Home | History | Annotate | Download | only in TableGen
      1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines structures to encapsulate information gleaned from the
     11 // target register and register class definitions.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "regalloc-emitter"
     16 
     17 #include "CodeGenRegisters.h"
     18 #include "CodeGenTarget.h"
     19 #include "llvm/ADT/IntEqClasses.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/StringExtras.h"
     23 #include "llvm/ADT/Twine.h"
     24 #include "llvm/Support/Debug.h"
     25 #include "llvm/TableGen/Error.h"
     26 
     27 using namespace llvm;
     28 
     29 //===----------------------------------------------------------------------===//
     30 //                             CodeGenSubRegIndex
     31 //===----------------------------------------------------------------------===//
     32 
     33 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
     34   : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
     35   Name = R->getName();
     36   if (R->getValue("Namespace"))
     37     Namespace = R->getValueAsString("Namespace");
     38   Size = R->getValueAsInt("Size");
     39   Offset = R->getValueAsInt("Offset");
     40 }
     41 
     42 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
     43                                        unsigned Enum)
     44   : TheDef(0), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
     45     EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
     46 }
     47 
     48 std::string CodeGenSubRegIndex::getQualifiedName() const {
     49   std::string N = getNamespace();
     50   if (!N.empty())
     51     N += "::";
     52   N += getName();
     53   return N;
     54 }
     55 
     56 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
     57   if (!TheDef)
     58     return;
     59 
     60   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
     61   if (!Comps.empty()) {
     62     if (Comps.size() != 2)
     63       PrintFatalError(TheDef->getLoc(),
     64                       "ComposedOf must have exactly two entries");
     65     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
     66     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
     67     CodeGenSubRegIndex *X = A->addComposite(B, this);
     68     if (X)
     69       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
     70   }
     71 
     72   std::vector<Record*> Parts =
     73     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
     74   if (!Parts.empty()) {
     75     if (Parts.size() < 2)
     76       PrintFatalError(TheDef->getLoc(),
     77                       "CoveredBySubRegs must have two or more entries");
     78     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
     79     for (unsigned i = 0, e = Parts.size(); i != e; ++i)
     80       IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
     81     RegBank.addConcatSubRegIndex(IdxParts, this);
     82   }
     83 }
     84 
     85 unsigned CodeGenSubRegIndex::computeLaneMask() {
     86   // Already computed?
     87   if (LaneMask)
     88     return LaneMask;
     89 
     90   // Recursion guard, shouldn't be required.
     91   LaneMask = ~0u;
     92 
     93   // The lane mask is simply the union of all sub-indices.
     94   unsigned M = 0;
     95   for (CompMap::iterator I = Composed.begin(), E = Composed.end(); I != E; ++I)
     96     M |= I->second->computeLaneMask();
     97   assert(M && "Missing lane mask, sub-register cycle?");
     98   LaneMask = M;
     99   return LaneMask;
    100 }
    101 
    102 //===----------------------------------------------------------------------===//
    103 //                              CodeGenRegister
    104 //===----------------------------------------------------------------------===//
    105 
    106 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
    107   : TheDef(R),
    108     EnumValue(Enum),
    109     CostPerUse(R->getValueAsInt("CostPerUse")),
    110     CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
    111     NumNativeRegUnits(0),
    112     SubRegsComplete(false),
    113     SuperRegsComplete(false),
    114     TopoSig(~0u)
    115 {}
    116 
    117 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
    118   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
    119   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
    120 
    121   if (SRIs.size() != SRs.size())
    122     PrintFatalError(TheDef->getLoc(),
    123                     "SubRegs and SubRegIndices must have the same size");
    124 
    125   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
    126     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
    127     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
    128   }
    129 
    130   // Also compute leading super-registers. Each register has a list of
    131   // covered-by-subregs super-registers where it appears as the first explicit
    132   // sub-register.
    133   //
    134   // This is used by computeSecondarySubRegs() to find candidates.
    135   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
    136     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
    137 
    138   // Add ad hoc alias links. This is a symmetric relationship between two
    139   // registers, so build a symmetric graph by adding links in both ends.
    140   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
    141   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
    142     CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
    143     ExplicitAliases.push_back(Reg);
    144     Reg->ExplicitAliases.push_back(this);
    145   }
    146 }
    147 
    148 const std::string &CodeGenRegister::getName() const {
    149   return TheDef->getName();
    150 }
    151 
    152 namespace {
    153 // Iterate over all register units in a set of registers.
    154 class RegUnitIterator {
    155   CodeGenRegister::Set::const_iterator RegI, RegE;
    156   CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE;
    157 
    158 public:
    159   RegUnitIterator(const CodeGenRegister::Set &Regs):
    160     RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
    161 
    162     if (RegI != RegE) {
    163       UnitI = (*RegI)->getRegUnits().begin();
    164       UnitE = (*RegI)->getRegUnits().end();
    165       advance();
    166     }
    167   }
    168 
    169   bool isValid() const { return UnitI != UnitE; }
    170 
    171   unsigned operator* () const { assert(isValid()); return *UnitI; }
    172 
    173   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
    174 
    175   /// Preincrement.  Move to the next unit.
    176   void operator++() {
    177     assert(isValid() && "Cannot advance beyond the last operand");
    178     ++UnitI;
    179     advance();
    180   }
    181 
    182 protected:
    183   void advance() {
    184     while (UnitI == UnitE) {
    185       if (++RegI == RegE)
    186         break;
    187       UnitI = (*RegI)->getRegUnits().begin();
    188       UnitE = (*RegI)->getRegUnits().end();
    189     }
    190   }
    191 };
    192 } // namespace
    193 
    194 // Merge two RegUnitLists maintaining the order and removing duplicates.
    195 // Overwrites MergedRU in the process.
    196 static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU,
    197                           const CodeGenRegister::RegUnitList &RRU) {
    198   CodeGenRegister::RegUnitList LRU = MergedRU;
    199   MergedRU.clear();
    200   std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(),
    201                  std::back_inserter(MergedRU));
    202 }
    203 
    204 // Return true of this unit appears in RegUnits.
    205 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
    206   return std::count(RegUnits.begin(), RegUnits.end(), Unit);
    207 }
    208 
    209 // Inherit register units from subregisters.
    210 // Return true if the RegUnits changed.
    211 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
    212   unsigned OldNumUnits = RegUnits.size();
    213   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    214        I != E; ++I) {
    215     CodeGenRegister *SR = I->second;
    216     // Merge the subregister's units into this register's RegUnits.
    217     mergeRegUnits(RegUnits, SR->RegUnits);
    218   }
    219   return OldNumUnits != RegUnits.size();
    220 }
    221 
    222 const CodeGenRegister::SubRegMap &
    223 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
    224   // Only compute this map once.
    225   if (SubRegsComplete)
    226     return SubRegs;
    227   SubRegsComplete = true;
    228 
    229   // First insert the explicit subregs and make sure they are fully indexed.
    230   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    231     CodeGenRegister *SR = ExplicitSubRegs[i];
    232     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
    233     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
    234       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
    235                       " appears twice in Register " + getName());
    236     // Map explicit sub-registers first, so the names take precedence.
    237     // The inherited sub-registers are mapped below.
    238     SubReg2Idx.insert(std::make_pair(SR, Idx));
    239   }
    240 
    241   // Keep track of inherited subregs and how they can be reached.
    242   SmallPtrSet<CodeGenRegister*, 8> Orphans;
    243 
    244   // Clone inherited subregs and place duplicate entries in Orphans.
    245   // Here the order is important - earlier subregs take precedence.
    246   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    247     CodeGenRegister *SR = ExplicitSubRegs[i];
    248     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    249 
    250     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
    251          ++SI) {
    252       if (!SubRegs.insert(*SI).second)
    253         Orphans.insert(SI->second);
    254     }
    255   }
    256 
    257   // Expand any composed subreg indices.
    258   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
    259   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
    260   // expanded subreg indices recursively.
    261   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
    262   for (unsigned i = 0; i != Indices.size(); ++i) {
    263     CodeGenSubRegIndex *Idx = Indices[i];
    264     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
    265     CodeGenRegister *SR = SubRegs[Idx];
    266     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    267 
    268     // Look at the possible compositions of Idx.
    269     // They may not all be supported by SR.
    270     for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
    271            E = Comps.end(); I != E; ++I) {
    272       SubRegMap::const_iterator SRI = Map.find(I->first);
    273       if (SRI == Map.end())
    274         continue; // Idx + I->first doesn't exist in SR.
    275       // Add I->second as a name for the subreg SRI->second, assuming it is
    276       // orphaned, and the name isn't already used for something else.
    277       if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
    278         continue;
    279       // We found a new name for the orphaned sub-register.
    280       SubRegs.insert(std::make_pair(I->second, SRI->second));
    281       Indices.push_back(I->second);
    282     }
    283   }
    284 
    285   // Now Orphans contains the inherited subregisters without a direct index.
    286   // Create inferred indexes for all missing entries.
    287   // Work backwards in the Indices vector in order to compose subregs bottom-up.
    288   // Consider this subreg sequence:
    289   //
    290   //   qsub_1 -> dsub_0 -> ssub_0
    291   //
    292   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
    293   // can be reached in two different ways:
    294   //
    295   //   qsub_1 -> ssub_0
    296   //   dsub_2 -> ssub_0
    297   //
    298   // We pick the latter composition because another register may have [dsub_0,
    299   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
    300   // dsub_2 -> ssub_0 composition can be shared.
