1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using // it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #define DEBUG_TYPE "loop-reduce" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/SetVector.h" 60 #include "llvm/ADT/SmallBitVector.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/Analysis/Dominators.h" 63 #include "llvm/Analysis/IVUsers.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/TargetTransformInfo.h" 67 #include "llvm/Assembly/Writer.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Instructions.h" 71 #include "llvm/IR/IntrinsicInst.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ValueHandle.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include <algorithm> 79 using namespace llvm; 80 81 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 82 /// bail out. This threshold is far beyond the number of users that LSR can 83 /// conceivably solve, so it should not affect generated code, but catches the 84 /// worst cases before LSR burns too much compile time and stack space. 85 static const unsigned MaxIVUsers = 200; 86 87 // Temporary flag to cleanup congruent phis after LSR phi expansion. 88 // It's currently disabled until we can determine whether it's truly useful or 89 // not. The flag should be removed after the v3.0 release. 90 // This is now needed for ivchains. 91 static cl::opt<bool> EnablePhiElim( 92 "enable-lsr-phielim", cl::Hidden, cl::init(true), 93 cl::desc("Enable LSR phi elimination")); 94 95 #ifndef NDEBUG 96 // Stress test IV chain generation. 97 static cl::opt<bool> StressIVChain( 98 "stress-ivchain", cl::Hidden, cl::init(false), 99 cl::desc("Stress test LSR IV chains")); 100 #else 101 static bool StressIVChain = false; 102 #endif 103 104 namespace { 105 106 /// RegSortData - This class holds data which is used to order reuse candidates. 107 class RegSortData { 108 public: 109 /// UsedByIndices - This represents the set of LSRUse indices which reference 110 /// a particular register. 111 SmallBitVector UsedByIndices; 112 113 RegSortData() {} 114 115 void print(raw_ostream &OS) const; 116 void dump() const; 117 }; 118 119 } 120 121 void RegSortData::print(raw_ostream &OS) const { 122 OS << "[NumUses=" << UsedByIndices.count() << ']'; 123 } 124 125 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 126 void RegSortData::dump() const { 127 print(errs()); errs() << '\n'; 128 } 129 #endif 130 131 namespace { 132 133 /// RegUseTracker - Map register candidates to information about how they are 134 /// used. 135 class RegUseTracker { 136 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 137 138 RegUsesTy RegUsesMap; 139 SmallVector<const SCEV *, 16> RegSequence; 140 141 public: 142 void CountRegister(const SCEV *Reg, size_t LUIdx); 143 void DropRegister(const SCEV *Reg, size_t LUIdx); 144 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 145 146 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 147 148 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 149 150 void clear(); 151 152 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 153 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 154 iterator begin() { return RegSequence.begin(); } 155 iterator end() { return RegSequence.end(); } 156 const_iterator begin() const { return RegSequence.begin(); } 157 const_iterator end() const { return RegSequence.end(); } 158 }; 159 160 } 161 162 void 163 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 164 std::pair<RegUsesTy::iterator, bool> Pair = 165 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 166 RegSortData &RSD = Pair.first->second; 167 if (Pair.second) 168 RegSequence.push_back(Reg); 169 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 170 RSD.UsedByIndices.set(LUIdx); 171 } 172 173 void 174 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 175 RegUsesTy::iterator It = RegUsesMap.find(Reg); 176 assert(It != RegUsesMap.end()); 177 RegSortData &RSD = It->second; 178 assert(RSD.UsedByIndices.size() > LUIdx); 179 RSD.UsedByIndices.reset(LUIdx); 180 } 181 182 void 183 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 184 assert(LUIdx <= LastLUIdx); 185 186 // Update RegUses. The data structure is not optimized for this purpose; 187 // we must iterate through it and update each of the bit vectors. 188 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); 189 I != E; ++I) { 190 SmallBitVector &UsedByIndices = I->second.UsedByIndices; 191 if (LUIdx < UsedByIndices.size()) 192 UsedByIndices[LUIdx] = 193 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 194 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 195 } 196 } 197 198 bool 199 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 200 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 201 if (I == RegUsesMap.end()) 202 return false; 203 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 204 int i = UsedByIndices.find_first(); 205 if (i == -1) return false; 206 if ((size_t)i != LUIdx) return true; 207 return UsedByIndices.find_next(i) != -1; 208 } 209 210 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 211 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 212 assert(I != RegUsesMap.end() && "Unknown register!"); 213 return I->second.UsedByIndices; 214 } 215 216 void RegUseTracker::clear() { 217 RegUsesMap.clear(); 218 RegSequence.clear(); 219 } 220 221 namespace { 222 223 /// Formula - This class holds information that describes a formula for 224 /// computing satisfying a use. It may include broken-out immediates and scaled 225 /// registers. 226 struct Formula { 227 /// Global base address used for complex addressing. 228 GlobalValue *BaseGV; 229 230 /// Base offset for complex addressing. 231 int64_t BaseOffset; 232 233 /// Whether any complex addressing has a base register. 234 bool HasBaseReg; 235 236 /// The scale of any complex addressing. 237 int64_t Scale; 238 239 /// BaseRegs - The list of "base" registers for this use. When this is 240 /// non-empty, 241 SmallVector<const SCEV *, 4> BaseRegs; 242 243 /// ScaledReg - The 'scaled' register for this use. This should be non-null 244 /// when Scale is not zero. 245 const SCEV *ScaledReg; 246 247 /// UnfoldedOffset - An additional constant offset which added near the 248 /// use. This requires a temporary register, but the offset itself can 249 /// live in an add immediate field rather than a register. 250 int64_t UnfoldedOffset; 251 252 Formula() 253 : BaseGV(0), BaseOffset(0), HasBaseReg(false), Scale(0), ScaledReg(0), 254 UnfoldedOffset(0) {} 255 256 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 257 258 unsigned getNumRegs() const; 259 Type *getType() const; 260 261 void DeleteBaseReg(const SCEV *&S); 262 263 bool referencesReg(const SCEV *S) const; 264 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 265 const RegUseTracker &RegUses) const; 266 267 void print(raw_ostream &OS) const; 268 void dump() const; 269 }; 270 271 } 272 273 /// DoInitialMatch - Recursion helper for InitialMatch. 274 static void DoInitialMatch(const SCEV *S, Loop *L, 275 SmallVectorImpl<const SCEV *> &Good, 276 SmallVectorImpl<const SCEV *> &Bad, 277 ScalarEvolution &SE) { 278 // Collect expressions which properly dominate the loop header. 279 if (SE.properlyDominates(S, L->getHeader())) { 280 Good.push_back(S); 281 return; 282 } 283 284 // Look at add operands. 285 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 286 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 287 I != E; ++I) 288 DoInitialMatch(*I, L, Good, Bad, SE); 289 return; 290 } 291 292 // Look at addrec operands. 293 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 294 if (!AR->getStart()->isZero()) { 295 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 296 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 297 AR->getStepRecurrence(SE), 298 // FIXME: AR->getNoWrapFlags() 299 AR->getLoop(), SCEV::FlagAnyWrap), 300 L, Good, Bad, SE); 301 return; 302 } 303 304 // Handle a multiplication by -1 (negation) if it didn't fold. 305 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 306 if (Mul->getOperand(0)->isAllOnesValue()) { 307 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 308 const SCEV *NewMul = SE.getMulExpr(Ops); 309 310 SmallVector<const SCEV *, 4> MyGood; 311 SmallVector<const SCEV *, 4> MyBad; 312 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 313 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 314 SE.getEffectiveSCEVType(NewMul->getType()))); 315 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), 316 E = MyGood.end(); I != E; ++I) 317 Good.push_back(SE.getMulExpr(NegOne, *I)); 318 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), 319 E = MyBad.end(); I != E; ++I) 320 Bad.push_back(SE.getMulExpr(NegOne, *I)); 321 return; 322 } 323 324 // Ok, we can't do anything interesting. Just stuff the whole thing into a 325 // register and hope for the best. 326 Bad.push_back(S); 327 } 328 329 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 330 /// attempting to keep all loop-invariant and loop-computable values in a 331 /// single base register. 