Home | History | Annotate | Download | only in graphics
      1 page.title=OpenGL ES
      2 page.tags="games"
      3 @jd:body
      4 
      5 <div id="qv-wrapper">
      6   <div id="qv">
      7     <h2>In this document</h2>
      8 
      9     <ol>
     10       <li><a href="#basics">The Basics</a>
     11         <ol>
     12           <li><a href="#packages">OpenGL ES packages</a></li>
     13         </ol>
     14       <li><a href="#manifest">Declaring OpenGL Requirements</a></li>
     15       <li><a href="#coordinate-mapping">Mapping Coordinates for Drawn Objects</a>
     16         <ol>
     17           <li><a href="#proj-es1">Projection and camera in ES 1.0</a></li>
     18           <li><a href="#proj-es2">Projection and camera in ES 2.0 and higher</a></li>
     19         </ol>
     20       </li>
     21       <li><a href="#faces-winding">Shape Faces and Winding</a></li>
     22       <li><a href="#compatibility">OpenGL Versions and Device Compatibility</a>
     23         <ol>
     24           <li><a href="#textures">Texture compression support</a></li>
     25           <li><a href="#gl-extension-query">Determining OpenGL extensions</a></li>
     26           <li><a href="#version-check">Checking OpenGL ES Version</a></li>
     27         </ol>
     28       </li>
     29       <li><a href="#choosing-version">Choosing an OpenGL API Version</a></li>
     30     </ol>
     31     <h2>Key classes</h2>
     32     <ol>
     33       <li>{@link android.opengl.GLSurfaceView}</li>
     34       <li>{@link android.opengl.GLSurfaceView.Renderer}</li>
     35     </ol>
     36     <h2>Related samples</h2>
     37     <ol>
     38       <li><a href="{@docRoot}resources/samples/ApiDemos/src/com/example/android/apis/graphics/GLSurfaceViewActivity.html">GLSurfaceViewActivity</a></li>
     39       <li><a href="{@docRoot}resources/samples/ApiDemos/src/com/example/android/apis/graphics/GLES20Activity.html">GLES20Activity</a></li>
     40       <li><a href="{@docRoot}resources/samples/ApiDemos/src/com/example/android/apis/graphics/TouchRotateActivity.html">TouchRotateActivity</a></li>
     41       <li><a
     42 href="{@docRoot}resources/samples/ApiDemos/src/com/example/android/apis/graphics/CompressedTextureActivity.html">Compressed Textures</a></li>
     43     </ol>
     44     <h2>See also</h2>
     45     <ol>
     46       <li><a href="{@docRoot}training/graphics/opengl/index.html">
     47           Displaying Graphics with OpenGL ES</a></li>
     48       <li><a href="http://www.khronos.org/opengles/">OpenGL ES</a></li>
     49       <li><a href="http://www.khronos.org/opengles/1_X/">OpenGL ES 1.x Specification</a></li>
     50       <li><a href="http://www.khronos.org/opengles/2_X/">OpenGL ES 2.x specification</a></li>
     51       <li><a href="http://www.khronos.org/opengles/3_X/">OpenGL ES 3.x specification</a></li>
     52     </ol>
     53   </div>
     54 </div>
     55 
     56 <p>Android includes support for high performance 2D and 3D graphics with the Open Graphics Library
     57 (OpenGL&reg;), specifically, the OpenGL ES API. OpenGL is a cross-platform graphics API that specifies a
     58 standard software interface for 3D graphics processing hardware. OpenGL ES is a flavor of the OpenGL
     59 specification intended for embedded devices. Android supports several versions of the OpenGL ES
     60 API:</p>
     61 
     62 <ul>
     63   <li>OpenGL ES 1.0 and 1.1 - This API specification is supported by Android 1.0 and higher.</li>
     64   <li>OpenGL ES 2.0 - This API specification is supported by Android 2.2 (API level 8) and higher.
     65     </li>
     66   <li>OpenGL ES 3.0 - This API specification is supported by Android 4.3 (API level 18) and higher.
     67     </li>
     68 </ul>
     69 
     70 <p class="caution"><strong>Caution:</strong>
     71   Support of the OpenGL ES 3.0 API on a device requires an implementation of this graphics
     72   pipeline provided by the device manufacturer. A device running Android 4.3 or higher <em>may
     73   not support</em> the OpenGL ES 3.0 API. For information on checking what version of OpenGL ES
     74   is supported at run time, see <a href="#version-check">Checking OpenGL ES Version</a>.