    301   while (!Indices.empty() && !Orphans.empty()) {
    302     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
    303     CodeGenRegister *SR = SubRegs[Idx];
    304     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    305     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
    306          ++SI)
    307       if (Orphans.erase(SI->second))
    308         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
    309   }
    310 
    311   // Compute the inverse SubReg -> Idx map.
    312   for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
    313        SI != SE; ++SI) {
    314     if (SI->second == this) {
    315       ArrayRef<SMLoc> Loc;
    316       if (TheDef)
    317         Loc = TheDef->getLoc();
    318       PrintFatalError(Loc, "Register " + getName() +
    319                       " has itself as a sub-register");
    320     }
    321 
    322     // Compute AllSuperRegsCovered.
    323     if (!CoveredBySubRegs)
    324       SI->first->AllSuperRegsCovered = false;
    325 
    326     // Ensure that every sub-register has a unique name.
    327     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
    328       SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
    329     if (Ins->second == SI->first)
    330       continue;
    331     // Trouble: Two different names for SI->second.
    332     ArrayRef<SMLoc> Loc;
    333     if (TheDef)
    334       Loc = TheDef->getLoc();
    335     PrintFatalError(Loc, "Sub-register can't have two names: " +
    336                   SI->second->getName() + " available as " +
    337                   SI->first->getName() + " and " + Ins->second->getName());
    338   }
    339 
    340   // Derive possible names for sub-register concatenations from any explicit
    341   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
    342   // that getConcatSubRegIndex() won't invent any concatenated indices that the
    343   // user already specified.
    344   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    345     CodeGenRegister *SR = ExplicitSubRegs[i];
    346     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
    347       continue;
    348 
    349     // SR is composed of multiple sub-regs. Find their names in this register.
    350     SmallVector<CodeGenSubRegIndex*, 8> Parts;
    351     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
    352       Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
    353 
    354     // Offer this as an existing spelling for the concatenation of Parts.
    355     RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
    356   }
    357 
    358   // Initialize RegUnitList. Because getSubRegs is called recursively, this
    359   // processes the register hierarchy in postorder.
    360   //
    361   // Inherit all sub-register units. It is good enough to look at the explicit
    362   // sub-registers, the other registers won't contribute any more units.
    363   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    364     CodeGenRegister *SR = ExplicitSubRegs[i];
    365     // Explicit sub-registers are usually disjoint, so this is a good way of
    366     // computing the union. We may pick up a few duplicates that will be
    367     // eliminated below.
    368     unsigned N = RegUnits.size();
    369     RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end());
    370     std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end());
    371   }
    372   RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end());
    373 
    374   // Absent any ad hoc aliasing, we create one register unit per leaf register.
    375   // These units correspond to the maximal cliques in the register overlap
    376   // graph which is optimal.
    377   //
    378   // When there is ad hoc aliasing, we simply create one unit per edge in the
    379   // undirected ad hoc aliasing graph. Technically, we could do better by
    380   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
    381   // are extremely rare anyway (I've never seen one), so we don't bother with
    382   // the added complexity.
    383   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
    384     CodeGenRegister *AR = ExplicitAliases[i];
    385     // Only visit each edge once.
    386     if (AR->SubRegsComplete)
    387       continue;
    388     // Create a RegUnit representing this alias edge, and add it to both
    389     // registers.
    390     unsigned Unit = RegBank.newRegUnit(this, AR);
    391     RegUnits.push_back(Unit);
    392     AR->RegUnits.push_back(Unit);
    393   }
    394 
    395   // Finally, create units for leaf registers without ad hoc aliases. Note that
    396   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
    397   // necessary. This means the aliasing leaf registers can share a single unit.
    398   if (RegUnits.empty())
    399     RegUnits.push_back(RegBank.newRegUnit(this));
    400 
    401   // We have now computed the native register units. More may be adopted later
    402   // for balancing purposes.
    403   NumNativeRegUnits = RegUnits.size();
    404 
    405   return SubRegs;
    406 }
    407 
    408 // In a register that is covered by its sub-registers, try to find redundant
    409 // sub-registers. For example:
    410 //
    411 //   QQ0 = {Q0, Q1}
    412 //   Q0 = {D0, D1}
    413 //   Q1 = {D2, D3}
    414 //
    415 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
    416 // the register definition.
    417 //
    418 // The explicitly specified registers form a tree. This function discovers
    419 // sub-register relationships that would force a DAG.
    420 //
    421 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
    422   // Collect new sub-registers first, add them later.
    423   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
    424 
    425   // Look at the leading super-registers of each sub-register. Those are the
    426   // candidates for new sub-registers, assuming they are fully contained in
    427   // this register.
    428   for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
    429     const CodeGenRegister *SubReg = I->second;
    430     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
    431     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
    432       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
    433       // Already got this sub-register?
    434       if (Cand == this || getSubRegIndex(Cand))
    435         continue;
    436       // Check if each component of Cand is already a sub-register.
    437       // We know that the first component is I->second, and is present with the
    438       // name I->first.
    439       SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
    440       assert(!Cand->ExplicitSubRegs.empty() &&
    441              "Super-register has no sub-registers");
    442       for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
    443         if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
    444           Parts.push_back(Idx);
    445         else {
    446           // Sub-register doesn't exist.
    447           Parts.clear();
    448           break;
    449         }
    450       }
    451       // If some Cand sub-register is not part of this register, or if Cand only
    452       // has one sub-register, there is nothing to do.
    453       if (Parts.size() <= 1)
    454         continue;
    455 
    456       // Each part of Cand is a sub-register of this. Make the full Cand also
    457       // a sub-register with a concatenated sub-register index.
    458       CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
    459       NewSubRegs.push_back(std::make_pair(Concat, Cand));
    460     }
    461   }
    462 
    463   // Now add all the new sub-registers.
    464   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
    465     // Don't add Cand if another sub-register is already using the index.
    466     if (!SubRegs.insert(NewSubRegs[i]).second)
    467       continue;
    468 
    469     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
    470     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
    471     SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
    472   }
    473 
    474   // Create sub-register index composition maps for the synthesized indices.
    475   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
    476     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
    477     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
    478     for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
    479            SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
    480       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
    481       if (!SubIdx)
    482         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
    483                         SI->second->getName() + " in " + getName());
    484       NewIdx->addComposite(SI->first, SubIdx);
    485     }
    486   }
    487 }
    488 
    489 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
    490   // Only visit each register once.
    491   if (SuperRegsComplete)
    492     return;
    493   SuperRegsComplete = true;
    494 
    495   // Make sure all sub-registers have been visited first, so the super-reg
    496   // lists will be topologically ordered.
    497   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    498        I != E; ++I)
    499     I->second->computeSuperRegs(RegBank);
    500 
    501   // Now add this as a super-register on all sub-registers.
    502   // Also compute the TopoSigId in post-order.
    503   TopoSigId Id;
    504   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    505        I != E; ++I) {
    506     // Topological signature computed from SubIdx, TopoId(SubReg).
    507     // Loops and idempotent indices have TopoSig = ~0u.
    508     Id.push_back(I->first->EnumValue);
    509     Id.push_back(I->second->TopoSig);
    510 
    511     // Don't add duplicate entries.
    512     if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
    513       continue;
    514     I->second->SuperRegs.push_back(this);
    515   }
    516   TopoSig = RegBank.getTopoSig(Id);
    517 }
    518 
    519 void
    520 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
    521                                     CodeGenRegBank &RegBank) const {
    522   assert(SubRegsComplete && "Must precompute sub-registers");
    523   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    524     CodeGenRegister *SR = ExplicitSubRegs[i];
    525     if (OSet.insert(SR))
    526       SR->addSubRegsPreOrder(OSet, RegBank);
    527   }
    528   // Add any secondary sub-registers that weren't part of the explicit tree.
    529   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    530        I != E; ++I)
    531     OSet.insert(I->second);
    532 }
    533 
    534 // Get the sum of this register's unit weights.
    535 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
    536   unsigned Weight = 0;
    537   for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end();
    538        I != E; ++I) {
    539     Weight += RegBank.getRegUnit(*I).Weight;
    540   }
    541   return Weight;
    542 }
    543 
    544 //===----------------------------------------------------------------------===//
    545 //                               RegisterTuples
    546 //===----------------------------------------------------------------------===//
    547 
    548 // A RegisterTuples def is used to generate pseudo-registers from lists of
    549 // sub-registers. We provide a SetTheory expander class that returns the new
    550 // registers.
    551 namespace {
    552 struct TupleExpander : SetTheory::Expander {
    553   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) {
    554     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
    555     unsigned Dim = Indices.size();
    556     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
    557     if (Dim != SubRegs->getSize())
    558       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
    559     if (Dim < 2)
    560       PrintFatalError(Def->getLoc(),
    561                       "Tuples must have at least 2 sub-registers");
    562 
    563     // Evaluate the sub-register lists to be zipped.
    564     unsigned Length = ~0u;
    565     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
    566     for (unsigned i = 0; i != Dim; ++i) {
    567       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
    568       Length = std::min(Length, unsigned(Lists[i].size()));
    569     }
    570 
    571     if (Length == 0)
    572       return;
    573 
    574     // Precompute some types.
