Home | History | Annotate | Download | only in util
      1 /**************************************************************************
      2  *
      3  * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
      4  * All Rights Reserved.
      5  * Copyright 2008  VMware, Inc.  All rights reserved.
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a
      8  * copy of this software and associated documentation files (the
      9  * "Software"), to deal in the Software without restriction, including
     10  * without limitation the rights to use, copy, modify, merge, publish,
     11  * distribute, sub license, and/or sell copies of the Software, and to
     12  * permit persons to whom the Software is furnished to do so, subject to
     13  * the following conditions:
     14  *
     15  * The above copyright notice and this permission notice (including the
     16  * next paragraph) shall be included in all copies or substantial portions
     17  * of the Software.
     18  *
     19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
     22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
     23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     26  *
     27  **************************************************************************/
     28 
     29 /**
     30  * @file
     31  * Mipmap generation utility
     32  *
     33  * @author Brian Paul
     34  */
     35 
     36 
     37 #include "pipe/p_context.h"
     38 #include "util/u_debug.h"
     39 #include "pipe/p_defines.h"
     40 #include "util/u_inlines.h"
     41 #include "pipe/p_shader_tokens.h"
     42 #include "pipe/p_state.h"
     43 
     44 #include "util/u_format.h"
     45 #include "util/u_memory.h"
     46 #include "util/u_draw_quad.h"
     47 #include "util/u_gen_mipmap.h"
     48 #include "util/u_simple_shaders.h"
     49 #include "util/u_math.h"
     50 #include "util/u_texture.h"
     51 #include "util/u_half.h"
     52 #include "util/u_surface.h"
     53 
     54 #include "cso_cache/cso_context.h"
     55 
     56 
     57 struct gen_mipmap_state
     58 {
     59    struct pipe_context *pipe;
     60    struct cso_context *cso;
     61 
     62    struct pipe_blend_state blend_keep_color, blend_write_color;
     63    struct pipe_depth_stencil_alpha_state dsa_keep_depth, dsa_write_depth;
     64    struct pipe_rasterizer_state rasterizer;
     65    struct pipe_sampler_state sampler;
     66    struct pipe_vertex_element velem[2];
     67 
     68    void *vs;
     69 
     70    /** Not all are used, but simplifies code */
     71    void *fs_color[TGSI_TEXTURE_COUNT];
     72    void *fs_depth[TGSI_TEXTURE_COUNT];
     73 
     74    struct pipe_resource *vbuf;  /**< quad vertices */
     75    unsigned vbuf_slot;
     76 
     77    float vertices[4][2][4];   /**< vertex/texcoords for quad */
     78 };
     79 
     80 
     81 
     82 enum dtype
     83 {
     84    DTYPE_UBYTE,
     85    DTYPE_UBYTE_3_3_2,
     86    DTYPE_USHORT,
     87    DTYPE_USHORT_4_4_4_4,
     88    DTYPE_USHORT_5_6_5,
     89    DTYPE_USHORT_1_5_5_5_REV,
     90    DTYPE_UINT,
     91    DTYPE_FLOAT,
     92    DTYPE_HALF_FLOAT
     93 };
     94 
     95 
     96 typedef uint16_t half_float;
     97 
     98 
     99 /**
    100  * \name Support macros for do_row and do_row_3d
    101  *
    102  * The macro madness is here for two reasons.  First, it compacts the code
    103  * slightly.  Second, it makes it much easier to adjust the specifics of the
    104  * filter to tune the rounding characteristics.
    105  */
    106 /*@{*/
    107 #define DECLARE_ROW_POINTERS(t, e) \
    108       const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
    109       const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
    110       const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
    111       const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
    112       t(*dst)[e] = (t(*)[e]) dstRow
    113 
    114 #define DECLARE_ROW_POINTERS0(t) \
    115       const t *rowA = (const t *) srcRowA; \
    116       const t *rowB = (const t *) srcRowB; \
    117       const t *rowC = (const t *) srcRowC; \
    118       const t *rowD = (const t *) srcRowD; \
    119       t *dst = (t *) dstRow
    120 
    121 #define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
    122    ((unsigned) Aj + (unsigned) Ak \
    123     + (unsigned) Bj + (unsigned) Bk \
    124     + (unsigned) Cj + (unsigned) Ck \
    125     + (unsigned) Dj + (unsigned) Dk \
    126     + 4) >> 3
    127 
    128 #define FILTER_3D(e) \
    129    do { \
    130       dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
    131                                 rowB[j][e], rowB[k][e], \
    132                                 rowC[j][e], rowC[k][e], \
    133                                 rowD[j][e], rowD[k][e]); \
    134    } while(0)
    135 
    136 #define FILTER_F_3D(e) \
    137    do { \
    138       dst[i][e] = (rowA[j][e] + rowA[k][e] \
    139                    + rowB[j][e] + rowB[k][e] \
    140                    + rowC[j][e] + rowC[k][e] \
    141                    + rowD[j][e] + rowD[k][e]) * 0.125F; \
    142    } while(0)
    143 
    144 #define FILTER_HF_3D(e) \
    145    do { \
    146       const float aj = util_half_to_float(rowA[j][e]); \
    147       const float ak = util_half_to_float(rowA[k][e]); \
    148       const float bj = util_half_to_float(rowB[j][e]); \
    149       const float bk = util_half_to_float(rowB[k][e]); \
    150       const float cj = util_half_to_float(rowC[j][e]); \
    151       const float ck = util_half_to_float(rowC[k][e]); \
    152       const float dj = util_half_to_float(rowD[j][e]); \
    153       const float dk = util_half_to_float(rowD[k][e]); \
    154       dst[i][e] = util_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
    155                                       * 0.125F); \
    156    } while(0)
    157 /*@}*/
    158 
    159 
    160 /**
    161  * Average together two rows of a source image to produce a single new
    162  * row in the dest image.  It's legal for the two source rows to point
    163  * to the same data.  The source width must be equal to either the
    164  * dest width or two times the dest width.
    165  * \param datatype  GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
    166  * \param comps  number of components per pixel (1..4)
    167  */
    168 static void
    169 do_row(enum dtype datatype, uint comps, int srcWidth,
    170        const void *srcRowA, const void *srcRowB,
    171        int dstWidth, void *dstRow)
    172 {
    173    const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
    174    const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
    175 
    176    assert(comps >= 1);
    177    assert(comps <= 4);
    178 
    179    /* This assertion is no longer valid with non-power-of-2 textures
    180    assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
    181    */
    182 
    183    if (datatype == DTYPE_UBYTE && comps == 4) {
    184       uint i, j, k;
    185       const ubyte(*rowA)[4] = (const ubyte(*)[4]) srcRowA;
    186       const ubyte(*rowB)[4] = (const ubyte(*)[4]) srcRowB;
    187       ubyte(*dst)[4] = (ubyte(*)[4]) dstRow;
    188       for (i = j = 0, k = k0; i < (uint) dstWidth;
    189            i++, j += colStride, k += colStride) {
    190          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
    191          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
    192          dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
    193          dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
    194       }
    195    }
    196    else if (datatype == DTYPE_UBYTE && comps == 3) {
    197       uint i, j, k;
    198       const ubyte(*rowA)[3] = (const ubyte(*)[3]) srcRowA;
    199       const ubyte(*rowB)[3] = (const ubyte(*)[3]) srcRowB;
    200       ubyte(*dst)[3] = (ubyte(*)[3]) dstRow;
    201       for (i = j = 0, k = k0; i < (uint) dstWidth;
    202            i++, j += colStride, k += colStride) {
    203          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
    204          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
    205          dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
    206       }
    207    }
    208    else if (datatype == DTYPE_UBYTE && comps == 2) {
    209       uint i, j, k;
    210       const ubyte(*rowA)[2] = (const ubyte(*)[2]) srcRowA;
    211       const ubyte(*rowB)[2] = (const ubyte(*)[2]) srcRowB;
    212       ubyte(*dst)[2] = (ubyte(*)[2]) dstRow;
    213       for (i = j = 0, k = k0; i < (uint) dstWidth;
    214            i++, j += colStride, k += colStride) {
    215          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
    216          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
    217       }
    218    }
    219    else if (datatype == DTYPE_UBYTE && comps == 1) {
    220       uint i, j, k;
    221       const ubyte *rowA = (const ubyte *) srcRowA;
    222       const ubyte *rowB = (const ubyte *) srcRowB;
    223       ubyte *dst = (ubyte *) dstRow;
    224       for (i = j = 0, k = k0; i < (uint) dstWidth;
    225            i++, j += colStride, k += colStride) {
    226          dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
    227       }
    228    }
    229 
    230    else if (datatype == DTYPE_USHORT && comps == 4) {
    231       uint i, j, k;
    232       const ushort(*rowA)[4] = (const ushort(*)[4]) srcRowA;
    233       const ushort(*rowB)[4] = (const ushort(*)[4]) srcRowB;
    234       ushort(*dst)[4] = (ushort(*)[4]) dstRow;
