1 //===-- ARMInstrVFP.td - VFP support for ARM ---------------*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the ARM VFP instruction set. 11 // 12 //===----------------------------------------------------------------------===// 13 14 def SDT_FTOI : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>; 15 def SDT_ITOF : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>; 16 def SDT_CMPFP0 : SDTypeProfile<0, 1, [SDTCisFP<0>]>; 17 def SDT_VMOVDRR : SDTypeProfile<1, 2, [SDTCisVT<0, f64>, SDTCisVT<1, i32>, 18 SDTCisSameAs<1, 2>]>; 19 20 def arm_ftoui : SDNode<"ARMISD::FTOUI", SDT_FTOI>; 21 def arm_ftosi : SDNode<"ARMISD::FTOSI", SDT_FTOI>; 22 def arm_sitof : SDNode<"ARMISD::SITOF", SDT_ITOF>; 23 def arm_uitof : SDNode<"ARMISD::UITOF", SDT_ITOF>; 24 def arm_fmstat : SDNode<"ARMISD::FMSTAT", SDTNone, [SDNPInGlue, SDNPOutGlue]>; 25 def arm_cmpfp : SDNode<"ARMISD::CMPFP", SDT_ARMCmp, [SDNPOutGlue]>; 26 def arm_cmpfp0 : SDNode<"ARMISD::CMPFPw0", SDT_CMPFP0, [SDNPOutGlue]>; 27 def arm_fmdrr : SDNode<"ARMISD::VMOVDRR", SDT_VMOVDRR>; 28 29 30 //===----------------------------------------------------------------------===// 31 // Operand Definitions. 32 // 33 34 // 8-bit floating-point immediate encodings. 35 def FPImmOperand : AsmOperandClass { 36 let Name = "FPImm"; 37 let ParserMethod = "parseFPImm"; 38 } 39 40 def vfp_f32imm : Operand<f32>, 41 PatLeaf<(f32 fpimm), [{ 42 return ARM_AM::getFP32Imm(N->getValueAPF()) != -1; 43 }], SDNodeXForm<fpimm, [{ 44 APFloat InVal = N->getValueAPF(); 45 uint32_t enc = ARM_AM::getFP32Imm(InVal); 46 return CurDAG->getTargetConstant(enc, MVT::i32); 47 }]>> { 48 let PrintMethod = "printFPImmOperand"; 49 let ParserMatchClass = FPImmOperand; 50 } 51 52 def vfp_f64imm : Operand<f64>, 53 PatLeaf<(f64 fpimm), [{ 54 return ARM_AM::getFP64Imm(N->getValueAPF()) != -1; 55 }], SDNodeXForm<fpimm, [{ 56 APFloat InVal = N->getValueAPF(); 57 uint32_t enc = ARM_AM::getFP64Imm(InVal); 58 return CurDAG->getTargetConstant(enc, MVT::i32); 59 }]>> { 60 let PrintMethod = "printFPImmOperand"; 61 let ParserMatchClass = FPImmOperand; 62 } 63 64 def alignedload32 : PatFrag<(ops node:$ptr), (load node:$ptr), [{ 65 return cast<LoadSDNode>(N)->getAlignment() >= 4; 66 }]>; 67 68 def alignedstore32 : PatFrag<(ops node:$val, node:$ptr), 69 (store node:$val, node:$ptr), [{ 70 return cast<StoreSDNode>(N)->getAlignment() >= 4; 71 }]>; 72 73 // The VCVT to/from fixed-point instructions encode the 'fbits' operand 74 // (the number of fixed bits) differently than it appears in the assembly 75 // source. It's encoded as "Size - fbits" where Size is the size of the 76 // fixed-point representation (32 or 16) and fbits is the value appearing 77 // in the assembly source, an integer in [0,16] or (0,32], depending on size. 78 def fbits32_asm_operand : AsmOperandClass { let Name = "FBits32"; } 79 def fbits32 : Operand<i32> { 80 let PrintMethod = "printFBits32"; 81 let ParserMatchClass = fbits32_asm_operand; 82 } 83 84 def fbits16_asm_operand : AsmOperandClass { let Name = "FBits16"; } 85 def fbits16 : Operand<i32> { 86 let PrintMethod = "printFBits16"; 87 let ParserMatchClass = fbits16_asm_operand; 88 } 89 90 //===----------------------------------------------------------------------===// 91 // Load / store Instructions. 92 // 93 94 let canFoldAsLoad = 1, isReMaterializable = 1 in { 95 96 def VLDRD : ADI5<0b1101, 0b01, (outs DPR:$Dd), (ins addrmode5:$addr), 97 IIC_fpLoad64, "vldr", "\t$Dd, $addr", 98 [(set DPR:$Dd, (f64 (alignedload32 addrmode5:$addr)))]>; 99 100 def VLDRS : ASI5<0b1101, 0b01, (outs SPR:$Sd), (ins addrmode5:$addr), 101 IIC_fpLoad32, "vldr", "\t$Sd, $addr", 102 [(set SPR:$Sd, (load addrmode5:$addr))]> { 103 // Some single precision VFP instructions may be executed on both NEON and VFP 104 // pipelines. 105 let D = VFPNeonDomain; 106 } 107 108 } // End of 'let canFoldAsLoad = 1, isReMaterializable = 1 in' 109 110 def VSTRD : ADI5<0b1101, 0b00, (outs), (ins DPR:$Dd, addrmode5:$addr), 111 IIC_fpStore64, "vstr", "\t$Dd, $addr", 112 [(alignedstore32 (f64 DPR:$Dd), addrmode5:$addr)]>; 113 114 def VSTRS : ASI5<0b1101, 0b00, (outs), (ins SPR:$Sd, addrmode5:$addr), 115 IIC_fpStore32, "vstr", "\t$Sd, $addr", 116 [(store SPR:$Sd, addrmode5:$addr)]> { 117 // Some single precision VFP instructions may be executed on both NEON and VFP 118 // pipelines. 119 let D = VFPNeonDomain; 120 } 121 122 //===----------------------------------------------------------------------===// 123 // Load / store multiple Instructions. 124 // 125 126 multiclass vfp_ldst_mult<string asm, bit L_bit, 127 InstrItinClass itin, InstrItinClass itin_upd> { 128 // Double Precision 129 def DIA : 130 AXDI4<(outs), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops), 131 IndexModeNone, itin, 132 !strconcat(asm, "ia${p}\t$Rn, $regs"), "", []> { 133 let Inst{24-23} = 0b01; // Increment After 134 let Inst{21} = 0; // No writeback 135 let Inst{20} = L_bit; 136 } 137 def DIA_UPD : 138 AXDI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, 139 variable_ops), 140 IndexModeUpd, itin_upd, 141 !strconcat(asm, "ia${p}\t$Rn!, $regs"), "$Rn = $wb", []> { 142 let Inst{24-23} = 0b01; // Increment After 143 let Inst{21} = 1; // Writeback 144 let Inst{20} = L_bit; 145 } 146 def DDB_UPD : 147 AXDI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, 148 variable_ops), 149 IndexModeUpd, itin_upd, 150 !strconcat(asm, "db${p}\t$Rn!, $regs"), "$Rn = $wb", []> { 151 let Inst{24-23} = 0b10; // Decrement Before 152 let Inst{21} = 1; // Writeback 153 let Inst{20} = L_bit; 154 } 155 156 // Single Precision 157 def SIA : 158 AXSI4<(outs), (ins GPR:$Rn, pred:$p, spr_reglist:$regs, variable_ops), 159 IndexModeNone, itin, 160 !strconcat(asm, "ia${p}\t$Rn, $regs"), "", []> { 161 let Inst{24-23} = 0b01; // Increment After 162 let Inst{21} = 0; // No writeback 163 let Inst{20} = L_bit; 164 165 // Some single precision VFP instructions may be executed on both NEON and 166 // VFP pipelines. 167 let D = VFPNeonDomain; 168 } 169 def SIA_UPD : 170 AXSI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, spr_reglist:$regs, 171 variable_ops), 172 IndexModeUpd, itin_upd, 173 !strconcat(asm, "ia${p}\t$Rn!, $regs"), "$Rn = $wb", []> { 174 let Inst{24-23} = 0b01; // Increment After 175 let Inst{21} = 1; // Writeback 176 let Inst{20} = L_bit; 177 178 // Some single precision VFP instructions may be executed on both NEON and 179 // VFP pipelines. 180 let D = VFPNeonDomain; 181 } 182 def SDB_UPD : 183 AXSI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, spr_reglist:$regs, 184 variable_ops), 185 IndexModeUpd, itin_upd, 186 !strconcat(asm, "db${p}\t$Rn!, $regs"), "$Rn = $wb", []> { 187 let Inst{24-23} = 0b10; // Decrement Before 188 let Inst{21} = 1; // Writeback 189 let Inst{20} = L_bit; 190 191 // Some single precision VFP instructions may be executed on both NEON and 192 // VFP pipelines. 193 let D = VFPNeonDomain; 194 } 195 } 196 197 let neverHasSideEffects = 1 in { 198 199 let mayLoad = 1, hasExtraDefRegAllocReq = 1 in 200 defm VLDM : vfp_ldst_mult<"vldm", 1, IIC_fpLoad_m, IIC_fpLoad_mu>; 201 202 let mayStore = 1, hasExtraSrcRegAllocReq = 1 in 203 defm VSTM : vfp_ldst_mult<"vstm", 0, IIC_fpLoad_m, IIC_fpLoad_mu>; 204 205 } // neverHasSideEffects 206 207 def : MnemonicAlias<"vldm", "vldmia">; 208 def : MnemonicAlias<"vstm", "vstmia">; 209 210 def : InstAlias<"vpush${p} $r", (VSTMDDB_UPD SP, pred:$p, dpr_reglist:$r)>, 211 Requires<[HasVFP2]>; 212 def : InstAlias<"vpush${p} $r", (VSTMSDB_UPD SP, pred:$p, spr_reglist:$r)>, 213 Requires<[HasVFP2]>; 214 def : InstAlias<"vpop${p} $r", (VLDMDIA_UPD SP, pred:$p, dpr_reglist:$r)>, 215 Requires<[HasVFP2]>; 216 def : InstAlias<"vpop${p} $r", (VLDMSIA_UPD SP, pred:$p, spr_reglist:$r)>, 217 Requires<[HasVFP2]>; 218 defm : VFPDTAnyInstAlias<"vpush${p}", "$r", 219 (VSTMSDB_UPD SP, pred:$p, spr_reglist:$r)>; 220 defm : VFPDTAnyInstAlias<"vpush${p}", "$r", 221 (VSTMDDB_UPD SP, pred:$p, dpr_reglist:$r)>; 222 defm : VFPDTAnyInstAlias<"vpop${p}", "$r", 223 (VLDMSIA_UPD SP, pred:$p, spr_reglist:$r)>; 224 defm : VFPDTAnyInstAlias<"vpop${p}", "$r", 225 (VLDMDIA_UPD SP, pred:$p, dpr_reglist:$r)>; 226 227 // FLDMX, FSTMX - Load and store multiple unknown precision registers for 228 // pre-armv6 cores. 