    575     Record *RegisterCl = Def->getRecords().getClass("Register");
    576     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
    577     StringInit *BlankName = StringInit::get("");
    578 
    579     // Zip them up.
    580     for (unsigned n = 0; n != Length; ++n) {
    581       std::string Name;
    582       Record *Proto = Lists[0][n];
    583       std::vector<Init*> Tuple;
    584       unsigned CostPerUse = 0;
    585       for (unsigned i = 0; i != Dim; ++i) {
    586         Record *Reg = Lists[i][n];
    587         if (i) Name += '_';
    588         Name += Reg->getName();
    589         Tuple.push_back(DefInit::get(Reg));
    590         CostPerUse = std::max(CostPerUse,
    591                               unsigned(Reg->getValueAsInt("CostPerUse")));
    592       }
    593 
    594       // Create a new Record representing the synthesized register. This record
    595       // is only for consumption by CodeGenRegister, it is not added to the
    596       // RecordKeeper.
    597       Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
    598       Elts.insert(NewReg);
    599 
    600       // Copy Proto super-classes.
    601       ArrayRef<Record *> Supers = Proto->getSuperClasses();
    602       ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges();
    603       for (unsigned i = 0, e = Supers.size(); i != e; ++i)
    604         NewReg->addSuperClass(Supers[i], Ranges[i]);
    605 
    606       // Copy Proto fields.
    607       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
    608         RecordVal RV = Proto->getValues()[i];
    609 
    610         // Skip existing fields, like NAME.
    611         if (NewReg->getValue(RV.getNameInit()))
    612           continue;
    613 
    614         StringRef Field = RV.getName();
    615 
    616         // Replace the sub-register list with Tuple.
    617         if (Field == "SubRegs")
    618           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
    619 
    620         // Provide a blank AsmName. MC hacks are required anyway.
    621         if (Field == "AsmName")
    622           RV.setValue(BlankName);
    623 
    624         // CostPerUse is aggregated from all Tuple members.
    625         if (Field == "CostPerUse")
    626           RV.setValue(IntInit::get(CostPerUse));
    627 
    628         // Composite registers are always covered by sub-registers.
    629         if (Field == "CoveredBySubRegs")
    630           RV.setValue(BitInit::get(true));
    631 
    632         // Copy fields from the RegisterTuples def.
    633         if (Field == "SubRegIndices" ||
    634             Field == "CompositeIndices") {
    635           NewReg->addValue(*Def->getValue(Field));
    636           continue;
    637         }
    638 
    639         // Some fields get their default uninitialized value.
    640         if (Field == "DwarfNumbers" ||
    641             Field == "DwarfAlias" ||
    642             Field == "Aliases") {
    643           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
    644             NewReg->addValue(*DefRV);
    645           continue;
    646         }
    647 
    648         // Everything else is copied from Proto.
    649         NewReg->addValue(RV);
    650       }
    651     }
    652   }
    653 };
    654 }
    655 
    656 //===----------------------------------------------------------------------===//
    657 //                            CodeGenRegisterClass
    658 //===----------------------------------------------------------------------===//
    659 
    660 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
    661   : TheDef(R),
    662     Name(R->getName()),
    663     TopoSigs(RegBank.getNumTopoSigs()),
    664     EnumValue(-1) {
    665   // Rename anonymous register classes.
    666   if (R->getName().size() > 9 && R->getName()[9] == '.') {
    667     static unsigned AnonCounter = 0;
    668     R->setName("AnonRegClass_" + utostr(AnonCounter));
    669     // MSVC2012 ICEs if AnonCounter++ is directly passed to utostr.
    670     ++AnonCounter;
    671   }
    672 
    673   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
    674   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    675     Record *Type = TypeList[i];
    676     if (!Type->isSubClassOf("ValueType"))
    677       PrintFatalError("RegTypes list member '" + Type->getName() +
    678         "' does not derive from the ValueType class!");
    679     VTs.push_back(getValueType(Type));
    680   }
    681   assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
    682 
    683   // Allocation order 0 is the full set. AltOrders provides others.
    684   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
    685   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
    686   Orders.resize(1 + AltOrders->size());
    687 
    688   // Default allocation order always contains all registers.
    689   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
    690     Orders[0].push_back((*Elements)[i]);
    691     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
    692     Members.insert(Reg);
    693     TopoSigs.set(Reg->getTopoSig());
    694   }
    695 
    696   // Alternative allocation orders may be subsets.
    697   SetTheory::RecSet Order;
    698   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
    699     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
    700     Orders[1 + i].append(Order.begin(), Order.end());
    701     // Verify that all altorder members are regclass members.
    702     while (!Order.empty()) {
    703       CodeGenRegister *Reg = RegBank.getReg(Order.back());
    704       Order.pop_back();
    705       if (!contains(Reg))
    706         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
    707                       " is not a class member");
    708     }
    709   }
    710 
    711   // Allow targets to override the size in bits of the RegisterClass.
    712   unsigned Size = R->getValueAsInt("Size");
    713 
    714   Namespace = R->getValueAsString("Namespace");
    715   SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
    716   SpillAlignment = R->getValueAsInt("Alignment");
    717   CopyCost = R->getValueAsInt("CopyCost");
    718   Allocatable = R->getValueAsBit("isAllocatable");
    719   AltOrderSelect = R->getValueAsString("AltOrderSelect");
    720 }
    721 
    722 // Create an inferred register class that was missing from the .td files.
    723 // Most properties will be inherited from the closest super-class after the
    724 // class structure has been computed.
    725 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
    726                                            StringRef Name, Key Props)
    727   : Members(*Props.Members),
    728     TheDef(0),
    729     Name(Name),
    730     TopoSigs(RegBank.getNumTopoSigs()),
    731     EnumValue(-1),
    732     SpillSize(Props.SpillSize),
    733     SpillAlignment(Props.SpillAlignment),
    734     CopyCost(0),
    735     Allocatable(true) {
    736   for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end();
    737        I != E; ++I)
    738     TopoSigs.set((*I)->getTopoSig());
    739 }
    740 
    741 // Compute inherited propertied for a synthesized register class.
    742 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
    743   assert(!getDef() && "Only synthesized classes can inherit properties");
    744   assert(!SuperClasses.empty() && "Synthesized class without super class");
    745 
    746   // The last super-class is the smallest one.
    747   CodeGenRegisterClass &Super = *SuperClasses.back();
    748 
    749   // Most properties are copied directly.
    750   // Exceptions are members, size, and alignment
    751   Namespace = Super.Namespace;
    752   VTs = Super.VTs;
    753   CopyCost = Super.CopyCost;
    754   Allocatable = Super.Allocatable;
    755   AltOrderSelect = Super.AltOrderSelect;
    756 
    757   // Copy all allocation orders, filter out foreign registers from the larger
    758   // super-class.
    759   Orders.resize(Super.Orders.size());
    760   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
    761     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
    762       if (contains(RegBank.getReg(Super.Orders[i][j])))
    763         Orders[i].push_back(Super.Orders[i][j]);
    764 }
    765 
    766 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
    767   return Members.count(Reg);
    768 }
    769 
    770 namespace llvm {
    771   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
    772     OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
    773     for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
    774          E = K.Members->end(); I != E; ++I)
    775       OS << ", " << (*I)->getName();
    776     return OS << " }";
    777   }
    778 }
    779 
    780 // This is a simple lexicographical order that can be used to search for sets.
    781 // It is not the same as the topological order provided by TopoOrderRC.
    782 bool CodeGenRegisterClass::Key::
    783 operator<(const CodeGenRegisterClass::Key &B) const {
    784   assert(Members && B.Members);
    785   if (*Members != *B.Members)
    786     return *Members < *B.Members;
    787   if (SpillSize != B.SpillSize)
    788     return SpillSize < B.SpillSize;
    789   return SpillAlignment < B.SpillAlignment;
    790 }
    791 
    792 // Returns true if RC is a strict subclass.
    793 // RC is a sub-class of this class if it is a valid replacement for any
    794 // instruction operand where a register of this classis required. It must
    795 // satisfy these conditions:
    796 //
    797 // 1. All RC registers are also in this.
    798 // 2. The RC spill size must not be smaller than our spill size.
    799 // 3. RC spill alignment must be compatible with ours.
    800 //
    801 static bool testSubClass(const CodeGenRegisterClass *A,
    802                          const CodeGenRegisterClass *B) {
    803   return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
    804     A->SpillSize <= B->SpillSize &&
    805     std::includes(A->getMembers().begin(), A->getMembers().end(),
    806                   B->getMembers().begin(), B->getMembers().end(),
    807                   CodeGenRegister::Less());
    808 }
    809 
    810 /// Sorting predicate for register classes.  This provides a topological
    811 /// ordering that arranges all register classes before their sub-classes.
    812 ///
    813 /// Register classes with the same registers, spill size, and alignment form a
    814 /// clique.  They will be ordered alphabetically.
    815 ///
    816 static int TopoOrderRC(const void *PA, const void *PB) {
    817   const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA;
    818   const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB;
    819   if (A == B)
    820     return 0;
    821 
    822   // Order by ascending spill size.
    823   if (A->SpillSize < B->SpillSize)
    824     return -1;
    825   if (A->SpillSize > B->SpillSize)
    826     return 1;
    827 
    828   // Order by ascending spill alignment.