    235       for (i = j = 0, k = k0; i < (uint) dstWidth;
    236            i++, j += colStride, k += colStride) {
    237          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
    238          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
    239          dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
    240          dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
    241       }
    242    }
    243    else if (datatype == DTYPE_USHORT && comps == 3) {
    244       uint i, j, k;
    245       const ushort(*rowA)[3] = (const ushort(*)[3]) srcRowA;
    246       const ushort(*rowB)[3] = (const ushort(*)[3]) srcRowB;
    247       ushort(*dst)[3] = (ushort(*)[3]) dstRow;
    248       for (i = j = 0, k = k0; i < (uint) dstWidth;
    249            i++, j += colStride, k += colStride) {
    250          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
    251          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
    252          dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
    253       }
    254    }
    255    else if (datatype == DTYPE_USHORT && comps == 2) {
    256       uint i, j, k;
    257       const ushort(*rowA)[2] = (const ushort(*)[2]) srcRowA;
    258       const ushort(*rowB)[2] = (const ushort(*)[2]) srcRowB;
    259       ushort(*dst)[2] = (ushort(*)[2]) dstRow;
    260       for (i = j = 0, k = k0; i < (uint) dstWidth;
    261            i++, j += colStride, k += colStride) {
    262          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
    263          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
    264       }
    265    }
    266    else if (datatype == DTYPE_USHORT && comps == 1) {
    267       uint i, j, k;
    268       const ushort *rowA = (const ushort *) srcRowA;
    269       const ushort *rowB = (const ushort *) srcRowB;
    270       ushort *dst = (ushort *) dstRow;
    271       for (i = j = 0, k = k0; i < (uint) dstWidth;
    272            i++, j += colStride, k += colStride) {
    273          dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
    274       }
    275    }
    276 
    277    else if (datatype == DTYPE_FLOAT && comps == 4) {
    278       uint i, j, k;
    279       const float(*rowA)[4] = (const float(*)[4]) srcRowA;
    280       const float(*rowB)[4] = (const float(*)[4]) srcRowB;
    281       float(*dst)[4] = (float(*)[4]) dstRow;
    282       for (i = j = 0, k = k0; i < (uint) dstWidth;
    283            i++, j += colStride, k += colStride) {
    284          dst[i][0] = (rowA[j][0] + rowA[k][0] +
    285                       rowB[j][0] + rowB[k][0]) * 0.25F;
    286          dst[i][1] = (rowA[j][1] + rowA[k][1] +
    287                       rowB[j][1] + rowB[k][1]) * 0.25F;
    288          dst[i][2] = (rowA[j][2] + rowA[k][2] +
    289                       rowB[j][2] + rowB[k][2]) * 0.25F;
    290          dst[i][3] = (rowA[j][3] + rowA[k][3] +
    291                       rowB[j][3] + rowB[k][3]) * 0.25F;
    292       }
    293    }
    294    else if (datatype == DTYPE_FLOAT && comps == 3) {
    295       uint i, j, k;
    296       const float(*rowA)[3] = (const float(*)[3]) srcRowA;
    297       const float(*rowB)[3] = (const float(*)[3]) srcRowB;
    298       float(*dst)[3] = (float(*)[3]) dstRow;
    299       for (i = j = 0, k = k0; i < (uint) dstWidth;
    300            i++, j += colStride, k += colStride) {
    301          dst[i][0] = (rowA[j][0] + rowA[k][0] +
    302                       rowB[j][0] + rowB[k][0]) * 0.25F;
    303          dst[i][1] = (rowA[j][1] + rowA[k][1] +
    304                       rowB[j][1] + rowB[k][1]) * 0.25F;
    305          dst[i][2] = (rowA[j][2] + rowA[k][2] +
    306                       rowB[j][2] + rowB[k][2]) * 0.25F;
    307       }
    308    }
    309    else if (datatype == DTYPE_FLOAT && comps == 2) {
    310       uint i, j, k;
    311       const float(*rowA)[2] = (const float(*)[2]) srcRowA;
    312       const float(*rowB)[2] = (const float(*)[2]) srcRowB;
    313       float(*dst)[2] = (float(*)[2]) dstRow;
    314       for (i = j = 0, k = k0; i < (uint) dstWidth;
    315            i++, j += colStride, k += colStride) {
    316          dst[i][0] = (rowA[j][0] + rowA[k][0] +
    317                       rowB[j][0] + rowB[k][0]) * 0.25F;
    318          dst[i][1] = (rowA[j][1] + rowA[k][1] +
    319                       rowB[j][1] + rowB[k][1]) * 0.25F;
    320       }
    321    }
    322    else if (datatype == DTYPE_FLOAT && comps == 1) {
    323       uint i, j, k;
    324       const float *rowA = (const float *) srcRowA;
    325       const float *rowB = (const float *) srcRowB;
    326       float *dst = (float *) dstRow;
    327       for (i = j = 0, k = k0; i < (uint) dstWidth;
    328            i++, j += colStride, k += colStride) {
    329          dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
    330       }
    331    }
    332 
    333    else if (datatype == DTYPE_HALF_FLOAT && comps == 4) {
    334       uint i, j, k, comp;
    335       const half_float(*rowA)[4] = (const half_float(*)[4]) srcRowA;
    336       const half_float(*rowB)[4] = (const half_float(*)[4]) srcRowB;
    337       half_float(*dst)[4] = (half_float(*)[4]) dstRow;
    338       for (i = j = 0, k = k0; i < (uint) dstWidth;
    339            i++, j += colStride, k += colStride) {
    340          for (comp = 0; comp < 4; comp++) {
    341             float aj, ak, bj, bk;
    342             aj = util_half_to_float(rowA[j][comp]);
    343             ak = util_half_to_float(rowA[k][comp]);
    344             bj = util_half_to_float(rowB[j][comp]);
    345             bk = util_half_to_float(rowB[k][comp]);
    346             dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
    347          }
    348       }
    349    }
    350    else if (datatype == DTYPE_HALF_FLOAT && comps == 3) {
    351       uint i, j, k, comp;
    352       const half_float(*rowA)[3] = (const half_float(*)[3]) srcRowA;
    353       const half_float(*rowB)[3] = (const half_float(*)[3]) srcRowB;
    354       half_float(*dst)[3] = (half_float(*)[3]) dstRow;
    355       for (i = j = 0, k = k0; i < (uint) dstWidth;
    356            i++, j += colStride, k += colStride) {
    357          for (comp = 0; comp < 3; comp++) {
    358             float aj, ak, bj, bk;
    359             aj = util_half_to_float(rowA[j][comp]);
    360             ak = util_half_to_float(rowA[k][comp]);
    361             bj = util_half_to_float(rowB[j][comp]);
    362             bk = util_half_to_float(rowB[k][comp]);
    363             dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
    364          }
    365       }
    366    }
    367    else if (datatype == DTYPE_HALF_FLOAT && comps == 2) {
    368       uint i, j, k, comp;
    369       const half_float(*rowA)[2] = (const half_float(*)[2]) srcRowA;
    370       const half_float(*rowB)[2] = (const half_float(*)[2]) srcRowB;
    371       half_float(*dst)[2] = (half_float(*)[2]) dstRow;
    372       for (i = j = 0, k = k0; i < (uint) dstWidth;
    373            i++, j += colStride, k += colStride) {
    374          for (comp = 0; comp < 2; comp++) {
    375             float aj, ak, bj, bk;
    376             aj = util_half_to_float(rowA[j][comp]);
    377             ak = util_half_to_float(rowA[k][comp]);
    378             bj = util_half_to_float(rowB[j][comp]);
    379             bk = util_half_to_float(rowB[k][comp]);
    380             dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
    381          }
    382       }
    383    }
    384    else if (datatype == DTYPE_HALF_FLOAT && comps == 1) {
    385       uint i, j, k;
    386       const half_float *rowA = (const half_float *) srcRowA;
    387       const half_float *rowB = (const half_float *) srcRowB;
    388       half_float *dst = (half_float *) dstRow;
    389       for (i = j = 0, k = k0; i < (uint) dstWidth;
    390            i++, j += colStride, k += colStride) {
    391          float aj, ak, bj, bk;
    392          aj = util_half_to_float(rowA[j]);
    393          ak = util_half_to_float(rowA[k]);
    394          bj = util_half_to_float(rowB[j]);
    395          bk = util_half_to_float(rowB[k]);
    396          dst[i] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
    397       }
    398    }
    399 
    400    else if (datatype == DTYPE_UINT && comps == 1) {
    401       uint i, j, k;
    402       const uint *rowA = (const uint *) srcRowA;
    403       const uint *rowB = (const uint *) srcRowB;
    404       uint *dst = (uint *) dstRow;
    405       for (i = j = 0, k = k0; i < (uint) dstWidth;
    406            i++, j += colStride, k += colStride) {
    407          dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
    408       }
    409    }
    410 
    411    else if (datatype == DTYPE_USHORT_5_6_5 && comps == 3) {
    412       uint i, j, k;
    413       const ushort *rowA = (const ushort *) srcRowA;
    414       const ushort *rowB = (const ushort *) srcRowB;
    415       ushort *dst = (ushort *) dstRow;
    416       for (i = j = 0, k = k0; i < (uint) dstWidth;
    417            i++, j += colStride, k += colStride) {
    418          const int rowAr0 = rowA[j] & 0x1f;
    419          const int rowAr1 = rowA[k] & 0x1f;
    420          const int rowBr0 = rowB[j] & 0x1f;
    421          const int rowBr1 = rowB[k] & 0x1f;
    422          const int rowAg0 = (rowA[j] >> 5) & 0x3f;
    423          const int rowAg1 = (rowA[k] >> 5) & 0x3f;
    424          const int rowBg0 = (rowB[j] >> 5) & 0x3f;
