Home | History | Annotate | Download | only in bn
      1 /* crypto/bn/bn_gcd.c */
      2 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      3  * All rights reserved.
      4  *
      5  * This package is an SSL implementation written
      6  * by Eric Young (eay (at) cryptsoft.com).
      7  * The implementation was written so as to conform with Netscapes SSL.
      8  *
      9  * This library is free for commercial and non-commercial use as long as
     10  * the following conditions are aheared to.  The following conditions
     11  * apply to all code found in this distribution, be it the RC4, RSA,
     12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     13  * included with this distribution is covered by the same copyright terms
     14  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     15  *
     16  * Copyright remains Eric Young's, and as such any Copyright notices in
     17  * the code are not to be removed.
     18  * If this package is used in a product, Eric Young should be given attribution
     19  * as the author of the parts of the library used.
     20  * This can be in the form of a textual message at program startup or
     21  * in documentation (online or textual) provided with the package.
     22  *
     23  * Redistribution and use in source and binary forms, with or without
     24  * modification, are permitted provided that the following conditions
     25  * are met:
     26  * 1. Redistributions of source code must retain the copyright
     27  *    notice, this list of conditions and the following disclaimer.
     28  * 2. Redistributions in binary form must reproduce the above copyright
     29  *    notice, this list of conditions and the following disclaimer in the
     30  *    documentation and/or other materials provided with the distribution.
     31  * 3. All advertising materials mentioning features or use of this software
     32  *    must display the following acknowledgement:
     33  *    "This product includes cryptographic software written by
     34  *     Eric Young (eay (at) cryptsoft.com)"
     35  *    The word 'cryptographic' can be left out if the rouines from the library
     36  *    being used are not cryptographic related :-).
     37  * 4. If you include any Windows specific code (or a derivative thereof) from
     38  *    the apps directory (application code) you must include an acknowledgement:
     39  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     40  *
     41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     51  * SUCH DAMAGE.
     52  *
     53  * The licence and distribution terms for any publically available version or
     54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     55  * copied and put under another distribution licence
     56  * [including the GNU Public Licence.]
     57  */
     58 /* ====================================================================
     59  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
     60  *
     61  * Redistribution and use in source and binary forms, with or without
     62  * modification, are permitted provided that the following conditions
     63  * are met:
     64  *
     65  * 1. Redistributions of source code must retain the above copyright
     66  *    notice, this list of conditions and the following disclaimer.
     67  *
     68  * 2. Redistributions in binary form must reproduce the above copyright
     69  *    notice, this list of conditions and the following disclaimer in
     70  *    the documentation and/or other materials provided with the
     71  *    distribution.
     72  *
     73  * 3. All advertising materials mentioning features or use of this
     74  *    software must display the following acknowledgment:
     75  *    "This product includes software developed by the OpenSSL Project
     76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     77  *
     78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     79  *    endorse or promote products derived from this software without
     80  *    prior written permission. For written permission, please contact
     81  *    openssl-core (at) openssl.org.
     82  *
     83  * 5. Products derived from this software may not be called "OpenSSL"
     84  *    nor may "OpenSSL" appear in their names without prior written
     85  *    permission of the OpenSSL Project.
     86  *
     87  * 6. Redistributions of any form whatsoever must retain the following
     88  *    acknowledgment:
     89  *    "This product includes software developed by the OpenSSL Project
     90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     91  *
     92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
    103  * OF THE POSSIBILITY OF SUCH DAMAGE.
    104  * ====================================================================
    105  *
    106  * This product includes cryptographic software written by Eric Young
    107  * (eay (at) cryptsoft.com).  This product includes software written by Tim
    108  * Hudson (tjh (at) cryptsoft.com).