    829   if (A->SpillAlignment < B->SpillAlignment)
    830     return -1;
    831   if (A->SpillAlignment > B->SpillAlignment)
    832     return 1;
    833 
    834   // Order by descending set size.  Note that the classes' allocation order may
    835   // not have been computed yet.  The Members set is always vaild.
    836   if (A->getMembers().size() > B->getMembers().size())
    837     return -1;
    838   if (A->getMembers().size() < B->getMembers().size())
    839     return 1;
    840 
    841   // Finally order by name as a tie breaker.
    842   return StringRef(A->getName()).compare(B->getName());
    843 }
    844 
    845 std::string CodeGenRegisterClass::getQualifiedName() const {
    846   if (Namespace.empty())
    847     return getName();
    848   else
    849     return Namespace + "::" + getName();
    850 }
    851 
    852 // Compute sub-classes of all register classes.
    853 // Assume the classes are ordered topologically.
    854 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
    855   ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses();
    856 
    857   // Visit backwards so sub-classes are seen first.
    858   for (unsigned rci = RegClasses.size(); rci; --rci) {
    859     CodeGenRegisterClass &RC = *RegClasses[rci - 1];
    860     RC.SubClasses.resize(RegClasses.size());
    861     RC.SubClasses.set(RC.EnumValue);
    862 
    863     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
    864     for (unsigned s = rci; s != RegClasses.size(); ++s) {
    865       if (RC.SubClasses.test(s))
    866         continue;
    867       CodeGenRegisterClass *SubRC = RegClasses[s];
    868       if (!testSubClass(&RC, SubRC))
    869         continue;
    870       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
    871       // check them again.
    872       RC.SubClasses |= SubRC->SubClasses;
    873     }
    874 
    875     // Sweep up missed clique members.  They will be immediately preceding RC.
    876     for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s)
    877       RC.SubClasses.set(s - 1);
    878   }
    879 
    880   // Compute the SuperClasses lists from the SubClasses vectors.
    881   for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
    882     const BitVector &SC = RegClasses[rci]->getSubClasses();
    883     for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) {
    884       if (unsigned(s) == rci)
    885         continue;
    886       RegClasses[s]->SuperClasses.push_back(RegClasses[rci]);
    887     }
    888   }
    889 
    890   // With the class hierarchy in place, let synthesized register classes inherit
    891   // properties from their closest super-class. The iteration order here can
    892   // propagate properties down multiple levels.
    893   for (unsigned rci = 0; rci != RegClasses.size(); ++rci)
    894     if (!RegClasses[rci]->getDef())
    895       RegClasses[rci]->inheritProperties(RegBank);
    896 }
    897 
    898 void
    899 CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx,
    900                                          BitVector &Out) const {
    901   DenseMap<CodeGenSubRegIndex*,
    902            SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator
    903     FindI = SuperRegClasses.find(SubIdx);
    904   if (FindI == SuperRegClasses.end())
    905     return;
    906   for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I =
    907        FindI->second.begin(), E = FindI->second.end(); I != E; ++I)
    908     Out.set((*I)->EnumValue);
    909 }
    910 
    911 // Populate a unique sorted list of units from a register set.
    912 void CodeGenRegisterClass::buildRegUnitSet(
    913   std::vector<unsigned> &RegUnits) const {
    914   std::vector<unsigned> TmpUnits;
    915   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
    916     TmpUnits.push_back(*UnitI);
    917   std::sort(TmpUnits.begin(), TmpUnits.end());
    918   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
    919                    std::back_inserter(RegUnits));
    920 }
    921 
    922 //===----------------------------------------------------------------------===//
    923 //                               CodeGenRegBank
    924 //===----------------------------------------------------------------------===//
    925 
    926 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
    927   // Configure register Sets to understand register classes and tuples.
    928   Sets.addFieldExpander("RegisterClass", "MemberList");
    929   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
    930   Sets.addExpander("RegisterTuples", new TupleExpander());
    931 
    932   // Read in the user-defined (named) sub-register indices.
    933   // More indices will be synthesized later.
    934   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
    935   std::sort(SRIs.begin(), SRIs.end(), LessRecord());
    936   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
    937     getSubRegIdx(SRIs[i]);
    938   // Build composite maps from ComposedOf fields.
    939   for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
    940     SubRegIndices[i]->updateComponents(*this);
    941 
    942   // Read in the register definitions.
    943   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
    944   std::sort(Regs.begin(), Regs.end(), LessRecordRegister());
    945   Registers.reserve(Regs.size());
    946   // Assign the enumeration values.
    947   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
    948     getReg(Regs[i]);
    949 
    950   // Expand tuples and number the new registers.
    951   std::vector<Record*> Tups =
    952     Records.getAllDerivedDefinitions("RegisterTuples");
    953 
    954   std::vector<Record*> TupRegsCopy;
    955   for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
    956     const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
    957     TupRegsCopy.reserve(TupRegs->size());
    958     TupRegsCopy.assign(TupRegs->begin(), TupRegs->end());
    959     std::sort(TupRegsCopy.begin(), TupRegsCopy.end(), LessRecordRegister());
    960     for (unsigned j = 0, je = TupRegsCopy.size(); j != je; ++j)
    961       getReg((TupRegsCopy)[j]);
    962     TupRegsCopy.clear();
    963   }
    964 
    965   // Now all the registers are known. Build the object graph of explicit
    966   // register-register references.
    967   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
    968     Registers[i]->buildObjectGraph(*this);
    969 
    970   // Compute register name map.
    971   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
    972     RegistersByName.GetOrCreateValue(
    973                        Registers[i]->TheDef->getValueAsString("AsmName"),
    974                        Registers[i]);
    975 
    976   // Precompute all sub-register maps.
    977   // This will create Composite entries for all inferred sub-register indices.
    978   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
    979     Registers[i]->computeSubRegs(*this);
    980 
    981   // Infer even more sub-registers by combining leading super-registers.
    982   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
    983     if (Registers[i]->CoveredBySubRegs)
    984       Registers[i]->computeSecondarySubRegs(*this);
    985 
    986   // After the sub-register graph is complete, compute the topologically
    987   // ordered SuperRegs list.
    988   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
    989     Registers[i]->computeSuperRegs(*this);
    990 
    991   // Native register units are associated with a leaf register. They've all been
    992   // discovered now.
    993   NumNativeRegUnits = RegUnits.size();
    994 
    995   // Read in register class definitions.
    996   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
    997   if (RCs.empty())
    998     PrintFatalError(std::string("No 'RegisterClass' subclasses defined!"));
    999 
   1000   // Allocate user-defined register classes.
   1001   RegClasses.reserve(RCs.size());
   1002   for (unsigned i = 0, e = RCs.size(); i != e; ++i)
   1003     addToMaps(new CodeGenRegisterClass(*this, RCs[i]));
   1004 
   1005   // Infer missing classes to create a full algebra.
   1006   computeInferredRegisterClasses();
   1007 
   1008   // Order register classes topologically and assign enum values.
   1009   array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC);
   1010   for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
   1011     RegClasses[i]->EnumValue = i;
   1012   CodeGenRegisterClass::computeSubClasses(*this);
   1013 }
   1014 
   1015 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
   1016 CodeGenSubRegIndex*
   1017 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
   1018   CodeGenSubRegIndex *Idx = new CodeGenSubRegIndex(Name, Namespace,
   1019                                                    SubRegIndices.size() + 1);
   1020   SubRegIndices.push_back(Idx);
   1021   return Idx;
   1022 }
   1023 
   1024 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
   1025   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
   1026   if (Idx)
   1027     return Idx;
   1028   Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1);
   1029   SubRegIndices.push_back(Idx);
   1030   return Idx;
   1031 }
   1032 
   1033 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
   1034   CodeGenRegister *&Reg = Def2Reg[Def];
   1035   if (Reg)
   1036     return Reg;
   1037   Reg = new CodeGenRegister(Def, Registers.size() + 1);
   1038   Registers.push_back(Reg);
   1039   return Reg;
   1040 }
   1041 
   1042 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
   1043   RegClasses.push_back(RC);
   1044 
   1045   if (Record *Def = RC->getDef())
   1046     Def2RC.insert(std::make_pair(Def, RC));
   1047 
   1048   // Duplicate classes are rejected by insert().
   1049   // That's OK, we only care about the properties handled by CGRC::Key.
   1050   CodeGenRegisterClass::Key K(*RC);
   1051   Key2RC.insert(std::make_pair(K, RC));
   1052 }
   1053 
   1054 // Create a synthetic sub-class if it is missing.
   1055 CodeGenRegisterClass*
   1056 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
   1057                                     const CodeGenRegister::Set *Members,
   1058                                     StringRef Name) {
   1059   // Synthetic sub-class has the same size and alignment as RC.
   1060   CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
   1061   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
   1062   if (FoundI != Key2RC.end())
   1063     return FoundI->second;
   1064 
   1065   // Sub-class doesn't exist, create a new one.
   1066   CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(*this, Name, K);
   1067   addToMaps(NewRC);
   1068   return NewRC;
   1069 }
   1070 
   1071 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
   1072   if (CodeGenRegisterClass *RC = Def2RC[Def])
   1073     return RC;
   1074 
   1075   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
   1076 }
   1077 
   1078 CodeGenSubRegIndex*
   1079 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
   1080                                         CodeGenSubRegIndex *B) {
   1081   // Look for an existing entry.