332 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 333 SmallVector<const SCEV *, 4> Good; 334 SmallVector<const SCEV *, 4> Bad; 335 DoInitialMatch(S, L, Good, Bad, SE); 336 if (!Good.empty()) { 337 const SCEV *Sum = SE.getAddExpr(Good); 338 if (!Sum->isZero()) 339 BaseRegs.push_back(Sum); 340 HasBaseReg = true; 341 } 342 if (!Bad.empty()) { 343 const SCEV *Sum = SE.getAddExpr(Bad); 344 if (!Sum->isZero()) 345 BaseRegs.push_back(Sum); 346 HasBaseReg = true; 347 } 348 } 349 350 /// getNumRegs - Return the total number of register operands used by this 351 /// formula. This does not include register uses implied by non-constant 352 /// addrec strides. 353 unsigned Formula::getNumRegs() const { 354 return !!ScaledReg + BaseRegs.size(); 355 } 356 357 /// getType - Return the type of this formula, if it has one, or null 358 /// otherwise. This type is meaningless except for the bit size. 359 Type *Formula::getType() const { 360 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 361 ScaledReg ? ScaledReg->getType() : 362 BaseGV ? BaseGV->getType() : 363 0; 364 } 365 366 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 367 void Formula::DeleteBaseReg(const SCEV *&S) { 368 if (&S != &BaseRegs.back()) 369 std::swap(S, BaseRegs.back()); 370 BaseRegs.pop_back(); 371 } 372 373 /// referencesReg - Test if this formula references the given register. 374 bool Formula::referencesReg(const SCEV *S) const { 375 return S == ScaledReg || 376 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 377 } 378 379 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 380 /// which are used by uses other than the use with the given index. 381 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 382 const RegUseTracker &RegUses) const { 383 if (ScaledReg) 384 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 385 return true; 386 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 387 E = BaseRegs.end(); I != E; ++I) 388 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) 389 return true; 390 return false; 391 } 392 393 void Formula::print(raw_ostream &OS) const { 394 bool First = true; 395 if (BaseGV) { 396 if (!First) OS << " + "; else First = false; 397 WriteAsOperand(OS, BaseGV, /*PrintType=*/false); 398 } 399 if (BaseOffset != 0) { 400 if (!First) OS << " + "; else First = false; 401 OS << BaseOffset; 402 } 403 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 404 E = BaseRegs.end(); I != E; ++I) { 405 if (!First) OS << " + "; else First = false; 406 OS << "reg(" << **I << ')'; 407 } 408 if (HasBaseReg && BaseRegs.empty()) { 409 if (!First) OS << " + "; else First = false; 410 OS << "**error: HasBaseReg**"; 411 } else if (!HasBaseReg && !BaseRegs.empty()) { 412 if (!First) OS << " + "; else First = false; 413 OS << "**error: !HasBaseReg**"; 414 } 415 if (Scale != 0) { 416 if (!First) OS << " + "; else First = false; 417 OS << Scale << "*reg("; 418 if (ScaledReg) 419 OS << *ScaledReg; 420 else 421 OS << "<unknown>"; 422 OS << ')'; 423 } 424 if (UnfoldedOffset != 0) { 425 if (!First) OS << " + "; else First = false; 426 OS << "imm(" << UnfoldedOffset << ')'; 427 } 428 } 429 430 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 431 void Formula::dump() const { 432 print(errs()); errs() << '\n'; 433 } 434 #endif 435 436 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 437 /// without changing its value. 438 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 439 Type *WideTy = 440 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 441 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 442 } 443 444 /// isAddSExtable - Return true if the given add can be sign-extended 445 /// without changing its value. 446 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 447 Type *WideTy = 448 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 449 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 450 } 451 452 /// isMulSExtable - Return true if the given mul can be sign-extended 453 /// without changing its value. 454 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 455 Type *WideTy = 456 IntegerType::get(SE.getContext(), 457 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 458 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 459 } 460 461 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 462 /// and if the remainder is known to be zero, or null otherwise. If 463 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 464 /// to Y, ignoring that the multiplication may overflow, which is useful when 465 /// the result will be used in a context where the most significant bits are 466 /// ignored. 467 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 468 ScalarEvolution &SE, 469 bool IgnoreSignificantBits = false) { 470 // Handle the trivial case, which works for any SCEV type. 471 if (LHS == RHS) 472 return SE.getConstant(LHS->getType(), 1); 473 474 // Handle a few RHS special cases. 475 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 476 if (RC) { 477 const APInt &RA = RC->getValue()->getValue(); 478 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 479 // some folding. 480 if (RA.isAllOnesValue()) 481 return SE.getMulExpr(LHS, RC); 482 // Handle x /s 1 as x. 483 if (RA == 1) 484 return LHS; 485 } 486 487 // Check for a division of a constant by a constant. 488 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 489 if (!RC) 490 return 0; 491 const APInt &LA = C->getValue()->getValue(); 492 const APInt &RA = RC->getValue()->getValue(); 493 if (LA.srem(RA) != 0) 494 return 0; 495 return SE.getConstant(LA.sdiv(RA)); 496 } 497 498 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 499 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 500 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 501 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 502 IgnoreSignificantBits); 503 if (!Step) return 0; 504 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 505 IgnoreSignificantBits); 506 if (!Start) return 0; 507 // FlagNW is independent of the start value, step direction, and is 508 // preserved with smaller magnitude steps. 509 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 510 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 511 } 512 return 0; 513 } 514 515 // Distribute the sdiv over add operands, if the add doesn't overflow. 516 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 517 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 518 SmallVector<const SCEV *, 8> Ops; 519 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 520 I != E; ++I) { 521 const SCEV *Op = getExactSDiv(*I, RHS, SE, 522 IgnoreSignificantBits); 523 if (!Op) return 0; 524 Ops.push_back(Op); 525 } 526 return SE.getAddExpr(Ops); 527 } 528 return 0; 529 } 530 531 // Check for a multiply operand that we can pull RHS out of. 532 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 533 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 534 SmallVector<const SCEV *, 4> Ops; 535 bool Found = false; 536 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); 537 I != E; ++I) { 538 const SCEV *S = *I; 539 if (!Found) 540 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 541 IgnoreSignificantBits)) { 542 S = Q; 543 Found = true; 544 } 545 Ops.push_back(S); 546 } 547 return Found ? SE.getMulExpr(Ops) : 0; 548 } 549 return 0; 550 } 551 552 // Otherwise we don't know. 553 return 0; 554 } 555 556 /// ExtractImmediate - If S involves the addition of a constant integer value, 557 /// return that integer value, and mutate S to point to a new SCEV with that 558 /// value excluded. 