229 // These instruction are deprecated so we don't want them to get selected. 230 multiclass vfp_ldstx_mult<string asm, bit L_bit> { 231 // Unknown precision 232 def XIA : 233 AXXI4<(outs), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops), 234 IndexModeNone, !strconcat(asm, "iax${p}\t$Rn, $regs"), "", []> { 235 let Inst{24-23} = 0b01; // Increment After 236 let Inst{21} = 0; // No writeback 237 let Inst{20} = L_bit; 238 } 239 def XIA_UPD : 240 AXXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops), 241 IndexModeUpd, !strconcat(asm, "iax${p}\t$Rn!, $regs"), "$Rn = $wb", []> { 242 let Inst{24-23} = 0b01; // Increment After 243 let Inst{21} = 1; // Writeback 244 let Inst{20} = L_bit; 245 } 246 def XDB_UPD : 247 AXXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops), 248 IndexModeUpd, !strconcat(asm, "dbx${p}\t$Rn!, $regs"), "$Rn = $wb", []> { 249 let Inst{24-23} = 0b10; // Decrement Before 250 let Inst{21} = 1; 251 let Inst{20} = L_bit; 252 } 253 } 254 255 defm FLDM : vfp_ldstx_mult<"fldm", 1>; 256 defm FSTM : vfp_ldstx_mult<"fstm", 0>; 257 258 //===----------------------------------------------------------------------===// 259 // FP Binary Operations. 260 // 261 262 let TwoOperandAliasConstraint = "$Dn = $Dd" in 263 def VADDD : ADbI<0b11100, 0b11, 0, 0, 264 (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm), 265 IIC_fpALU64, "vadd", ".f64\t$Dd, $Dn, $Dm", 266 [(set DPR:$Dd, (fadd DPR:$Dn, (f64 DPR:$Dm)))]>; 267 268 let TwoOperandAliasConstraint = "$Sn = $Sd" in 269 def VADDS : ASbIn<0b11100, 0b11, 0, 0, 270 (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm), 271 IIC_fpALU32, "vadd", ".f32\t$Sd, $Sn, $Sm", 272 [(set SPR:$Sd, (fadd SPR:$Sn, SPR:$Sm))]> { 273 // Some single precision VFP instructions may be executed on both NEON and 274 // VFP pipelines on A8. 275 let D = VFPNeonA8Domain; 276 } 277 278 let TwoOperandAliasConstraint = "$Dn = $Dd" in 279 def VSUBD : ADbI<0b11100, 0b11, 1, 0, 280 (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm), 281 IIC_fpALU64, "vsub", ".f64\t$Dd, $Dn, $Dm", 282 [(set DPR:$Dd, (fsub DPR:$Dn, (f64 DPR:$Dm)))]>; 283 284 let TwoOperandAliasConstraint = "$Sn = $Sd" in 285 def VSUBS : ASbIn<0b11100, 0b11, 1, 0, 286 (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm), 287 IIC_fpALU32, "vsub", ".f32\t$Sd, $Sn, $Sm", 288 [(set SPR:$Sd, (fsub SPR:$Sn, SPR:$Sm))]> { 289 // Some single precision VFP instructions may be executed on both NEON and 290 // VFP pipelines on A8. 291 let D = VFPNeonA8Domain; 292 } 293 294 let TwoOperandAliasConstraint = "$Dn = $Dd" in 295 def VDIVD : ADbI<0b11101, 0b00, 0, 0, 296 (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm), 297 IIC_fpDIV64, "vdiv", ".f64\t$Dd, $Dn, $Dm", 298 [(set DPR:$Dd, (fdiv DPR:$Dn, (f64 DPR:$Dm)))]>; 299 300 let TwoOperandAliasConstraint = "$Sn = $Sd" in 301 def VDIVS : ASbI<0b11101, 0b00, 0, 0, 302 (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm), 303 IIC_fpDIV32, "vdiv", ".f32\t$Sd, $Sn, $Sm", 304 [(set SPR:$Sd, (fdiv SPR:$Sn, SPR:$Sm))]>; 305 306 let TwoOperandAliasConstraint = "$Dn = $Dd" in 307 def VMULD : ADbI<0b11100, 0b10, 0, 0, 308 (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm), 309 IIC_fpMUL64, "vmul", ".f64\t$Dd, $Dn, $Dm", 310 [(set DPR:$Dd, (fmul DPR:$Dn, (f64 DPR:$Dm)))]>; 311 312 let TwoOperandAliasConstraint = "$Sn = $Sd" in 313 def VMULS : ASbIn<0b11100, 0b10, 0, 0, 314 (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm), 315 IIC_fpMUL32, "vmul", ".f32\t$Sd, $Sn, $Sm", 316 [(set SPR:$Sd, (fmul SPR:$Sn, SPR:$Sm))]> { 317 // Some single precision VFP instructions may be executed on both NEON and 318 // VFP pipelines on A8. 319 let D = VFPNeonA8Domain; 320 } 321 322 def VNMULD : ADbI<0b11100, 0b10, 1, 0, 323 (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm), 324 IIC_fpMUL64, "vnmul", ".f64\t$Dd, $Dn, $Dm", 325 [(set DPR:$Dd, (fneg (fmul DPR:$Dn, (f64 DPR:$Dm))))]>; 326 327 def VNMULS : ASbI<0b11100, 0b10, 1, 0, 328 (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm), 329 IIC_fpMUL32, "vnmul", ".f32\t$Sd, $Sn, $Sm", 330 [(set SPR:$Sd, (fneg (fmul SPR:$Sn, SPR:$Sm)))]> { 331 // Some single precision VFP instructions may be executed on both NEON and 332 // VFP pipelines on A8. 333 let D = VFPNeonA8Domain; 334 } 335 336 multiclass vsel_inst<string op, bits<2> opc> { 337 let DecoderNamespace = "VFPV8", PostEncoderMethod = "" in { 338 def S : ASbInp<0b11100, opc, 0, 339 (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm), 340 NoItinerary, !strconcat("vsel", op, ".f32\t$Sd, $Sn, $Sm"), 341 []>, Requires<[HasV8FP]>; 342 343 def D : ADbInp<0b11100, opc, 0, 344 (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm), 345 NoItinerary, !strconcat("vsel", op, ".f64\t$Dd, $Dn, $Dm"), 346 []>, Requires<[HasV8FP]>; 347 } 348 } 349 350 defm VSELGT : vsel_inst<"gt", 0b11>; 351 defm VSELGE : vsel_inst<"ge", 0b10>; 352 defm VSELEQ : vsel_inst<"eq", 0b00>; 353 defm VSELVS : vsel_inst<"vs", 0b01>; 354 355 multiclass vmaxmin_inst<string op, bit opc> { 356 let DecoderNamespace = "VFPV8", PostEncoderMethod = "" in { 357 def S : ASbInp<0b11101, 0b00, opc, 358 (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm), 359 NoItinerary, !strconcat(op, ".f32\t$Sd, $Sn, $Sm"), 360 []>, Requires<[HasV8FP]>; 361 362 def D : ADbInp<0b11101, 0b00, opc, 363 (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm), 364 NoItinerary, !strconcat(op, ".f64\t$Dd, $Dn, $Dm"), 365 []>, Requires<[HasV8FP]>; 366 } 367 } 368 369 defm VMAXNM : vmaxmin_inst<"vmaxnm", 0>; 370 defm VMINNM : vmaxmin_inst<"vminnm", 1>; 371 372 // Match reassociated forms only if not sign dependent rounding. 373 def : Pat<(fmul (fneg DPR:$a), (f64 DPR:$b)), 374 (VNMULD DPR:$a, DPR:$b)>, Requires<[NoHonorSignDependentRounding]>; 375 def : Pat<(fmul (fneg SPR:$a), SPR:$b), 376 (VNMULS SPR:$a, SPR:$b)>, Requires<[NoHonorSignDependentRounding]>; 377 378 // These are encoded as unary instructions. 379 let Defs = [FPSCR_NZCV] in { 380 def VCMPED : ADuI<0b11101, 0b11, 0b0100, 0b11, 0, 381 (outs), (ins DPR:$Dd, DPR:$Dm), 382 IIC_fpCMP64, "vcmpe", ".f64\t$Dd, $Dm", 383 [(arm_cmpfp DPR:$Dd, (f64 DPR:$Dm))]>; 384 385 def VCMPES : ASuI<0b11101, 0b11, 0b0100, 0b11, 0, 386 (outs), (ins SPR:$Sd, SPR:$Sm), 387 IIC_fpCMP32, "vcmpe", ".f32\t$Sd, $Sm", 388 [(arm_cmpfp SPR:$Sd, SPR:$Sm)]> { 389 // Some single precision VFP instructions may be executed on both NEON and 390 // VFP pipelines on A8. 391 let D = VFPNeonA8Domain; 392 } 393 394 // FIXME: Verify encoding after integrated assembler is working. 395 def VCMPD : ADuI<0b11101, 0b11, 0b0100, 0b01, 0, 396 (outs), (ins DPR:$Dd, DPR:$Dm), 397 IIC_fpCMP64, "vcmp", ".f64\t$Dd, $Dm", 398 [/* For disassembly only; pattern left blank */]>; 399 400 def VCMPS : ASuI<0b11101, 0b11, 0b0100, 0b01, 0, 401 (outs), (ins SPR:$Sd, SPR:$Sm), 402 IIC_fpCMP32, "vcmp", ".f32\t$Sd, $Sm", 403 [/* For disassembly only; pattern left blank */]> { 404 // Some single precision VFP instructions may be executed on both NEON and 405 // VFP pipelines on A8. 406 let D = VFPNeonA8Domain; 407 } 408 } // Defs = [FPSCR_NZCV] 409 410 //===----------------------------------------------------------------------===// 411 // FP Unary Operations. 412 // 413 414 def VABSD : ADuI<0b11101, 0b11, 0b0000, 0b11, 0, 415 (outs DPR:$Dd), (ins DPR:$Dm), 416 IIC_fpUNA64, "vabs", ".f64\t$Dd, $Dm", 417 [(set DPR:$Dd, (fabs (f64 DPR:$Dm)))]>; 418 419 def VABSS : ASuIn<0b11101, 0b11, 0b0000, 0b11, 0, 420 (outs SPR:$Sd), (ins SPR:$Sm), 421 IIC_fpUNA32, "vabs", ".f32\t$Sd, $Sm", 422 [(set SPR:$Sd, (fabs SPR:$Sm))]> { 423 // Some single precision VFP instructions may be executed on both NEON and 424 // VFP pipelines on A8. 