    109  *
    110  */
    111 
    112 #include "cryptlib.h"
    113 #include "bn_lcl.h"
    114 
    115 static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
    116 
    117 int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
    118 	{
    119 	BIGNUM *a,*b,*t;
    120 	int ret=0;
    121 
    122 	bn_check_top(in_a);
    123 	bn_check_top(in_b);
    124 
    125 	BN_CTX_start(ctx);
    126 	a = BN_CTX_get(ctx);
    127 	b = BN_CTX_get(ctx);
    128 	if (a == NULL || b == NULL) goto err;
    129 
    130 	if (BN_copy(a,in_a) == NULL) goto err;
    131 	if (BN_copy(b,in_b) == NULL) goto err;
    132 	a->neg = 0;
    133 	b->neg = 0;
    134 
    135 	if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; }
    136 	t=euclid(a,b);
    137 	if (t == NULL) goto err;
    138 
    139 	if (BN_copy(r,t) == NULL) goto err;
    140 	ret=1;
    141 err:
    142 	BN_CTX_end(ctx);
    143 	bn_check_top(r);
    144 	return(ret);
    145 	}
    146 
    147 static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
    148 	{
    149 	BIGNUM *t;
    150 	int shifts=0;
    151 
    152 	bn_check_top(a);
    153 	bn_check_top(b);
    154 
    155 	/* 0 <= b <= a */
    156 	while (!BN_is_zero(b))
    157 		{
    158 		/* 0 < b <= a */
    159 
    160 		if (BN_is_odd(a))
    161 			{
    162 			if (BN_is_odd(b))
    163 				{
    164 				if (!BN_sub(a,a,b)) goto err;
    165 				if (!BN_rshift1(a,a)) goto err;
    166 				if (BN_cmp(a,b) < 0)
    167 					{ t=a; a=b; b=t; }
    168 				}
    169 			else		/* a odd - b even */
    170 				{
    171 				if (!BN_rshift1(b,b)) goto err;
    172 				if (BN_cmp(a,b) < 0)
    173 					{ t=a; a=b; b=t; }
    174 				}
    175 			}
    176 		else			/* a is even */
    177 			{
    178 			if (BN_is_odd(b))
    179 				{
    180 				if (!BN_rshift1(a,a)) goto err;
    181 				if (BN_cmp(a,b) < 0)
    182 					{ t=a; a=b; b=t; }
    183 				}
    184 			else		/* a even - b even */
    185 				{
    186 				if (!BN_rshift1(a,a)) goto err;
    187 				if (!BN_rshift1(b,b)) goto err;
    188 				shifts++;
    189 				}
    190 			}
    191 		/* 0 <= b <= a */
    192 		}
    193 
    194 	if (shifts)
    195 		{
    196 		if (!BN_lshift(a,a,shifts)) goto err;
    197 		}
    198 	bn_check_top(a);
    199 	return(a);
    200 err:
    201 	return(NULL);
    202 	}
    203 
    204 
    205 /* solves ax == 1 (mod n) */
    206 static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
    207         const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
    208 
    209 BIGNUM *BN_mod_inverse(BIGNUM *in,
    210 	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
    211 	{
    212 	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
    213 	BIGNUM *ret=NULL;
    214 	int sign;
    215 
    216 	if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0))
    217 		{
    218 		return BN_mod_inverse_no_branch(in, a, n, ctx);
    219 		}
    220 
    221 	bn_check_top(a);
    222 	bn_check_top(n);
    223 
    224 	BN_CTX_start(ctx);
    225 	A = BN_CTX_get(ctx);
    226 	B = BN_CTX_get(ctx);
    227 	X = BN_CTX_get(ctx);
    228 	D = BN_CTX_get(ctx);
    229 	M = BN_CTX_get(ctx);
    230 	Y = BN_CTX_get(ctx);
    231 	T = BN_CTX_get(ctx);
    232 	if (T == NULL) goto err;
    233 
    234 	if (in == NULL)
    235 		R=BN_new();
    236 	else
    237 		R=in;
    238 	if (R == NULL) goto err;
    239 
    240 	BN_one(X);
    241 	BN_zero(Y);
    242 	if (BN_copy(B,a) == NULL) goto err;
    243 	if (BN_copy(A,n) == NULL) goto err;
    244 	A->neg = 0;
    245 	if (B->neg || (BN_ucmp(B, A) >= 0))
    246 		{
    247 		if (!BN_nnmod(B, B, A, ctx)) goto err;
    248 		}
    249 	sign = -1;
    250 	/* From  B = a mod |n|,  A = |n|  it follows that
    251 	 *
    252 	 *      0 <= B < A,
    253 	 *     -sign*X*a  ==  B   (mod |n|),
    254 	 *      sign*Y*a  ==  A   (mod |n|).
    255 	 */
    256 
    257 	if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048)))
    258 		{
    259 		/* Binary inversion algorithm; requires odd modulus.
    260 		 * This is faster than the general algorithm if the modulus
    261 		 * is sufficiently small (about 400 .. 500 bits on 32-bit
    262 		 * sytems, but much more on 64-bit systems) */
    263 		int shift;
    264 
    265 		while (!BN_is_zero(B))
    266 			{
    267 			/*
    268 			 *      0 < B < |n|,
    269 			 *      0 < A <= |n|,
    270 			 * (1) -sign*X*a  ==  B   (mod |n|),
    271 			 * (2)  sign*Y*a  ==  A   (mod |n|)
    272 			 */
    273 
    274 			/* Now divide  B  by the maximum possible power of two in the integers,
    275 			 * and divide  X  by the same value mod |n|.