     75 </p>
     76 
     77 <p class="note"><strong>Note:</strong>
     78   The specific API provided by the Android framework is similar to the J2ME JSR239 OpenGL ES API,
     79   but is not identical. If you are familiar with J2ME JSR239 specification, be alert for
     80   variations.</p>
     81 
     82 
     83 
     84 <h2 id="basics">The Basics</h2>
     85 
     86 <p>Android supports OpenGL both through its framework API and the Native Development
     87 Kit (NDK). This topic focuses on the Android framework interfaces. For more information about the
     88 NDK, see the <a href="{@docRoot}tools/sdk/ndk/index.html">Android NDK</a>.
     89 
     90 <p>There are two foundational classes in the Android framework that let you create and manipulate
     91 graphics with the OpenGL ES API: {@link android.opengl.GLSurfaceView} and {@link
     92 android.opengl.GLSurfaceView.Renderer}. If your goal is to use OpenGL in your Android application,
     93 understanding how to implement these classes in an activity should be your first objective.
     94 </p>
     95 
     96 <dl>
     97   <dt><strong>{@link android.opengl.GLSurfaceView}</strong></dt>
     98   <dd>This class is a {@link android.view.View} where you can draw and manipulate objects using
     99     OpenGL API calls and is similar in function to a {@link android.view.SurfaceView}. You can use
    100     this class by creating an instance of {@link android.opengl.GLSurfaceView} and adding your
    101     {@link android.opengl.GLSurfaceView.Renderer Renderer} to it. However, if you want to capture
    102     touch screen events, you should extend the {@link android.opengl.GLSurfaceView} class to
    103     implement the touch listeners, as shown in OpenGL training lesson,
    104     <a href="{@docRoot}training/graphics/opengl/touch.html">Responding to Touch Events</a>.</dd>
    105 
    106   <dt><strong>{@link android.opengl.GLSurfaceView.Renderer}</strong></dt>
    107   <dd>This interface defines the methods required for drawing graphics in a {@link
    108     android.opengl.GLSurfaceView}. You must provide an implementation of this interface as a
    109     separate class and attach it to your {@link android.opengl.GLSurfaceView} instance using
    110     {@link android.opengl.GLSurfaceView#setRenderer(android.opengl.GLSurfaceView.Renderer)
    111     GLSurfaceView.setRenderer()}.
    112 
    113     <p>The {@link android.opengl.GLSurfaceView.Renderer} interface requires that you implement the
    114       following methods:</p>
    115     <ul>
    116       <li>
    117         {@link
    118     android.opengl.GLSurfaceView.Renderer#onSurfaceCreated(javax.microedition.khronos.opengles.GL10,
    119     javax.microedition.khronos.egl.EGLConfig) onSurfaceCreated()}: The system calls this
    120     method once, when creating the {@link android.opengl.GLSurfaceView}. Use this method to perform
    121     actions that need to happen only once, such as setting OpenGL environment parameters or
    122     initializing OpenGL graphic objects.
    123       </li>
    124       <li>
    125         {@link
    126         android.opengl.GLSurfaceView.Renderer#onDrawFrame(javax.microedition.khronos.opengles.GL10)
    127         onDrawFrame()}: The system calls this method on each redraw of the {@link
    128         android.opengl.GLSurfaceView}. Use this method as the primary execution point for
    129         drawing (and re-drawing) graphic objects.</li>
    130       <li>
    131         {@link
    132     android.opengl.GLSurfaceView.Renderer#onSurfaceChanged(javax.microedition.khronos.opengles.GL10,
    133     int, int) onSurfaceChanged()}: The system calls this method when the {@link
    134     android.opengl.GLSurfaceView} geometry changes, including changes in size of the {@link
    135     android.opengl.GLSurfaceView} or orientation of the device screen. For example, the system calls
    136     this method when the device changes from portrait to landscape orientation. Use this method to
    137     respond to changes in the {@link android.opengl.GLSurfaceView} container.
    138       </li>
    139     </ul>
    140     </dd>
    141 </dl>
    142 
    143 <h3 id="packages">OpenGL ES packages</h3>
    144 <p>Once you have established a container view for OpenGL ES using {@link
    145 android.opengl.GLSurfaceView} and {@link android.opengl.GLSurfaceView.Renderer}, you can begin
    146 calling OpenGL APIs using the following classes:</p>
    147 
    148 <ul>
    149   <li>OpenGL ES 1.0/1.1 API Packages
    150     <ul>
    151       <li>{@link android.opengl} - This package provides a static interface to the OpenGL ES
    152         1.0/1.1 classes and better performance than the {@code javax.microedition.khronos} package
    153         interfaces.
    154         <ul>
    155           <li>{@link android.opengl.GLES10}</li>
    156           <li>{@link android.opengl.GLES10Ext}</li>
    157           <li>{@link android.opengl.GLES11}</li>
    158           <li>{@link android.opengl.GLES11Ext}</li>
    159         </ul>
    160       </li>
    161       <li>{@link javax.microedition.khronos.opengles} - This package provides the standard
    162         implementation of OpenGL ES 1.0/1.1.