425 let D = VFPNeonA8Domain; 426 } 427 428 let Defs = [FPSCR_NZCV] in { 429 def VCMPEZD : ADuI<0b11101, 0b11, 0b0101, 0b11, 0, 430 (outs), (ins DPR:$Dd), 431 IIC_fpCMP64, "vcmpe", ".f64\t$Dd, #0", 432 [(arm_cmpfp0 (f64 DPR:$Dd))]> { 433 let Inst{3-0} = 0b0000; 434 let Inst{5} = 0; 435 } 436 437 def VCMPEZS : ASuI<0b11101, 0b11, 0b0101, 0b11, 0, 438 (outs), (ins SPR:$Sd), 439 IIC_fpCMP32, "vcmpe", ".f32\t$Sd, #0", 440 [(arm_cmpfp0 SPR:$Sd)]> { 441 let Inst{3-0} = 0b0000; 442 let Inst{5} = 0; 443 444 // Some single precision VFP instructions may be executed on both NEON and 445 // VFP pipelines on A8. 446 let D = VFPNeonA8Domain; 447 } 448 449 // FIXME: Verify encoding after integrated assembler is working. 450 def VCMPZD : ADuI<0b11101, 0b11, 0b0101, 0b01, 0, 451 (outs), (ins DPR:$Dd), 452 IIC_fpCMP64, "vcmp", ".f64\t$Dd, #0", 453 [/* For disassembly only; pattern left blank */]> { 454 let Inst{3-0} = 0b0000; 455 let Inst{5} = 0; 456 } 457 458 def VCMPZS : ASuI<0b11101, 0b11, 0b0101, 0b01, 0, 459 (outs), (ins SPR:$Sd), 460 IIC_fpCMP32, "vcmp", ".f32\t$Sd, #0", 461 [/* For disassembly only; pattern left blank */]> { 462 let Inst{3-0} = 0b0000; 463 let Inst{5} = 0; 464 465 // Some single precision VFP instructions may be executed on both NEON and 466 // VFP pipelines on A8. 467 let D = VFPNeonA8Domain; 468 } 469 } // Defs = [FPSCR_NZCV] 470 471 def VCVTDS : ASuI<0b11101, 0b11, 0b0111, 0b11, 0, 472 (outs DPR:$Dd), (ins SPR:$Sm), 473 IIC_fpCVTDS, "vcvt", ".f64.f32\t$Dd, $Sm", 474 [(set DPR:$Dd, (fextend SPR:$Sm))]> { 475 // Instruction operands. 476 bits<5> Dd; 477 bits<5> Sm; 478 479 // Encode instruction operands. 480 let Inst{3-0} = Sm{4-1}; 481 let Inst{5} = Sm{0}; 482 let Inst{15-12} = Dd{3-0}; 483 let Inst{22} = Dd{4}; 484 } 485 486 // Special case encoding: bits 11-8 is 0b1011. 487 def VCVTSD : VFPAI<(outs SPR:$Sd), (ins DPR:$Dm), VFPUnaryFrm, 488 IIC_fpCVTSD, "vcvt", ".f32.f64\t$Sd, $Dm", 489 [(set SPR:$Sd, (fround DPR:$Dm))]> { 490 // Instruction operands. 491 bits<5> Sd; 492 bits<5> Dm; 493 494 // Encode instruction operands. 495 let Inst{3-0} = Dm{3-0}; 496 let Inst{5} = Dm{4}; 497 let Inst{15-12} = Sd{4-1}; 498 let Inst{22} = Sd{0}; 499 500 let Inst{27-23} = 0b11101; 501 let Inst{21-16} = 0b110111; 502 let Inst{11-8} = 0b1011; 503 let Inst{7-6} = 0b11; 504 let Inst{4} = 0; 505 } 506 507 // Between half, single and double-precision. For disassembly only. 508 509 // FIXME: Verify encoding after integrated assembler is working. 510 def VCVTBHS: ASuI<0b11101, 0b11, 0b0010, 0b01, 0, (outs SPR:$Sd), (ins SPR:$Sm), 511 /* FIXME */ IIC_fpCVTSH, "vcvtb", ".f32.f16\t$Sd, $Sm", 512 [/* For disassembly only; pattern left blank */]>; 513 514 def VCVTBSH: ASuI<0b11101, 0b11, 0b0011, 0b01, 0, (outs SPR:$Sd), (ins SPR:$Sm), 515 /* FIXME */ IIC_fpCVTHS, "vcvtb", ".f16.f32\t$Sd, $Sm", 516 [/* For disassembly only; pattern left blank */]>; 517 518 def : Pat<(f32_to_f16 SPR:$a), 519 (i32 (COPY_TO_REGCLASS (VCVTBSH SPR:$a), GPR))>; 520 521 def : Pat<(f16_to_f32 GPR:$a), 522 (VCVTBHS (COPY_TO_REGCLASS GPR:$a, SPR))>; 523 524 def VCVTTHS: ASuI<0b11101, 0b11, 0b0010, 0b11, 0, (outs SPR:$Sd), (ins SPR:$Sm), 525 /* FIXME */ IIC_fpCVTSH, "vcvtt", ".f32.f16\t$Sd, $Sm", 526 [/* For disassembly only; pattern left blank */]>; 527 528 def VCVTTSH: ASuI<0b11101, 0b11, 0b0011, 0b11, 0, (outs SPR:$Sd), (ins SPR:$Sm), 529 /* FIXME */ IIC_fpCVTHS, "vcvtt", ".f16.f32\t$Sd, $Sm", 530 [/* For disassembly only; pattern left blank */]>; 531 532 def VCVTBHD : ADuI<0b11101, 0b11, 0b0010, 0b01, 0, 533 (outs DPR:$Dd), (ins SPR:$Sm), 534 NoItinerary, "vcvtb", ".f64.f16\t$Dd, $Sm", 535 []>, Requires<[HasV8FP]> { 536 // Instruction operands. 537 bits<5> Sm; 538 539 // Encode instruction operands. 540 let Inst{3-0} = Sm{4-1}; 541 let Inst{5} = Sm{0}; 542 } 543 544 def VCVTBDH : ADuI<0b11101, 0b11, 0b0011, 0b01, 0, 545 (outs SPR:$Sd), (ins DPR:$Dm), 546 NoItinerary, "vcvtb", ".f16.f64\t$Sd, $Dm", 547 []>, Requires<[HasV8FP]> { 548 // Instruction operands. 549 bits<5> Sd; 550 bits<5> Dm; 551 552 // Encode instruction operands. 553 let Inst{3-0} = Dm{3-0}; 554 let Inst{5} = Dm{4}; 555 let Inst{15-12} = Sd{4-1}; 556 let Inst{22} = Sd{0}; 557 } 558 559 def VCVTTHD : ADuI<0b11101, 0b11, 0b0010, 0b11, 0, 560 (outs DPR:$Dd), (ins SPR:$Sm), 561 NoItinerary, "vcvtt", ".f64.f16\t$Dd, $Sm", 562 []>, Requires<[HasV8FP]> { 563 // Instruction operands. 564 bits<5> Sm; 565 566 // Encode instruction operands. 567 let Inst{3-0} = Sm{4-1}; 568 let Inst{5} = Sm{0}; 569 } 570 571 def VCVTTDH : ADuI<0b11101, 0b11, 0b0011, 0b11, 0, 572 (outs SPR:$Sd), (ins DPR:$Dm), 573 NoItinerary, "vcvtt", ".f16.f64\t$Sd, $Dm", 574 []>, Requires<[HasV8FP]> { 575 // Instruction operands. 576 bits<5> Sd; 577 bits<5> Dm; 578 579 // Encode instruction operands. 580 let Inst{15-12} = Sd{4-1}; 581 let Inst{22} = Sd{0}; 582 let Inst{3-0} = Dm{3-0}; 583 let Inst{5} = Dm{4}; 584 } 585 586 multiclass vcvt_inst<string opc, bits<2> rm> { 587 let PostEncoderMethod = "", DecoderNamespace = "VFPV8" in { 588 def SS : ASuInp<0b11101, 0b11, 0b1100, 0b11, 0, 589 (outs SPR:$Sd), (ins SPR:$Sm), 590 NoItinerary, !strconcat("vcvt", opc, ".s32.f32\t$Sd, $Sm"), 591 []>, Requires<[HasV8FP]> { 592 let Inst{17-16} = rm; 593 } 594 595 def US : ASuInp<0b11101, 0b11, 0b1100, 0b01, 0, 596 (outs SPR:$Sd), (ins SPR:$Sm), 597 NoItinerary, !strconcat("vcvt", opc, ".u32.f32\t$Sd, $Sm"), 598 []>, Requires<[HasV8FP]> { 599 let Inst{17-16} = rm; 600 } 601 602 def SD : ASuInp<0b11101, 0b11, 0b1100, 0b11, 0, 603 (outs SPR:$Sd), (ins DPR:$Dm), 604 NoItinerary, !strconcat("vcvt", opc, ".s32.f64\t$Sd, $Dm"), 605 []>, Requires<[HasV8FP]> { 606 bits<5> Dm; 607 608 let Inst{17-16} = rm; 609 610 // Encode instruction operands 611 let Inst{3-0} = Dm{3-0}; 612 let Inst{5} = Dm{4}; 613 let Inst{8} = 1; 614 } 615 616 def UD : ASuInp<0b11101, 0b11, 0b1100, 0b01, 0, 617 (outs SPR:$Sd), (ins DPR:$Dm), 618 NoItinerary, !strconcat("vcvt", opc, ".u32.f64\t$Sd, $Dm"), 619 []>, Requires<[HasV8FP]> { 620 bits<5> Dm; 621 622 let Inst{17-16} = rm; 623 624 // Encode instruction operands 625 let Inst{3-0} = Dm{3-0}; 626 let Inst{5} = Dm{4}; 627 let Inst{8} = 1; 628 } 629 } 630 } 631 632 defm VCVTA : vcvt_inst<"a", 0b00>; 633 defm VCVTN : vcvt_inst<"n", 0b01>; 634 defm VCVTP : vcvt_inst<"p", 0b10>; 635 defm VCVTM : vcvt_inst<"m", 0b11>; 636 637 def VNEGD : ADuI<0b11101, 0b11, 0b0001, 0b01, 0, 638 (outs DPR:$Dd), (ins DPR:$Dm), 639 IIC_fpUNA64, "vneg", ".f64\t$Dd, $Dm", 640 [(set DPR:$Dd, (fneg (f64 DPR:$Dm)))]>; 641 642 def VNEGS : ASuIn<0b11101, 0b11, 0b0001, 0b01, 0, 643 (outs SPR:$Sd), (ins SPR:$Sm), 644 IIC_fpUNA32, "vneg", ".f32\t$Sd, $Sm", 645 [(set SPR:$Sd, (fneg SPR:$Sm))]> { 646 // Some single precision VFP instructions may be executed on both NEON and 647 // VFP pipelines on A8. 648 let D = VFPNeonA8Domain; 649 } 650 651 multiclass vrint_inst_zrx<string opc, bit op, bit op2> { 652 def S : ASuI<0b11101, 0b11, 0b0110, 0b11, 0, 653 (outs SPR:$Sd), (ins SPR:$Sm), 654 NoItinerary, !strconcat("vrint", opc), ".f32\t$Sd, $Sm", 655 []>, Requires<[HasV8FP]> { 656 let Inst{7} = op2; 657 let Inst{16} = op; 658 } 659 def D : ADuI<0b11101, 0b11, 0b0110, 0b11, 0, 660 (outs DPR:$Dd), (ins DPR:$Dm), 661 NoItinerary, !strconcat("vrint", opc), ".f64\t$Dd, $Dm", 662 []>, Requires<[HasV8FP]> { 663 let Inst{7} = op2; 664 let Inst{16} = op; 665 } 666 } 667 668 defm VRINTZ : vrint_inst_zrx<"z", 0, 1>; 669 defm VRINTR : vrint_inst_zrx<"r", 0, 0>; 670 defm VRINTX : vrint_inst_zrx<"x", 1, 0>; 671 672 multiclass vrint_inst_anpm<string opc, bits<2> rm> { 673 let PostEncoderMethod = "", DecoderNamespace = "VFPV8" in { 674 def S : ASuInp<0b11101, 0b11, 0b1000, 0b01, 0, 675 (outs SPR:$Sd), (ins SPR:$Sm), 676 NoItinerary, !strconcat("vrint", opc, ".f32\t$Sd, $Sm"), 677 []>, Requires<[HasV8FP]> { 678 let Inst{17-16} = rm; 679 } 680 def D : ADuInp<0b11101, 0b11, 0b1000, 0b01, 0, 681 (outs DPR:$Dd), (ins DPR:$Dm), 682 NoItinerary, !strconcat("vrint", opc, ".f64\t$Dd, $Dm"), 683 []>, Requires<[HasV8FP]> { 684 let Inst{17-16} = rm; 685 } 686 } 687 688 def : InstAlias<!strconcat("vrint", opc, ".f32.f32\t$Sd, $Sm"), 689 (!cast<Instruction>(NAME#"S") SPR:$Sd, SPR:$Sm)>; 690 def : InstAlias<!strconcat("vrint", opc, ".f64.f64\t$Dd, $Dm"), 691 (!cast<Instruction>(NAME#"D") DPR:$Dd, DPR:$Dm)>; 692 } 693 694 defm VRINTA : vrint_inst_anpm<"a", 0b00>; 695 defm VRINTN : vrint_inst_anpm<"n", 0b01>; 696 defm VRINTP : vrint_inst_anpm<"p", 0b10>; 697 defm VRINTM : vrint_inst_anpm<"m", 0b11>; 698 699 def VSQRTD : ADuI<0b11101, 0b11, 0b0001, 0b11, 0, 700 (outs DPR:$Dd), (ins DPR:$Dm), 701 IIC_fpSQRT64, "vsqrt", ".f64\t$Dd, $Dm", 702 [(set DPR:$Dd, (fsqrt (f64 DPR:$Dm)))]>; 703 704 def VSQRTS : ASuI<0b11101, 0b11, 0b0001, 0b11, 0, 705 (outs SPR:$Sd), (ins SPR:$Sm), 706 IIC_fpSQRT32, "vsqrt", ".f32\t$Sd, $Sm", 707 [(set SPR:$Sd, (fsqrt SPR:$Sm))]>; 708 709 let neverHasSideEffects = 1 in { 710 def VMOVD : ADuI<0b11101, 0b11, 0b0000, 0b01, 0, 711 (outs DPR:$Dd), (ins DPR:$Dm), 712 IIC_fpUNA64, "vmov", ".f64\t$Dd, $Dm", []>; 713 714 def VMOVS : ASuI<0b11101, 0b11, 0b0000, 0b01, 0, 715 (outs SPR:$Sd), (ins SPR:$Sm), 716 IIC_fpUNA32, "vmov", ".f32\t$Sd, $Sm", []>; 717 } // neverHasSideEffects 718 719 //===----------------------------------------------------------------------===// 720 // FP <-> GPR Copies. Int <-> FP Conversions. 721 // 722 723 def VMOVRS : AVConv2I<0b11100001, 0b1010, 724 (outs GPR:$Rt), (ins SPR:$Sn), 725 IIC_fpMOVSI, "vmov", "\t$Rt, $Sn", 726 [(set GPR:$Rt, (bitconvert SPR:$Sn))]> { 727 // Instruction operands. 728 bits<4> Rt; 729 bits<5> Sn; 730 731 // Encode instruction operands. 732 let Inst{19-16} = Sn{4-1}; 733 let Inst{7} = Sn{0}; 734 let Inst{15-12} = Rt; 735 736 let Inst{6-5} = 0b00; 737 let Inst{3-0} = 0b0000; 738 739 // Some single precision VFP instructions may be executed on both NEON and VFP 740 // pipelines. 741 let D = VFPNeonDomain; 742 } 743 744 // Bitcast i32 -> f32. NEON prefers to use VMOVDRR. 745 def VMOVSR : AVConv4I<0b11100000, 0b1010, 746 (outs SPR:$Sn), (ins GPR:$Rt), 747 IIC_fpMOVIS, "vmov", "\t$Sn, $Rt", 748 [(set SPR:$Sn, (bitconvert GPR:$Rt))]>, 749 Requires<[HasVFP2, UseVMOVSR]> { 750 // Instruction operands. 751 bits<5> Sn; 752 bits<4> Rt; 753 754 // Encode instruction operands. 755 let Inst{19-16} = Sn{4-1}; 756 let Inst{7} = Sn{0}; 757 let Inst{15-12} = Rt; 758 759 let Inst{6-5} = 0b00; 760 let Inst{3-0} = 0b0000; 761 762 // Some single precision VFP instructions may be executed on both NEON and VFP 763 // pipelines. 764 let D = VFPNeonDomain; 765 } 766 767 let neverHasSideEffects = 1 in { 768 def VMOVRRD : AVConv3I<0b11000101, 0b1011, 769 (outs GPR:$Rt, GPR:$Rt2), (ins DPR:$Dm), 770 IIC_fpMOVDI, "vmov", "\t$Rt, $Rt2, $Dm", 771 [/* FIXME: Can't write pattern for multiple result instr*/]> { 772 // Instruction operands. 773 bits<5> Dm; 774 bits<4> Rt; 775 bits<4> Rt2; 776 777 // Encode instruction operands. 778 let Inst{3-0} = Dm{3-0}; 779 let Inst{5} = Dm{4}; 780 let Inst{15-12} = Rt; 781 let Inst{19-16} = Rt2; 782 783 let Inst{7-6} = 0b00; 784 785 // Some single precision VFP instructions may be executed on both NEON and VFP 786 // pipelines. 787 let D = VFPNeonDomain; 788 } 789 790 def VMOVRRS : AVConv3I<0b11000101, 0b1010, 791 (outs GPR:$Rt, GPR:$Rt2), (ins SPR:$src1, SPR:$src2), 792 IIC_fpMOVDI, "vmov", "\t$Rt, $Rt2, $src1, $src2", 793 [/* For disassembly only; pattern left blank */]> { 794 bits<5> src1; 795 bits<4> Rt; 796 bits<4> Rt2; 797 798 // Encode instruction operands. 799 let Inst{3-0} = src1{4-1}; 800 let Inst{5} = src1{0}; 801 let Inst{15-12} = Rt; 802 let Inst{19-16} = Rt2; 803 804 let Inst{7-6} = 0b00; 805 806 // Some single precision VFP instructions may be executed on both NEON and VFP 807 // pipelines. 808 let D = VFPNeonDomain; 809 let DecoderMethod = "DecodeVMOVRRS"; 810 } 811 } // neverHasSideEffects 812 813 // FMDHR: GPR -> SPR 814 // FMDLR: GPR -> SPR 815 816 def VMOVDRR : AVConv5I<0b11000100, 0b1011, 817 (outs DPR:$Dm), (ins GPR:$Rt, GPR:$Rt2), 818 IIC_fpMOVID, "vmov", "\t$Dm, $Rt, $Rt2", 819 [(set DPR:$Dm, (arm_fmdrr GPR:$Rt, GPR:$Rt2))]> { 820 // Instruction operands. 821 bits<5> Dm; 822 bits<4> Rt; 823 bits<4> Rt2; 824 825 // Encode instruction operands. 826 let Inst{3-0} = Dm{3-0}; 827 let Inst{5} = Dm{4}; 828 let Inst{15-12} = Rt; 829 let Inst{19-16} = Rt2; 830 831 let Inst{7-6} = 0b00; 832 833 // Some single precision VFP instructions may be executed on both NEON and VFP 834 // pipelines. 835 let D = VFPNeonDomain; 836 } 837 838 let neverHasSideEffects = 1 in 839 def VMOVSRR : AVConv5I<0b11000100, 0b1010, 840 (outs SPR:$dst1, SPR:$dst2), (ins GPR:$src1, GPR:$src2), 841 IIC_fpMOVID, "vmov", "\t$dst1, $dst2, $src1, $src2", 842 [/* For disassembly only; pattern left blank */]> { 843 // Instruction operands. 844 bits<5> dst1; 845 bits<4> src1; 846 bits<4> src2; 847 848 // Encode instruction operands. 849 let Inst{3-0} = dst1{4-1}; 850 let Inst{5} = dst1{0}; 851 let Inst{15-12} = src1; 852 let Inst{19-16} = src2; 853 854 let Inst{7-6} = 0b00; 855 856 // Some single precision VFP instructions may be executed on both NEON and VFP 857 // pipelines. 858 let D = VFPNeonDomain; 859 860 let DecoderMethod = "DecodeVMOVSRR"; 861 } 862 863 // FMRDH: SPR -> GPR 864 // FMRDL: SPR -> GPR 865 // FMRRS: SPR -> GPR 866 // FMRX: SPR system reg -> GPR 867 // FMSRR: GPR -> SPR 868 // FMXR: GPR -> VFP system reg 869 870 871 // Int -> FP: 872 873 class AVConv1IDs_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, 874 bits<4> opcod4, dag oops, dag iops, 875 InstrItinClass itin, string opc, string asm, 876 list<dag> pattern> 877 : AVConv1I<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm, 878 pattern> { 879 // Instruction operands. 880 bits<5> Dd; 881 bits<5> Sm; 882 883 // Encode instruction operands. 884 let Inst{3-0} = Sm{4-1}; 885 let Inst{5} = Sm{0}; 886 let Inst{15-12} = Dd{3-0}; 887 let Inst{22} = Dd{4}; 888 } 889 890 class AVConv1InSs_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, 891 bits<4> opcod4, dag oops, dag iops,InstrItinClass itin, 892 string opc, string asm, list<dag> pattern> 893 : AVConv1In<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm, 894 pattern> { 895 // Instruction operands. 896 bits<5> Sd; 897 bits<5> Sm; 898 899 // Encode instruction operands. 900 let Inst{3-0} = Sm{4-1}; 901 let Inst{5} = Sm{0}; 902 let Inst{15-12} = Sd{4-1}; 903 let Inst{22} = Sd{0}; 904 } 905 906 def VSITOD : AVConv1IDs_Encode<0b11101, 0b11, 0b1000, 0b1011, 907 (outs DPR:$Dd), (ins SPR:$Sm), 908 IIC_fpCVTID, "vcvt", ".f64.s32\t$Dd, $Sm", 909 [(set DPR:$Dd, (f64 (arm_sitof SPR:$Sm)))]> { 910 let Inst{7} = 1; // s32 911 } 912 913 def VSITOS : AVConv1InSs_Encode<0b11101, 0b11, 0b1000, 0b1010, 914 (outs SPR:$Sd),(ins SPR:$Sm), 915 IIC_fpCVTIS, "vcvt", ".f32.s32\t$Sd, $Sm", 916 [(set SPR:$Sd, (arm_sitof SPR:$Sm))]> { 917 let Inst{7} = 1; // s32 918 919 // Some single precision VFP instructions may be executed on both NEON and 920 // VFP pipelines on A8. 921 let D = VFPNeonA8Domain; 922 } 923 924 def VUITOD : AVConv1IDs_Encode<0b11101, 0b11, 0b1000, 0b1011, 925 (outs DPR:$Dd), (ins SPR:$Sm), 926 IIC_fpCVTID, "vcvt", ".f64.u32\t$Dd, $Sm", 927 [(set DPR:$Dd, (f64 (arm_uitof SPR:$Sm)))]> { 928 let Inst{7} = 0; // u32 929 } 930 931 def VUITOS : AVConv1InSs_Encode<0b11101, 0b11, 0b1000, 0b1010, 932 (outs SPR:$Sd), (ins SPR:$Sm), 933 IIC_fpCVTIS, "vcvt", ".f32.u32\t$Sd, $Sm", 934 [(set SPR:$Sd, (arm_uitof SPR:$Sm))]> { 935 let Inst{7} = 0; // u32 936 937 // Some single precision VFP instructions may be executed on both NEON and 938 // VFP pipelines on A8. 939 let D = VFPNeonA8Domain; 940 } 941 942 // FP -> Int: 943 944 class AVConv1IsD_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, 945 bits<4> opcod4, dag oops, dag iops, 946 InstrItinClass itin, string opc, string asm, 947 list<dag> pattern> 948 : AVConv1I<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm, 949 pattern> { 950 // Instruction operands. 