    425          const int rowBg1 = (rowB[k] >> 5) & 0x3f;
    426          const int rowAb0 = (rowA[j] >> 11) & 0x1f;
    427          const int rowAb1 = (rowA[k] >> 11) & 0x1f;
    428          const int rowBb0 = (rowB[j] >> 11) & 0x1f;
    429          const int rowBb1 = (rowB[k] >> 11) & 0x1f;
    430          const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
    431          const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
    432          const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
    433          dst[i] = (blue << 11) | (green << 5) | red;
    434       }
    435    }
    436    else if (datatype == DTYPE_USHORT_4_4_4_4 && comps == 4) {
    437       uint i, j, k;
    438       const ushort *rowA = (const ushort *) srcRowA;
    439       const ushort *rowB = (const ushort *) srcRowB;
    440       ushort *dst = (ushort *) dstRow;
    441       for (i = j = 0, k = k0; i < (uint) dstWidth;
    442            i++, j += colStride, k += colStride) {
    443          const int rowAr0 = rowA[j] & 0xf;
    444          const int rowAr1 = rowA[k] & 0xf;
    445          const int rowBr0 = rowB[j] & 0xf;
    446          const int rowBr1 = rowB[k] & 0xf;
    447          const int rowAg0 = (rowA[j] >> 4) & 0xf;
    448          const int rowAg1 = (rowA[k] >> 4) & 0xf;
    449          const int rowBg0 = (rowB[j] >> 4) & 0xf;
    450          const int rowBg1 = (rowB[k] >> 4) & 0xf;
    451          const int rowAb0 = (rowA[j] >> 8) & 0xf;
    452          const int rowAb1 = (rowA[k] >> 8) & 0xf;
    453          const int rowBb0 = (rowB[j] >> 8) & 0xf;
    454          const int rowBb1 = (rowB[k] >> 8) & 0xf;
    455          const int rowAa0 = (rowA[j] >> 12) & 0xf;
    456          const int rowAa1 = (rowA[k] >> 12) & 0xf;
    457          const int rowBa0 = (rowB[j] >> 12) & 0xf;
    458          const int rowBa1 = (rowB[k] >> 12) & 0xf;
    459          const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
    460          const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
    461          const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
    462          const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
    463          dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
    464       }
    465    }
    466    else if (datatype == DTYPE_USHORT_1_5_5_5_REV && comps == 4) {
    467       uint i, j, k;
    468       const ushort *rowA = (const ushort *) srcRowA;
    469       const ushort *rowB = (const ushort *) srcRowB;
    470       ushort *dst = (ushort *) dstRow;
    471       for (i = j = 0, k = k0; i < (uint) dstWidth;
    472            i++, j += colStride, k += colStride) {
    473          const int rowAr0 = rowA[j] & 0x1f;
    474          const int rowAr1 = rowA[k] & 0x1f;
    475          const int rowBr0 = rowB[j] & 0x1f;
    476          const int rowBr1 = rowB[k] & 0x1f;
    477          const int rowAg0 = (rowA[j] >> 5) & 0x1f;
    478          const int rowAg1 = (rowA[k] >> 5) & 0x1f;
    479          const int rowBg0 = (rowB[j] >> 5) & 0x1f;
    480          const int rowBg1 = (rowB[k] >> 5) & 0x1f;
    481          const int rowAb0 = (rowA[j] >> 10) & 0x1f;
    482          const int rowAb1 = (rowA[k] >> 10) & 0x1f;
    483          const int rowBb0 = (rowB[j] >> 10) & 0x1f;
    484          const int rowBb1 = (rowB[k] >> 10) & 0x1f;
    485          const int rowAa0 = (rowA[j] >> 15) & 0x1;
    486          const int rowAa1 = (rowA[k] >> 15) & 0x1;
    487          const int rowBa0 = (rowB[j] >> 15) & 0x1;
    488          const int rowBa1 = (rowB[k] >> 15) & 0x1;
    489          const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
    490          const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
    491          const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
    492          const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
    493          dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
    494       }
    495    }
    496    else if (datatype == DTYPE_UBYTE_3_3_2 && comps == 3) {
    497       uint i, j, k;
    498       const ubyte *rowA = (const ubyte *) srcRowA;
    499       const ubyte *rowB = (const ubyte *) srcRowB;
    500       ubyte *dst = (ubyte *) dstRow;
    501       for (i = j = 0, k = k0; i < (uint) dstWidth;
    502            i++, j += colStride, k += colStride) {
    503          const int rowAr0 = rowA[j] & 0x3;
    504          const int rowAr1 = rowA[k] & 0x3;
    505          const int rowBr0 = rowB[j] & 0x3;
    506          const int rowBr1 = rowB[k] & 0x3;
    507          const int rowAg0 = (rowA[j] >> 2) & 0x7;
    508          const int rowAg1 = (rowA[k] >> 2) & 0x7;
    509          const int rowBg0 = (rowB[j] >> 2) & 0x7;
    510          const int rowBg1 = (rowB[k] >> 2) & 0x7;
    511          const int rowAb0 = (rowA[j] >> 5) & 0x7;
    512          const int rowAb1 = (rowA[k] >> 5) & 0x7;
    513          const int rowBb0 = (rowB[j] >> 5) & 0x7;
    514          const int rowBb1 = (rowB[k] >> 5) & 0x7;
    515          const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
    516          const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
    517          const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
    518          dst[i] = (blue << 5) | (green << 2) | red;
    519       }
    520    }
    521    else {
    522       debug_printf("bad format in do_row()");
    523    }
    524 }
    525 
    526 
    527 /**
    528  * Average together four rows of a source image to produce a single new
    529  * row in the dest image.  It's legal for the two source rows to point
    530  * to the same data.  The source width must be equal to either the
    531  * dest width or two times the dest width.
    532  *
    533  * \param datatype  GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
    534  *                  \c GL_FLOAT, etc.
    535  * \param comps     number of components per pixel (1..4)
    536  * \param srcWidth  Width of a row in the source data
    537  * \param srcRowA   Pointer to one of the rows of source data
    538  * \param srcRowB   Pointer to one of the rows of source data
    539  * \param srcRowC   Pointer to one of the rows of source data
    540  * \param srcRowD   Pointer to one of the rows of source data
    541  * \param dstWidth  Width of a row in the destination data
    542  * \param srcRowA   Pointer to the row of destination data
    543  */
    544 static void
    545 do_row_3D(enum dtype datatype, uint comps, int srcWidth,
    546           const void *srcRowA, const void *srcRowB,
    547           const void *srcRowC, const void *srcRowD,
    548           int dstWidth, void *dstRow)
    549 {
    550    const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
    551    const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
    552    uint i, j, k;
    553 
    554    assert(comps >= 1);
    555    assert(comps <= 4);
    556 
    557    if ((datatype == DTYPE_UBYTE) && (comps == 4)) {
    558       DECLARE_ROW_POINTERS(ubyte, 4);
    559 
    560       for (i = j = 0, k = k0; i < (uint) dstWidth;
    561            i++, j += colStride, k += colStride) {
    562          FILTER_3D(0);
    563          FILTER_3D(1);
    564          FILTER_3D(2);
    565          FILTER_3D(3);
    566       }
    567    }
    568    else if ((datatype == DTYPE_UBYTE) && (comps == 3)) {
    569       DECLARE_ROW_POINTERS(ubyte, 3);
    570 
    571       for (i = j = 0, k = k0; i < (uint) dstWidth;
    572            i++, j += colStride, k += colStride) {
    573          FILTER_3D(0);
    574          FILTER_3D(1);
    575          FILTER_3D(2);
    576       }
    577    }
    578    else if ((datatype == DTYPE_UBYTE) && (comps == 2)) {
    579       DECLARE_ROW_POINTERS(ubyte, 2);
    580 
    581       for (i = j = 0, k = k0; i < (uint) dstWidth;
    582            i++, j += colStride, k += colStride) {
    583          FILTER_3D(0);
    584          FILTER_3D(1);
    585       }
    586    }
    587    else if ((datatype == DTYPE_UBYTE) && (comps == 1)) {
    588       DECLARE_ROW_POINTERS(ubyte, 1);
    589 
    590       for (i = j = 0, k = k0; i < (uint) dstWidth;
    591            i++, j += colStride, k += colStride) {
    592          FILTER_3D(0);
    593       }
    594    }
    595    else if ((datatype == DTYPE_USHORT) && (comps == 4)) {
    596       DECLARE_ROW_POINTERS(ushort, 4);
    597 
    598       for (i = j = 0, k = k0; i < (uint) dstWidth;
    599            i++, j += colStride, k += colStride) {
    600          FILTER_3D(0);
    601          FILTER_3D(1);
    602          FILTER_3D(2);
    603          FILTER_3D(3);
    604       }
    605    }
    606    else if ((datatype == DTYPE_USHORT) && (comps == 3)) {
    607       DECLARE_ROW_POINTERS(ushort, 3);
    608 
    609       for (i = j = 0, k = k0; i < (uint) dstWidth;
    610            i++, j += colStride, k += colStride) {
    611          FILTER_3D(0);
    612          FILTER_3D(1);
    613          FILTER_3D(2);
    614       }
    615    }
    616    else if ((datatype == DTYPE_USHORT) && (comps == 2)) {
    617       DECLARE_ROW_POINTERS(ushort, 2);
    618 
    619       for (i = j = 0, k = k0; i < (uint) dstWidth;
    620            i++, j += colStride, k += colStride) {
    621          FILTER_3D(0);
    622          FILTER_3D(1);
    623       }
    624    }
    625    else if ((datatype == DTYPE_USHORT) && (comps == 1)) {
    626       DECLARE_ROW_POINTERS(ushort, 1);
    627 
    628       for (i = j = 0, k = k0; i < (uint) dstWidth;
    629            i++, j += colStride, k += colStride) {