   1082   CodeGenSubRegIndex *Comp = A->compose(B);
   1083   if (Comp)
   1084     return Comp;
   1085 
   1086   // None exists, synthesize one.
   1087   std::string Name = A->getName() + "_then_" + B->getName();
   1088   Comp = createSubRegIndex(Name, A->getNamespace());
   1089   A->addComposite(B, Comp);
   1090   return Comp;
   1091 }
   1092 
   1093 CodeGenSubRegIndex *CodeGenRegBank::
   1094 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
   1095   assert(Parts.size() > 1 && "Need two parts to concatenate");
   1096 
   1097   // Look for an existing entry.
   1098   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
   1099   if (Idx)
   1100     return Idx;
   1101 
   1102   // None exists, synthesize one.
   1103   std::string Name = Parts.front()->getName();
   1104   // Determine whether all parts are contiguous.
   1105   bool isContinuous = true;
   1106   unsigned Size = Parts.front()->Size;
   1107   unsigned LastOffset = Parts.front()->Offset;
   1108   unsigned LastSize = Parts.front()->Size;
   1109   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
   1110     Name += '_';
   1111     Name += Parts[i]->getName();
   1112     Size += Parts[i]->Size;
   1113     if (Parts[i]->Offset != (LastOffset + LastSize))
   1114       isContinuous = false;
   1115     LastOffset = Parts[i]->Offset;
   1116     LastSize = Parts[i]->Size;
   1117   }
   1118   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
   1119   Idx->Size = Size;
   1120   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
   1121   return Idx;
   1122 }
   1123 
   1124 void CodeGenRegBank::computeComposites() {
   1125   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
   1126   // and many registers will share TopoSigs on regular architectures.
   1127   BitVector TopoSigs(getNumTopoSigs());
   1128 
   1129   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
   1130     CodeGenRegister *Reg1 = Registers[i];
   1131 
   1132     // Skip identical subreg structures already processed.
   1133     if (TopoSigs.test(Reg1->getTopoSig()))
   1134       continue;
   1135     TopoSigs.set(Reg1->getTopoSig());
   1136 
   1137     const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
   1138     for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
   1139          e1 = SRM1.end(); i1 != e1; ++i1) {
   1140       CodeGenSubRegIndex *Idx1 = i1->first;
   1141       CodeGenRegister *Reg2 = i1->second;
   1142       // Ignore identity compositions.
   1143       if (Reg1 == Reg2)
   1144         continue;
   1145       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
   1146       // Try composing Idx1 with another SubRegIndex.
   1147       for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
   1148            e2 = SRM2.end(); i2 != e2; ++i2) {
   1149         CodeGenSubRegIndex *Idx2 = i2->first;
   1150         CodeGenRegister *Reg3 = i2->second;
   1151         // Ignore identity compositions.
   1152         if (Reg2 == Reg3)
   1153           continue;
   1154         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
   1155         CodeGenSubRegIndex *Idx3 = Reg1->getSubRegIndex(Reg3);
   1156         assert(Idx3 && "Sub-register doesn't have an index");
   1157 
   1158         // Conflicting composition? Emit a warning but allow it.
   1159         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
   1160           PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
   1161                        " and " + Idx2->getQualifiedName() +
   1162                        " compose ambiguously as " + Prev->getQualifiedName() +
   1163                        " or " + Idx3->getQualifiedName());
   1164       }
   1165     }
   1166   }
   1167 }
   1168 
   1169 // Compute lane masks. This is similar to register units, but at the
   1170 // sub-register index level. Each bit in the lane mask is like a register unit
   1171 // class, and two lane masks will have a bit in common if two sub-register
   1172 // indices overlap in some register.
   1173 //
   1174 // Conservatively share a lane mask bit if two sub-register indices overlap in
   1175 // some registers, but not in others. That shouldn't happen a lot.
   1176 void CodeGenRegBank::computeSubRegIndexLaneMasks() {
   1177   // First assign individual bits to all the leaf indices.
   1178   unsigned Bit = 0;
   1179   // Determine mask of lanes that cover their registers.
   1180   CoveringLanes = ~0u;
   1181   for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
   1182     CodeGenSubRegIndex *Idx = SubRegIndices[i];
   1183     if (Idx->getComposites().empty()) {
   1184       Idx->LaneMask = 1u << Bit;
   1185       // Share bit 31 in the unlikely case there are more than 32 leafs.
   1186       //
   1187       // Sharing bits is harmless; it allows graceful degradation in targets
   1188       // with more than 32 vector lanes. They simply get a limited resolution
   1189       // view of lanes beyond the 32nd.
   1190       //
   1191       // See also the comment for getSubRegIndexLaneMask().
   1192       if (Bit < 31)
   1193         ++Bit;
   1194       else
   1195         // Once bit 31 is shared among multiple leafs, the 'lane' it represents
   1196         // is no longer covering its registers.
   1197         CoveringLanes &= ~(1u << Bit);
   1198     } else {
   1199       Idx->LaneMask = 0;
   1200     }
   1201   }
   1202 
   1203   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
   1204   // by the sub-register graph? This doesn't occur in any known targets.
   1205 
   1206   // Inherit lanes from composites.
   1207   for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
   1208     unsigned Mask = SubRegIndices[i]->computeLaneMask();
   1209     // If some super-registers without CoveredBySubRegs use this index, we can
   1210     // no longer assume that the lanes are covering their registers.
   1211     if (!SubRegIndices[i]->AllSuperRegsCovered)
   1212       CoveringLanes &= ~Mask;
   1213   }
   1214 }
   1215 
   1216 namespace {
   1217 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
   1218 // the transitive closure of the union of overlapping register
   1219 // classes. Together, the UberRegSets form a partition of the registers. If we
   1220 // consider overlapping register classes to be connected, then each UberRegSet
   1221 // is a set of connected components.
   1222 //
   1223 // An UberRegSet will likely be a horizontal slice of register names of
   1224 // the same width. Nontrivial subregisters should then be in a separate
   1225 // UberRegSet. But this property isn't required for valid computation of
   1226 // register unit weights.
   1227 //
   1228 // A Weight field caches the max per-register unit weight in each UberRegSet.
   1229 //
   1230 // A set of SingularDeterminants flags single units of some register in this set
   1231 // for which the unit weight equals the set weight. These units should not have
   1232 // their weight increased.
   1233 struct UberRegSet {
   1234   CodeGenRegister::Set Regs;
   1235   unsigned Weight;
   1236   CodeGenRegister::RegUnitList SingularDeterminants;
   1237 
   1238   UberRegSet(): Weight(0) {}
   1239 };
   1240 } // namespace
   1241 
   1242 // Partition registers into UberRegSets, where each set is the transitive
   1243 // closure of the union of overlapping register classes.
   1244 //
   1245 // UberRegSets[0] is a special non-allocatable set.
   1246 static void computeUberSets(std::vector<UberRegSet> &UberSets,
   1247                             std::vector<UberRegSet*> &RegSets,
   1248                             CodeGenRegBank &RegBank) {
   1249 
   1250   const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters();
   1251 
   1252   // The Register EnumValue is one greater than its index into Registers.
   1253   assert(Registers.size() == Registers[Registers.size()-1]->EnumValue &&
   1254          "register enum value mismatch");
   1255 
   1256   // For simplicitly make the SetID the same as EnumValue.
   1257   IntEqClasses UberSetIDs(Registers.size()+1);
   1258   std::set<unsigned> AllocatableRegs;
   1259   for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) {
   1260 
   1261     CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i];
   1262     if (!RegClass->Allocatable)
   1263       continue;
   1264 
   1265     const CodeGenRegister::Set &Regs = RegClass->getMembers();
   1266     if (Regs.empty())
   1267       continue;
   1268 
   1269     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
   1270     assert(USetID && "register number 0 is invalid");
   1271 
   1272     AllocatableRegs.insert((*Regs.begin())->EnumValue);
   1273     for (CodeGenRegister::Set::const_iterator I = llvm::next(Regs.begin()),
   1274            E = Regs.end(); I != E; ++I) {
   1275       AllocatableRegs.insert((*I)->EnumValue);
   1276       UberSetIDs.join(USetID, (*I)->EnumValue);
   1277     }
   1278   }
   1279   // Combine non-allocatable regs.
   1280   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
   1281     unsigned RegNum = Registers[i]->EnumValue;
   1282     if (AllocatableRegs.count(RegNum))
   1283       continue;
   1284 
   1285     UberSetIDs.join(0, RegNum);
   1286   }
   1287   UberSetIDs.compress();
   1288 
   1289   // Make the first UberSet a special unallocatable set.
   1290   unsigned ZeroID = UberSetIDs[0];
   1291 
   1292   // Insert Registers into the UberSets formed by union-find.
   1293   // Do not resize after this.
   1294   UberSets.resize(UberSetIDs.getNumClasses());
   1295   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
   1296     const CodeGenRegister *Reg = Registers[i];
   1297     unsigned USetID = UberSetIDs[Reg->EnumValue];
   1298     if (!USetID)
   1299       USetID = ZeroID;
   1300     else if (USetID == ZeroID)
   1301       USetID = 0;
   1302 
   1303     UberRegSet *USet = &UberSets[USetID];
   1304     USet->Regs.insert(Reg);
   1305     RegSets[i] = USet;
   1306   }
   1307 }
   1308 
   1309 // Recompute each UberSet weight after changing unit weights.
   1310 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
   1311                                CodeGenRegBank &RegBank) {
   1312   // Skip the first unallocatable set.