951 bits<5> Sd; 952 bits<5> Dm; 953 954 // Encode instruction operands. 955 let Inst{3-0} = Dm{3-0}; 956 let Inst{5} = Dm{4}; 957 let Inst{15-12} = Sd{4-1}; 958 let Inst{22} = Sd{0}; 959 } 960 961 class AVConv1InsS_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3, 962 bits<4> opcod4, dag oops, dag iops, 963 InstrItinClass itin, string opc, string asm, 964 list<dag> pattern> 965 : AVConv1In<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm, 966 pattern> { 967 // Instruction operands. 968 bits<5> Sd; 969 bits<5> Sm; 970 971 // Encode instruction operands. 972 let Inst{3-0} = Sm{4-1}; 973 let Inst{5} = Sm{0}; 974 let Inst{15-12} = Sd{4-1}; 975 let Inst{22} = Sd{0}; 976 } 977 978 // Always set Z bit in the instruction, i.e. "round towards zero" variants. 979 def VTOSIZD : AVConv1IsD_Encode<0b11101, 0b11, 0b1101, 0b1011, 980 (outs SPR:$Sd), (ins DPR:$Dm), 981 IIC_fpCVTDI, "vcvt", ".s32.f64\t$Sd, $Dm", 982 [(set SPR:$Sd, (arm_ftosi (f64 DPR:$Dm)))]> { 983 let Inst{7} = 1; // Z bit 984 } 985 986 def VTOSIZS : AVConv1InsS_Encode<0b11101, 0b11, 0b1101, 0b1010, 987 (outs SPR:$Sd), (ins SPR:$Sm), 988 IIC_fpCVTSI, "vcvt", ".s32.f32\t$Sd, $Sm", 989 [(set SPR:$Sd, (arm_ftosi SPR:$Sm))]> { 990 let Inst{7} = 1; // Z bit 991 992 // Some single precision VFP instructions may be executed on both NEON and 993 // VFP pipelines on A8. 994 let D = VFPNeonA8Domain; 995 } 996 997 def VTOUIZD : AVConv1IsD_Encode<0b11101, 0b11, 0b1100, 0b1011, 998 (outs SPR:$Sd), (ins DPR:$Dm), 999 IIC_fpCVTDI, "vcvt", ".u32.f64\t$Sd, $Dm", 1000 [(set SPR:$Sd, (arm_ftoui (f64 DPR:$Dm)))]> { 1001 let Inst{7} = 1; // Z bit 1002 } 1003 1004 def VTOUIZS : AVConv1InsS_Encode<0b11101, 0b11, 0b1100, 0b1010, 1005 (outs SPR:$Sd), (ins SPR:$Sm), 1006 IIC_fpCVTSI, "vcvt", ".u32.f32\t$Sd, $Sm", 1007 [(set SPR:$Sd, (arm_ftoui SPR:$Sm))]> { 1008 let Inst{7} = 1; // Z bit 1009 1010 // Some single precision VFP instructions may be executed on both NEON and 1011 // VFP pipelines on A8. 1012 let D = VFPNeonA8Domain; 1013 } 1014 1015 // And the Z bit '0' variants, i.e. use the rounding mode specified by FPSCR. 1016 let Uses = [FPSCR] in { 1017 // FIXME: Verify encoding after integrated assembler is working. 1018 def VTOSIRD : AVConv1IsD_Encode<0b11101, 0b11, 0b1101, 0b1011, 1019 (outs SPR:$Sd), (ins DPR:$Dm), 1020 IIC_fpCVTDI, "vcvtr", ".s32.f64\t$Sd, $Dm", 1021 [(set SPR:$Sd, (int_arm_vcvtr (f64 DPR:$Dm)))]>{ 1022 let Inst{7} = 0; // Z bit 1023 } 1024 1025 def VTOSIRS : AVConv1InsS_Encode<0b11101, 0b11, 0b1101, 0b1010, 1026 (outs SPR:$Sd), (ins SPR:$Sm), 1027 IIC_fpCVTSI, "vcvtr", ".s32.f32\t$Sd, $Sm", 1028 [(set SPR:$Sd, (int_arm_vcvtr SPR:$Sm))]> { 1029 let Inst{7} = 0; // Z bit 1030 } 1031 1032 def VTOUIRD : AVConv1IsD_Encode<0b11101, 0b11, 0b1100, 0b1011, 1033 (outs SPR:$Sd), (ins DPR:$Dm), 1034 IIC_fpCVTDI, "vcvtr", ".u32.f64\t$Sd, $Dm", 1035 [(set SPR:$Sd, (int_arm_vcvtru(f64 DPR:$Dm)))]>{ 1036 let Inst{7} = 0; // Z bit 1037 } 1038 1039 def VTOUIRS : AVConv1InsS_Encode<0b11101, 0b11, 0b1100, 0b1010, 1040 (outs SPR:$Sd), (ins SPR:$Sm), 1041 IIC_fpCVTSI, "vcvtr", ".u32.f32\t$Sd, $Sm", 1042 [(set SPR:$Sd, (int_arm_vcvtru SPR:$Sm))]> { 1043 let Inst{7} = 0; // Z bit 1044 } 1045 } 1046 1047 // Convert between floating-point and fixed-point 1048 // Data type for fixed-point naming convention: 1049 // S16 (U=0, sx=0) -> SH 1050 // U16 (U=1, sx=0) -> UH 1051 // S32 (U=0, sx=1) -> SL 1052 // U32 (U=1, sx=1) -> UL 1053 1054 let Constraints = "$a = $dst" in { 1055 1056 // FP to Fixed-Point: 1057 1058 // Single Precision register 1059 class AVConv1XInsS_Encode<bits<5> op1, bits<2> op2, bits<4> op3, bits<4> op4, 1060 bit op5, dag oops, dag iops, InstrItinClass itin, 1061 string opc, string asm, list<dag> pattern> 1062 : AVConv1XI<op1, op2, op3, op4, op5, oops, iops, itin, opc, asm, pattern>, 1063 Sched<[WriteCvtFP]> { 1064 bits<5> dst; 1065 // if dp_operation then UInt(D:Vd) else UInt(Vd:D); 1066 let Inst{22} = dst{0}; 1067 let Inst{15-12} = dst{4-1}; 1068 } 1069 1070 // Double Precision register 1071 class AVConv1XInsD_Encode<bits<5> op1, bits<2> op2, bits<4> op3, bits<4> op4, 1072 bit op5, dag oops, dag iops, InstrItinClass itin, 1073 string opc, string asm, list<dag> pattern> 1074 : AVConv1XI<op1, op2, op3, op4, op5, oops, iops, itin, opc, asm, pattern>, 1075 Sched<[WriteCvtFP]> { 1076 bits<5> dst; 1077 // if dp_operation then UInt(D:Vd) else UInt(Vd:D); 1078 let Inst{22} = dst{4}; 1079 let Inst{15-12} = dst{3-0}; 1080 } 1081 1082 def VTOSHS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1110, 0b1010, 0, 1083 (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits), 1084 IIC_fpCVTSI, "vcvt", ".s16.f32\t$dst, $a, $fbits", []> { 1085 // Some single precision VFP instructions may be executed on both NEON and 1086 // VFP pipelines on A8. 1087 let D = VFPNeonA8Domain; 1088 } 1089 1090 def VTOUHS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1111, 0b1010, 0, 1091 (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits), 1092 IIC_fpCVTSI, "vcvt", ".u16.f32\t$dst, $a, $fbits", []> { 1093 // Some single precision VFP instructions may be executed on both NEON and 1094 // VFP pipelines on A8. 1095 let D = VFPNeonA8Domain; 1096 } 1097 1098 def VTOSLS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1110, 0b1010, 1, 1099 (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits), 1100 IIC_fpCVTSI, "vcvt", ".s32.f32\t$dst, $a, $fbits", []> { 1101 // Some single precision VFP instructions may be executed on both NEON and 1102 // VFP pipelines on A8. 1103 let D = VFPNeonA8Domain; 1104 } 1105 1106 def VTOULS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1111, 0b1010, 1, 1107 (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits), 1108 IIC_fpCVTSI, "vcvt", ".u32.f32\t$dst, $a, $fbits", []> { 1109 // Some single precision VFP instructions may be executed on both NEON and 1110 // VFP pipelines on A8. 1111 let D = VFPNeonA8Domain; 1112 } 1113 1114 def VTOSHD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1110, 0b1011, 0, 1115 (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits), 1116 IIC_fpCVTDI, "vcvt", ".s16.f64\t$dst, $a, $fbits", []>; 1117 1118 def VTOUHD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1111, 0b1011, 0, 1119 (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits), 1120 IIC_fpCVTDI, "vcvt", ".u16.f64\t$dst, $a, $fbits", []>; 1121 1122 def VTOSLD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1110, 0b1011, 1, 1123 (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits), 1124 IIC_fpCVTDI, "vcvt", ".s32.f64\t$dst, $a, $fbits", []>; 1125 1126 def VTOULD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1111, 0b1011, 1, 1127 (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits), 1128 IIC_fpCVTDI, "vcvt", ".u32.f64\t$dst, $a, $fbits", []>; 1129 1130 // Fixed-Point to FP: 1131 1132 def VSHTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1010, 0b1010, 0, 1133 (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits), 1134 IIC_fpCVTIS, "vcvt", ".f32.s16\t$dst, $a, $fbits", []> { 1135 // Some single precision VFP instructions may be executed on both NEON and 1136 // VFP pipelines on A8. 1137 let D = VFPNeonA8Domain; 1138 } 1139 1140 def VUHTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1011, 0b1010, 0, 1141 (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits), 1142 IIC_fpCVTIS, "vcvt", ".f32.u16\t$dst, $a, $fbits", []> { 1143 // Some single precision VFP instructions may be executed on both NEON and 1144 // VFP pipelines on A8. 1145 let D = VFPNeonA8Domain; 1146 } 1147 1148 def VSLTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1010, 0b1010, 1, 1149 (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits), 1150 IIC_fpCVTIS, "vcvt", ".f32.s32\t$dst, $a, $fbits", []> { 1151 // Some single precision VFP instructions may be executed on both NEON and 1152 // VFP pipelines on A8. 