    630          FILTER_3D(0);
    631       }
    632    }
    633    else if ((datatype == DTYPE_FLOAT) && (comps == 4)) {
    634       DECLARE_ROW_POINTERS(float, 4);
    635 
    636       for (i = j = 0, k = k0; i < (uint) dstWidth;
    637            i++, j += colStride, k += colStride) {
    638          FILTER_F_3D(0);
    639          FILTER_F_3D(1);
    640          FILTER_F_3D(2);
    641          FILTER_F_3D(3);
    642       }
    643    }
    644    else if ((datatype == DTYPE_FLOAT) && (comps == 3)) {
    645       DECLARE_ROW_POINTERS(float, 3);
    646 
    647       for (i = j = 0, k = k0; i < (uint) dstWidth;
    648            i++, j += colStride, k += colStride) {
    649          FILTER_F_3D(0);
    650          FILTER_F_3D(1);
    651          FILTER_F_3D(2);
    652       }
    653    }
    654    else if ((datatype == DTYPE_FLOAT) && (comps == 2)) {
    655       DECLARE_ROW_POINTERS(float, 2);
    656 
    657       for (i = j = 0, k = k0; i < (uint) dstWidth;
    658            i++, j += colStride, k += colStride) {
    659          FILTER_F_3D(0);
    660          FILTER_F_3D(1);
    661       }
    662    }
    663    else if ((datatype == DTYPE_FLOAT) && (comps == 1)) {
    664       DECLARE_ROW_POINTERS(float, 1);
    665 
    666       for (i = j = 0, k = k0; i < (uint) dstWidth;
    667            i++, j += colStride, k += colStride) {
    668          FILTER_F_3D(0);
    669       }
    670    }
    671    else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 4)) {
    672       DECLARE_ROW_POINTERS(half_float, 4);
    673 
    674       for (i = j = 0, k = k0; i < (uint) dstWidth;
    675            i++, j += colStride, k += colStride) {
    676          FILTER_HF_3D(0);
    677          FILTER_HF_3D(1);
    678          FILTER_HF_3D(2);
    679          FILTER_HF_3D(3);
    680       }
    681    }
    682    else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 3)) {
    683       DECLARE_ROW_POINTERS(half_float, 4);
    684 
    685       for (i = j = 0, k = k0; i < (uint) dstWidth;
    686            i++, j += colStride, k += colStride) {
    687          FILTER_HF_3D(0);
    688          FILTER_HF_3D(1);
    689          FILTER_HF_3D(2);
    690       }
    691    }
    692    else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 2)) {
    693       DECLARE_ROW_POINTERS(half_float, 4);
    694 
    695       for (i = j = 0, k = k0; i < (uint) dstWidth;
    696            i++, j += colStride, k += colStride) {
    697          FILTER_HF_3D(0);
    698          FILTER_HF_3D(1);
    699       }
    700    }
    701    else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 1)) {
    702       DECLARE_ROW_POINTERS(half_float, 4);
    703 
    704       for (i = j = 0, k = k0; i < (uint) dstWidth;
    705            i++, j += colStride, k += colStride) {
    706          FILTER_HF_3D(0);
    707       }
    708    }
    709    else if ((datatype == DTYPE_UINT) && (comps == 1)) {
    710       const uint *rowA = (const uint *) srcRowA;
    711       const uint *rowB = (const uint *) srcRowB;
    712       const uint *rowC = (const uint *) srcRowC;
    713       const uint *rowD = (const uint *) srcRowD;
    714       float *dst = (float *) dstRow;
    715 
    716       for (i = j = 0, k = k0; i < (uint) dstWidth;
    717            i++, j += colStride, k += colStride) {
    718          const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
    719                                + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
    720                                + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
    721                                + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
    722          dst[i] = (float)((double) tmp * 0.125);
    723       }
    724    }
    725    else if ((datatype == DTYPE_USHORT_5_6_5) && (comps == 3)) {
    726       DECLARE_ROW_POINTERS0(ushort);
    727 
    728       for (i = j = 0, k = k0; i < (uint) dstWidth;
    729            i++, j += colStride, k += colStride) {
    730          const int rowAr0 = rowA[j] & 0x1f;
    731          const int rowAr1 = rowA[k] & 0x1f;
    732          const int rowBr0 = rowB[j] & 0x1f;
    733          const int rowBr1 = rowB[k] & 0x1f;
    734          const int rowCr0 = rowC[j] & 0x1f;
    735          const int rowCr1 = rowC[k] & 0x1f;
    736          const int rowDr0 = rowD[j] & 0x1f;
    737          const int rowDr1 = rowD[k] & 0x1f;
    738          const int rowAg0 = (rowA[j] >> 5) & 0x3f;
    739          const int rowAg1 = (rowA[k] >> 5) & 0x3f;
    740          const int rowBg0 = (rowB[j] >> 5) & 0x3f;
    741          const int rowBg1 = (rowB[k] >> 5) & 0x3f;
    742          const int rowCg0 = (rowC[j] >> 5) & 0x3f;
    743          const int rowCg1 = (rowC[k] >> 5) & 0x3f;
    744          const int rowDg0 = (rowD[j] >> 5) & 0x3f;
    745          const int rowDg1 = (rowD[k] >> 5) & 0x3f;
    746          const int rowAb0 = (rowA[j] >> 11) & 0x1f;
    747          const int rowAb1 = (rowA[k] >> 11) & 0x1f;
    748          const int rowBb0 = (rowB[j] >> 11) & 0x1f;
    749          const int rowBb1 = (rowB[k] >> 11) & 0x1f;
    750          const int rowCb0 = (rowC[j] >> 11) & 0x1f;
    751          const int rowCb1 = (rowC[k] >> 11) & 0x1f;
    752          const int rowDb0 = (rowD[j] >> 11) & 0x1f;
    753          const int rowDb1 = (rowD[k] >> 11) & 0x1f;
    754          const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
    755                                        rowCr0, rowCr1, rowDr0, rowDr1);
    756          const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
    757                                        rowCg0, rowCg1, rowDg0, rowDg1);
    758          const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
    759                                        rowCb0, rowCb1, rowDb0, rowDb1);
    760          dst[i] = (b << 11) | (g << 5) | r;
    761       }
    762    }
    763    else if ((datatype == DTYPE_USHORT_4_4_4_4) && (comps == 4)) {
    764       DECLARE_ROW_POINTERS0(ushort);
    765 
    766       for (i = j = 0, k = k0; i < (uint) dstWidth;
    767            i++, j += colStride, k += colStride) {
    768          const int rowAr0 = rowA[j] & 0xf;
    769          const int rowAr1 = rowA[k] & 0xf;
    770          const int rowBr0 = rowB[j] & 0xf;
    771          const int rowBr1 = rowB[k] & 0xf;
    772          const int rowCr0 = rowC[j] & 0xf;
    773          const int rowCr1 = rowC[k] & 0xf;
    774          const int rowDr0 = rowD[j] & 0xf;
    775          const int rowDr1 = rowD[k] & 0xf;
    776          const int rowAg0 = (rowA[j] >> 4) & 0xf;
    777          const int rowAg1 = (rowA[k] >> 4) & 0xf;
    778          const int rowBg0 = (rowB[j] >> 4) & 0xf;
    779          const int rowBg1 = (rowB[k] >> 4) & 0xf;
    780          const int rowCg0 = (rowC[j] >> 4) & 0xf;
    781          const int rowCg1 = (rowC[k] >> 4) & 0xf;
    782          const int rowDg0 = (rowD[j] >> 4) & 0xf;
    783          const int rowDg1 = (rowD[k] >> 4) & 0xf;
    784          const int rowAb0 = (rowA[j] >> 8) & 0xf;
    785          const int rowAb1 = (rowA[k] >> 8) & 0xf;
    786          const int rowBb0 = (rowB[j] >> 8) & 0xf;
    787          const int rowBb1 = (rowB[k] >> 8) & 0xf;
    788          const int rowCb0 = (rowC[j] >> 8) & 0xf;
    789          const int rowCb1 = (rowC[k] >> 8) & 0xf;
    790          const int rowDb0 = (rowD[j] >> 8) & 0xf;
    791          const int rowDb1 = (rowD[k] >> 8) & 0xf;
    792          const int rowAa0 = (rowA[j] >> 12) & 0xf;
    793          const int rowAa1 = (rowA[k] >> 12) & 0xf;
    794          const int rowBa0 = (rowB[j] >> 12) & 0xf;
    795          const int rowBa1 = (rowB[k] >> 12) & 0xf;
    796          const int rowCa0 = (rowC[j] >> 12) & 0xf;
    797          const int rowCa1 = (rowC[k] >> 12) & 0xf;
    798          const int rowDa0 = (rowD[j] >> 12) & 0xf;
    799          const int rowDa1 = (rowD[k] >> 12) & 0xf;
    800          const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
    801                                        rowCr0, rowCr1, rowDr0, rowDr1);
    802          const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
    803                                        rowCg0, rowCg1, rowDg0, rowDg1);
    804          const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
    805                                        rowCb0, rowCb1, rowDb0, rowDb1);
    806          const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
    807                                        rowCa0, rowCa1, rowDa0, rowDa1);
    808 
    809          dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
    810       }
    811    }
    812    else if ((datatype == DTYPE_USHORT_1_5_5_5_REV) && (comps == 4)) {
    813       DECLARE_ROW_POINTERS0(ushort);
    814 
    815       for (i = j = 0, k = k0; i < (uint) dstWidth;
    816            i++, j += colStride, k += colStride) {
    817          const int rowAr0 = rowA[j] & 0x1f;
    818          const int rowAr1 = rowA[k] & 0x1f;
    819          const int rowBr0 = rowB[j] & 0x1f;
    820          const int rowBr1 = rowB[k] & 0x1f;
    821          const int rowCr0 = rowC[j] & 0x1f;
    822          const int rowCr1 = rowC[k] & 0x1f;
    823          const int rowDr0 = rowD[j] & 0x1f;
    824          const int rowDr1 = rowD[k] & 0x1f;
    825          const int rowAg0 = (rowA[j] >> 5) & 0x1f;
    826          const int rowAg1 = (rowA[k] >> 5) & 0x1f;
    827          const int rowBg0 = (rowB[j] >> 5) & 0x1f;
    828          const int rowBg1 = (rowB[k] >> 5) & 0x1f;