    276 			 * When we're done, (1) still holds. */
    277 			shift = 0;
    278 			while (!BN_is_bit_set(B, shift)) /* note that 0 < B */
    279 				{
    280 				shift++;
    281 
    282 				if (BN_is_odd(X))
    283 					{
    284 					if (!BN_uadd(X, X, n)) goto err;
    285 					}
    286 				/* now X is even, so we can easily divide it by two */
    287 				if (!BN_rshift1(X, X)) goto err;
    288 				}
    289 			if (shift > 0)
    290 				{
    291 				if (!BN_rshift(B, B, shift)) goto err;
    292 				}
    293 
    294 
    295 			/* Same for  A  and  Y.  Afterwards, (2) still holds. */
    296 			shift = 0;
    297 			while (!BN_is_bit_set(A, shift)) /* note that 0 < A */
    298 				{
    299 				shift++;
    300 
    301 				if (BN_is_odd(Y))
    302 					{
    303 					if (!BN_uadd(Y, Y, n)) goto err;
    304 					}
    305 				/* now Y is even */
    306 				if (!BN_rshift1(Y, Y)) goto err;
    307 				}
    308 			if (shift > 0)
    309 				{
    310 				if (!BN_rshift(A, A, shift)) goto err;
    311 				}
    312 
    313 
    314 			/* We still have (1) and (2).
    315 			 * Both  A  and  B  are odd.
    316 			 * The following computations ensure that
    317 			 *
    318 			 *     0 <= B < |n|,
    319 			 *      0 < A < |n|,
    320 			 * (1) -sign*X*a  ==  B   (mod |n|),
    321 			 * (2)  sign*Y*a  ==  A   (mod |n|),
    322 			 *
    323 			 * and that either  A  or  B  is even in the next iteration.
    324 			 */
    325 			if (BN_ucmp(B, A) >= 0)
    326 				{
    327 				/* -sign*(X + Y)*a == B - A  (mod |n|) */
    328 				if (!BN_uadd(X, X, Y)) goto err;
    329 				/* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
    330 				 * actually makes the algorithm slower */
    331 				if (!BN_usub(B, B, A)) goto err;
    332 				}
    333 			else
    334 				{
    335 				/*  sign*(X + Y)*a == A - B  (mod |n|) */
    336 				if (!BN_uadd(Y, Y, X)) goto err;
    337 				/* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
    338 				if (!BN_usub(A, A, B)) goto err;
    339 				}
    340 			}
    341 		}
    342 	else
    343 		{
    344 		/* general inversion algorithm */
    345 
    346 		while (!BN_is_zero(B))
    347 			{
    348 			BIGNUM *tmp;
    349 
    350 			/*
    351 			 *      0 < B < A,
    352 			 * (*) -sign*X*a  ==  B   (mod |n|),
    353 			 *      sign*Y*a  ==  A   (mod |n|)
    354 			 */
    355 
    356 			/* (D, M) := (A/B, A%B) ... */
    357 			if (BN_num_bits(A) == BN_num_bits(B))
    358 				{
    359 				if (!BN_one(D)) goto err;
    360 				if (!BN_sub(M,A,B)) goto err;
    361 				}
    362 			else if (BN_num_bits(A) == BN_num_bits(B) + 1)
    363 				{
    364 				/* A/B is 1, 2, or 3 */
    365 				if (!BN_lshift1(T,B)) goto err;
    366 				if (BN_ucmp(A,T) < 0)
    367 					{
    368 					/* A < 2*B, so D=1 */
    369 					if (!BN_one(D)) goto err;
    370 					if (!BN_sub(M,A,B)) goto err;
    371 					}
    372 				else
    373 					{
    374 					/* A >= 2*B, so D=2 or D=3 */
    375 					if (!BN_sub(M,A,T)) goto err;
    376 					if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */
    377 					if (BN_ucmp(A,D) < 0)
    378 						{
    379 						/* A < 3*B, so D=2 */
    380 						if (!BN_set_word(D,2)) goto err;
    381 						/* M (= A - 2*B) already has the correct value */
    382 						}
    383 					else
    384 						{
    385 						/* only D=3 remains */
    386 						if (!BN_set_word(D,3)) goto err;
    387 						/* currently  M = A - 2*B,  but we need  M = A - 3*B */
    388 						if (!BN_sub(M,M,B)) goto err;
    389 						}
    390 					}
    391 				}
    392 			else
    393 				{
    394 				if (!BN_div(D,M,A,B,ctx)) goto err;
    395 				}
    396 
    397 			/* Now
    398 			 *      A = D*B + M;
    399 			 * thus we have
    400 			 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
    401 			 */
    402 
    403 			tmp=A; /* keep the BIGNUM object, the value does not matter */
    404 
    405 			/* (A, B) := (B, A mod B) ... */
    406 			A=B;
    407 			B=M;
    408 			/* ... so we have  0 <= B < A  again */
    409 
    410 			/* Since the former  M  is now  B  and the former  B  is now  A,
    411 			 * (**) translates into
    412 			 *       sign*Y*a  ==  D*A + B    (mod |n|),
    413 			 * i.e.