559 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 560 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 561 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 562 S = SE.getConstant(C->getType(), 0); 563 return C->getValue()->getSExtValue(); 564 } 565 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 566 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 567 int64_t Result = ExtractImmediate(NewOps.front(), SE); 568 if (Result != 0) 569 S = SE.getAddExpr(NewOps); 570 return Result; 571 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 572 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 573 int64_t Result = ExtractImmediate(NewOps.front(), SE); 574 if (Result != 0) 575 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 576 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 577 SCEV::FlagAnyWrap); 578 return Result; 579 } 580 return 0; 581 } 582 583 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 584 /// return that symbol, and mutate S to point to a new SCEV with that 585 /// value excluded. 586 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 587 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 588 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 589 S = SE.getConstant(GV->getType(), 0); 590 return GV; 591 } 592 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 593 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 594 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 595 if (Result) 596 S = SE.getAddExpr(NewOps); 597 return Result; 598 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 599 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 600 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 601 if (Result) 602 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 603 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 604 SCEV::FlagAnyWrap); 605 return Result; 606 } 607 return 0; 608 } 609 610 /// isAddressUse - Returns true if the specified instruction is using the 611 /// specified value as an address. 612 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 613 bool isAddress = isa<LoadInst>(Inst); 614 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 615 if (SI->getOperand(1) == OperandVal) 616 isAddress = true; 617 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 618 // Addressing modes can also be folded into prefetches and a variety 619 // of intrinsics. 620 switch (II->getIntrinsicID()) { 621 default: break; 622 case Intrinsic::prefetch: 623 case Intrinsic::x86_sse_storeu_ps: 624 case Intrinsic::x86_sse2_storeu_pd: 625 case Intrinsic::x86_sse2_storeu_dq: 626 case Intrinsic::x86_sse2_storel_dq: 627 if (II->getArgOperand(0) == OperandVal) 628 isAddress = true; 629 break; 630 } 631 } 632 return isAddress; 633 } 634 635 /// getAccessType - Return the type of the memory being accessed. 636 static Type *getAccessType(const Instruction *Inst) { 637 Type *AccessTy = Inst->getType(); 638 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 639 AccessTy = SI->getOperand(0)->getType(); 640 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 641 // Addressing modes can also be folded into prefetches and a variety 642 // of intrinsics. 643 switch (II->getIntrinsicID()) { 644 default: break; 645 case Intrinsic::x86_sse_storeu_ps: 646 case Intrinsic::x86_sse2_storeu_pd: 647 case Intrinsic::x86_sse2_storeu_dq: 648 case Intrinsic::x86_sse2_storel_dq: 649 AccessTy = II->getArgOperand(0)->getType(); 650 break; 651 } 652 } 653 654 // All pointers have the same requirements, so canonicalize them to an 655 // arbitrary pointer type to minimize variation. 656 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 657 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 658 PTy->getAddressSpace()); 659 660 return AccessTy; 661 } 662 663 /// isExistingPhi - Return true if this AddRec is already a phi in its loop. 664 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 665 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 666 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 667 if (SE.isSCEVable(PN->getType()) && 668 (SE.getEffectiveSCEVType(PN->getType()) == 669 SE.getEffectiveSCEVType(AR->getType())) && 670 SE.getSCEV(PN) == AR) 671 return true; 672 } 673 return false; 674 } 675 676 /// Check if expanding this expression is likely to incur significant cost. This 677 /// is tricky because SCEV doesn't track which expressions are actually computed 678 /// by the current IR. 679 /// 680 /// We currently allow expansion of IV increments that involve adds, 681 /// multiplication by constants, and AddRecs from existing phis. 682 /// 683 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 684 /// obvious multiple of the UDivExpr. 685 static bool isHighCostExpansion(const SCEV *S, 686 SmallPtrSet<const SCEV*, 8> &Processed, 687 ScalarEvolution &SE) { 688 // Zero/One operand expressions 689 switch (S->getSCEVType()) { 690 case scUnknown: 691 case scConstant: 692 return false; 693 case scTruncate: 694 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 695 Processed, SE); 696 case scZeroExtend: 697 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 698 Processed, SE); 699 case scSignExtend: 700 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 701 Processed, SE); 702 } 703 704 if (!Processed.insert(S)) 705 return false; 706 707 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 708 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 709 I != E; ++I) { 710 if (isHighCostExpansion(*I, Processed, SE)) 711 return true; 712 } 713 return false; 714 } 715 716 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 717 if (Mul->getNumOperands() == 2) { 718 // Multiplication by a constant is ok 719 if (isa<SCEVConstant>(Mul->getOperand(0))) 720 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 721 722 // If we have the value of one operand, check if an existing 723 // multiplication already generates this expression. 724 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 725 Value *UVal = U->getValue(); 726 for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end(); 727 UI != UE; ++UI) { 728 // If U is a constant, it may be used by a ConstantExpr. 729 Instruction *User = dyn_cast<Instruction>(*UI); 730 if (User && User->getOpcode() == Instruction::Mul 731 && SE.isSCEVable(User->getType())) { 732 return SE.getSCEV(User) == Mul; 733 } 734 } 735 } 736 } 737 } 738 739 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 740 if (isExistingPhi(AR, SE)) 741 return false; 742 } 743 744 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 745 return true; 746 } 747 748 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 749 /// specified set are trivially dead, delete them and see if this makes any of 750 /// their operands subsequently dead. 751 static bool 752 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 753 bool Changed = false; 754 755 while (!DeadInsts.empty()) { 756 Value *V = DeadInsts.pop_back_val(); 757 Instruction *I = dyn_cast_or_null<Instruction>(V); 758 759 if (I == 0 || !isInstructionTriviallyDead(I)) 760 continue; 761 762 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 763 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 764 *OI = 0; 765 if (U->use_empty()) 766 DeadInsts.push_back(U); 767 } 768 769 I->eraseFromParent(); 770 Changed = true; 771 } 772 773 return Changed; 774 } 775 776 namespace { 777 class LSRUse; 778 } 779 // Check if it is legal to fold 2 base registers. 780 static bool isLegal2RegAMUse(const TargetTransformInfo &TTI, const LSRUse &LU, 781 const Formula &F); 782 // Get the cost of the scaling factor used in F for LU. 783 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 784 const LSRUse &LU, const Formula &F); 785 786 namespace { 787 788 /// Cost - This class is used to measure and compare candidate formulae. 789 class Cost { 790 /// TODO: Some of these could be merged. Also, a lexical ordering 791 /// isn't always optimal. 792 unsigned NumRegs; 793 unsigned AddRecCost; 794 unsigned NumIVMuls; 795 unsigned NumBaseAdds; 796 unsigned ImmCost; 797 unsigned SetupCost; 798 unsigned ScaleCost; 799 800 public: 801 Cost() 802 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 803 SetupCost(0), ScaleCost(0) {} 804 805 bool operator<(const Cost &Other) const; 806 807 void Loose(); 808 809 #ifndef NDEBUG 810 // Once any of the metrics loses, they must all remain losers. 