1153 let D = VFPNeonA8Domain; 1154 } 1155 1156 def VULTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1011, 0b1010, 1, 1157 (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits), 1158 IIC_fpCVTIS, "vcvt", ".f32.u32\t$dst, $a, $fbits", []> { 1159 // Some single precision VFP instructions may be executed on both NEON and 1160 // VFP pipelines on A8. 1161 let D = VFPNeonA8Domain; 1162 } 1163 1164 def VSHTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1010, 0b1011, 0, 1165 (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits), 1166 IIC_fpCVTID, "vcvt", ".f64.s16\t$dst, $a, $fbits", []>; 1167 1168 def VUHTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1011, 0b1011, 0, 1169 (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits), 1170 IIC_fpCVTID, "vcvt", ".f64.u16\t$dst, $a, $fbits", []>; 1171 1172 def VSLTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1010, 0b1011, 1, 1173 (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits), 1174 IIC_fpCVTID, "vcvt", ".f64.s32\t$dst, $a, $fbits", []>; 1175 1176 def VULTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1011, 0b1011, 1, 1177 (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits), 1178 IIC_fpCVTID, "vcvt", ".f64.u32\t$dst, $a, $fbits", []>; 1179 1180 } // End of 'let Constraints = "$a = $dst" in' 1181 1182 //===----------------------------------------------------------------------===// 1183 // FP Multiply-Accumulate Operations. 1184 // 1185 1186 def VMLAD : ADbI<0b11100, 0b00, 0, 0, 1187 (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm), 1188 IIC_fpMAC64, "vmla", ".f64\t$Dd, $Dn, $Dm", 1189 [(set DPR:$Dd, (fadd_mlx (fmul_su DPR:$Dn, DPR:$Dm), 1190 (f64 DPR:$Ddin)))]>, 1191 RegConstraint<"$Ddin = $Dd">, 1192 Requires<[HasVFP2,UseFPVMLx,DontUseFusedMAC]>; 1193 1194 def VMLAS : ASbIn<0b11100, 0b00, 0, 0, 1195 (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm), 1196 IIC_fpMAC32, "vmla", ".f32\t$Sd, $Sn, $Sm", 1197 [(set SPR:$Sd, (fadd_mlx (fmul_su SPR:$Sn, SPR:$Sm), 1198 SPR:$Sdin))]>, 1199 RegConstraint<"$Sdin = $Sd">, 1200 Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]> { 1201 // Some single precision VFP instructions may be executed on both NEON and 1202 // VFP pipelines on A8. 1203 let D = VFPNeonA8Domain; 1204 } 1205 1206 def : Pat<(fadd_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))), 1207 (VMLAD DPR:$dstin, DPR:$a, DPR:$b)>, 1208 Requires<[HasVFP2,UseFPVMLx,DontUseFusedMAC]>; 1209 def : Pat<(fadd_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)), 1210 (VMLAS SPR:$dstin, SPR:$a, SPR:$b)>, 1211 Requires<[HasVFP2,DontUseNEONForFP, UseFPVMLx,DontUseFusedMAC]>; 1212 1213 def VMLSD : ADbI<0b11100, 0b00, 1, 0, 1214 (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm), 1215 IIC_fpMAC64, "vmls", ".f64\t$Dd, $Dn, $Dm", 1216 [(set DPR:$Dd, (fadd_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)), 1217 (f64 DPR:$Ddin)))]>, 1218 RegConstraint<"$Ddin = $Dd">, 1219 Requires<[HasVFP2,UseFPVMLx,DontUseFusedMAC]>; 1220 1221 def VMLSS : ASbIn<0b11100, 0b00, 1, 0, 1222 (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm), 1223 IIC_fpMAC32, "vmls", ".f32\t$Sd, $Sn, $Sm", 1224 [(set SPR:$Sd, (fadd_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)), 1225 SPR:$Sdin))]>, 1226 RegConstraint<"$Sdin = $Sd">, 1227 Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]> { 1228 // Some single precision VFP instructions may be executed on both NEON and 1229 // VFP pipelines on A8. 1230 let D = VFPNeonA8Domain; 1231 } 1232 1233 def : Pat<(fsub_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))), 1234 (VMLSD DPR:$dstin, DPR:$a, DPR:$b)>, 1235 Requires<[HasVFP2,UseFPVMLx,DontUseFusedMAC]>; 1236 def : Pat<(fsub_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)), 1237 (VMLSS SPR:$dstin, SPR:$a, SPR:$b)>, 1238 Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]>; 1239 1240 def VNMLAD : ADbI<0b11100, 0b01, 1, 0, 1241 (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm), 1242 IIC_fpMAC64, "vnmla", ".f64\t$Dd, $Dn, $Dm", 1243 [(set DPR:$Dd,(fsub_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)), 1244 (f64 DPR:$Ddin)))]>, 1245 RegConstraint<"$Ddin = $Dd">, 1246 Requires<[HasVFP2,UseFPVMLx,DontUseFusedMAC]>; 1247 1248 def VNMLAS : ASbI<0b11100, 0b01, 1, 0, 1249 (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm), 1250 IIC_fpMAC32, "vnmla", ".f32\t$Sd, $Sn, $Sm", 1251 [(set SPR:$Sd, (fsub_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)), 1252 SPR:$Sdin))]>, 1253 RegConstraint<"$Sdin = $Sd">, 1254 Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]> { 1255 // Some single precision VFP instructions may be executed on both NEON and 1256 // VFP pipelines on A8. 1257 let D = VFPNeonA8Domain; 1258 } 1259 1260 def : Pat<(fsub_mlx (fneg (fmul_su DPR:$a, (f64 DPR:$b))), DPR:$dstin), 1261 (VNMLAD DPR:$dstin, DPR:$a, DPR:$b)>, 1262 Requires<[HasVFP2,UseFPVMLx,DontUseFusedMAC]>; 1263 def : Pat<(fsub_mlx (fneg (fmul_su SPR:$a, SPR:$b)), SPR:$dstin), 1264 (VNMLAS SPR:$dstin, SPR:$a, SPR:$b)>, 1265 Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]>; 1266 1267 def VNMLSD : ADbI<0b11100, 0b01, 0, 0, 1268 (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm), 1269 IIC_fpMAC64, "vnmls", ".f64\t$Dd, $Dn, $Dm", 1270 [(set DPR:$Dd, (fsub_mlx (fmul_su DPR:$Dn, DPR:$Dm), 1271 (f64 DPR:$Ddin)))]>, 1272 RegConstraint<"$Ddin = $Dd">, 1273 Requires<[HasVFP2,UseFPVMLx,DontUseFusedMAC]>; 1274 1275 def VNMLSS : ASbI<0b11100, 0b01, 0, 0, 1276 (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm), 1277 IIC_fpMAC32, "vnmls", ".f32\t$Sd, $Sn, $Sm", 1278 [(set SPR:$Sd, (fsub_mlx (fmul_su SPR:$Sn, SPR:$Sm), SPR:$Sdin))]>, 1279 RegConstraint<"$Sdin = $Sd">, 1280 Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]> { 1281 // Some single precision VFP instructions may be executed on both NEON and 1282 // VFP pipelines on A8. 1283 let D = VFPNeonA8Domain; 1284 } 1285 1286 def : Pat<(fsub_mlx (fmul_su DPR:$a, (f64 DPR:$b)), DPR:$dstin), 1287 (VNMLSD DPR:$dstin, DPR:$a, DPR:$b)>, 1288 Requires<[HasVFP2,UseFPVMLx,DontUseFusedMAC]>; 1289 def : Pat<(fsub_mlx (fmul_su SPR:$a, SPR:$b), SPR:$dstin), 1290 (VNMLSS SPR:$dstin, SPR:$a, SPR:$b)>, 1291 Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]>; 1292 1293 //===----------------------------------------------------------------------===// 1294 // Fused FP Multiply-Accumulate Operations. 1295 // 1296 def VFMAD : ADbI<0b11101, 0b10, 0, 0, 1297 (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm), 1298 IIC_fpFMAC64, "vfma", ".f64\t$Dd, $Dn, $Dm", 1299 [(set DPR:$Dd, (fadd_mlx (fmul_su DPR:$Dn, DPR:$Dm), 1300 (f64 DPR:$Ddin)))]>, 1301 RegConstraint<"$Ddin = $Dd">, 1302 Requires<[HasVFP4,UseFusedMAC]>; 1303 1304 def VFMAS : ASbIn<0b11101, 0b10, 0, 0, 1305 (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm), 1306 IIC_fpFMAC32, "vfma", ".f32\t$Sd, $Sn, $Sm", 1307 [(set SPR:$Sd, (fadd_mlx (fmul_su SPR:$Sn, SPR:$Sm), 1308 SPR:$Sdin))]>, 1309 RegConstraint<"$Sdin = $Sd">, 1310 Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]> { 1311 // Some single precision VFP instructions may be executed on both NEON and 1312 // VFP pipelines. 1313 } 1314 1315 def : Pat<(fadd_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))), 1316 (VFMAD DPR:$dstin, DPR:$a, DPR:$b)>, 1317 Requires<[HasVFP4,UseFusedMAC]>; 1318 def : Pat<(fadd_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)), 1319 (VFMAS SPR:$dstin, SPR:$a, SPR:$b)>, 1320 Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>; 1321 1322 // Match @llvm.fma.