    829          const int rowCg0 = (rowC[j] >> 5) & 0x1f;
    830          const int rowCg1 = (rowC[k] >> 5) & 0x1f;
    831          const int rowDg0 = (rowD[j] >> 5) & 0x1f;
    832          const int rowDg1 = (rowD[k] >> 5) & 0x1f;
    833          const int rowAb0 = (rowA[j] >> 10) & 0x1f;
    834          const int rowAb1 = (rowA[k] >> 10) & 0x1f;
    835          const int rowBb0 = (rowB[j] >> 10) & 0x1f;
    836          const int rowBb1 = (rowB[k] >> 10) & 0x1f;
    837          const int rowCb0 = (rowC[j] >> 10) & 0x1f;
    838          const int rowCb1 = (rowC[k] >> 10) & 0x1f;
    839          const int rowDb0 = (rowD[j] >> 10) & 0x1f;
    840          const int rowDb1 = (rowD[k] >> 10) & 0x1f;
    841          const int rowAa0 = (rowA[j] >> 15) & 0x1;
    842          const int rowAa1 = (rowA[k] >> 15) & 0x1;
    843          const int rowBa0 = (rowB[j] >> 15) & 0x1;
    844          const int rowBa1 = (rowB[k] >> 15) & 0x1;
    845          const int rowCa0 = (rowC[j] >> 15) & 0x1;
    846          const int rowCa1 = (rowC[k] >> 15) & 0x1;
    847          const int rowDa0 = (rowD[j] >> 15) & 0x1;
    848          const int rowDa1 = (rowD[k] >> 15) & 0x1;
    849          const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
    850                                        rowCr0, rowCr1, rowDr0, rowDr1);
    851          const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
    852                                        rowCg0, rowCg1, rowDg0, rowDg1);
    853          const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
    854                                        rowCb0, rowCb1, rowDb0, rowDb1);
    855          const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
    856                                        rowCa0, rowCa1, rowDa0, rowDa1);
    857 
    858          dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
    859       }
    860    }
    861    else if ((datatype == DTYPE_UBYTE_3_3_2) && (comps == 3)) {
    862       DECLARE_ROW_POINTERS0(ushort);
    863 
    864       for (i = j = 0, k = k0; i < (uint) dstWidth;
    865            i++, j += colStride, k += colStride) {
    866          const int rowAr0 = rowA[j] & 0x3;
    867          const int rowAr1 = rowA[k] & 0x3;
    868          const int rowBr0 = rowB[j] & 0x3;
    869          const int rowBr1 = rowB[k] & 0x3;
    870          const int rowCr0 = rowC[j] & 0x3;
    871          const int rowCr1 = rowC[k] & 0x3;
    872          const int rowDr0 = rowD[j] & 0x3;
    873          const int rowDr1 = rowD[k] & 0x3;
    874          const int rowAg0 = (rowA[j] >> 2) & 0x7;
    875          const int rowAg1 = (rowA[k] >> 2) & 0x7;
    876          const int rowBg0 = (rowB[j] >> 2) & 0x7;
    877          const int rowBg1 = (rowB[k] >> 2) & 0x7;
    878          const int rowCg0 = (rowC[j] >> 2) & 0x7;
    879          const int rowCg1 = (rowC[k] >> 2) & 0x7;
    880          const int rowDg0 = (rowD[j] >> 2) & 0x7;
    881          const int rowDg1 = (rowD[k] >> 2) & 0x7;
    882          const int rowAb0 = (rowA[j] >> 5) & 0x7;
    883          const int rowAb1 = (rowA[k] >> 5) & 0x7;
    884          const int rowBb0 = (rowB[j] >> 5) & 0x7;
    885          const int rowBb1 = (rowB[k] >> 5) & 0x7;
    886          const int rowCb0 = (rowC[j] >> 5) & 0x7;
    887          const int rowCb1 = (rowC[k] >> 5) & 0x7;
    888          const int rowDb0 = (rowD[j] >> 5) & 0x7;
    889          const int rowDb1 = (rowD[k] >> 5) & 0x7;
    890          const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
    891                                        rowCr0, rowCr1, rowDr0, rowDr1);
    892          const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
    893                                        rowCg0, rowCg1, rowDg0, rowDg1);
    894          const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
    895                                        rowCb0, rowCb1, rowDb0, rowDb1);
    896          dst[i] = (b << 5) | (g << 2) | r;
    897       }
    898    }
    899    else {
    900       debug_printf("bad format in do_row_3D()");
    901    }
    902 }
    903 
    904 
    905 
    906 static void
    907 format_to_type_comps(enum pipe_format pformat,
    908                      enum dtype *datatype, uint *comps)
    909 {
    910    /* XXX I think this could be implemented in terms of the pf_*() functions */
    911    switch (pformat) {
    912    case PIPE_FORMAT_B8G8R8A8_UNORM:
    913    case PIPE_FORMAT_B8G8R8X8_UNORM:
    914    case PIPE_FORMAT_A8R8G8B8_UNORM:
    915    case PIPE_FORMAT_X8R8G8B8_UNORM:
    916    case PIPE_FORMAT_A8B8G8R8_SRGB:
    917    case PIPE_FORMAT_X8B8G8R8_SRGB:
    918    case PIPE_FORMAT_B8G8R8A8_SRGB:
    919    case PIPE_FORMAT_B8G8R8X8_SRGB:
    920    case PIPE_FORMAT_A8R8G8B8_SRGB:
    921    case PIPE_FORMAT_X8R8G8B8_SRGB:
    922    case PIPE_FORMAT_R8G8B8_SRGB:
    923       *datatype = DTYPE_UBYTE;
    924       *comps = 4;
    925       return;
    926    case PIPE_FORMAT_B5G5R5X1_UNORM:
    927    case PIPE_FORMAT_B5G5R5A1_UNORM:
    928       *datatype = DTYPE_USHORT_1_5_5_5_REV;
    929       *comps = 4;
    930       return;
    931    case PIPE_FORMAT_B4G4R4A4_UNORM:
    932       *datatype = DTYPE_USHORT_4_4_4_4;
    933       *comps = 4;
    934       return;
    935    case PIPE_FORMAT_B5G6R5_UNORM:
    936       *datatype = DTYPE_USHORT_5_6_5;
    937       *comps = 3;
    938       return;
    939    case PIPE_FORMAT_L8_UNORM:
    940    case PIPE_FORMAT_L8_SRGB:
    941    case PIPE_FORMAT_A8_UNORM:
    942    case PIPE_FORMAT_I8_UNORM:
    943       *datatype = DTYPE_UBYTE;
    944       *comps = 1;
    945       return;
    946    case PIPE_FORMAT_L8A8_UNORM:
    947    case PIPE_FORMAT_L8A8_SRGB:
    948       *datatype = DTYPE_UBYTE;
    949       *comps = 2;
    950       return;
    951    default:
    952       assert(0);
    953       *datatype = DTYPE_UBYTE;
    954       *comps = 0;
    955       break;
    956    }
    957 }
    958 
    959 
    960 static void
    961 reduce_1d(enum pipe_format pformat,
    962           int srcWidth, const ubyte *srcPtr,
    963           int dstWidth, ubyte *dstPtr)
    964 {
    965    enum dtype datatype;
    966    uint comps;
    967 
    968    format_to_type_comps(pformat, &datatype, &comps);
    969 
    970    /* we just duplicate the input row, kind of hack, saves code */
    971    do_row(datatype, comps,
    972           srcWidth, srcPtr, srcPtr,
    973           dstWidth, dstPtr);
    974 }
    975 
    976 
    977 /**
    978  * Strides are in bytes.  If zero, it'll be computed as width * bpp.
    979  */
    980 static void
    981 reduce_2d(enum pipe_format pformat,
    982           int srcWidth, int srcHeight,
    983           int srcRowStride, const ubyte *srcPtr,
    984           int dstWidth, int dstHeight,
    985           int dstRowStride, ubyte *dstPtr)
    986 {
    987    enum dtype datatype;
    988    uint comps;
    989    const int bpt = util_format_get_blocksize(pformat);
    990    const ubyte *srcA, *srcB;
    991    ubyte *dst;
    992    int row;
    993 
    994    format_to_type_comps(pformat, &datatype, &comps);
    995 
    996    if (!srcRowStride)
    997       srcRowStride = bpt * srcWidth;
    998 
    999    if (!dstRowStride)
   1000       dstRowStride = bpt * dstWidth;
   1001 
   1002    /* Compute src and dst pointers */
   1003    srcA = srcPtr;
   1004    if (srcHeight > 1)
   1005       srcB = srcA + srcRowStride;
   1006    else
   1007       srcB = srcA;
   1008    dst = dstPtr;
   1009 
   1010    for (row = 0; row < dstHeight; row++) {
   1011       do_row(datatype, comps,
   1012              srcWidth, srcA, srcB,
   1013              dstWidth, dst);
   1014       srcA += 2 * srcRowStride;
   1015       srcB += 2 * srcRowStride;
   1016       dst += dstRowStride;
   1017    }
   1018 }
   1019 
   1020 
   1021 static void
   1022 reduce_3d(enum pipe_format pformat,
   1023           int srcWidth, int srcHeight, int srcDepth,
   1024           int srcRowStride, int srcImageStride, const ubyte *srcPtr,
   1025           int dstWidth, int dstHeight, int dstDepth,
   1026           int dstRowStride, int dstImageStride, ubyte *dstPtr)
   1027 {
   1028    const int bpt = util_format_get_blocksize(pformat);
   1029    int img, row;
   1030    int srcImageOffset, srcRowOffset;
   1031    enum dtype datatype;
   1032    uint comps;
   1033 
   1034    format_to_type_comps(pformat, &datatype, &comps);
   1035 
   1036    /* XXX I think we should rather assert those strides */
   1037    if (!srcImageStride)
   1038       srcImageStride = srcWidth * srcHeight * bpt;
   1039    if (!dstImageStride)
   1040       dstImageStride = dstWidth * dstHeight * bpt;
   1041 
   1042    if (!srcRowStride)
   1043       srcRowStride = srcWidth * bpt;
   1044    if (!dstRowStride)
   1045       dstRowStride = dstWidth * bpt;
   1046 
   1047    /* Offset between adjacent src images to be averaged together */
   1048    srcImageOffset = (srcDepth == dstDepth) ? 0 : srcImageStride;
   1049 
   1050    /* Offset between adjacent src rows to be averaged together */
   1051    srcRowOffset = (srcHeight == dstHeight) ? 0 : srcRowStride;
   1052 
   1053    /*
   1054     * Need to average together up to 8 src pixels for each dest pixel.
   1055     * Break that down into 3 operations:
   1056     *   1. take two rows from source image and average them together.
   1057     *   2. take two rows from next source image and average them together.
   1058     *   3. take the two averaged rows and average them for the final dst row.