811 bool isValid() { 812 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 813 | ImmCost | SetupCost | ScaleCost) != ~0u) 814 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 815 & ImmCost & SetupCost & ScaleCost) == ~0u); 816 } 817 #endif 818 819 bool isLoser() { 820 assert(isValid() && "invalid cost"); 821 return NumRegs == ~0u; 822 } 823 824 void RateFormula(const TargetTransformInfo &TTI, 825 const Formula &F, 826 SmallPtrSet<const SCEV *, 16> &Regs, 827 const DenseSet<const SCEV *> &VisitedRegs, 828 const Loop *L, 829 const SmallVectorImpl<int64_t> &Offsets, 830 ScalarEvolution &SE, DominatorTree &DT, 831 const LSRUse &LU, 832 SmallPtrSet<const SCEV *, 16> *LoserRegs = 0); 833 834 void print(raw_ostream &OS) const; 835 void dump() const; 836 837 private: 838 void RateRegister(const SCEV *Reg, 839 SmallPtrSet<const SCEV *, 16> &Regs, 840 const Loop *L, 841 ScalarEvolution &SE, DominatorTree &DT); 842 void RatePrimaryRegister(const SCEV *Reg, 843 SmallPtrSet<const SCEV *, 16> &Regs, 844 const Loop *L, 845 ScalarEvolution &SE, DominatorTree &DT, 846 SmallPtrSet<const SCEV *, 16> *LoserRegs); 847 }; 848 849 } 850 851 /// RateRegister - Tally up interesting quantities from the given register. 852 void Cost::RateRegister(const SCEV *Reg, 853 SmallPtrSet<const SCEV *, 16> &Regs, 854 const Loop *L, 855 ScalarEvolution &SE, DominatorTree &DT) { 856 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 857 // If this is an addrec for another loop, don't second-guess its addrec phi 858 // nodes. LSR isn't currently smart enough to reason about more than one 859 // loop at a time. LSR has already run on inner loops, will not run on outer 860 // loops, and cannot be expected to change sibling loops. 861 if (AR->getLoop() != L) { 862 // If the AddRec exists, consider it's register free and leave it alone. 863 if (isExistingPhi(AR, SE)) 864 return; 865 866 // Otherwise, do not consider this formula at all. 867 Loose(); 868 return; 869 } 870 AddRecCost += 1; /// TODO: This should be a function of the stride. 871 872 // Add the step value register, if it needs one. 873 // TODO: The non-affine case isn't precisely modeled here. 874 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 875 if (!Regs.count(AR->getOperand(1))) { 876 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 877 if (isLoser()) 878 return; 879 } 880 } 881 } 882 ++NumRegs; 883 884 // Rough heuristic; favor registers which don't require extra setup 885 // instructions in the preheader. 886 if (!isa<SCEVUnknown>(Reg) && 887 !isa<SCEVConstant>(Reg) && 888 !(isa<SCEVAddRecExpr>(Reg) && 889 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 890 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 891 ++SetupCost; 892 893 NumIVMuls += isa<SCEVMulExpr>(Reg) && 894 SE.hasComputableLoopEvolution(Reg, L); 895 } 896 897 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 898 /// before, rate it. Optional LoserRegs provides a way to declare any formula 899 /// that refers to one of those regs an instant loser. 900 void Cost::RatePrimaryRegister(const SCEV *Reg, 901 SmallPtrSet<const SCEV *, 16> &Regs, 902 const Loop *L, 903 ScalarEvolution &SE, DominatorTree &DT, 904 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 905 if (LoserRegs && LoserRegs->count(Reg)) { 906 Loose(); 907 return; 908 } 909 if (Regs.insert(Reg)) { 910 RateRegister(Reg, Regs, L, SE, DT); 911 if (LoserRegs && isLoser()) 912 LoserRegs->insert(Reg); 913 } 914 } 915 916 void Cost::RateFormula(const TargetTransformInfo &TTI, 917 const Formula &F, 918 SmallPtrSet<const SCEV *, 16> &Regs, 919 const DenseSet<const SCEV *> &VisitedRegs, 920 const Loop *L, 921 const SmallVectorImpl<int64_t> &Offsets, 922 ScalarEvolution &SE, DominatorTree &DT, 923 const LSRUse &LU, 924 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 925 // Tally up the registers. 926 if (const SCEV *ScaledReg = F.ScaledReg) { 927 if (VisitedRegs.count(ScaledReg)) { 928 Loose(); 929 return; 930 } 931 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 932 if (isLoser()) 933 return; 934 } 935 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 936 E = F.BaseRegs.end(); I != E; ++I) { 937 const SCEV *BaseReg = *I; 938 if (VisitedRegs.count(BaseReg)) { 939 Loose(); 940 return; 941 } 942 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 943 if (isLoser()) 944 return; 945 } 946 947 // Determine how many (unfolded) adds we'll need inside the loop. 948 size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0); 949 if (NumBaseParts > 1) 950 // Do not count the base and a possible second register if the target 951 // allows to fold 2 registers. 952 NumBaseAdds += NumBaseParts - (1 + isLegal2RegAMUse(TTI, LU, F)); 953 954 // Accumulate non-free scaling amounts. 955 ScaleCost += getScalingFactorCost(TTI, LU, F); 956 957 // Tally up the non-zero immediates. 958 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 959 E = Offsets.end(); I != E; ++I) { 960 int64_t Offset = (uint64_t)*I + F.BaseOffset; 961 if (F.BaseGV) 962 ImmCost += 64; // Handle symbolic values conservatively. 963 // TODO: This should probably be the pointer size. 964 else if (Offset != 0) 965 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 966 } 967 assert(isValid() && "invalid cost"); 968 } 969 970 /// Loose - Set this cost to a losing value. 971 void Cost::Loose() { 972 NumRegs = ~0u; 973 AddRecCost = ~0u; 974 NumIVMuls = ~0u; 975 NumBaseAdds = ~0u; 976 ImmCost = ~0u; 977 SetupCost = ~0u; 978 ScaleCost = ~0u; 979 } 980 981 /// operator< - Choose the lower cost. 982 bool Cost::operator<(const Cost &Other) const { 983 if (NumRegs != Other.NumRegs) 984 return NumRegs < Other.NumRegs; 985 if (AddRecCost != Other.AddRecCost) 986 return AddRecCost < Other.AddRecCost; 987 if (NumIVMuls != Other.NumIVMuls) 988 return NumIVMuls < Other.NumIVMuls; 989 if (NumBaseAdds != Other.NumBaseAdds) 990 return NumBaseAdds < Other.NumBaseAdds; 991 if (ScaleCost != Other.ScaleCost) 992 return ScaleCost < Other.ScaleCost; 993 if (ImmCost != Other.ImmCost) 994 return ImmCost < Other.ImmCost; 995 if (SetupCost != Other.SetupCost) 996 return SetupCost < Other.SetupCost; 997 return false; 998 } 999 1000 void Cost::print(raw_ostream &OS) const { 1001 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1002 if (AddRecCost != 0) 1003 OS << ", with addrec cost " << AddRecCost; 1004 if (NumIVMuls != 0) 1005 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1006 if (NumBaseAdds != 0) 1007 OS << ", plus " << NumBaseAdds << " base add" 1008 << (NumBaseAdds == 1 ? "" : "s"); 1009 if (ScaleCost != 0) 1010 OS << ", plus " << ScaleCost << " scale cost"; 1011 if (ImmCost != 0) 1012 OS << ", plus " << ImmCost << " imm cost"; 1013 if (SetupCost != 0) 1014 OS << ", plus " << SetupCost << " setup cost"; 1015 } 1016 1017 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1018 void Cost::dump() const { 1019 print(errs()); errs() << '\n'; 1020 } 1021 #endif 1022 1023 namespace { 1024 1025 /// LSRFixup - An operand value in an instruction which is to be replaced 1026 /// with some equivalent, possibly strength-reduced, replacement. 1027 struct LSRFixup { 1028 /// UserInst - The instruction which will be updated. 1029 Instruction *UserInst; 1030 1031 /// OperandValToReplace - The operand of the instruction which will 1032 /// be replaced. The operand may be used more than once; every instance 1033 /// will be replaced. 1034 Value *OperandValToReplace; 1035 1036 /// PostIncLoops - If this user is to use the post-incremented value of an 1037 /// induction variable, this variable is non-null and holds the loop 1038 /// associated with the induction variable. 1039 PostIncLoopSet PostIncLoops; 1040 1041 /// LUIdx - The index of the LSRUse describing the expression which 1042 /// this fixup needs, minus an offset (below). 1043 size_t LUIdx; 1044 1045 /// Offset - A constant offset to be added to the LSRUse expression. 1046 /// This allows multiple fixups to share the same LSRUse with different 1047 /// offsets, for example in an unrolled loop. 1048 int64_t Offset; 1049 1050 bool isUseFullyOutsideLoop(const Loop *L) const; 1051 1052 LSRFixup(); 1053 1054 void print(raw_ostream &OS) const; 1055 void dump() const; 1056 }; 1057 1058 } 1059 1060 LSRFixup::LSRFixup() 1061 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {} 1062 1063 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 1064 /// value outside of the given loop. 1065 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1066 // PHI nodes use their value in their incoming blocks. 