    163         <ul>
    164           <li>{@link javax.microedition.khronos.opengles.GL10}</li>
    165           <li>{@link javax.microedition.khronos.opengles.GL10Ext}</li>
    166           <li>{@link javax.microedition.khronos.opengles.GL11}</li>
    167           <li>{@link javax.microedition.khronos.opengles.GL11Ext}</li>
    168           <li>{@link javax.microedition.khronos.opengles.GL11ExtensionPack}</li>
    169         </ul>
    170         </li>
    171       </ul>
    172   </li>
    173   <li>OpenGL ES 2.0 API Class
    174     <ul>
    175       <li>{@link android.opengl.GLES20 android.opengl.GLES20} - This package provides the
    176         interface to OpenGL ES 2.0 and is available starting with Android 2.2 (API level 8).</li>
    177     </ul>
    178   </li>
    179   <li>OpenGL ES 3.0 API Class
    180     <ul>
    181       <li>{@link android.opengl.GLES30 android.opengl.GLES30} - This package provides the
    182         interface to OpenGL ES 3.0 and is available starting with Android 4.3 (API level 18).</li>
    183     </ul>
    184   </li>
    185 </ul>
    186 
    187 <p>If you want to start building an app with OpenGL ES right away, follow the
    188 <a href="{@docRoot}training/graphics/opengl/index.html">Displaying Graphics with OpenGL ES</a>
    189 class.
    190 </p>
    191 
    192 <h2 id="manifest">Declaring OpenGL Requirements</h2>
    193 <p>If your application uses OpenGL features that are not available on all devices, you must include
    194 these requirements in your <a
    195 href="{@docRoot}guide/topics/manifest/manifest-intro.html">AndroidManifest.xml</a> file.
    196 Here are the most common OpenGL manifest declarations:</p>
    197 
    198 <ul>
    199   <li><strong>OpenGL ES version requirements</strong> - If your application only supports OpenGL ES
    200 2.0, you must declare that requirement by adding the following settings to your manifest as
    201 shown below.
    202 
    203 <pre>
    204 &lt;!-- Tell the system this app requires OpenGL ES 2.0. --&gt;
    205 &lt;uses-feature android:glEsVersion="0x00020000" android:required="true" /&gt;
    206 </pre>
    207 
    208     <p>Adding this declaration causes Google Play to restrict your application from being
    209     installed on devices that do not support OpenGL ES 2.0. If your application is exclusively for
    210     devices that support OpenGL ES 3.0, you can also specify this in your manifest:</p>
    211 
    212 <pre>
    213 &lt;!-- Tell the system this app requires OpenGL ES 3.0. --&gt;
    214 &lt;uses-feature android:glEsVersion="0x00030000" android:required="true" /&gt;
    215 </pre>
    216 
    217     <p class="note"><strong>Note:</strong>
    218       The OpenGL ES 3.0 API is backwards-compatible with the 2.0 API, which means you can be more
    219       flexible with your implementation of OpenGL ES in your application. By declaring the OpenGL
    220       ES 2.0 API as a requirement in your manifest, you can use that API version as a default, check
    221       for the availability of the 3.0 API at run time and then use OpenGL ES 3.0 features if the
    222       device supports it. For more information about checking the OpenGL ES version supported by a
    223       device, see <a href="#version-check">Checking OpenGL ES Version</a>.
    224     </p>
    225 
    226   </li>
    227   <li><strong>Texture compression requirements</strong> - If your application uses texture
    228 compression formats, you must declare the formats your application supports in your manifest file
    229 using <a href="{@docRoot}guide/topics/manifest/supports-gl-texture-element.html">{@code
    230 &lt;supports-gl-texture&gt;}</a>. For more information about available texture compression
    231 formats, see <a href="#textures">Texture compression support</a>.
    232 
    233 <p>Declaring texture compression requirements in your manifest hides your application from users
    234 with devices that do not support at least one of your declared compression types. For more
    235 information on how Google Play filtering works for texture compressions, see the <a
    236 href="{@docRoot}guide/topics/manifest/supports-gl-texture-element.html#market-texture-filtering">
    237 Google Play and texture compression filtering</a> section of the {@code
    238 &lt;supports-gl-texture&gt;} documentation.</p>
    239   </li>
    240 </ul>
    241 
    242 
    243 <h2 id="coordinate-mapping">Mapping Coordinates for Drawn Objects</h2>
    244 
    245 <p>One of the basic problems in displaying graphics on Android devices is that their screens can
    246 vary in size and shape. OpenGL assumes a square, uniform coordinate system and, by default, happily
    247 draws those coordinates onto your typically non-square screen as if it is perfectly square.</p>
    248 
    249 <img src="{@docRoot}images/opengl/coordinates.png">
    250 <p class="img-caption">
    251   <strong>Figure 1.</strong> Default OpenGL coordinate system (left) mapped to a typical Android
    252 device screen (right).