* intrinsics 1323 // (fma x, y, z) -> (vfms z, x, y) 1324 def : Pat<(f64 (fma DPR:$Dn, DPR:$Dm, DPR:$Ddin)), 1325 (VFMAD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>, 1326 Requires<[HasVFP4]>; 1327 def : Pat<(f32 (fma SPR:$Sn, SPR:$Sm, SPR:$Sdin)), 1328 (VFMAS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>, 1329 Requires<[HasVFP4]>; 1330 1331 def VFMSD : ADbI<0b11101, 0b10, 1, 0, 1332 (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm), 1333 IIC_fpFMAC64, "vfms", ".f64\t$Dd, $Dn, $Dm", 1334 [(set DPR:$Dd, (fadd_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)), 1335 (f64 DPR:$Ddin)))]>, 1336 RegConstraint<"$Ddin = $Dd">, 1337 Requires<[HasVFP4,UseFusedMAC]>; 1338 1339 def VFMSS : ASbIn<0b11101, 0b10, 1, 0, 1340 (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm), 1341 IIC_fpFMAC32, "vfms", ".f32\t$Sd, $Sn, $Sm", 1342 [(set SPR:$Sd, (fadd_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)), 1343 SPR:$Sdin))]>, 1344 RegConstraint<"$Sdin = $Sd">, 1345 Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]> { 1346 // Some single precision VFP instructions may be executed on both NEON and 1347 // VFP pipelines. 1348 } 1349 1350 def : Pat<(fsub_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))), 1351 (VFMSD DPR:$dstin, DPR:$a, DPR:$b)>, 1352 Requires<[HasVFP4,UseFusedMAC]>; 1353 def : Pat<(fsub_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)), 1354 (VFMSS SPR:$dstin, SPR:$a, SPR:$b)>, 1355 Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>; 1356 1357 // Match @llvm.fma.* intrinsics 1358 // (fma (fneg x), y, z) -> (vfms z, x, y) 1359 def : Pat<(f64 (fma (fneg DPR:$Dn), DPR:$Dm, DPR:$Ddin)), 1360 (VFMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>, 1361 Requires<[HasVFP4]>; 1362 def : Pat<(f32 (fma (fneg SPR:$Sn), SPR:$Sm, SPR:$Sdin)), 1363 (VFMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>, 1364 Requires<[HasVFP4]>; 1365 // (fma x, (fneg y), z) -> (vfms z, x, y) 1366 def : Pat<(f64 (fma DPR:$Dn, (fneg DPR:$Dm), DPR:$Ddin)), 1367 (VFMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>, 1368 Requires<[HasVFP4]>; 1369 def : Pat<(f32 (fma SPR:$Sn, (fneg SPR:$Sm), SPR:$Sdin)), 1370 (VFMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>, 1371 Requires<[HasVFP4]>; 1372 1373 def VFNMAD : ADbI<0b11101, 0b01, 1, 0, 1374 (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm), 1375 IIC_fpFMAC64, "vfnma", ".f64\t$Dd, $Dn, $Dm", 1376 [(set DPR:$Dd,(fsub_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)), 1377 (f64 DPR:$Ddin)))]>, 1378 RegConstraint<"$Ddin = $Dd">, 1379 Requires<[HasVFP4,UseFusedMAC]>; 1380 1381 def VFNMAS : ASbI<0b11101, 0b01, 1, 0, 1382 (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm), 1383 IIC_fpFMAC32, "vfnma", ".f32\t$Sd, $Sn, $Sm", 1384 [(set SPR:$Sd, (fsub_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)), 1385 SPR:$Sdin))]>, 1386 RegConstraint<"$Sdin = $Sd">, 1387 Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]> { 1388 // Some single precision VFP instructions may be executed on both NEON and 1389 // VFP pipelines. 1390 } 1391 1392 def : Pat<(fsub_mlx (fneg (fmul_su DPR:$a, (f64 DPR:$b))), DPR:$dstin), 1393 (VFNMAD DPR:$dstin, DPR:$a, DPR:$b)>, 1394 Requires<[HasVFP4,UseFusedMAC]>; 1395 def : Pat<(fsub_mlx (fneg (fmul_su SPR:$a, SPR:$b)), SPR:$dstin), 1396 (VFNMAS SPR:$dstin, SPR:$a, SPR:$b)>, 1397 Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>; 1398 1399 // Match @llvm.fma.* intrinsics 1400 // (fneg (fma x, y, z)) -> (vfnma z, x, y) 1401 def : Pat<(fneg (fma (f64 DPR:$Dn), (f64 DPR:$Dm), (f64 DPR:$Ddin))), 1402 (VFNMAD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>, 1403 Requires<[HasVFP4]>; 1404 def : Pat<(fneg (fma (f32 SPR:$Sn), (f32 SPR:$Sm), (f32 SPR:$Sdin))), 1405 (VFNMAS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>, 1406 Requires<[HasVFP4]>; 1407 // (fma (fneg x), y, (fneg z)) -> (vfnma z, x, y) 1408 def : Pat<(f64 (fma (fneg DPR:$Dn), DPR:$Dm, (fneg DPR:$Ddin))), 1409 (VFNMAD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>, 1410 Requires<[HasVFP4]>; 1411 def : Pat<(f32 (fma (fneg SPR:$Sn), SPR:$Sm, (fneg SPR:$Sdin))), 1412 (VFNMAS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>, 1413 Requires<[HasVFP4]>; 1414 1415 def VFNMSD : ADbI<0b11101, 0b01, 0, 0, 1416 (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm), 1417 IIC_fpFMAC64, "vfnms", ".f64\t$Dd, $Dn, $Dm", 1418 [(set DPR:$Dd, (fsub_mlx (fmul_su DPR:$Dn, DPR:$Dm), 1419 (f64 DPR:$Ddin)))]>, 1420 RegConstraint<"$Ddin = $Dd">, 1421 Requires<[HasVFP4,UseFusedMAC]>; 1422 1423 def VFNMSS : ASbI<0b11101, 0b01, 0, 0, 1424 (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm), 1425 IIC_fpFMAC32, "vfnms", ".f32\t$Sd, $Sn, $Sm", 1426 [(set SPR:$Sd, (fsub_mlx (fmul_su SPR:$Sn, SPR:$Sm), SPR:$Sdin))]>, 1427 RegConstraint<"$Sdin = $Sd">, 1428 Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]> { 1429 // Some single precision VFP instructions may be executed on both NEON and 1430 // VFP pipelines. 1431 } 1432 1433 def : Pat<(fsub_mlx (fmul_su DPR:$a, (f64 DPR:$b)), DPR:$dstin), 1434 (VFNMSD DPR:$dstin, DPR:$a, DPR:$b)>, 1435 Requires<[HasVFP4,UseFusedMAC]>; 1436 def : Pat<(fsub_mlx (fmul_su SPR:$a, SPR:$b), SPR:$dstin), 1437 (VFNMSS SPR:$dstin, SPR:$a, SPR:$b)>, 1438 Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>; 1439 1440 // Match @llvm.fma.* intrinsics 1441 1442 // (fma x, y, (fneg z)) -> (vfnms z, x, y)) 1443 def : Pat<(f64 (fma DPR:$Dn, DPR:$Dm, (fneg DPR:$Ddin))), 1444 (VFNMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>, 1445 Requires<[HasVFP4]>; 1446 def : Pat<(f32 (fma SPR:$Sn, SPR:$Sm, (fneg SPR:$Sdin))), 1447 (VFNMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>, 1448 Requires<[HasVFP4]>; 1449 // (fneg (fma (fneg x), y, z)) -> (vfnms z, x, y) 1450 def : Pat<(fneg (f64 (fma (fneg DPR:$Dn), DPR:$Dm, DPR:$Ddin))), 1451 (VFNMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>, 1452 Requires<[HasVFP4]>; 1453 def : Pat<(fneg (f32 (fma (fneg SPR:$Sn), SPR:$Sm, SPR:$Sdin))), 1454 (VFNMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>, 1455 Requires<[HasVFP4]>; 1456 // (fneg (fma x, (fneg y), z) -> (vfnms z, x, y) 1457 def : Pat<(fneg (f64 (fma DPR:$Dn, (fneg DPR:$Dm), DPR:$Ddin))), 1458 (VFNMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>, 1459 Requires<[HasVFP4]>; 1460 def : Pat<(fneg (f32 (fma SPR:$Sn, (fneg SPR:$Sm), SPR:$Sdin))), 1461 (VFNMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>, 1462 Requires<[HasVFP4]>; 1463 1464 //===----------------------------------------------------------------------===// 1465 // FP Conditional moves. 1466 // 1467 1468 let neverHasSideEffects = 1 in { 1469 def VMOVDcc : ARMPseudoInst<(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm, pred:$p), 1470 4, IIC_fpUNA64, 1471 [/*(set DPR:$Dd, (ARMcmov DPR:$Dn, DPR:$Dm, imm:$cc))*/]>, 1472 RegConstraint<"$Dn = $Dd">; 1473 1474 def VMOVScc : ARMPseudoInst<(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm, pred:$p), 1475 4, IIC_fpUNA32, 1476 [/*(set SPR:$Sd, (ARMcmov SPR:$Sn, SPR:$Sm, imm:$cc))*/]>, 1477 RegConstraint<"$Sn = $Sd">; 1478 } // neverHasSideEffects 1479 1480 //===----------------------------------------------------------------------===// 1481 // Move from VFP System Register to ARM core register. 1482 // 1483 1484 class MovFromVFP<bits<4> opc19_16, dag oops, dag iops, string opc, string asm, 1485 list<dag> pattern>: 1486 VFPAI<oops, iops, VFPMiscFrm, IIC_fpSTAT, opc, asm, pattern> { 1487 1488 // Instruction operand. 1489 bits<4> Rt; 1490 1491 let Inst{27-20} = 0b11101111; 1492 let Inst{19-16} = opc19_16; 1493 let Inst{15-12} = Rt; 1494 let Inst{11-8} = 0b1010; 1495 let Inst{7} = 0; 1496 let Inst{6-5} = 0b00; 1497 let Inst{4} = 1; 1498 let Inst{3-0} = 0b0000; 1499 } 1500 1501 // APSR is the application level alias of CPSR. This FPSCR N, Z, C, V flags 1502 // to APSR. 1503 let Defs = [CPSR], Uses = [FPSCR_NZCV], Rt = 0b1111 /* apsr_nzcv */ in 1504 def FMSTAT : MovFromVFP<0b0001 /* fpscr */, (outs), (ins), 1505 "vmrs", "\tAPSR_nzcv, fpscr", [(arm_fmstat)]>; 1506 1507 // Application level FPSCR -> GPR 1508 let hasSideEffects = 1, Uses = [FPSCR] in 1509 def VMRS : MovFromVFP<0b0001 /* fpscr */, (outs GPR:$Rt), (ins), 1510 "vmrs", "\t$Rt, fpscr", 1511 [(set GPR:$Rt, (int_arm_get_fpscr))]>; 1512 1513 // System level FPEXC, FPSID -> GPR 1514 let Uses = [FPSCR] in { 1515 def VMRS_FPEXC : MovFromVFP<0b1000 /* fpexc */, (outs GPR:$Rt), (ins), 1516 "vmrs", "\t$Rt, fpexc", []>; 1517 def VMRS_FPSID : MovFromVFP<0b0000 /* fpsid */, (outs GPR:$Rt), (ins), 1518 "vmrs", "\t$Rt, fpsid", []>; 1519 def VMRS_MVFR0 : MovFromVFP<0b0111 /* mvfr0 */, (outs GPR:$Rt), (ins), 1520 "vmrs", "\t$Rt, mvfr0", []>; 1521 def VMRS_MVFR1 : MovFromVFP<0b0110 /* mvfr1 */, (outs GPR:$Rt), (ins), 1522 "vmrs", "\t$Rt, mvfr1", []>; 1523 def VMRS_FPINST : MovFromVFP<0b1001 /* fpinst */, (outs GPR:$Rt), (ins), 1524 "vmrs", "\t$Rt, fpinst", []>; 1525 def VMRS_FPINST2 : MovFromVFP<0b1010 /* fpinst2 */, (outs GPR:$Rt), (ins), 1526 "vmrs", "\t$Rt, fpinst2", []>; 1527 } 1528 1529 //===----------------------------------------------------------------------===// 1530 // Move from ARM core register to VFP System Register. 