is
    222 // minimal, there is no value in caching them outside the scope of
    223 // selectOrSplit().
    224 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
    225                                 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
    226   // Populate a list of physical register spill candidates.
    227   SmallVector<unsigned, 8> PhysRegSpillCands;
    228 
    229   // Check for an available register in this class.
    230   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
    231   while (unsigned PhysReg = Order.next()) {
    232     // Check for interference in PhysReg
    233     switch (Matrix->checkInterference(VirtReg, PhysReg)) {
    234     case LiveRegMatrix::IK_Free:
    235       // PhysReg is available, allocate it.
    236       return PhysReg;
    237 
    238     case LiveRegMatrix::IK_VirtReg:
    239       // Only virtual registers in the way, we may be able to spill them.
    240       PhysRegSpillCands.push_back(PhysReg);
    241       continue;
    242 
    243     default:
    244       // RegMask or RegUnit interference.
    245       continue;
    246     }
    247   }
    248 
    249   // Try to spill another interfering reg with less spill weight.
    250   for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
    251        PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
    252     if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs))
    253       continue;
    254 
    255     assert(!Matrix->checkInterference(VirtReg, *PhysRegI) &&
    256            "Interference after spill.");
    257     // Tell the caller to allocate to this newly freed physical register.
    258     return *PhysRegI;
    259   }
    260 
    261   // No other spill candidates were found, so spill the current VirtReg.
    262   DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
    263   if (!VirtReg.isSpillable())
    264     return ~0u;
    265   LiveRangeEdit LRE(&VirtReg, SplitVRegs, *MF, *LIS, VRM);
    266   spiller().spill(LRE);
    267 
    268   // The live virtual register requesting allocation was spilled, so tell
    269   // the caller not to allocate anything during this round.
    270   return 0;
    271 }
    272 
    273 bool RABasic::runOnMachineFunction(MachineFunction &mf) {
    274   DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
    275                << "********** Function: "
    276                << mf.getName() << '\n');
    277 
    278   MF = &mf;
    279   RegAllocBase::init(getAnalysis<VirtRegMap>(),
    280                      getAnalysis<LiveIntervals>(),
    281                      getAnalysis<LiveRegMatrix>());
    282   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
    283 
    284   allocatePhysRegs();
    285 
    286   // Diagnostic output before rewriting
    287   DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
    288 
    289   releaseMemory();
    290   return true;
    291 }
    292 
    293 FunctionPass* llvm::createBasicRegisterAllocator()
    294 {
    295   return new RABasic();
    296 }
    297