    253 </p>
    254 
    255 <p>The illustration above shows the uniform coordinate system assumed for an OpenGL frame on the
    256 left, and how these coordinates actually map to a typical device screen in landscape orientation
    257 on the right. To solve this problem, you can apply OpenGL projection modes and camera views to
    258 transform coordinates so your graphic objects have the correct proportions on any display.</p>
    259 
    260 <p>In order to apply projection and camera views, you create a projection matrix and a camera view
    261 matrix and apply them to the OpenGL rendering pipeline. The projection matrix recalculates the
    262 coordinates of your graphics so that they map correctly to Android device screens. The camera view
    263 matrix creates a transformation that renders objects from a specific eye position.</p>
    264 
    265 
    266 <h3 id="proj-es1">Projection and camera view in OpenGL ES 1.0</h3>
    267 <p>In the ES 1.0 API, you apply projection and camera view by creating each matrix and then
    268 adding them to the OpenGL environment.</p>
    269 
    270 <ol>
    271 <li><strong>Projection matrix</strong> - Create a projection matrix using the geometry of the
    272 device screen in order to recalculate object coordinates so they are drawn with correct proportions.
    273 The following example code demonstrates how to modify the {@link
    274 android.opengl.GLSurfaceView.Renderer#onSurfaceChanged(javax.microedition.khronos.opengles.GL10,
    275 int, int) onSurfaceChanged()} method of a {@link android.opengl.GLSurfaceView.Renderer}
    276 implementation to create a projection matrix based on the screen's aspect ratio and apply it to the
    277 OpenGL rendering environment.
    278 
    279 <pre>
    280 public void onSurfaceChanged(GL10 gl, int width, int height) {
    281     gl.glViewport(0, 0, width, height);
    282 
    283     // make adjustments for screen ratio
    284     float ratio = (float) width / height;
    285     gl.glMatrixMode(GL10.GL_PROJECTION);        // set matrix to projection mode
    286     gl.glLoadIdentity();                        // reset the matrix to its default state
    287     gl.glFrustumf(-ratio, ratio, -1, 1, 3, 7);  // apply the projection matrix
    288 }
    289 </pre>
    290 </li>
    291 
    292 <li><strong>Camera transformation matrix</strong> - Once you have adjusted the coordinate system
    293 using a projection matrix, you must also apply a camera view. The following example code shows how
    294 to modify the {@link
    295 android.opengl.GLSurfaceView.Renderer#onDrawFrame(javax.microedition.khronos.opengles.GL10)
    296 onDrawFrame()} method of a {@link android.opengl.GLSurfaceView.Renderer}
    297 implementation to apply a model view and use the
    298 {@link android.opengl.GLU#gluLookAt(javax.microedition.khronos.opengles.GL10, float, float, float,
    299 float, float, float, float, float, float) GLU.gluLookAt()} utility to create a viewing tranformation
    300 which simulates a camera position.
    301 
    302 <pre>
    303 public void onDrawFrame(GL10 gl) {
    304     ...
    305     // Set GL_MODELVIEW transformation mode
    306     gl.glMatrixMode(GL10.GL_MODELVIEW);
    307     gl.glLoadIdentity();                      // reset the matrix to its default state
    308 
    309     // When using GL_MODELVIEW, you must set the camera view
    310     GLU.gluLookAt(gl, 0, 0, -5, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
    311     ...
    312 }
    313 </pre>
    314 </li>
    315 </ol>
    316 
    317 
    318 <h3 id="proj-es2">Projection and camera view in OpenGL ES 2.0 and higher</h3>
    319 
    320 <p>In the ES 2.0 and 3.0 APIs, you apply projection and camera view by first adding a matrix member
    321 to the vertex shaders of your graphics objects. With this matrix member added, you can then
    322 generate and apply projection and camera viewing matrices to your objects.</p>
    323 
    324 <ol>
    325 <li><strong>Add matrix to vertex shaders</strong> - Create a variable for the view projection matrix
    326 and include it as a multiplier of the shader's position. In the following example vertex shader
    327 code, the included {@code uMVPMatrix} member allows you to apply projection and camera viewing
    328 matrices to the coordinates of objects that use this shader.
    329 
    330 <pre>
    331 private final String vertexShaderCode =
    332 
    333     // This matrix member variable provides a hook to manipulate
    334     // the coordinates of objects that use this vertex shader.
    335     "uniform mat4 uMVPMatrix;   \n" +
    336 
    337     "attribute vec4 vPosition;  \n" +
    338     "void main(){               \n" +
    339     // The matrix must be included as part of gl_Position
    340     // Note that the uMVPMatrix factor *must be first* in order
    341     // for the matrix multiplication product to be correct.