   1059     */
   1060 
   1061    /*
   1062    printf("mip3d %d x %d x %d  ->  %d x %d x %d\n",
   1063           srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
   1064    */
   1065 
   1066    for (img = 0; img < dstDepth; img++) {
   1067       /* first source image pointer */
   1068       const ubyte *imgSrcA = srcPtr
   1069          + img * (srcImageStride + srcImageOffset);
   1070       /* second source image pointer */
   1071       const ubyte *imgSrcB = imgSrcA + srcImageOffset;
   1072       /* address of the dest image */
   1073       ubyte *imgDst = dstPtr + img * dstImageStride;
   1074 
   1075       /* setup the four source row pointers and the dest row pointer */
   1076       const ubyte *srcImgARowA = imgSrcA;
   1077       const ubyte *srcImgARowB = imgSrcA + srcRowOffset;
   1078       const ubyte *srcImgBRowA = imgSrcB;
   1079       const ubyte *srcImgBRowB = imgSrcB + srcRowOffset;
   1080       ubyte *dstImgRow = imgDst;
   1081 
   1082       for (row = 0; row < dstHeight; row++) {
   1083          do_row_3D(datatype, comps, srcWidth,
   1084                    srcImgARowA, srcImgARowB,
   1085                    srcImgBRowA, srcImgBRowB,
   1086                    dstWidth, dstImgRow);
   1087 
   1088          /* advance to next rows */
   1089          srcImgARowA += srcRowStride + srcRowOffset;
   1090          srcImgARowB += srcRowStride + srcRowOffset;
   1091          srcImgBRowA += srcRowStride + srcRowOffset;
   1092          srcImgBRowB += srcRowStride + srcRowOffset;
   1093          dstImgRow += dstImageStride;
   1094       }
   1095    }
   1096 }
   1097 
   1098 
   1099 
   1100 
   1101 static void
   1102 make_1d_mipmap(struct gen_mipmap_state *ctx,
   1103                struct pipe_resource *pt,
   1104                uint layer, uint baseLevel, uint lastLevel)
   1105 {
   1106    struct pipe_context *pipe = ctx->pipe;
   1107    uint dstLevel;
   1108 
   1109    for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
   1110       const uint srcLevel = dstLevel - 1;
   1111       struct pipe_transfer *srcTrans, *dstTrans;
   1112       void *srcMap, *dstMap;
   1113 
   1114       srcTrans = pipe_get_transfer(pipe, pt, srcLevel, layer,
   1115                                    PIPE_TRANSFER_READ, 0, 0,
   1116                                    u_minify(pt->width0, srcLevel),
   1117                                    u_minify(pt->height0, srcLevel));
   1118       dstTrans = pipe_get_transfer(pipe, pt, dstLevel, layer,
   1119                                    PIPE_TRANSFER_WRITE, 0, 0,
   1120                                    u_minify(pt->width0, dstLevel),
   1121                                    u_minify(pt->height0, dstLevel));
   1122 
   1123       srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
   1124       dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
   1125 
   1126       reduce_1d(pt->format,
   1127                 srcTrans->box.width, srcMap,
   1128                 dstTrans->box.width, dstMap);
   1129 
   1130       pipe->transfer_unmap(pipe, srcTrans);
   1131       pipe->transfer_unmap(pipe, dstTrans);
   1132 
   1133       pipe->transfer_destroy(pipe, srcTrans);
   1134       pipe->transfer_destroy(pipe, dstTrans);
   1135    }
   1136 }
   1137 
   1138 
   1139 static void
   1140 make_2d_mipmap(struct gen_mipmap_state *ctx,
   1141                struct pipe_resource *pt,
   1142                uint layer, uint baseLevel, uint lastLevel)
   1143 {
   1144    struct pipe_context *pipe = ctx->pipe;
   1145    uint dstLevel;
   1146 
   1147    assert(util_format_get_blockwidth(pt->format) == 1);
   1148    assert(util_format_get_blockheight(pt->format) == 1);
   1149 
   1150    for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
   1151       const uint srcLevel = dstLevel - 1;
   1152       struct pipe_transfer *srcTrans, *dstTrans;
   1153       ubyte *srcMap, *dstMap;
   1154 
   1155       srcTrans = pipe_get_transfer(pipe, pt, srcLevel, layer,
   1156                                    PIPE_TRANSFER_READ, 0, 0,
   1157                                    u_minify(pt->width0, srcLevel),
   1158                                    u_minify(pt->height0, srcLevel));
   1159       dstTrans = pipe_get_transfer(pipe, pt, dstLevel, layer,
   1160                                    PIPE_TRANSFER_WRITE, 0, 0,
   1161                                    u_minify(pt->width0, dstLevel),
   1162                                    u_minify(pt->height0, dstLevel));
   1163 
   1164       srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
   1165       dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
   1166 
   1167       reduce_2d(pt->format,
   1168                 srcTrans->box.width, srcTrans->box.height,
   1169                 srcTrans->stride, srcMap,
   1170                 dstTrans->box.width, dstTrans->box.height,
   1171                 dstTrans->stride, dstMap);
   1172 
   1173       pipe->transfer_unmap(pipe, srcTrans);
   1174       pipe->transfer_unmap(pipe, dstTrans);
   1175 
   1176       pipe->transfer_destroy(pipe, srcTrans);
   1177       pipe->transfer_destroy(pipe, dstTrans);
   1178    }
   1179 }
   1180 
   1181 
   1182 /* XXX looks a bit more like it could work now but need to test */
   1183 static void
   1184 make_3d_mipmap(struct gen_mipmap_state *ctx,
   1185                struct pipe_resource *pt,
   1186                uint face, uint baseLevel, uint lastLevel)
   1187 {
   1188    struct pipe_context *pipe = ctx->pipe;
   1189    uint dstLevel;
   1190    struct pipe_box src_box, dst_box;
   1191 
   1192    assert(util_format_get_blockwidth(pt->format) == 1);
   1193    assert(util_format_get_blockheight(pt->format) == 1);
   1194 
   1195    src_box.x = src_box.y = src_box.z = 0;
   1196    dst_box.x = dst_box.y = dst_box.z = 0;
   1197 
   1198    for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
   1199       const uint srcLevel = dstLevel - 1;
   1200       struct pipe_transfer *srcTrans, *dstTrans;
   1201       ubyte *srcMap, *dstMap;
   1202       struct pipe_box src_box, dst_box;
   1203       src_box.width = u_minify(pt->width0, srcLevel);
   1204       src_box.height = u_minify(pt->height0, srcLevel);
   1205       src_box.depth = u_minify(pt->depth0, srcLevel);
   1206       dst_box.width = u_minify(pt->width0, dstLevel);
   1207       dst_box.height = u_minify(pt->height0, dstLevel);
   1208       dst_box.depth = u_minify(pt->depth0, dstLevel);
   1209 
   1210       srcTrans = pipe->get_transfer(pipe, pt, srcLevel,
   1211                                     PIPE_TRANSFER_READ,
   1212                                     &src_box);
   1213       dstTrans = pipe->get_transfer(pipe, pt, dstLevel,
   1214                                     PIPE_TRANSFER_WRITE,
   1215                                     &dst_box);
   1216 
   1217       srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans);
   1218       dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans);
   1219 
   1220       reduce_3d(pt->format,
   1221                 srcTrans->box.width, srcTrans->box.height, srcTrans->box.depth,
   1222                 srcTrans->stride, srcTrans->layer_stride, srcMap,
   1223                 dstTrans->box.width, dstTrans->box.height, dstTrans->box.depth,
   1224                 dstTrans->stride, dstTrans->layer_stride, dstMap);
   1225 
   1226       pipe->transfer_unmap(pipe, srcTrans);
   1227       pipe->transfer_unmap(pipe, dstTrans);
   1228 
   1229       pipe->transfer_destroy(pipe, srcTrans);
   1230       pipe->transfer_destroy(pipe, dstTrans);
   1231    }
   1232 }
   1233 
   1234 
   1235 static void
   1236 fallback_gen_mipmap(struct gen_mipmap_state *ctx,
   1237                     struct pipe_resource *pt,
   1238                     uint layer, uint baseLevel, uint lastLevel)
   1239 {
   1240    switch (pt->target) {
   1241    case PIPE_TEXTURE_1D:
   1242       make_1d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
   1243       break;
   1244    case PIPE_TEXTURE_2D:
   1245    case PIPE_TEXTURE_RECT:
   1246    case PIPE_TEXTURE_CUBE:
   1247       make_2d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
   1248       break;
   1249    case PIPE_TEXTURE_3D:
   1250       make_3d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
   1251       break;
   1252    default:
   1253       assert(0);
   1254    }
   1255 }
   1256 
   1257 
   1258 /**
   1259  * Create a mipmap generation context.
   1260  * The idea is to create one of these and re-use it each time we need to
   1261  * generate a mipmap.