    414 			 *       sign*Y*a - D*A  ==  B    (mod |n|).
    415 			 * Similarly, (*) translates into
    416 			 *      -sign*X*a  ==  A          (mod |n|).
    417 			 *
    418 			 * Thus,
    419 			 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
    420 			 * i.e.
    421 			 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
    422 			 *
    423 			 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
    424 			 *      -sign*X*a  ==  B   (mod |n|),
    425 			 *       sign*Y*a  ==  A   (mod |n|).
    426 			 * Note that  X  and  Y  stay non-negative all the time.
    427 			 */
    428 
    429 			/* most of the time D is very small, so we can optimize tmp := D*X+Y */
    430 			if (BN_is_one(D))
    431 				{
    432 				if (!BN_add(tmp,X,Y)) goto err;
    433 				}
    434 			else
    435 				{
    436 				if (BN_is_word(D,2))
    437 					{
    438 					if (!BN_lshift1(tmp,X)) goto err;
    439 					}
    440 				else if (BN_is_word(D,4))
    441 					{
    442 					if (!BN_lshift(tmp,X,2)) goto err;
    443 					}
    444 				else if (D->top == 1)
    445 					{
    446 					if (!BN_copy(tmp,X)) goto err;
    447 					if (!BN_mul_word(tmp,D->d[0])) goto err;
    448 					}
    449 				else
    450 					{
    451 					if (!BN_mul(tmp,D,X,ctx)) goto err;
    452 					}
    453 				if (!BN_add(tmp,tmp,Y)) goto err;
    454 				}
    455 
    456 			M=Y; /* keep the BIGNUM object, the value does not matter */
    457 			Y=X;
    458 			X=tmp;
    459 			sign = -sign;
    460 			}
    461 		}
    462 
    463 	/*
    464 	 * The while loop (Euclid's algorithm) ends when
    465 	 *      A == gcd(a,n);
    466 	 * we have
    467 	 *       sign*Y*a  ==  A  (mod |n|),
    468 	 * where  Y  is non-negative.
    469 	 */
    470 
    471 	if (sign < 0)
    472 		{
    473 		if (!BN_sub(Y,n,Y)) goto err;
    474 		}
    475 	/* Now  Y*a  ==  A  (mod |n|).  */
    476 
    477 
    478 	if (BN_is_one(A))
    479 		{
    480 		/* Y*a == 1  (mod |n|) */
    481 		if (!Y->neg && BN_ucmp(Y,n) < 0)
    482 			{
    483 			if (!BN_copy(R,Y)) goto err;
    484 			}
    485 		else
    486 			{
    487 			if (!BN_nnmod(R,Y,n,ctx)) goto err;
    488 			}
    489 		}
    490 	else
    491 		{
    492 		BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE);
    493 		goto err;
    494 		}
    495 	ret=R;
    496 err:
    497 	if ((ret == NULL) && (in == NULL)) BN_free(R);
    498 	BN_CTX_end(ctx);
    499 	bn_check_top(ret);
    500 	return(ret);
    501 	}
    502 
    503 
    504 /* BN_mod_inverse_no_branch is a special version of BN_mod_inverse.
    505  * It does not contain branches that may leak sensitive information.
    506  */
    507 static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
    508 	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
    509 	{
    510 	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
    511 	BIGNUM local_A, local_B;
    512 	BIGNUM *pA, *pB;
    513 	BIGNUM *ret=NULL;
    514 	int sign;
    515 
    516 	bn_check_top(a);
    517 	bn_check_top(n);
    518 
    519 	BN_CTX_start(ctx);
    520 	A = BN_CTX_get(ctx);
    521 	B = BN_CTX_get(ctx);
    522 	X = BN_CTX_get(ctx);
    523 	D = BN_CTX_get(ctx);
    524 	M = BN_CTX_get(ctx);
    525 	Y = BN_CTX_get(ctx);
    526 	T = BN_CTX_get(ctx);
    527 	if (T == NULL) goto err;
    528 
    529 	if (in == NULL)
    530 		R=BN_new();
    531 	else
    532 		R=in;
    533 	if (R == NULL) goto err;
    534 
    535 	BN_one(X);
    536 	BN_zero(Y);
    537 	if (BN_copy(B,a) == NULL) goto err;
    538 	if (BN_copy(A,n) == NULL) goto err;
    539 	A->neg = 0;
    540 
    541 	if (B->neg || (BN_ucmp(B, A) >= 0))
    542 		{
    543 		/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
    544 	 	 * BN_div_no_branch will be called eventually.