    342     " gl_Position = uMVPMatrix * vPosition; \n" +
    343 
    344     "}  \n";
    345 </pre>
    346   <p class="note"><strong>Note:</strong> The example above defines a single transformation matrix
    347 member in the vertex shader into which you apply a combined projection matrix and camera view
    348 matrix. Depending on your application requirements, you may want to define separate projection
    349 matrix and camera viewing matrix members in your vertex shaders so you can change them
    350 independently.</p>
    351 </li>
    352 <li><strong>Access the shader matrix</strong> - After creating a hook in your vertex shaders to
    353 apply projection and camera view, you can then access that variable to apply projection and
    354 camera viewing matrices. The following code shows how to modify the {@link
    355 android.opengl.GLSurfaceView.Renderer#onSurfaceCreated(javax.microedition.khronos.opengles.GL10,
    356 javax.microedition.khronos.egl.EGLConfig) onSurfaceCreated()} method of a {@link
    357 android.opengl.GLSurfaceView.Renderer} implementation to access the matrix
    358 variable defined in the vertex shader above.
    359 
    360 <pre>
    361 public void onSurfaceCreated(GL10 unused, EGLConfig config) {
    362     ...
    363     muMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix");
    364     ...
    365 }
    366 </pre>
    367 </li>
    368 <li><strong>Create projection and camera viewing matrices</strong> - Generate the projection and
    369 viewing matrices to be applied the graphic objects. The following example code shows how to modify
    370 the {@link android.opengl.GLSurfaceView.Renderer#onSurfaceCreated onSurfaceCreated()} and
    371 {@link android.opengl.GLSurfaceView.Renderer#onSurfaceChanged onSurfaceChanged()} methods of a
    372 {@link android.opengl.GLSurfaceView.Renderer} implementation to create camera view matrix and a
    373 projection matrix based on the screen aspect ratio of the device.
    374 
    375 <pre>
    376 public void onSurfaceCreated(GL10 unused, EGLConfig config) {
    377     ...
    378     // Create a camera view matrix
    379     Matrix.setLookAtM(mVMatrix, 0, 0, 0, -3, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
    380 }
    381 
    382 public void onSurfaceChanged(GL10 unused, int width, int height) {
    383     GLES20.glViewport(0, 0, width, height);
    384 
    385     float ratio = (float) width / height;
    386 
    387     // create a projection matrix from device screen geometry
    388     Matrix.frustumM(mProjMatrix, 0, -ratio, ratio, -1, 1, 3, 7);
    389 }
    390 </pre>
    391 </li>
    392 
    393 <li><strong>Apply projection and camera viewing matrices</strong> - To apply the projection and
    394 camera view transformations, multiply the matrices together and then set them into the vertex
    395 shader. The following example code shows how modify the {@link
    396 android.opengl.GLSurfaceView.Renderer#onDrawFrame(javax.microedition.khronos.opengles.GL10)
    397 onDrawFrame()} method of a {@link android.opengl.GLSurfaceView.Renderer} implementation to combine
    398 the projection matrix and camera view created in the code above and then apply it to the graphic
    399 objects to be rendered by OpenGL.
    400 
    401 <pre>
    402 public void onDrawFrame(GL10 unused) {
    403     ...
    404     // Combine the projection and camera view matrices
    405     Matrix.multiplyMM(mMVPMatrix, 0, mProjMatrix, 0, mVMatrix, 0);
    406 
    407     // Apply the combined projection and camera view transformations
    408     GLES20.glUniformMatrix4fv(muMVPMatrixHandle, 1, false, mMVPMatrix, 0);
    409 
    410     // Draw objects
    411     ...
    412 }
    413 </pre>
    414 </li>
    415 </ol>
    416 <p>For a complete example of how to apply projection and camera view with OpenGL ES 2.0, see the <a
    417 href="{@docRoot}training/graphics/opengl/index.html">Displaying Graphics with OpenGL ES</a> class.</p>
    418 
    419 
    420 <h2 id="faces-winding">Shape Faces and Winding</h2>
    421 
    422 <p>In OpenGL, the face of a shape is a surface defined by three or more points in three-dimensional
    423 space. A set of three or more three-dimensional points (called vertices in OpenGL) have a front face
    424 and a back face. How do you know which face is front and which is the back? Good question. The
    425 answer has to do with winding, or, the direction in which you define the points of a shape.</p>
    426 
    427 <img src="{@docRoot}images/opengl/ccw-winding.png">
    428 <p class="img-caption">
    429   <strong>Figure 1.</strong> Illustration of a coordinate list which translates into a
    430 counterclockwise drawing order.</p>
    431 
    432 <p>In this example, the points of the triangle are defined in an order such that they are drawn in a
    433 counterclockwise direction. The order in which these coordinates are drawn defines the winding
    434 direction for the shape. By default, in OpenGL, the face which is drawn counterclockwise is the
    435 front face. The triangle shown in Figure 1 is defined so that you are looking at the front face of
    436 the shape (as interpreted by OpenGL) and the other side is the back face.</p>
    437 
    438 <p>Why is it important to know which face of a shape is the front face? The answer has to do with a
    439 commonly used feature of OpenGL, called face culling. Face culling is an option for the OpenGL
    440 environment which allows the rendering pipeline to ignore (not calculate or draw) the back face of a
    441 shape, saving time, memory and processing cycles:</p>
    442 
    443 <pre>
    444 // enable face culling feature
    445 gl.glEnable(GL10.GL_CULL_FACE);
    446 // specify which faces to not draw
    447 gl.glCullFace(GL10.GL_BACK);
    448 </pre>
    449 
    450 <p>If you try to use the face culling feature without knowing which sides of your shapes are the
    451 front and back, your OpenGL graphics are going to look a bit thin, or possibly not show up at all.