   1262  */
   1263 struct gen_mipmap_state *
   1264 util_create_gen_mipmap(struct pipe_context *pipe,
   1265                        struct cso_context *cso)
   1266 {
   1267    struct gen_mipmap_state *ctx;
   1268    uint i;
   1269 
   1270    ctx = CALLOC_STRUCT(gen_mipmap_state);
   1271    if (!ctx)
   1272       return NULL;
   1273 
   1274    ctx->pipe = pipe;
   1275    ctx->cso = cso;
   1276 
   1277    /* disabled blending/masking */
   1278    memset(&ctx->blend_keep_color, 0, sizeof(ctx->blend_keep_color));
   1279    memset(&ctx->blend_write_color, 0, sizeof(ctx->blend_write_color));
   1280    ctx->blend_write_color.rt[0].colormask = PIPE_MASK_RGBA;
   1281 
   1282    /* no-op depth/stencil/alpha */
   1283    memset(&ctx->dsa_keep_depth, 0, sizeof(ctx->dsa_keep_depth));
   1284    memset(&ctx->dsa_write_depth, 0, sizeof(ctx->dsa_write_depth));
   1285    ctx->dsa_write_depth.depth.enabled = 1;
   1286    ctx->dsa_write_depth.depth.func = PIPE_FUNC_ALWAYS;
   1287    ctx->dsa_write_depth.depth.writemask = 1;
   1288 
   1289    /* rasterizer */
   1290    memset(&ctx->rasterizer, 0, sizeof(ctx->rasterizer));
   1291    ctx->rasterizer.cull_face = PIPE_FACE_NONE;
   1292    ctx->rasterizer.gl_rasterization_rules = 1;
   1293    ctx->rasterizer.depth_clip = 1;
   1294 
   1295    /* sampler state */
   1296    memset(&ctx->sampler, 0, sizeof(ctx->sampler));
   1297    ctx->sampler.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
   1298    ctx->sampler.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
   1299    ctx->sampler.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
   1300    ctx->sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NEAREST;
   1301    ctx->sampler.normalized_coords = 1;
   1302 
   1303    /* vertex elements state */
   1304    memset(&ctx->velem[0], 0, sizeof(ctx->velem[0]) * 2);
   1305    for (i = 0; i < 2; i++) {
   1306       ctx->velem[i].src_offset = i * 4 * sizeof(float);
   1307       ctx->velem[i].instance_divisor = 0;
   1308       ctx->velem[i].vertex_buffer_index = 0;
   1309       ctx->velem[i].src_format = PIPE_FORMAT_R32G32B32A32_FLOAT;
   1310    }
   1311 
   1312    /* vertex data that doesn't change */
   1313    for (i = 0; i < 4; i++) {
   1314       ctx->vertices[i][0][2] = 0.0f; /* z */
   1315       ctx->vertices[i][0][3] = 1.0f; /* w */
   1316       ctx->vertices[i][1][3] = 1.0f; /* q */
   1317    }
   1318 
   1319    /* Note: the actual vertex buffer is allocated as needed below */
   1320 
   1321    return ctx;
   1322 }
   1323 
   1324 
   1325 /**
   1326  * Helper function to set the fragment shaders.
   1327  */
   1328 static INLINE void
   1329 set_fragment_shader(struct gen_mipmap_state *ctx, uint type,
   1330                     boolean output_depth)
   1331 {
   1332    if (output_depth) {
   1333       if (!ctx->fs_depth[type])
   1334          ctx->fs_depth[type] =
   1335             util_make_fragment_tex_shader_writedepth(ctx->pipe, type,
   1336                                                      TGSI_INTERPOLATE_LINEAR);
   1337 
   1338       cso_set_fragment_shader_handle(ctx->cso, ctx->fs_depth[type]);
   1339    }
   1340    else {
   1341       if (!ctx->fs_color[type])
   1342          ctx->fs_color[type] =
   1343             util_make_fragment_tex_shader(ctx->pipe, type,
   1344                                           TGSI_INTERPOLATE_LINEAR);
   1345 
   1346       cso_set_fragment_shader_handle(ctx->cso, ctx->fs_color[type]);
   1347    }
   1348 }
   1349 
   1350 
   1351 /**
   1352  * Helper function to set the vertex shader.
   1353  */
   1354 static INLINE void
   1355 set_vertex_shader(struct gen_mipmap_state *ctx)
   1356 {
   1357    /* vertex shader - still required to provide the linkage between
   1358     * fragment shader input semantics and vertex_element/buffers.
   1359     */
   1360    if (!ctx->vs)
   1361    {
   1362       const uint semantic_names[] = { TGSI_SEMANTIC_POSITION,
   1363                                       TGSI_SEMANTIC_GENERIC };
   1364       const uint semantic_indexes[] = { 0, 0 };
   1365       ctx->vs = util_make_vertex_passthrough_shader(ctx->pipe, 2,
   1366                                                     semantic_names,
   1367                                                     semantic_indexes);
   1368    }
   1369 
   1370    cso_set_vertex_shader_handle(ctx->cso, ctx->vs);
   1371 }
   1372 
   1373 
   1374 /**
   1375  * Get next "slot" of vertex space in the vertex buffer.
   1376  * We're allocating one large vertex buffer and using it piece by piece.
   1377  */
   1378 static unsigned
   1379 get_next_slot(struct gen_mipmap_state *ctx)
   1380 {
   1381    const unsigned max_slots = 4096 / sizeof ctx->vertices;
   1382 
   1383    if (ctx->vbuf_slot >= max_slots) {
   1384       pipe_resource_reference(&ctx->vbuf, NULL);
   1385       ctx->vbuf_slot = 0;
   1386    }
   1387 
   1388    if (!ctx->vbuf) {
   1389       ctx->vbuf = pipe_buffer_create(ctx->pipe->screen,
   1390                                      PIPE_BIND_VERTEX_BUFFER,
   1391                                      PIPE_USAGE_STREAM,
   1392                                      max_slots * sizeof ctx->vertices);
   1393    }
   1394 
   1395    return ctx->vbuf_slot++ * sizeof ctx->vertices;
   1396 }
   1397 
   1398 
   1399 static unsigned
   1400 set_vertex_data(struct gen_mipmap_state *ctx,
   1401                 enum pipe_texture_target tex_target,
   1402                 uint layer, float r)
   1403 {
   1404    unsigned offset;
   1405 
   1406    /* vert[0].position */
   1407    ctx->vertices[0][0][0] = -1.0f; /*x*/
   1408    ctx->vertices[0][0][1] = -1.0f; /*y*/
   1409 
   1410    /* vert[1].position */
   1411    ctx->vertices[1][0][0] = 1.0f;
   1412    ctx->vertices[1][0][1] = -1.0f;
   1413 
   1414    /* vert[2].position */
   1415    ctx->vertices[2][0][0] = 1.0f;
   1416    ctx->vertices[2][0][1] = 1.0f;
   1417 
   1418    /* vert[3].position */
   1419    ctx->vertices[3][0][0] = -1.0f;
   1420    ctx->vertices[3][0][1] = 1.0f;
   1421 
   1422    /* Setup vertex texcoords.  This is a little tricky for cube maps. */
   1423    if (tex_target == PIPE_TEXTURE_CUBE) {
   1424       static const float st[4][2] = {
   1425          {0.0f, 0.0f}, {1.0f, 0.0f}, {1.0f, 1.0f}, {0.0f, 1.0f}
   1426       };
   1427 
   1428       util_map_texcoords2d_onto_cubemap(layer, &st[0][0], 2,
   1429                                         &ctx->vertices[0][1][0], 8);
   1430    }
   1431    else if (tex_target == PIPE_TEXTURE_1D_ARRAY) {
   1432       /* 1D texture array  */
   1433       ctx->vertices[0][1][0] = 0.0f; /*s*/
   1434       ctx->vertices[0][1][1] = r; /*t*/
   1435       ctx->vertices[0][1][2] = 0.0f;    /*r*/
   1436 
   1437       ctx->vertices[1][1][0] = 1.0f;
   1438       ctx->vertices[1][1][1] = r;
   1439       ctx->vertices[1][1][2] = 0.0f;
   1440 
   1441       ctx->vertices[2][1][0] = 1.0f;
   1442       ctx->vertices[2][1][1] = r;
   1443       ctx->vertices[2][1][2] = 0.0f;
   1444 
   1445       ctx->vertices[3][1][0] = 0.0f;
   1446       ctx->vertices[3][1][1] = r;
   1447       ctx->vertices[3][1][2] = 0.0f;
   1448    } else {
   1449       /* 1D/2D/3D/2D array */
   1450       ctx->vertices[0][1][0] = 0.0f; /*s*/
   1451       ctx->vertices[0][1][1] = 0.0f; /*t*/
   1452       ctx->vertices[0][1][2] = r;    /*r*/
   1453 
   1454       ctx->vertices[1][1][0] = 1.0f;
   1455       ctx->vertices[1][1][1] = 0.0f;
   1456       ctx->vertices[1][1][2] = r;
   1457 
   1458       ctx->vertices[2][1][0] = 1.0f;
   1459       ctx->vertices[2][1][1] = 1.0f;
   1460       ctx->vertices[2][1][2] = r;
   1461 
   1462       ctx->vertices[3][1][0] = 0.0f;
   1463       ctx->vertices[3][1][1] = 1.0f;
   1464       ctx->vertices[3][1][2] = r;
   1465    }
   1466 
   1467    offset = get_next_slot( ctx );
   1468 
   1469    pipe_buffer_write_nooverlap(ctx->pipe, ctx->vbuf,
   1470                                offset, sizeof(ctx->vertices), ctx->vertices);
   1471 
   1472    return offset;
   1473 }
   1474 
   1475 
   1476 
   1477 /**
   1478  * Destroy a mipmap generation context
   1479  */
   1480 void
   1481 util_destroy_gen_mipmap(struct gen_mipmap_state *ctx)
   1482 {
   1483    struct pipe_context *pipe = ctx->pipe;
   1484    unsigned i;
   1485 
   1486    for (i = 0; i < Elements(ctx->fs_color); i++)
   1487       if (ctx->fs_color[i])
   1488          pipe->delete_fs_state(pipe, ctx->fs_color[i]);
   1489 
   1490    for (i = 0; i < Elements(ctx->fs_depth); i++)
   1491       if (ctx->fs_depth[i])
   1492          pipe->delete_fs_state(pipe, ctx->fs_depth[i]);
   1493 
   1494    if (ctx->vs)
   1495       pipe->delete_vs_state(pipe, ctx->vs);
   1496 
   1497    pipe_resource_reference(&ctx->vbuf, NULL);
   1498 
   1499    FREE(ctx);
   1500 }
   1501 
   1502 
   1503 /**
   1504  * Generate mipmap images.  It's assumed all needed texture memory is
   1505  * already allocated.