   1313   for (std::vector<UberRegSet>::iterator I = llvm::next(UberSets.begin()),
   1314          E = UberSets.end(); I != E; ++I) {
   1315 
   1316     // Initialize all unit weights in this set, and remember the max units/reg.
   1317     const CodeGenRegister *Reg = 0;
   1318     unsigned MaxWeight = 0, Weight = 0;
   1319     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
   1320       if (Reg != UnitI.getReg()) {
   1321         if (Weight > MaxWeight)
   1322           MaxWeight = Weight;
   1323         Reg = UnitI.getReg();
   1324         Weight = 0;
   1325       }
   1326       unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
   1327       if (!UWeight) {
   1328         UWeight = 1;
   1329         RegBank.increaseRegUnitWeight(*UnitI, UWeight);
   1330       }
   1331       Weight += UWeight;
   1332     }
   1333     if (Weight > MaxWeight)
   1334       MaxWeight = Weight;
   1335     if (I->Weight != MaxWeight) {
   1336       DEBUG(
   1337         dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight;
   1338         for (CodeGenRegister::Set::iterator
   1339                UnitI = I->Regs.begin(), UnitE = I->Regs.end();
   1340              UnitI != UnitE; ++UnitI) {
   1341           dbgs() << " " << (*UnitI)->getName();
   1342         }
   1343         dbgs() << "\n");
   1344       // Update the set weight.
   1345       I->Weight = MaxWeight;
   1346     }
   1347 
   1348     // Find singular determinants.
   1349     for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(),
   1350            RegE = I->Regs.end(); RegI != RegE; ++RegI) {
   1351       if ((*RegI)->getRegUnits().size() == 1
   1352           && (*RegI)->getWeight(RegBank) == I->Weight)
   1353         mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits());
   1354     }
   1355   }
   1356 }
   1357 
   1358 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
   1359 // a register and its subregisters so that they have the same weight as their
   1360 // UberSet. Self-recursion processes the subregister tree in postorder so
   1361 // subregisters are normalized first.
   1362 //
   1363 // Side effects:
   1364 // - creates new adopted register units
   1365 // - causes superregisters to inherit adopted units
   1366 // - increases the weight of "singular" units
   1367 // - induces recomputation of UberWeights.
   1368 static bool normalizeWeight(CodeGenRegister *Reg,
   1369                             std::vector<UberRegSet> &UberSets,
   1370                             std::vector<UberRegSet*> &RegSets,
   1371                             std::set<unsigned> &NormalRegs,
   1372                             CodeGenRegister::RegUnitList &NormalUnits,
   1373                             CodeGenRegBank &RegBank) {
   1374   bool Changed = false;
   1375   if (!NormalRegs.insert(Reg->EnumValue).second)
   1376     return Changed;
   1377 
   1378   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
   1379   for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
   1380          SRE = SRM.end(); SRI != SRE; ++SRI) {
   1381     if (SRI->second == Reg)
   1382       continue; // self-cycles happen
   1383 
   1384     Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
   1385                                NormalRegs, NormalUnits, RegBank);
   1386   }
   1387   // Postorder register normalization.
   1388 
   1389   // Inherit register units newly adopted by subregisters.
   1390   if (Reg->inheritRegUnits(RegBank))
   1391     computeUberWeights(UberSets, RegBank);
   1392 
   1393   // Check if this register is too skinny for its UberRegSet.
   1394   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
   1395 
   1396   unsigned RegWeight = Reg->getWeight(RegBank);
   1397   if (UberSet->Weight > RegWeight) {
   1398     // A register unit's weight can be adjusted only if it is the singular unit
   1399     // for this register, has not been used to normalize a subregister's set,
   1400     // and has not already been used to singularly determine this UberRegSet.
   1401     unsigned AdjustUnit = Reg->getRegUnits().front();
   1402     if (Reg->getRegUnits().size() != 1
   1403         || hasRegUnit(NormalUnits, AdjustUnit)
   1404         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
   1405       // We don't have an adjustable unit, so adopt a new one.
   1406       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
   1407       Reg->adoptRegUnit(AdjustUnit);
   1408       // Adopting a unit does not immediately require recomputing set weights.
   1409     }
   1410     else {
   1411       // Adjust the existing single unit.
   1412       RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
   1413       // The unit may be shared among sets and registers within this set.
   1414       computeUberWeights(UberSets, RegBank);
   1415     }
   1416     Changed = true;
   1417   }
   1418 
   1419   // Mark these units normalized so superregisters can't change their weights.
   1420   mergeRegUnits(NormalUnits, Reg->getRegUnits());
   1421 
   1422   return Changed;
   1423 }
   1424 
   1425 // Compute a weight for each register unit created during getSubRegs.
   1426 //
   1427 // The goal is that two registers in the same class will have the same weight,
   1428 // where each register's weight is defined as sum of its units' weights.
   1429 void CodeGenRegBank::computeRegUnitWeights() {
   1430   std::vector<UberRegSet> UberSets;
   1431   std::vector<UberRegSet*> RegSets(Registers.size());
   1432   computeUberSets(UberSets, RegSets, *this);
   1433   // UberSets and RegSets are now immutable.
   1434 
   1435   computeUberWeights(UberSets, *this);
   1436 
   1437   // Iterate over each Register, normalizing the unit weights until reaching
   1438   // a fix point.
   1439   unsigned NumIters = 0;
   1440   for (bool Changed = true; Changed; ++NumIters) {
   1441     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
   1442     Changed = false;
   1443     for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
   1444       CodeGenRegister::RegUnitList NormalUnits;
   1445       std::set<unsigned> NormalRegs;
   1446       Changed |= normalizeWeight(Registers[i], UberSets, RegSets,
   1447                                  NormalRegs, NormalUnits, *this);
   1448     }
   1449   }
   1450 }
   1451 
   1452 // Find a set in UniqueSets with the same elements as Set.
   1453 // Return an iterator into UniqueSets.
   1454 static std::vector<RegUnitSet>::const_iterator
   1455 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
   1456                const RegUnitSet &Set) {
   1457   std::vector<RegUnitSet>::const_iterator
   1458     I = UniqueSets.begin(), E = UniqueSets.end();
   1459   for(;I != E; ++I) {
   1460     if (I->Units == Set.Units)
   1461       break;
   1462   }
   1463   return I;
   1464 }
   1465 
   1466 // Return true if the RUSubSet is a subset of RUSuperSet.
   1467 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
   1468                             const std::vector<unsigned> &RUSuperSet) {
   1469   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
   1470                        RUSubSet.begin(), RUSubSet.end());
   1471 }
   1472 
   1473 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
   1474 /// but with one or two registers removed. We occasionally have registers like
   1475 /// APSR and PC thrown in with the general registers. We also see many
   1476 /// special-purpose register subsets, such as tail-call and Thumb
   1477 /// encodings. Generating all possible overlapping sets is combinatorial and
   1478 /// overkill for modeling pressure. Ideally we could fix this statically in
   1479 /// tablegen by (1) having the target define register classes that only include
   1480 /// the allocatable registers and marking other classes as non-allocatable and
   1481 /// (2) having a way to mark special purpose classes as "don't-care" classes for
   1482 /// the purpose of pressure.  However, we make an attempt to handle targets that
   1483 /// are not nicely defined by merging nearly identical register unit sets
   1484 /// statically. This generates smaller tables. Then, dynamically, we adjust the
   1485 /// set limit by filtering the reserved registers.
   1486 ///
   1487 /// Merge sets only if the units have the same weight. For example, on ARM,
   1488 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
   1489 /// should not expand the S set to include D regs.
   1490 void CodeGenRegBank::pruneUnitSets() {
   1491   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
   1492 
   1493   // Form an equivalence class of UnitSets with no significant difference.
   1494   std::vector<unsigned> SuperSetIDs;
   1495   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
   1496        SubIdx != EndIdx; ++SubIdx) {
   1497     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
   1498     unsigned SuperIdx = 0;
   1499     for (; SuperIdx != EndIdx; ++SuperIdx) {
   1500       if (SuperIdx == SubIdx)
   1501         continue;
   1502 
   1503       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
   1504       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
   1505       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
   1506           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
   1507           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
   1508           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
   1509         DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
   1510               << "\n");
   1511         break;
   1512       }
   1513     }
   1514     if (SuperIdx == EndIdx)
   1515       SuperSetIDs.push_back(SubIdx);
   1516   }
   1517   // Populate PrunedUnitSets with each equivalence class's superset.
   1518   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
   1519   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
   1520     unsigned SuperIdx = SuperSetIDs[i];
   1521     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
   1522     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
   1523   }
   1524   RegUnitSets.swap(PrunedUnitSets);
   1525 }
   1526 
   1527 // Create a RegUnitSet for each RegClass that contains all units in the class
   1528 // including adopted units that are necessary to model register pressure. Then
   1529 // iteratively compute RegUnitSets such that the union of any two overlapping
   1530 // RegUnitSets is repreresented.
   1531 //
   1532 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
   1533 // RegUnitSet that is a superset of that RegUnitClass.
   1534 void CodeGenRegBank::computeRegUnitSets() {
   1535   assert(RegUnitSets.empty() && "dirty RegUnitSets");
   1536 
   1537   // Compute a unique RegUnitSet for each RegClass.