    452 So, always define the coordinates of your OpenGL shapes in a counterclockwise drawing order.</p>
    453 
    454 <p class="note"><strong>Note:</strong> It is possible to set an OpenGL environment to treat the
    455 clockwise face as the front face, but doing so requires more code and is likely to confuse
    456 experienced OpenGL developers when you ask them for help. So dont do that.</p>
    457 
    458 
    459 <h2 id="compatibility">OpenGL Versions and Device Compatibility</h2>
    460 
    461 <p>The OpenGL ES 1.0 and 1.1 API specifications have been supported since Android 1.0.
    462 Beginning with Android 2.2 (API level 8), the framework supports the OpenGL ES 2.0 API
    463 specification. OpenGL ES 2.0 is supported by most Android devices and is recommended for new
    464 applications being developed with OpenGL. OpenGL ES 3.0 is supported with Android 4.3
    465 (API level 18) and higher, on devices that provide an implementation of the OpenGL ES 3.0 API.
    466 For information about the relative number of Android-powered devices
    467 that support a given version of OpenGL ES, see the
    468 <a href="{@docRoot}about/dashboards/index.html#OpenGL">OpenGL ES Version Dashboard</a>.</p>
    469 
    470 <p>Graphics programming with OpenGL ES 1.0/1.1 API is significantly different than using the 2.0
    471 and higher versions. The 1.x version of the API has more convenience methods and a fixed graphics
    472 pipeline, while the OpenGL ES 2.0 and 3.0 APIs provide more direct control of the pipeline through
    473 use of OpenGL shaders. You should carefully consider the graphics requirements and choose the API
    474 version that works best for your application. For more information, see
    475 <a href="#choosing-version">Choosing an OpenGL API Version</a>.</p>
    476 
    477 <p>The OpenGL ES 3.0 API provides additional features and better performance than the 2.0 API and is
    478 also backward compatible. This means that you can potentially write your application targeting
    479 OpenGL ES 2.0 and conditionally include OpenGL ES 3.0 graphics features if they are available. For
    480 more information on checking for availability of the 3.0 API, see
    481 <a href="#version-check">Checking OpenGL ES Version</a></p>
    482 
    483 
    484 <h3 id="textures">Texture compression support</h3>
    485 
    486 <p>Texture compression can significantly increase the performance of your OpenGL application by
    487 reducing memory requirements and making more efficient use of memory bandwidth. The Android
    488 framework provides support for the ETC1 compression format as a standard feature, including a {@link
    489 android.opengl.ETC1Util} utility class and the {@code etc1tool} compression tool (located in the
    490 Android SDK at {@code &lt;sdk&gt;/tools/}). For an example of an Android application that uses
    491 texture compression, see the {@code CompressedTextureActivity} code sample in Android SDK
    492 ({@code &lt;sdk&gt;/samples/&lt;version&gt;/ApiDemos/src/com/example/android/apis/graphics/}).</p>
    493 
    494 <p class="caution"><strong>Caution:</strong> The ETC1 format is supported by most Android devices,
    495 but it not guaranteed to be available. To check if the ETC1 format is supported on a device, call
    496 the {@link android.opengl.ETC1Util#isETC1Supported() ETC1Util.isETC1Supported()} method.</p>
    497 
    498 <p class="note"><b>Note:</b> The ETC1 texture compression format does not support textures with an
    499 transparency (alpha channel). If your application requires textures with transparency, you should
    500 investigate other texture compression formats available on your target devices.</p>
    501 
    502 <p>The ETC2/EAC texture compression formats are guaranteed to be available when using the OpenGL ES
    503 3.0 API. This texture format offers excellent compression ratios with high visual quality and the
    504 format also supports transparency (alpha channel).</p>
    505 
    506 <p>Beyond the ETC formats, Android devices have varied support for texture compression based on
    507 their GPU chipsets and OpenGL implementations. You should investigate texture compression support on
    508 the devices you are are targeting to determine what compression types your application should
    509 support. In order to determine what texture formats are supported on a given device, you must <a
    510 href="#gl-extension-query">query the device</a> and review the <em>OpenGL extension names</em>,
    511 which identify what texture compression formats (and other OpenGL features) are supported by the
    512 device. Some commonly supported texture compression formats are as follows:</p>
    513 
    514 <ul>
    515   <li><strong>ATITC (ATC)</strong> - ATI texture compression (ATITC or ATC) is available on a
    516 wide variety of devices and supports fixed rate compression for RGB textures with and without
    517 an alpha channel. This format may be represented by several OpenGL extension names, for example:
    518     <ul>
    519       <li>{@code GL_AMD_compressed_ATC_texture}</li>
    520       <li>{@code GL_ATI_texture_compression_atitc}</li>
    521     </ul>
    522   </li>
    523   <li><strong>PVRTC</strong> - PowerVR texture compression (PVRTC) is available on a wide
    524 variety of devices and supports 2-bit and 4-bit per pixel textures with or without an alpha channel.