   1506  *
   1507  * \param psv  the sampler view to the texture to generate mipmap levels for
   1508  * \param face  which cube face to generate mipmaps for (0 for non-cube maps)
   1509  * \param baseLevel  the first mipmap level to use as a src
   1510  * \param lastLevel  the last mipmap level to generate
   1511  * \param filter  the minification filter used to generate mipmap levels with
   1512  * \param filter  one of PIPE_TEX_FILTER_LINEAR, PIPE_TEX_FILTER_NEAREST
   1513  */
   1514 void
   1515 util_gen_mipmap(struct gen_mipmap_state *ctx,
   1516                 struct pipe_sampler_view *psv,
   1517                 uint face, uint baseLevel, uint lastLevel, uint filter)
   1518 {
   1519    struct pipe_context *pipe = ctx->pipe;
   1520    struct pipe_screen *screen = pipe->screen;
   1521    struct pipe_framebuffer_state fb;
   1522    struct pipe_resource *pt = psv->texture;
   1523    uint dstLevel;
   1524    uint offset;
   1525    uint type;
   1526    boolean is_depth = util_format_is_depth_or_stencil(psv->format);
   1527 
   1528    /* The texture object should have room for the levels which we're
   1529     * about to generate.
   1530     */
   1531    assert(lastLevel <= pt->last_level);
   1532 
   1533    /* If this fails, why are we here? */
   1534    assert(lastLevel > baseLevel);
   1535 
   1536    assert(filter == PIPE_TEX_FILTER_LINEAR ||
   1537           filter == PIPE_TEX_FILTER_NEAREST);
   1538 
   1539    switch (pt->target) {
   1540    case PIPE_TEXTURE_1D:
   1541       type = TGSI_TEXTURE_1D;
   1542       break;
   1543    case PIPE_TEXTURE_2D:
   1544       type = TGSI_TEXTURE_2D;
   1545       break;
   1546    case PIPE_TEXTURE_3D:
   1547       type = TGSI_TEXTURE_3D;
   1548       break;
   1549    case PIPE_TEXTURE_CUBE:
   1550       type = TGSI_TEXTURE_CUBE;
   1551       break;
   1552    case PIPE_TEXTURE_1D_ARRAY:
   1553       type = TGSI_TEXTURE_1D_ARRAY;
   1554       break;
   1555    case PIPE_TEXTURE_2D_ARRAY:
   1556       type = TGSI_TEXTURE_2D_ARRAY;
   1557       break;
   1558    default:
   1559       assert(0);
   1560       type = TGSI_TEXTURE_2D;
   1561    }
   1562 
   1563    /* check if we can render in the texture's format */
   1564    if (!screen->is_format_supported(screen, psv->format, pt->target,
   1565                                     pt->nr_samples,
   1566                                     is_depth ? PIPE_BIND_DEPTH_STENCIL :
   1567                                                PIPE_BIND_RENDER_TARGET)) {
   1568       fallback_gen_mipmap(ctx, pt, face, baseLevel, lastLevel);
   1569       return;
   1570    }
   1571 
   1572    /* save state (restored below) */
   1573    cso_save_blend(ctx->cso);
   1574    cso_save_depth_stencil_alpha(ctx->cso);
   1575    cso_save_rasterizer(ctx->cso);
   1576    cso_save_sample_mask(ctx->cso);
   1577    cso_save_samplers(ctx->cso, PIPE_SHADER_FRAGMENT);
   1578    cso_save_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT);
   1579    cso_save_stream_outputs(ctx->cso);
   1580    cso_save_framebuffer(ctx->cso);
   1581    cso_save_fragment_shader(ctx->cso);
   1582    cso_save_vertex_shader(ctx->cso);
   1583    cso_save_geometry_shader(ctx->cso);
   1584    cso_save_viewport(ctx->cso);
   1585    cso_save_vertex_elements(ctx->cso);
   1586    cso_save_vertex_buffers(ctx->cso);
   1587 
   1588    /* bind our state */
   1589    cso_set_blend(ctx->cso, is_depth ? &ctx->blend_keep_color :
   1590                                       &ctx->blend_write_color);
   1591    cso_set_depth_stencil_alpha(ctx->cso, is_depth ? &ctx->dsa_write_depth :
   1592                                                     &ctx->dsa_keep_depth);
   1593    cso_set_rasterizer(ctx->cso, &ctx->rasterizer);
   1594    cso_set_sample_mask(ctx->cso, ~0);
   1595    cso_set_vertex_elements(ctx->cso, 2, ctx->velem);
   1596    cso_set_stream_outputs(ctx->cso, 0, NULL, 0);
   1597 
   1598    set_fragment_shader(ctx, type, is_depth);
   1599    set_vertex_shader(ctx);
   1600    cso_set_geometry_shader_handle(ctx->cso, NULL);
   1601 
   1602    /* init framebuffer state */
   1603    memset(&fb, 0, sizeof(fb));
   1604 
   1605    /* set min/mag to same filter for faster sw speed */
   1606    ctx->sampler.mag_img_filter = filter;
   1607    ctx->sampler.min_img_filter = filter;
   1608 
   1609    for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
   1610       const uint srcLevel = dstLevel - 1;
   1611       struct pipe_viewport_state vp;
   1612       unsigned nr_layers, layer, i;
   1613       float rcoord = 0.0f;
   1614 
   1615       if (pt->target == PIPE_TEXTURE_3D)
   1616          nr_layers = u_minify(pt->depth0, dstLevel);
   1617       else if (pt->target == PIPE_TEXTURE_2D_ARRAY || pt->target == PIPE_TEXTURE_1D_ARRAY)
   1618 	 nr_layers = pt->array_size;
   1619       else
   1620          nr_layers = 1;
   1621 
   1622       for (i = 0; i < nr_layers; i++) {
   1623          struct pipe_surface *surf, surf_templ;
   1624          if (pt->target == PIPE_TEXTURE_3D) {
   1625             /* in theory with geom shaders and driver with full layer support
   1626                could do that in one go. */
   1627             layer = i;
   1628             /* XXX hmm really? */
   1629             rcoord = (float)layer / (float)nr_layers + 1.0f / (float)(nr_layers * 2);
   1630          } else if (pt->target == PIPE_TEXTURE_2D_ARRAY || pt->target == PIPE_TEXTURE_1D_ARRAY) {
   1631 	    layer = i;
   1632 	    rcoord = (float)layer;
   1633 	 } else
   1634             layer = face;
   1635 
   1636          memset(&surf_templ, 0, sizeof(surf_templ));
   1637          u_surface_default_template(&surf_templ, pt,
   1638                                     is_depth ? PIPE_BIND_DEPTH_STENCIL :
   1639                                                PIPE_BIND_RENDER_TARGET);
   1640          surf_templ.u.tex.level = dstLevel;
   1641          surf_templ.u.tex.first_layer = layer;
   1642          surf_templ.u.tex.last_layer = layer;
   1643          surf = pipe->create_surface(pipe, pt, &surf_templ);
   1644 
   1645          /*
   1646           * Setup framebuffer / dest surface
   1647           */
   1648          if (is_depth) {
   1649             fb.nr_cbufs = 0;
   1650             fb.zsbuf = surf;
   1651          }
   1652          else {
   1653             fb.nr_cbufs = 1;
   1654             fb.cbufs[0] = surf;
   1655          }
   1656          fb.width = u_minify(pt->width0, dstLevel);
   1657          fb.height = u_minify(pt->height0, dstLevel);
   1658          cso_set_framebuffer(ctx->cso, &fb);
   1659 
   1660          /* viewport */
   1661          vp.scale[0] = 0.5f * fb.width;
   1662          vp.scale[1] = 0.5f * fb.height;
   1663          vp.scale[2] = 1.0f;
   1664          vp.scale[3] = 1.0f;
   1665          vp.translate[0] = 0.5f * fb.width;
   1666          vp.translate[1] = 0.5f * fb.height;
   1667          vp.translate[2] = 0.0f;
   1668          vp.translate[3] = 0.0f;
   1669          cso_set_viewport(ctx->cso, &vp);
   1670 
   1671          /*
   1672           * Setup sampler state
   1673           * Note: we should only have to set the min/max LOD clamps to ensure
   1674           * we grab texels from the right mipmap level.  But some hardware
   1675           * has trouble with min clamping so we also set the lod_bias to
   1676           * try to work around that.
   1677           */
   1678          ctx->sampler.min_lod = ctx->sampler.max_lod = (float) srcLevel;
   1679          ctx->sampler.lod_bias = (float) srcLevel;
   1680          cso_single_sampler(ctx->cso, PIPE_SHADER_FRAGMENT, 0, &ctx->sampler);
   1681          cso_single_sampler_done(ctx->cso, PIPE_SHADER_FRAGMENT);
   1682 
   1683          cso_set_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT, 1, &psv);
   1684 
   1685          /* quad coords in clip coords */
   1686          offset = set_vertex_data(ctx,
   1687                                   pt->target,
   1688                                   face,
   1689                                   rcoord);
   1690 
   1691          util_draw_vertex_buffer(ctx->pipe,
   1692                                  ctx->cso,
   1693                                  ctx->vbuf,
   1694                                  offset,
   1695                                  PIPE_PRIM_TRIANGLE_FAN,
   1696                                  4,  /* verts */
   1697                                  2); /* attribs/vert */
   1698 
   1699          /* need to signal that the texture has changed _after_ rendering to it */
   1700          pipe_surface_reference( &surf, NULL );
   1701       }
   1702    }
   1703 
   1704    /* restore state we changed */
   1705    cso_restore_blend(ctx->cso);
   1706    cso_restore_depth_stencil_alpha(ctx->cso);
   1707    cso_restore_rasterizer(ctx->cso);
   1708    cso_restore_sample_mask(ctx->cso);
   1709    cso_restore_samplers(ctx->cso, PIPE_SHADER_FRAGMENT);
   1710    cso_restore_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT);
   1711    cso_restore_framebuffer(ctx->cso);
   1712    cso_restore_fragment_shader(ctx->cso);
   1713    cso_restore_vertex_shader(ctx->cso);
   1714    cso_restore_geometry_shader(ctx->cso);
   1715    cso_restore_viewport(ctx->cso);
   1716    cso_restore_vertex_elements(ctx->cso);
   1717    cso_restore_stream_outputs(ctx->cso);
   1718    cso_restore_vertex_buffers(ctx->cso);
   1719 }
   1720