1531 // 1532 1533 class MovToVFP<bits<4> opc19_16, dag oops, dag iops, string opc, string asm, 1534 list<dag> pattern>: 1535 VFPAI<oops, iops, VFPMiscFrm, IIC_fpSTAT, opc, asm, pattern> { 1536 1537 // Instruction operand. 1538 bits<4> src; 1539 1540 // Encode instruction operand. 1541 let Inst{15-12} = src; 1542 1543 let Inst{27-20} = 0b11101110; 1544 let Inst{19-16} = opc19_16; 1545 let Inst{11-8} = 0b1010; 1546 let Inst{7} = 0; 1547 let Inst{4} = 1; 1548 } 1549 1550 let Defs = [FPSCR] in { 1551 // Application level GPR -> FPSCR 1552 def VMSR : MovToVFP<0b0001 /* fpscr */, (outs), (ins GPR:$src), 1553 "vmsr", "\tfpscr, $src", [(int_arm_set_fpscr GPR:$src)]>; 1554 // System level GPR -> FPEXC 1555 def VMSR_FPEXC : MovToVFP<0b1000 /* fpexc */, (outs), (ins GPR:$src), 1556 "vmsr", "\tfpexc, $src", []>; 1557 // System level GPR -> FPSID 1558 def VMSR_FPSID : MovToVFP<0b0000 /* fpsid */, (outs), (ins GPR:$src), 1559 "vmsr", "\tfpsid, $src", []>; 1560 1561 def VMSR_FPINST : MovToVFP<0b1001 /* fpinst */, (outs), (ins GPR:$src), 1562 "vmsr", "\tfpinst, $src", []>; 1563 def VMSR_FPINST2 : MovToVFP<0b1010 /* fpinst2 */, (outs), (ins GPR:$src), 1564 "vmsr", "\tfpinst2, $src", []>; 1565 } 1566 1567 //===----------------------------------------------------------------------===// 1568 // Misc. 1569 // 1570 1571 // Materialize FP immediates. VFP3 only. 1572 let isReMaterializable = 1 in { 1573 def FCONSTD : VFPAI<(outs DPR:$Dd), (ins vfp_f64imm:$imm), 1574 VFPMiscFrm, IIC_fpUNA64, 1575 "vmov", ".f64\t$Dd, $imm", 1576 [(set DPR:$Dd, vfp_f64imm:$imm)]>, Requires<[HasVFP3]> { 1577 bits<5> Dd; 1578 bits<8> imm; 1579 1580 let Inst{27-23} = 0b11101; 1581 let Inst{22} = Dd{4}; 1582 let Inst{21-20} = 0b11; 1583 let Inst{19-16} = imm{7-4}; 1584 let Inst{15-12} = Dd{3-0}; 1585 let Inst{11-9} = 0b101; 1586 let Inst{8} = 1; // Double precision. 1587 let Inst{7-4} = 0b0000; 1588 let Inst{3-0} = imm{3-0}; 1589 } 1590 1591 def FCONSTS : VFPAI<(outs SPR:$Sd), (ins vfp_f32imm:$imm), 1592 VFPMiscFrm, IIC_fpUNA32, 1593 "vmov", ".f32\t$Sd, $imm", 1594 [(set SPR:$Sd, vfp_f32imm:$imm)]>, Requires<[HasVFP3]> { 1595 bits<5> Sd; 1596 bits<8> imm; 1597 1598 let Inst{27-23} = 0b11101; 1599 let Inst{22} = Sd{0}; 1600 let Inst{21-20} = 0b11; 1601 let Inst{19-16} = imm{7-4}; 1602 let Inst{15-12} = Sd{4-1}; 1603 let Inst{11-9} = 0b101; 1604 let Inst{8} = 0; // Single precision. 1605 let Inst{7-4} = 0b0000; 1606 let Inst{3-0} = imm{3-0}; 1607 } 1608 } 1609 1610 //===----------------------------------------------------------------------===// 1611 // Assembler aliases. 1612 // 1613 // A few mnemnoic aliases for pre-unifixed syntax. We don't guarantee to 1614 // support them all, but supporting at least some of the basics is 1615 // good to be friendly. 1616 def : VFP2MnemonicAlias<"flds", "vldr">; 1617 def : VFP2MnemonicAlias<"fldd", "vldr">; 1618 def : VFP2MnemonicAlias<"fmrs", "vmov">; 1619 def : VFP2MnemonicAlias<"fmsr", "vmov">; 1620 def : VFP2MnemonicAlias<"fsqrts", "vsqrt">; 1621 def : VFP2MnemonicAlias<"fsqrtd", "vsqrt">; 1622 def : VFP2MnemonicAlias<"fadds", "vadd.f32">; 1623 def : VFP2MnemonicAlias<"faddd", "vadd.f64">; 1624 def : VFP2MnemonicAlias<"fmrdd", "vmov">; 1625 def : VFP2MnemonicAlias<"fmrds", "vmov">; 1626 def : VFP2MnemonicAlias<"fmrrd", "vmov">; 1627 def : VFP2MnemonicAlias<"fmdrr", "vmov">; 1628 def : VFP2MnemonicAlias<"fmuls", "vmul.f32">; 1629 def : VFP2MnemonicAlias<"fmuld", "vmul.f64">; 1630 def : VFP2MnemonicAlias<"fnegs", "vneg.f32">; 1631 def : VFP2MnemonicAlias<"fnegd", "vneg.f64">; 1632 def : VFP2MnemonicAlias<"ftosizd", "vcvt.s32.f64">; 1633 def : VFP2MnemonicAlias<"ftosid", "vcvtr.s32.f64">; 1634 def : VFP2MnemonicAlias<"ftosizs", "vcvt.s32.f32">; 1635 def : VFP2MnemonicAlias<"ftosis", "vcvtr.s32.f32">; 1636 def : VFP2MnemonicAlias<"ftouizd", "vcvt.u32.f64">; 1637 def : VFP2MnemonicAlias<"ftouid", "vcvtr.u32.f64">; 1638 def : VFP2MnemonicAlias<"ftouizs", "vcvt.u32.f32">; 1639 def : VFP2MnemonicAlias<"ftouis", "vcvtr.u32.f32">; 1640 def : VFP2MnemonicAlias<"fsitod", "vcvt.f64.s32">; 1641 def : VFP2MnemonicAlias<"fsitos", "vcvt.f32.s32">; 1642 def : VFP2MnemonicAlias<"fuitod", "vcvt.f64.u32">; 1643 def : VFP2MnemonicAlias<"fuitos", "vcvt.f32.u32">; 1644 def : VFP2MnemonicAlias<"fsts", "vstr">; 1645 def : VFP2MnemonicAlias<"fstd", "vstr">; 1646 def : VFP2MnemonicAlias<"fmacd", "vmla.f64">; 1647 def : VFP2MnemonicAlias<"fmacs", "vmla.f32">; 1648 def : VFP2MnemonicAlias<"fcpys", "vmov.f32">; 1649 def : VFP2MnemonicAlias<"fcpyd", "vmov.f64">; 1650 def : VFP2MnemonicAlias<"fcmps", "vcmp.f32">; 1651 def : VFP2MnemonicAlias<"fcmpd", "vcmp.f64">; 1652 def : VFP2MnemonicAlias<"fdivs", "vdiv.f32">; 1653 def : VFP2MnemonicAlias<"fdivd", "vdiv.f64">; 1654 def : VFP2MnemonicAlias<"fmrx", "vmrs">; 1655 def : VFP2MnemonicAlias<"fmxr", "vmsr">; 1656 1657 // Be friendly and accept the old form of zero-compare 1658 def : VFP2InstAlias<"fcmpzd${p} $val", (VCMPZD DPR:$val, pred:$p)>; 1659 def : VFP2InstAlias<"fcmpzs${p} $val", (VCMPZS SPR:$val, pred:$p)>; 1660 1661 1662 def : VFP2InstAlias<"fmstat${p}", (FMSTAT pred:$p)>; 1663 def : VFP2InstAlias<"fadds${p} $Sd, $Sn, $Sm", 1664 (VADDS SPR:$Sd, SPR:$Sn, SPR:$Sm, pred:$p)>; 1665 def : VFP2InstAlias<"faddd${p} $Dd, $Dn, $Dm", 1666 (VADDD DPR:$Dd, DPR:$Dn, DPR:$Dm, pred:$p)>; 1667 def : VFP2InstAlias<"fsubs${p} $Sd, $Sn, $Sm", 1668 (VSUBS SPR:$Sd, SPR:$Sn, SPR:$Sm, pred:$p)>; 1669 def : VFP2InstAlias<"fsubd${p} $Dd, $Dn, $Dm", 1670 (VSUBD DPR:$Dd, DPR:$Dn, DPR:$Dm, pred:$p)>; 1671 1672 // No need for the size suffix on VSQRT. It's implied by the register classes. 1673 def : VFP2InstAlias<"vsqrt${p} $Sd, $Sm", (VSQRTS SPR:$Sd, SPR:$Sm, pred:$p)>; 1674 def : VFP2InstAlias<"vsqrt${p} $Dd, $Dm", (VSQRTD DPR:$Dd, DPR:$Dm, pred:$p)>; 1675 1676 // VLDR/VSTR accept an optional type suffix. 1677 def : VFP2InstAlias<"vldr${p}.32 $Sd, $addr", 1678 (VLDRS SPR:$Sd, addrmode5:$addr, pred:$p)>; 1679 def : VFP2InstAlias<"vstr${p}.32 $Sd, $addr", 1680 (VSTRS SPR:$Sd, addrmode5:$addr, pred:$p)>; 1681 def : VFP2InstAlias<"vldr${p}.64 $Dd, $addr", 1682 (VLDRD DPR:$Dd, addrmode5:$addr, pred:$p)>; 1683 def : VFP2InstAlias<"vstr${p}.64 $Dd, $addr", 1684 (VSTRD DPR:$Dd, addrmode5:$addr, pred:$p)>; 1685 1686 // VMOV can accept optional 32-bit or less data type suffix suffix. 1687 def : VFP2InstAlias<"vmov${p}.8 $Rt, $Sn", 1688 (VMOVRS GPR:$Rt, SPR:$Sn, pred:$p)>; 1689 def : VFP2InstAlias<"vmov${p}.16 $Rt, $Sn", 1690 (VMOVRS GPR:$Rt, SPR:$Sn, pred:$p)>; 1691 def : VFP2InstAlias<"vmov${p}.32 $Rt, $Sn", 1692 (VMOVRS GPR:$Rt, SPR:$Sn, pred:$p)>; 1693 def : VFP2InstAlias<"vmov${p}.8 $Sn, $Rt", 1694 (VMOVSR SPR:$Sn, GPR:$Rt, pred:$p)>; 1695 def : VFP2InstAlias<"vmov${p}.16 $Sn, $Rt", 1696 (VMOVSR SPR:$Sn, GPR:$Rt, pred:$p)>; 1697 def : VFP2InstAlias<"vmov${p}.32 $Sn, $Rt", 1698 (VMOVSR SPR:$Sn, GPR:$Rt, pred:$p)>; 1699 1700 def : VFP2InstAlias<"vmov${p}.f64 $Rt, $Rt2, $Dn", 1701 (VMOVRRD GPR:$Rt, GPR:$Rt2, DPR:$Dn, pred:$p)>; 1702 def : VFP2InstAlias<"vmov${p}.f64 $Dn, $Rt, $Rt2", 1703 (VMOVDRR DPR:$Dn, GPR:$Rt, GPR:$Rt2, pred:$p)>; 1704 1705 // VMOVS doesn't need the .f32 to disambiguate from the NEON encoding the way 1706 // VMOVD does. 1707 def : VFP2InstAlias<"vmov${p} $Sd, $Sm", 1708 (VMOVS SPR:$Sd, SPR:$Sm, pred:$p)>; 1709