    525 This format is represented by the following OpenGL extension name:
    526     <ul>
    527       <li>{@code GL_IMG_texture_compression_pvrtc}</li>
    528     </ul>
    529   </li>
    530   <li><strong>S3TC (DXT<em>n</em>/DXTC)</strong> - S3 texture compression (S3TC) has several
    531 format variations (DXT1 to DXT5) and is less widely available. The format supports RGB textures with
    532 4-bit alpha or 8-bit alpha channels. This format may be represented by several OpenGL extension
    533 names, for example:
    534     <ul>
    535       <li>{@code GL_OES_texture_compression_S3TC}</li>
    536       <li>{@code GL_EXT_texture_compression_s3tc}</li>
    537       <li>{@code GL_EXT_texture_compression_dxt1}</li>
    538       <li>{@code GL_EXT_texture_compression_dxt3}</li>
    539       <li>{@code GL_EXT_texture_compression_dxt5}</li>
    540     </ul>
    541   </li>
    542   <li><strong>3DC</strong> - 3DC texture compression (3DC) is a less widely available format that
    543 supports RGB textures with an alpha channel. This format is represented by the following OpenGL
    544 extension name:
    545     <ul>
    546       <li>{@code GL_AMD_compressed_3DC_texture}</li>
    547     </ul>
    548   </li>
    549 </ul>
    550 
    551 <p class="warning"><strong>Warning:</strong> These texture compression formats are <em>not
    552 supported</em> on all devices. Support for these formats can vary by manufacturer and device. For
    553 information on how to determine what texture compression formats are on a particular device, see
    554 the next section.
    555 </p>
    556 
    557 <p class="note"><strong>Note:</strong> Once you decide which texture compression formats your
    558 application will support, make sure you declare them in your manifest using <a
    559 href="{@docRoot}guide/topics/manifest/supports-gl-texture-element.html">&lt;supports-gl-texture&gt;
    560 </a>. Using this declaration enables filtering by external services such as Google Play, so that
    561 your app is installed only on devices that support the formats your app requires. For details, see
    562 <a
    563 href="{@docRoot}guide/topics/graphics/opengl.html#manifest">OpenGL manifest declarations</a>.</p>
    564 
    565 
    566 <h3 id="gl-extension-query">Determining OpenGL extensions</h3>
    567 <p>Implementations of OpenGL vary by Android device in terms of the extensions to the OpenGL ES API
    568 that are supported. These extensions include texture compressions, but typically also include other
    569 extensions to the OpenGL feature set.</p>
    570 
    571 <p>To determine what texture compression formats, and other OpenGL extensions, are supported on a
    572 particular device:</p>
    573 <ol>
    574   <li>Run the following code on your target devices to determine what texture compression
    575 formats are supported:
    576 <pre>
    577 String extensions = javax.microedition.khronos.opengles.GL10.glGetString(
    578         GL10.GL_EXTENSIONS);
    579 </pre>
    580   <p class="warning"><b>Warning:</b> The results of this call <em>vary by device model!</em> You
    581 must run this call on several target devices to determine what compression types are commonly
    582 supported.</p>
    583   </li>
    584   <li>Review the output of this method to determine what OpenGL extensions are supported on the
    585 device.</li>
    586 </ol>
    587 
    588 
    589 <h3 id="version-check">Checking OpenGL ES Version</h3>
    590 
    591 <p>There are several versions of the OpenGL ES available on Android devices. You can specify the
    592 minimum version of the API your application requires in your <a href="#manifest">manifest</a>, but
    593 you may also want to take advantage of features in a newer API at the same time. For example,
    594 the OpenGL ES 3.0 API is backward-compatible with the 2.0 version of the API, so you may want to
    595 write your application so that it uses OpenGL ES 3.0 features, but falls back to the 2.0 API if the
    596 3.0 API is not available.</p>
    597 
    598 <p>Before using OpenGL ES features from a version higher than the minimum required in your
    599 application manifest, your application should check the version of the API available on the device.