1067 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1068 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1069 if (PN->getIncomingValue(i) == OperandValToReplace && 1070 L->contains(PN->getIncomingBlock(i))) 1071 return false; 1072 return true; 1073 } 1074 1075 return !L->contains(UserInst); 1076 } 1077 1078 void LSRFixup::print(raw_ostream &OS) const { 1079 OS << "UserInst="; 1080 // Store is common and interesting enough to be worth special-casing. 1081 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1082 OS << "store "; 1083 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false); 1084 } else if (UserInst->getType()->isVoidTy()) 1085 OS << UserInst->getOpcodeName(); 1086 else 1087 WriteAsOperand(OS, UserInst, /*PrintType=*/false); 1088 1089 OS << ", OperandValToReplace="; 1090 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false); 1091 1092 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), 1093 E = PostIncLoops.end(); I != E; ++I) { 1094 OS << ", PostIncLoop="; 1095 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false); 1096 } 1097 1098 if (LUIdx != ~size_t(0)) 1099 OS << ", LUIdx=" << LUIdx; 1100 1101 if (Offset != 0) 1102 OS << ", Offset=" << Offset; 1103 } 1104 1105 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1106 void LSRFixup::dump() const { 1107 print(errs()); errs() << '\n'; 1108 } 1109 #endif 1110 1111 namespace { 1112 1113 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 1114 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 1115 struct UniquifierDenseMapInfo { 1116 static SmallVector<const SCEV *, 4> getEmptyKey() { 1117 SmallVector<const SCEV *, 4> V; 1118 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1119 return V; 1120 } 1121 1122 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1123 SmallVector<const SCEV *, 4> V; 1124 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1125 return V; 1126 } 1127 1128 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1129 unsigned Result = 0; 1130 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(), 1131 E = V.end(); I != E; ++I) 1132 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I); 1133 return Result; 1134 } 1135 1136 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1137 const SmallVector<const SCEV *, 4> &RHS) { 1138 return LHS == RHS; 1139 } 1140 }; 1141 1142 /// LSRUse - This class holds the state that LSR keeps for each use in 1143 /// IVUsers, as well as uses invented by LSR itself. It includes information 1144 /// about what kinds of things can be folded into the user, information about 1145 /// the user itself, and information about how the use may be satisfied. 1146 /// TODO: Represent multiple users of the same expression in common? 1147 class LSRUse { 1148 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1149 1150 public: 1151 /// KindType - An enum for a kind of use, indicating what types of 1152 /// scaled and immediate operands it might support. 1153 enum KindType { 1154 Basic, ///< A normal use, with no folding. 1155 Special, ///< A special case of basic, allowing -1 scales. 1156 Address, ///< An address use; folding according to TargetLowering 1157 ICmpZero ///< An equality icmp with both operands folded into one. 1158 // TODO: Add a generic icmp too? 1159 }; 1160 1161 KindType Kind; 1162 Type *AccessTy; 1163 1164 SmallVector<int64_t, 8> Offsets; 1165 int64_t MinOffset; 1166 int64_t MaxOffset; 1167 1168 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 1169 /// LSRUse are outside of the loop, in which case some special-case heuristics 1170 /// may be used. 1171 bool AllFixupsOutsideLoop; 1172 1173 /// WidestFixupType - This records the widest use type for any fixup using 1174 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 1175 /// max fixup widths to be equivalent, because the narrower one may be relying 1176 /// on the implicit truncation to truncate away bogus bits. 1177 Type *WidestFixupType; 1178 1179 /// Formulae - A list of ways to build a value that can satisfy this user. 1180 /// After the list is populated, one of these is selected heuristically and 1181 /// used to formulate a replacement for OperandValToReplace in UserInst. 1182 SmallVector<Formula, 12> Formulae; 1183 1184 /// Regs - The set of register candidates used by all formulae in this LSRUse. 1185 SmallPtrSet<const SCEV *, 4> Regs; 1186 1187 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), 1188 MinOffset(INT64_MAX), 1189 MaxOffset(INT64_MIN), 1190 AllFixupsOutsideLoop(true), 1191 WidestFixupType(0) {} 1192 1193 bool HasFormulaWithSameRegs(const Formula &F) const; 1194 bool InsertFormula(const Formula &F); 1195 void DeleteFormula(Formula &F); 1196 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1197 1198 void print(raw_ostream &OS) const; 1199 void dump() const; 1200 }; 1201 1202 } 1203 1204 /// HasFormula - Test whether this use as a formula which has the same 1205 /// registers as the given formula. 1206 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1207 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1208 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1209 // Unstable sort by host order ok, because this is only used for uniquifying. 1210 std::sort(Key.begin(), Key.end()); 1211 return Uniquifier.count(Key); 1212 } 1213 1214 /// InsertFormula - If the given formula has not yet been inserted, add it to 1215 /// the list, and return true. Return false otherwise. 1216 bool LSRUse::InsertFormula(const Formula &F) { 1217 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1218 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1219 // Unstable sort by host order ok, because this is only used for uniquifying. 1220 std::sort(Key.begin(), Key.end()); 1221 1222 if (!Uniquifier.insert(Key).second) 1223 return false; 1224 1225 // Using a register to hold the value of 0 is not profitable. 1226 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1227 "Zero allocated in a scaled register!"); 1228 #ifndef NDEBUG 1229 for (SmallVectorImpl<const SCEV *>::const_iterator I = 1230 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) 1231 assert(!(*I)->isZero() && "Zero allocated in a base register!"); 1232 #endif 1233 1234 // Add the formula to the list. 1235 Formulae.push_back(F); 1236 1237 // Record registers now being used by this use. 1238 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1239 1240 return true; 1241 } 1242 1243 /// DeleteFormula - Remove the given formula from this use's list. 1244 void LSRUse::DeleteFormula(Formula &F) { 1245 if (&F != &Formulae.back()) 1246 std::swap(F, Formulae.back()); 1247 Formulae.pop_back(); 1248 } 1249 1250 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1251 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1252 // Now that we've filtered out some formulae, recompute the Regs set. 1253 SmallPtrSet<const SCEV *, 4> OldRegs = Regs; 1254 Regs.clear(); 1255 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(), 1256 E = Formulae.end(); I != E; ++I) { 1257 const Formula &F = *I; 1258 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1259 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1260 } 1261 1262 // Update the RegTracker. 1263 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(), 1264 E = OldRegs.end(); I != E; ++I) 1265 if (!Regs.count(*I)) 1266 RegUses.DropRegister(*I, LUIdx); 1267 } 1268 1269 void LSRUse::print(raw_ostream &OS) const { 1270 OS << "LSR Use: Kind="; 1271 switch (Kind) { 1272 case Basic: OS << "Basic"; break; 1273 case Special: OS << "Special"; break; 1274 case ICmpZero: OS << "ICmpZero"; break; 1275 case Address: 1276 OS << "Address of "; 1277 if (AccessTy->isPointerTy()) 1278 OS << "pointer"; // the full pointer type could be really verbose 1279 else 1280 OS << *AccessTy; 1281 } 1282 1283 OS << ", Offsets={"; 1284 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1285 E = Offsets.end(); I != E; ++I) { 1286 OS << *I; 1287 if (llvm::next(I) != E) 1288 OS << ','; 1289 } 1290 OS << '}'; 1291 1292 if (AllFixupsOutsideLoop) 1293 OS << ", all-fixups-outside-loop"; 1294 1295 if (WidestFixupType) 1296 OS << ", widest fixup type: " << *WidestFixupType; 1297 } 1298 1299 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1300 void LSRUse::dump() const { 1301 print(errs()); errs() << '\n'; 1302 } 1303 #endif 1304 1305 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can 1306 /// be completely folded into the user instruction at isel time. This includes 1307 /// address-mode folding and special icmp tricks. 