    545 	 	 */
    546 		pB = &local_B;
    547 		BN_with_flags(pB, B, BN_FLG_CONSTTIME);
    548 		if (!BN_nnmod(B, pB, A, ctx)) goto err;
    549 		}
    550 	sign = -1;
    551 	/* From  B = a mod |n|,  A = |n|  it follows that
    552 	 *
    553 	 *      0 <= B < A,
    554 	 *     -sign*X*a  ==  B   (mod |n|),
    555 	 *      sign*Y*a  ==  A   (mod |n|).
    556 	 */
    557 
    558 	while (!BN_is_zero(B))
    559 		{
    560 		BIGNUM *tmp;
    561 
    562 		/*
    563 		 *      0 < B < A,
    564 		 * (*) -sign*X*a  ==  B   (mod |n|),
    565 		 *      sign*Y*a  ==  A   (mod |n|)
    566 		 */
    567 
    568 		/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
    569 	 	 * BN_div_no_branch will be called eventually.
    570 	 	 */
    571 		pA = &local_A;
    572 		BN_with_flags(pA, A, BN_FLG_CONSTTIME);
    573 
    574 		/* (D, M) := (A/B, A%B) ... */
    575 		if (!BN_div(D,M,pA,B,ctx)) goto err;
    576 
    577 		/* Now
    578 		 *      A = D*B + M;
    579 		 * thus we have
    580 		 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
    581 		 */
    582 
    583 		tmp=A; /* keep the BIGNUM object, the value does not matter */
    584 
    585 		/* (A, B) := (B, A mod B) ... */
    586 		A=B;
    587 		B=M;
    588 		/* ... so we have  0 <= B < A  again */
    589 
    590 		/* Since the former  M  is now  B  and the former  B  is now  A,
    591 		 * (**) translates into
    592 		 *       sign*Y*a  ==  D*A + B    (mod |n|),
    593 		 * i.e.
    594 		 *       sign*Y*a - D*A  ==  B    (mod |n|).
    595 		 * Similarly, (*) translates into
    596 		 *      -sign*X*a  ==  A          (mod |n|).
    597 		 *
    598 		 * Thus,
    599 		 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
    600 		 * i.e.
    601 		 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
    602 		 *
    603 		 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
    604 		 *      -sign*X*a  ==  B   (mod |n|),
    605 		 *       sign*Y*a  ==  A   (mod |n|).
    606 		 * Note that  X  and  Y  stay non-negative all the time.
    607 		 */
    608 
    609 		if (!BN_mul(tmp,D,X,ctx)) goto err;
    610 		if (!BN_add(tmp,tmp,Y)) goto err;
    611 
    612 		M=Y; /* keep the BIGNUM object, the value does not matter */
    613 		Y=X;
    614 		X=tmp;
    615 		sign = -sign;
    616 		}
    617 
    618 	/*
    619 	 * The while loop (Euclid's algorithm) ends when
    620 	 *      A == gcd(a,n);
    621 	 * we have
    622 	 *       sign*Y*a  ==  A  (mod |n|),
    623 	 * where  Y  is non-negative.
    624 	 */
    625 
    626 	if (sign < 0)
    627 		{
    628 		if (!BN_sub(Y,n,Y)) goto err;
    629 		}
    630 	/* Now  Y*a  ==  A  (mod |n|).  */
    631 
    632 	if (BN_is_one(A))
    633 		{
    634 		/* Y*a == 1  (mod |n|) */
    635 		if (!Y->neg && BN_ucmp(Y,n) < 0)
    636 			{
    637 			if (!BN_copy(R,Y)) goto err;
    638 			}
    639 		else
    640 			{
    641 			if (!BN_nnmod(R,Y,n,ctx)) goto err;
    642 			}
    643 		}
    644 	else
    645 		{
    646 		BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH,BN_R_NO_INVERSE);
    647 		goto err;
    648 		}
    649 	ret=R;
    650 err:
    651 	if ((ret == NULL) && (in == NULL)) BN_free(R);
    652 	BN_CTX_end(ctx);
    653 	bn_check_top(ret);
    654 	return(ret);
    655 	}
    656