    600 You can do this in one of two ways:</p>
    601 
    602 <ol>
    603   <li>Attempt create the higher-level OpenGL ES context ({@link android.opengl.EGLContext}) and
    604     check the result.</li>
    605   <li>Create a minimum-supported OpenGL ES context and check the version value.</li>
    606 </ol>
    607 
    608 <p>The following example code demonstrates how to check the available OpenGL ES version by creating
    609 an {@link android.opengl.EGLContext} and checking the result. This example shows how to check for
    610 OpenGL ES 3.0 version:</p>
    611 
    612 <pre>
    613 private static double glVersion = 3.0;
    614 
    615 private static class ContextFactory implements GLSurfaceView.EGLContextFactory {
    616 
    617   private static int EGL_CONTEXT_CLIENT_VERSION = 0x3098;
    618 
    619   public EGLContext createContext(
    620           EGL10 egl, EGLDisplay display, EGLConfig eglConfig) {
    621 
    622       Log.w(TAG, "creating OpenGL ES " + glVersion + " context");
    623       int[] attrib_list = {EGL_CONTEXT_CLIENT_VERSION, (int) glVersion,
    624               EGL10.EGL_NONE };
    625       // attempt to create a OpenGL ES 3.0 context
    626       EGLContext context = egl.eglCreateContext(
    627               display, eglConfig, EGL10.EGL_NO_CONTEXT, attrib_list);
    628       return context; // returns null if 3.0 is not supported;
    629   }
    630 }
    631 </pre>
    632 
    633 <p>If the {@code createContext()} method show above returns null, your code should create a OpenGL
    634 ES 2.0 context instead and fall back to using only that API.</p>
    635 
    636 <p>The following code example demonstrates how to check the OpenGL ES version by creating a minimum
    637 supported context first, and then checking the version string:</p>
    638 
    639 <pre>
    640 // Create a minimum supported OpenGL ES context, then check:
    641 String version = javax.microedition.khronos.opengles.GL10.glGetString(
    642         GL10.GL_VERSION);
    643 Log.w(TAG, "Version: " + version );
    644 // The version format is displayed as: "OpenGL ES &lt;major&gt;.&lt;minor&gt;"
    645 // followed by optional content provided by the implementation.
    646 </pre>
    647 
    648 <p>With this approach, if you discover that the device supports a higher-level API version, you
    649 must destroy the minimum OpenGL ES context and create a new context with the higher
    650 available API version.</p>
    651 
    652 
    653 <h2 id="choosing-version">Choosing an OpenGL API Version</h2>
    654 
    655 <p>OpenGL ES 1.0 API version (and the 1.1 extensions), version 2.0, and version 3.0 all provide high
    656 performance graphics interfaces for creating 3D games, visualizations and user interfaces. Graphics
    657 progamming for OpenGL ES 2.0 and 3.0 is largely similar, with version 3.0 representing a superset
    658 of the 2.0 API with additional features. Programming for the OpenGL ES 1.0/1.1 API versus OpenGL ES
    659 2.0 and 3.0 differs significantly, and so developers should carefully consider the following
    660 factors before starting development with these APIs:</p>
    661 
    662 <ul>
    663   <li><strong>Performance</strong> - In general, OpenGL ES 2.0 and 3.0 provide faster graphics
    664     performance than the ES 1.0/1.1 APIs. However, the performance difference can vary depending on
    665     the Android device your OpenGL application is running on, due to differences in hardware
    666     manufacturer's implementation of the OpenGL ES graphics pipeline.</li>
    667   <li><strong>Device Compatibility</strong> - Developers should consider the types of devices,
    668     Android versions and the OpenGL ES versions available to their customers. For more information
    669     on OpenGL compatibility across devices, see the <a href="#compatibility">OpenGL Versions and
    670     Device Compatibility</a> section.</li>
    671   <li><strong>Coding Convenience</strong> - The OpenGL ES 1.0/1.1 API provides a fixed function
    672     pipeline and convenience functions which are not available in the OpenGL ES 2.0 or 3.0 APIs.
    673     Developers who are new to OpenGL ES may find coding for version 1.0/1.1 faster and more
    674     convenient.</li>
    675   <li><strong>Graphics Control</strong> - The OpenGL ES 2.0 and 3.0 APIs provide a higher degree
    676     of control by providing a fully programmable pipeline through the use of shaders. With more
    677     direct control of the graphics processing pipeline, developers can create effects that would be
    678     very difficult to generate using the 1.0/1.1 API.</li>
    679   <li><strong>Texture Support</strong> - The OpenGL ES 3.0 API has the best support for texture
    680     compression because it guarantees availability of the ETC2 compression format, which supports
    681     transparency. The 1.x and 2.0 API implementations usually include support for ETC1, however
    682     this texture format does not support transparency and so you must typically provide resources
    683     in other compression formats supported by the devices you are targeting. For more information,
    684     see <a href="#textures">Texture compression support</a>.</li>
    685 </ul>
    686 
    687 <p>While performance, compatibility, convenience, control and other factors may influence your
    688 decision, you should pick an OpenGL API version based on what you think provides the best experience
    689 for your users.</p>
    690 
    691