1308 static bool isLegalUse(const TargetTransformInfo &TTI, LSRUse::KindType Kind, 1309 Type *AccessTy, GlobalValue *BaseGV, int64_t BaseOffset, 1310 bool HasBaseReg, int64_t Scale) { 1311 switch (Kind) { 1312 case LSRUse::Address: 1313 return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale); 1314 1315 // Otherwise, just guess that reg+reg addressing is legal. 1316 //return ; 1317 1318 case LSRUse::ICmpZero: 1319 // There's not even a target hook for querying whether it would be legal to 1320 // fold a GV into an ICmp. 1321 if (BaseGV) 1322 return false; 1323 1324 // ICmp only has two operands; don't allow more than two non-trivial parts. 1325 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1326 return false; 1327 1328 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1329 // putting the scaled register in the other operand of the icmp. 1330 if (Scale != 0 && Scale != -1) 1331 return false; 1332 1333 // If we have low-level target information, ask the target if it can fold an 1334 // integer immediate on an icmp. 1335 if (BaseOffset != 0) { 1336 // We have one of: 1337 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1338 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1339 // Offs is the ICmp immediate. 1340 if (Scale == 0) 1341 // The cast does the right thing with INT64_MIN. 1342 BaseOffset = -(uint64_t)BaseOffset; 1343 return TTI.isLegalICmpImmediate(BaseOffset); 1344 } 1345 1346 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1347 return true; 1348 1349 case LSRUse::Basic: 1350 // Only handle single-register values. 1351 return !BaseGV && Scale == 0 && BaseOffset == 0; 1352 1353 case LSRUse::Special: 1354 // Special case Basic to handle -1 scales. 1355 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1356 } 1357 1358 llvm_unreachable("Invalid LSRUse Kind!"); 1359 } 1360 1361 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1362 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, 1363 GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, 1364 int64_t Scale) { 1365 // Check for overflow. 1366 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1367 (MinOffset > 0)) 1368 return false; 1369 MinOffset = (uint64_t)BaseOffset + MinOffset; 1370 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1371 (MaxOffset > 0)) 1372 return false; 1373 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1374 1375 return isLegalUse(TTI, Kind, AccessTy, BaseGV, MinOffset, HasBaseReg, 1376 Scale) && 1377 isLegalUse(TTI, Kind, AccessTy, BaseGV, MaxOffset, HasBaseReg, Scale); 1378 } 1379 1380 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1381 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, 1382 const Formula &F) { 1383 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1384 F.BaseOffset, F.HasBaseReg, F.Scale); 1385 } 1386 1387 static bool isLegal2RegAMUse(const TargetTransformInfo &TTI, const LSRUse &LU, 1388 const Formula &F) { 1389 // If F is used as an Addressing Mode, it may fold one Base plus one 1390 // scaled register. If the scaled register is nil, do as if another 1391 // element of the base regs is a 1-scaled register. 1392 // This is possible if BaseRegs has at least 2 registers. 1393 1394 // If this is not an address calculation, this is not an addressing mode 1395 // use. 1396 if (LU.Kind != LSRUse::Address) 1397 return false; 1398 1399 // F is already scaled. 1400 if (F.Scale != 0) 1401 return false; 1402 1403 // We need to keep one register for the base and one to scale. 1404 if (F.BaseRegs.size() < 2) 1405 return false; 1406 1407 return isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 1408 F.BaseGV, F.BaseOffset, F.HasBaseReg, 1); 1409 } 1410 1411 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1412 const LSRUse &LU, const Formula &F) { 1413 if (!F.Scale) 1414 return 0; 1415 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1416 LU.AccessTy, F) && "Illegal formula in use."); 1417 1418 switch (LU.Kind) { 1419 case LSRUse::Address: { 1420 // Check the scaling factor cost with both the min and max offsets. 1421 int ScaleCostMinOffset = 1422 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, 1423 F.BaseOffset + LU.MinOffset, 1424 F.HasBaseReg, F.Scale); 1425 int ScaleCostMaxOffset = 1426 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, 1427 F.BaseOffset + LU.MaxOffset, 1428 F.HasBaseReg, F.Scale); 1429 1430 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1431 "Legal addressing mode has an illegal cost!"); 1432 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1433 } 1434 case LSRUse::ICmpZero: 1435 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg. 1436 // Therefore, return 0 in case F.Scale == -1. 1437 return F.Scale != -1; 1438 1439 case LSRUse::Basic: 1440 case LSRUse::Special: 1441 return 0; 1442 } 1443 1444 llvm_unreachable("Invalid LSRUse Kind!"); 1445 } 1446 1447 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1448 LSRUse::KindType Kind, Type *AccessTy, 1449 GlobalValue *BaseGV, int64_t BaseOffset, 1450 bool HasBaseReg) { 1451 // Fast-path: zero is always foldable. 1452 if (BaseOffset == 0 && !BaseGV) return true; 1453 1454 // Conservatively, create an address with an immediate and a 1455 // base and a scale. 1456 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1457 1458 // Canonicalize a scale of 1 to a base register if the formula doesn't 1459 // already have a base register. 1460 if (!HasBaseReg && Scale == 1) { 1461 Scale = 0; 1462 HasBaseReg = true; 1463 } 1464 1465 return isLegalUse(TTI, Kind, AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale); 1466 } 1467 1468 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1469 ScalarEvolution &SE, int64_t MinOffset, 1470 int64_t MaxOffset, LSRUse::KindType Kind, 1471 Type *AccessTy, const SCEV *S, bool HasBaseReg) { 1472 // Fast-path: zero is always foldable. 1473 if (S->isZero()) return true; 1474 1475 // Conservatively, create an address with an immediate and a 1476 // base and a scale. 1477 int64_t BaseOffset = ExtractImmediate(S, SE); 1478 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1479 1480 // If there's anything else involved, it's not foldable. 1481 if (!S->isZero()) return false; 1482 1483 // Fast-path: zero is always foldable. 1484 if (BaseOffset == 0 && !BaseGV) return true; 1485 1486 // Conservatively, create an address with an immediate and a 1487 // base and a scale. 1488 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1489 1490 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1491 BaseOffset, HasBaseReg, Scale); 1492 } 1493 1494 namespace { 1495 1496 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding 1497 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind. 1498 struct UseMapDenseMapInfo { 1499 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() { 1500 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic); 1501 } 1502 1503 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() { 1504 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic); 1505 } 1506 1507 static unsigned 1508 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) { 1509 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first); 1510 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second)); 1511 return Result; 1512 } 1513 1514 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS, 1515 const std::pair<const SCEV *, LSRUse::KindType> &RHS) { 1516 return LHS == RHS; 1517 } 1518 }; 1519 1520 /// IVInc - An individual increment in a Chain of IV increments. 1521 /// Relate an IV user to an expression that computes the IV it uses from the IV 1522 /// used by the previous link in the Chain. 1523 /// 1524 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1525 /// original IVOperand. The head of the chain's IVOperand is only valid during 1526 /// chain collection, before LSR replaces IV users. During chain generation, 1527 /// IncExpr can be used to find the new IVOperand that computes the same 1528 /// expression. 1529 struct IVInc { 1530 Instruction *UserInst; 1531 Value* IVOperand; 1532 const SCEV *IncExpr; 1533 1534 IVInc(Instruction *U, Value *O, const SCEV *E): 1535 UserInst(U), IVOperand(O), IncExpr(E) {} 1536 }; 1537 1538 // IVChain - The list of IV increments in program order. 1539 // We typically add the head of a chain without finding subsequent links. 1540 struct IVChain { 1541 SmallVector<IVInc,1> Incs; 1542 const SCEV *ExprBase; 1543 1544 IVChain() : ExprBase(0) {} 1545 1546 IVChain(const IVInc &Head, const SCEV *Base) 1547 : Incs(1, Head), ExprBase(Base) {} 1548 1549 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1550 1551 // begin - return the first increment in the chain. 