   1538   const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses();
   1539   unsigned NumRegClasses = RegClasses.size();
   1540   for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
   1541     if (!RegClasses[RCIdx]->Allocatable)
   1542       continue;
   1543 
   1544     // Speculatively grow the RegUnitSets to hold the new set.
   1545     RegUnitSets.resize(RegUnitSets.size() + 1);
   1546     RegUnitSets.back().Name = RegClasses[RCIdx]->getName();
   1547 
   1548     // Compute a sorted list of units in this class.
   1549     RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units);
   1550 
   1551     // Find an existing RegUnitSet.
   1552     std::vector<RegUnitSet>::const_iterator SetI =
   1553       findRegUnitSet(RegUnitSets, RegUnitSets.back());
   1554     if (SetI != llvm::prior(RegUnitSets.end()))
   1555       RegUnitSets.pop_back();
   1556   }
   1557 
   1558   DEBUG(dbgs() << "\nBefore pruning:\n";
   1559         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1560              USIdx < USEnd; ++USIdx) {
   1561           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
   1562                  << ":";
   1563           ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units;
   1564           for (unsigned i = 0, e = Units.size(); i < e; ++i)
   1565             dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
   1566           dbgs() << "\n";
   1567         });
   1568 
   1569   // Iteratively prune unit sets.
   1570   pruneUnitSets();
   1571 
   1572   DEBUG(dbgs() << "\nBefore union:\n";
   1573         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1574              USIdx < USEnd; ++USIdx) {
   1575           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
   1576                  << ":";
   1577           ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units;
   1578           for (unsigned i = 0, e = Units.size(); i < e; ++i)
   1579             dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
   1580           dbgs() << "\n";
   1581         }
   1582         dbgs() << "\nUnion sets:\n");
   1583 
   1584   // Iterate over all unit sets, including new ones added by this loop.
   1585   unsigned NumRegUnitSubSets = RegUnitSets.size();
   1586   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
   1587     // In theory, this is combinatorial. In practice, it needs to be bounded
   1588     // by a small number of sets for regpressure to be efficient.
   1589     // If the assert is hit, we need to implement pruning.
   1590     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
   1591 
   1592     // Compare new sets with all original classes.
   1593     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
   1594          SearchIdx != EndIdx; ++SearchIdx) {
   1595       std::set<unsigned> Intersection;
   1596       std::set_intersection(RegUnitSets[Idx].Units.begin(),
   1597                             RegUnitSets[Idx].Units.end(),
   1598                             RegUnitSets[SearchIdx].Units.begin(),
   1599                             RegUnitSets[SearchIdx].Units.end(),
   1600                             std::inserter(Intersection, Intersection.begin()));
   1601       if (Intersection.empty())
   1602         continue;
   1603 
   1604       // Speculatively grow the RegUnitSets to hold the new set.
   1605       RegUnitSets.resize(RegUnitSets.size() + 1);
   1606       RegUnitSets.back().Name =
   1607         RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
   1608 
   1609       std::set_union(RegUnitSets[Idx].Units.begin(),
   1610                      RegUnitSets[Idx].Units.end(),
   1611                      RegUnitSets[SearchIdx].Units.begin(),
   1612                      RegUnitSets[SearchIdx].Units.end(),
   1613                      std::inserter(RegUnitSets.back().Units,
   1614                                    RegUnitSets.back().Units.begin()));
   1615 
   1616       // Find an existing RegUnitSet, or add the union to the unique sets.
   1617       std::vector<RegUnitSet>::const_iterator SetI =
   1618         findRegUnitSet(RegUnitSets, RegUnitSets.back());
   1619       if (SetI != llvm::prior(RegUnitSets.end()))
   1620         RegUnitSets.pop_back();
   1621       else {
   1622         DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1
   1623               << " " << RegUnitSets.back().Name << ":";
   1624               ArrayRef<unsigned> Units = RegUnitSets.back().Units;
   1625               for (unsigned i = 0, e = Units.size(); i < e; ++i)
   1626                 dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
   1627               dbgs() << "\n";);
   1628       }
   1629     }
   1630   }
   1631 
   1632   // Iteratively prune unit sets after inferring supersets.
   1633   pruneUnitSets();
   1634 
   1635   DEBUG(dbgs() << "\n";
   1636         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1637              USIdx < USEnd; ++USIdx) {
   1638           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
   1639                  << ":";
   1640           ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units;
   1641           for (unsigned i = 0, e = Units.size(); i < e; ++i)
   1642             dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
   1643           dbgs() << "\n";
   1644         });
   1645 
   1646   // For each register class, list the UnitSets that are supersets.
   1647   RegClassUnitSets.resize(NumRegClasses);
   1648   for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
   1649     if (!RegClasses[RCIdx]->Allocatable)
   1650       continue;
   1651 
   1652     // Recompute the sorted list of units in this class.
   1653     std::vector<unsigned> RCRegUnits;
   1654     RegClasses[RCIdx]->buildRegUnitSet(RCRegUnits);
   1655 
   1656     // Don't increase pressure for unallocatable regclasses.
   1657     if (RCRegUnits.empty())
   1658       continue;
   1659 
   1660     DEBUG(dbgs() << "RC " << RegClasses[RCIdx]->getName() << " Units: \n";
   1661           for (unsigned i = 0, e = RCRegUnits.size(); i < e; ++i)
   1662             dbgs() << RegUnits[RCRegUnits[i]].getRoots()[0]->getName() << " ";
   1663           dbgs() << "\n  UnitSetIDs:");
   1664 
   1665     // Find all supersets.
   1666     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1667          USIdx != USEnd; ++USIdx) {
   1668       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
   1669         DEBUG(dbgs() << " " << USIdx);
   1670         RegClassUnitSets[RCIdx].push_back(USIdx);
   1671       }
   1672     }
   1673     DEBUG(dbgs() << "\n");
   1674     assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
   1675   }
   1676 
   1677   // For each register unit, ensure that we have the list of UnitSets that
   1678   // contain the unit. Normally, this matches an existing list of UnitSets for a
   1679   // register class. If not, we create a new entry in RegClassUnitSets as a
   1680   // "fake" register class.
   1681   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
   1682        UnitIdx < UnitEnd; ++UnitIdx) {
   1683     std::vector<unsigned> RUSets;
   1684     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
   1685       RegUnitSet &RUSet = RegUnitSets[i];
   1686       if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx)
   1687           == RUSet.Units.end())
   1688         continue;
   1689       RUSets.push_back(i);
   1690     }
   1691     unsigned RCUnitSetsIdx = 0;
   1692     for (unsigned e = RegClassUnitSets.size();
   1693          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
   1694       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
   1695         break;
   1696       }
   1697     }
   1698     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
   1699     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
   1700       // Create a new list of UnitSets as a "fake" register class.
   1701       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
   1702       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
   1703     }
   1704   }
   1705 }
   1706 
   1707 struct LessUnits {
   1708   const CodeGenRegBank &RegBank;
   1709   LessUnits(const CodeGenRegBank &RB): RegBank(RB) {}
   1710 
   1711   bool operator()(unsigned ID1, unsigned ID2) {
   1712     return RegBank.getRegPressureSet(ID1).Units.size()
   1713       < RegBank.getRegPressureSet(ID2).Units.size();
   1714   }
   1715 };
   1716 
   1717 void CodeGenRegBank::computeDerivedInfo() {
   1718   computeComposites();
   1719   computeSubRegIndexLaneMasks();
   1720 
   1721   // Compute a weight for each register unit created during getSubRegs.
   1722   // This may create adopted register units (with unit # >= NumNativeRegUnits).
   1723   computeRegUnitWeights();
   1724 
   1725   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
   1726   // supersets for the union of overlapping sets.
   1727   computeRegUnitSets();
   1728 
   1729   // Get the weight of each set.
   1730   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
   1731     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
   1732 
   1733   // Find the order of each set.
   1734   RegUnitSetOrder.reserve(RegUnitSets.size());
   1735   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
   1736     RegUnitSetOrder.push_back(Idx);
   1737 
   1738   std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
   1739                    LessUnits(*this));
   1740   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
   1741     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
   1742   }
   1743 }
   1744 
   1745 //
   1746 // Synthesize missing register class intersections.
   1747 //
   1748 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
   1749 // returns a maximal register class for all X.
   1750 //
   1751 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
   1752   for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) {
   1753     CodeGenRegisterClass *RC1 = RC;
   1754     CodeGenRegisterClass *RC2 = RegClasses[rci];
   1755     if (RC1 == RC2)
   1756       continue;
   1757 
   1758     // Compute the set intersection of RC1 and RC2.
   1759     const CodeGenRegister::Set &Memb1 = RC1->getMembers();
   1760     const CodeGenRegister::Set &Memb2 = RC2->getMembers();
   1761     CodeGenRegister::Set Intersection;
   1762     std::set_intersection(Memb1.begin(), Memb1.end(),
   1763                           Memb2.begin(), Memb2.end(),
   1764                           std::inserter(Intersection, Intersection.begin()),
   1765                           CodeGenRegister::Less());
   1766 
   1767     // Skip disjoint class pairs.
   1768     if (Intersection.empty())
   1769       continue;
   1770 
   1771     // If RC1 and RC2 have different spill sizes or alignments, use the
   1772     // larger size for sub-classing.  If they are equal, prefer RC1.