1552 const_iterator begin() const { 1553 assert(!Incs.empty()); 1554 return llvm::next(Incs.begin()); 1555 } 1556 const_iterator end() const { 1557 return Incs.end(); 1558 } 1559 1560 // hasIncs - Returns true if this chain contains any increments. 1561 bool hasIncs() const { return Incs.size() >= 2; } 1562 1563 // add - Add an IVInc to the end of this chain. 1564 void add(const IVInc &X) { Incs.push_back(X); } 1565 1566 // tailUserInst - Returns the last UserInst in the chain. 1567 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1568 1569 // isProfitableIncrement - Returns true if IncExpr can be profitably added to 1570 // this chain. 1571 bool isProfitableIncrement(const SCEV *OperExpr, 1572 const SCEV *IncExpr, 1573 ScalarEvolution&); 1574 }; 1575 1576 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses. 1577 /// Distinguish between FarUsers that definitely cross IV increments and 1578 /// NearUsers that may be used between IV increments. 1579 struct ChainUsers { 1580 SmallPtrSet<Instruction*, 4> FarUsers; 1581 SmallPtrSet<Instruction*, 4> NearUsers; 1582 }; 1583 1584 /// LSRInstance - This class holds state for the main loop strength reduction 1585 /// logic. 1586 class LSRInstance { 1587 IVUsers &IU; 1588 ScalarEvolution &SE; 1589 DominatorTree &DT; 1590 LoopInfo &LI; 1591 const TargetTransformInfo &TTI; 1592 Loop *const L; 1593 bool Changed; 1594 1595 /// IVIncInsertPos - This is the insert position that the current loop's 1596 /// induction variable increment should be placed. In simple loops, this is 1597 /// the latch block's terminator. But in more complicated cases, this is a 1598 /// position which will dominate all the in-loop post-increment users. 1599 Instruction *IVIncInsertPos; 1600 1601 /// Factors - Interesting factors between use strides. 1602 SmallSetVector<int64_t, 8> Factors; 1603 1604 /// Types - Interesting use types, to facilitate truncation reuse. 1605 SmallSetVector<Type *, 4> Types; 1606 1607 /// Fixups - The list of operands which are to be replaced. 1608 SmallVector<LSRFixup, 16> Fixups; 1609 1610 /// Uses - The list of interesting uses. 1611 SmallVector<LSRUse, 16> Uses; 1612 1613 /// RegUses - Track which uses use which register candidates. 1614 RegUseTracker RegUses; 1615 1616 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1617 // have more than a few IV increment chains in a loop. Missing a Chain falls 1618 // back to normal LSR behavior for those uses. 1619 static const unsigned MaxChains = 8; 1620 1621 /// IVChainVec - IV users can form a chain of IV increments. 1622 SmallVector<IVChain, MaxChains> IVChainVec; 1623 1624 /// IVIncSet - IV users that belong to profitable IVChains. 1625 SmallPtrSet<Use*, MaxChains> IVIncSet; 1626 1627 void OptimizeShadowIV(); 1628 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1629 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1630 void OptimizeLoopTermCond(); 1631 1632 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1633 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1634 void FinalizeChain(IVChain &Chain); 1635 void CollectChains(); 1636 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1637 SmallVectorImpl<WeakVH> &DeadInsts); 1638 1639 void CollectInterestingTypesAndFactors(); 1640 void CollectFixupsAndInitialFormulae(); 1641 1642 LSRFixup &getNewFixup() { 1643 Fixups.push_back(LSRFixup()); 1644 return Fixups.back(); 1645 } 1646 1647 // Support for sharing of LSRUses between LSRFixups. 1648 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>, 1649 size_t, 1650 UseMapDenseMapInfo> UseMapTy; 1651 UseMapTy UseMap; 1652 1653 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1654 LSRUse::KindType Kind, Type *AccessTy); 1655 1656 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1657 LSRUse::KindType Kind, 1658 Type *AccessTy); 1659 1660 void DeleteUse(LSRUse &LU, size_t LUIdx); 1661 1662 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1663 1664 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1665 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1666 void CountRegisters(const Formula &F, size_t LUIdx); 1667 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1668 1669 void CollectLoopInvariantFixupsAndFormulae(); 1670 1671 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1672 unsigned Depth = 0); 1673 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1674 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1675 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1676 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1677 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1678 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1679 void GenerateCrossUseConstantOffsets(); 1680 void GenerateAllReuseFormulae(); 1681 1682 void FilterOutUndesirableDedicatedRegisters(); 1683 1684 size_t EstimateSearchSpaceComplexity() const; 1685 void NarrowSearchSpaceByDetectingSupersets(); 1686 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1687 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1688 void NarrowSearchSpaceByPickingWinnerRegs(); 1689 void NarrowSearchSpaceUsingHeuristics(); 1690 1691 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1692 Cost &SolutionCost, 1693 SmallVectorImpl<const Formula *> &Workspace, 1694 const Cost &CurCost, 1695 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1696 DenseSet<const SCEV *> &VisitedRegs) const; 1697 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1698 1699 BasicBlock::iterator 1700 HoistInsertPosition(BasicBlock::iterator IP, 1701 const SmallVectorImpl<Instruction *> &Inputs) const; 1702 BasicBlock::iterator 1703 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1704 const LSRFixup &LF, 1705 const LSRUse &LU, 1706 SCEVExpander &Rewriter) const; 1707 1708 Value *Expand(const LSRFixup &LF, 1709 const Formula &F, 1710 BasicBlock::iterator IP, 1711 SCEVExpander &Rewriter, 1712 SmallVectorImpl<WeakVH> &DeadInsts) const; 1713 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1714 const Formula &F, 1715 SCEVExpander &Rewriter, 1716 SmallVectorImpl<WeakVH> &DeadInsts, 1717 Pass *P) const; 1718 void Rewrite(const LSRFixup &LF, 1719 const Formula &F, 1720 SCEVExpander &Rewriter, 1721 SmallVectorImpl<WeakVH> &DeadInsts, 1722 Pass *P) const; 1723 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1724 Pass *P); 1725 1726 public: 1727 LSRInstance(Loop *L, Pass *P); 1728 1729 bool getChanged() const { return Changed; } 1730 1731 void print_factors_and_types(raw_ostream &OS) const; 1732 void print_fixups(raw_ostream &OS) const; 1733 void print_uses(raw_ostream &OS) const; 1734 void print(raw_ostream &OS) const; 1735 void dump() const; 1736 }; 1737 1738 } 1739 1740 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1741 /// inside the loop then try to eliminate the cast operation. 1742 void LSRInstance::OptimizeShadowIV() { 1743 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1744 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1745 return; 1746 1747 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1748 UI != E; /* empty */) { 1749 IVUsers::const_iterator CandidateUI = UI; 1750 ++UI; 1751 Instruction *ShadowUse = CandidateUI->getUser(); 1752 Type *DestTy = 0; 1753 bool IsSigned = false; 1754 1755 /* If shadow use is a int->float cast then insert a second IV 1756 to eliminate this cast. 1757 1758 for (unsigned i = 0; i < n; ++i) 1759 foo((double)i); 1760 1761 is transformed into 1762 1763 double d = 0.0; 1764 for (unsigned i = 0; i < n; ++i, ++d) 1765 foo(d); 1766 */ 1767 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1768 IsSigned = false; 1769 DestTy = UCast->getDestTy(); 1770 } 1771 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1772 IsSigned = true; 1773 DestTy = SCast->getDestTy(); 1774 } 1775 if (!DestTy) continue; 1776 1777 // If target does not support DestTy natively then do not apply 1778 // this transformation. 