   1773     if (RC2->SpillSize > RC1->SpillSize ||
   1774         (RC2->SpillSize == RC1->SpillSize &&
   1775          RC2->SpillAlignment > RC1->SpillAlignment))
   1776       std::swap(RC1, RC2);
   1777 
   1778     getOrCreateSubClass(RC1, &Intersection,
   1779                         RC1->getName() + "_and_" + RC2->getName());
   1780   }
   1781 }
   1782 
   1783 //
   1784 // Synthesize missing sub-classes for getSubClassWithSubReg().
   1785 //
   1786 // Make sure that the set of registers in RC with a given SubIdx sub-register
   1787 // form a register class.  Update RC->SubClassWithSubReg.
   1788 //
   1789 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
   1790   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
   1791   typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set,
   1792                    CodeGenSubRegIndex::Less> SubReg2SetMap;
   1793 
   1794   // Compute the set of registers supporting each SubRegIndex.
   1795   SubReg2SetMap SRSets;
   1796   for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
   1797        RE = RC->getMembers().end(); RI != RE; ++RI) {
   1798     const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
   1799     for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
   1800          E = SRM.end(); I != E; ++I)
   1801       SRSets[I->first].insert(*RI);
   1802   }
   1803 
   1804   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
   1805   // numerical order to visit synthetic indices last.
   1806   for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
   1807     CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
   1808     SubReg2SetMap::const_iterator I = SRSets.find(SubIdx);
   1809     // Unsupported SubRegIndex. Skip it.
   1810     if (I == SRSets.end())
   1811       continue;
   1812     // In most cases, all RC registers support the SubRegIndex.
   1813     if (I->second.size() == RC->getMembers().size()) {
   1814       RC->setSubClassWithSubReg(SubIdx, RC);
   1815       continue;
   1816     }
   1817     // This is a real subset.  See if we have a matching class.
   1818     CodeGenRegisterClass *SubRC =
   1819       getOrCreateSubClass(RC, &I->second,
   1820                           RC->getName() + "_with_" + I->first->getName());
   1821     RC->setSubClassWithSubReg(SubIdx, SubRC);
   1822   }
   1823 }
   1824 
   1825 //
   1826 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
   1827 //
   1828 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
   1829 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
   1830 //
   1831 
   1832 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
   1833                                                 unsigned FirstSubRegRC) {
   1834   SmallVector<std::pair<const CodeGenRegister*,
   1835                         const CodeGenRegister*>, 16> SSPairs;
   1836   BitVector TopoSigs(getNumTopoSigs());
   1837 
   1838   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
   1839   for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
   1840     CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
   1841     // Skip indexes that aren't fully supported by RC's registers. This was
   1842     // computed by inferSubClassWithSubReg() above which should have been
   1843     // called first.
   1844     if (RC->getSubClassWithSubReg(SubIdx) != RC)
   1845       continue;
   1846 
   1847     // Build list of (Super, Sub) pairs for this SubIdx.
   1848     SSPairs.clear();
   1849     TopoSigs.reset();
   1850     for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
   1851          RE = RC->getMembers().end(); RI != RE; ++RI) {
   1852       const CodeGenRegister *Super = *RI;
   1853       const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second;
   1854       assert(Sub && "Missing sub-register");
   1855       SSPairs.push_back(std::make_pair(Super, Sub));
   1856       TopoSigs.set(Sub->getTopoSig());
   1857     }
   1858 
   1859     // Iterate over sub-register class candidates.  Ignore classes created by
   1860     // this loop. They will never be useful.
   1861     for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce;
   1862          ++rci) {
   1863       CodeGenRegisterClass *SubRC = RegClasses[rci];
   1864       // Topological shortcut: SubRC members have the wrong shape.
   1865       if (!TopoSigs.anyCommon(SubRC->getTopoSigs()))
   1866         continue;
   1867       // Compute the subset of RC that maps into SubRC.
   1868       CodeGenRegister::Set SubSet;
   1869       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
   1870         if (SubRC->contains(SSPairs[i].second))
   1871           SubSet.insert(SSPairs[i].first);
   1872       if (SubSet.empty())
   1873         continue;
   1874       // RC injects completely into SubRC.
   1875       if (SubSet.size() == SSPairs.size()) {
   1876         SubRC->addSuperRegClass(SubIdx, RC);
   1877         continue;
   1878       }
   1879       // Only a subset of RC maps into SubRC. Make sure it is represented by a
   1880       // class.
   1881       getOrCreateSubClass(RC, &SubSet, RC->getName() +
   1882                           "_with_" + SubIdx->getName() +
   1883                           "_in_" + SubRC->getName());
   1884     }
   1885   }
   1886 }
   1887 
   1888 
   1889 //
   1890 // Infer missing register classes.
   1891 //
   1892 void CodeGenRegBank::computeInferredRegisterClasses() {
   1893   // When this function is called, the register classes have not been sorted
   1894   // and assigned EnumValues yet.  That means getSubClasses(),
   1895   // getSuperClasses(), and hasSubClass() functions are defunct.
   1896   unsigned FirstNewRC = RegClasses.size();
   1897 
   1898   // Visit all register classes, including the ones being added by the loop.
   1899   for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
   1900     CodeGenRegisterClass *RC = RegClasses[rci];
   1901 
   1902     // Synthesize answers for getSubClassWithSubReg().
   1903     inferSubClassWithSubReg(RC);
   1904 
   1905     // Synthesize answers for getCommonSubClass().
   1906     inferCommonSubClass(RC);
   1907 
   1908     // Synthesize answers for getMatchingSuperRegClass().
   1909     inferMatchingSuperRegClass(RC);
   1910 
   1911     // New register classes are created while this loop is running, and we need
   1912     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
   1913     // to match old super-register classes with sub-register classes created
   1914     // after inferMatchingSuperRegClass was called.  At this point,
   1915     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
   1916     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
   1917     if (rci + 1 == FirstNewRC) {
   1918       unsigned NextNewRC = RegClasses.size();
   1919       for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2)
   1920         inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC);
   1921       FirstNewRC = NextNewRC;
   1922     }
   1923   }
   1924 }
   1925 
   1926 /// getRegisterClassForRegister - Find the register class that contains the
   1927 /// specified physical register.  If the register is not in a register class,
   1928 /// return null. If the register is in multiple classes, and the classes have a
   1929 /// superset-subset relationship and the same set of types, return the
   1930 /// superclass.  Otherwise return null.
   1931 const CodeGenRegisterClass*
   1932 CodeGenRegBank::getRegClassForRegister(Record *R) {
   1933   const CodeGenRegister *Reg = getReg(R);
   1934   ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses();
   1935   const CodeGenRegisterClass *FoundRC = 0;
   1936   for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
   1937     const CodeGenRegisterClass &RC = *RCs[i];
   1938     if (!RC.contains(Reg))
   1939       continue;
   1940 
   1941     // If this is the first class that contains the register,
   1942     // make a note of it and go on to the next class.
   1943     if (!FoundRC) {
   1944       FoundRC = &RC;
   1945       continue;
   1946     }
   1947 
   1948     // If a register's classes have different types, return null.
   1949     if (RC.getValueTypes() != FoundRC->getValueTypes())
   1950       return 0;
   1951 
   1952     // Check to see if the previously found class that contains
   1953     // the register is a subclass of the current class. If so,
   1954     // prefer the superclass.
   1955     if (RC.hasSubClass(FoundRC)) {
   1956       FoundRC = &RC;
   1957       continue;
   1958     }
   1959 
   1960     // Check to see if the previously found class that contains
   1961     // the register is a superclass of the current class. If so,
   1962     // prefer the superclass.
   1963     if (FoundRC->hasSubClass(&RC))
   1964       continue;
   1965 
   1966     // Multiple classes, and neither is a superclass of the other.
   1967     // Return null.
   1968     return 0;
   1969   }
   1970   return FoundRC;
   1971 }
   1972 
   1973 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
   1974   SetVector<const CodeGenRegister*> Set;
   1975 
   1976   // First add Regs with all sub-registers.
   1977   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
   1978     CodeGenRegister *Reg = getReg(Regs[i]);
   1979     if (Set.insert(Reg))
   1980       // Reg is new, add all sub-registers.
   1981       // The pre-ordering is not important here.
   1982       Reg->addSubRegsPreOrder(Set, *this);
   1983   }
   1984 
   1985   // Second, find all super-registers that are completely covered by the set.
   1986   for (unsigned i = 0; i != Set.size(); ++i) {
   1987     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
   1988     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
   1989       const CodeGenRegister *Super = SR[j];
   1990       if (!Super->CoveredBySubRegs || Set.count(Super))
   1991         continue;
   1992       // This new super-register is covered by its sub-registers.
   1993       bool AllSubsInSet = true;
   1994       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
   1995       for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
   1996              E = SRM.end(); I != E; ++I)
   1997         if (!Set.count(I->second)) {
   1998           AllSubsInSet = false;
   1999           break;
   2000         }
   2001       // All sub-registers in Set, add Super as well.
   2002       // We will visit Super later to recheck its super-registers.
   2003       if (AllSubsInSet)
   2004         Set.insert(Super);
   2005     }
   2006   }
   2007 
   2008   // Convert to BitVector.
   2009   BitVector BV(Registers.size() + 1);
   2010   for (unsigned i = 0, e = Set.size(); i != e; ++i)
   2011     BV.set(Set[i]->EnumValue);
   2012   return BV;
   2013 }
   2014