1779 if (!TTI.isTypeLegal(DestTy)) continue; 1780 1781 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1782 if (!PH) continue; 1783 if (PH->getNumIncomingValues() != 2) continue; 1784 1785 Type *SrcTy = PH->getType(); 1786 int Mantissa = DestTy->getFPMantissaWidth(); 1787 if (Mantissa == -1) continue; 1788 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1789 continue; 1790 1791 unsigned Entry, Latch; 1792 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1793 Entry = 0; 1794 Latch = 1; 1795 } else { 1796 Entry = 1; 1797 Latch = 0; 1798 } 1799 1800 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1801 if (!Init) continue; 1802 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1803 (double)Init->getSExtValue() : 1804 (double)Init->getZExtValue()); 1805 1806 BinaryOperator *Incr = 1807 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1808 if (!Incr) continue; 1809 if (Incr->getOpcode() != Instruction::Add 1810 && Incr->getOpcode() != Instruction::Sub) 1811 continue; 1812 1813 /* Initialize new IV, double d = 0.0 in above example. */ 1814 ConstantInt *C = 0; 1815 if (Incr->getOperand(0) == PH) 1816 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1817 else if (Incr->getOperand(1) == PH) 1818 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1819 else 1820 continue; 1821 1822 if (!C) continue; 1823 1824 // Ignore negative constants, as the code below doesn't handle them 1825 // correctly. TODO: Remove this restriction. 1826 if (!C->getValue().isStrictlyPositive()) continue; 1827 1828 /* Add new PHINode. */ 1829 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1830 1831 /* create new increment. '++d' in above example. */ 1832 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1833 BinaryOperator *NewIncr = 1834 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1835 Instruction::FAdd : Instruction::FSub, 1836 NewPH, CFP, "IV.S.next.", Incr); 1837 1838 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1839 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1840 1841 /* Remove cast operation */ 1842 ShadowUse->replaceAllUsesWith(NewPH); 1843 ShadowUse->eraseFromParent(); 1844 Changed = true; 1845 break; 1846 } 1847 } 1848 1849 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1850 /// set the IV user and stride information and return true, otherwise return 1851 /// false. 1852 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1853 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1854 if (UI->getUser() == Cond) { 1855 // NOTE: we could handle setcc instructions with multiple uses here, but 1856 // InstCombine does it as well for simple uses, it's not clear that it 1857 // occurs enough in real life to handle. 1858 CondUse = UI; 1859 return true; 1860 } 1861 return false; 1862 } 1863 1864 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1865 /// a max computation. 1866 /// 1867 /// This is a narrow solution to a specific, but acute, problem. For loops 1868 /// like this: 1869 /// 1870 /// i = 0; 1871 /// do { 1872 /// p[i] = 0.0; 1873 /// } while (++i < n); 1874 /// 1875 /// the trip count isn't just 'n', because 'n' might not be positive. And 1876 /// unfortunately this can come up even for loops where the user didn't use 1877 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1878 /// will commonly be lowered like this: 1879 // 1880 /// if (n > 0) { 1881 /// i = 0; 1882 /// do { 1883 /// p[i] = 0.0; 1884 /// } while (++i < n); 1885 /// } 1886 /// 1887 /// and then it's possible for subsequent optimization to obscure the if 1888 /// test in such a way that indvars can't find it. 1889 /// 1890 /// When indvars can't find the if test in loops like this, it creates a 1891 /// max expression, which allows it to give the loop a canonical 1892 /// induction variable: 1893 /// 1894 /// i = 0; 1895 /// max = n < 1 ? 1 : n; 1896 /// do { 1897 /// p[i] = 0.0; 1898 /// } while (++i != max); 1899 /// 1900 /// Canonical induction variables are necessary because the loop passes 1901 /// are designed around them. The most obvious example of this is the 1902 /// LoopInfo analysis, which doesn't remember trip count values. It 1903 /// expects to be able to rediscover the trip count each time it is 1904 /// needed, and it does this using a simple analysis that only succeeds if 1905 /// the loop has a canonical induction variable. 1906 /// 1907 /// However, when it comes time to generate code, the maximum operation 1908 /// can be quite costly, especially if it's inside of an outer loop. 1909 /// 1910 /// This function solves this problem by detecting this type of loop and 1911 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1912 /// the instructions for the maximum computation. 1913 /// 1914 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1915 // Check that the loop matches the pattern we're looking for. 1916 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1917 Cond->getPredicate() != CmpInst::ICMP_NE) 1918 return Cond; 1919 1920 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1921 if (!Sel || !Sel->hasOneUse()) return Cond; 1922 1923 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1924 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1925 return Cond; 1926 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1927 1928 // Add one to the backedge-taken count to get the trip count. 1929 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1930 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1931 1932 // Check for a max calculation that matches the pattern. There's no check 1933 // for ICMP_ULE here because the comparison would be with zero, which 1934 // isn't interesting. 1935 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1936 const SCEVNAryExpr *Max = 0; 1937 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 1938 Pred = ICmpInst::ICMP_SLE; 1939 Max = S; 1940 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 1941 Pred = ICmpInst::ICMP_SLT; 1942 Max = S; 1943 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 1944 Pred = ICmpInst::ICMP_ULT; 1945 Max = U; 1946 } else { 1947 // No match; bail. 1948 return Cond; 1949 } 1950 1951 // To handle a max with more than two operands, this optimization would 1952 // require additional checking and setup. 1953 if (Max->getNumOperands() != 2) 1954 return Cond; 1955 1956 const SCEV *MaxLHS = Max->getOperand(0); 1957 const SCEV *MaxRHS = Max->getOperand(1); 1958 1959 // ScalarEvolution canonicalizes constants to the left. For < and >, look 1960 // for a comparison with 1. For <= and >=, a comparison with zero. 1961 if (!MaxLHS || 1962 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 1963 return Cond; 1964 1965 // Check the relevant induction variable for conformance to 1966 // the pattern. 1967 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 1968 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 1969 if (!AR || !AR->isAffine() || 1970 AR->getStart() != One || 1971 AR->getStepRecurrence(SE) != One) 1972 return Cond; 1973 1974 assert(AR->getLoop() == L && 1975 "Loop condition operand is an addrec in a different loop!"); 1976 1977 // Check the right operand of the select, and remember it, as it will 1978 // be used in the new comparison instruction. 1979 Value *NewRHS = 0; 1980 if (ICmpInst::isTrueWhenEqual(Pred)) { 1981 // Look for n+1, and grab n. 1982 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 1983 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 1984 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1985 NewRHS = BO->getOperand(0); 1986 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 1987 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 1988 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1989 NewRHS = BO->getOperand(0); 1990 if (!NewRHS) 1991 return Cond; 1992 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 1993 NewRHS = Sel->getOperand(1); 1994 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 1995 NewRHS = Sel->getOperand(2); 1996 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 1997 NewRHS = SU->getValue(); 1998 else 1999 // Max doesn't match expected pattern. 2000 return Cond; 2001 2002 // Determine the new comparison opcode. It may be signed or unsigned, 2003 // and the original comparison may be either equality or inequality. 2004 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2005 Pred = CmpInst::getInversePredicate(Pred); 2006 2007 // Ok, everything looks ok to change the condition into an SLT or SGE and 2008 // delete the max calculation. 2009 ICmpInst *NewCond = 2010 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2011 2012 // Delete the max calculation instructions. 2013 Cond->replaceAllUsesWith(NewCond); 2014 CondUse->setUser(NewCond); 2015 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2016 Cond->eraseFromParent(); 2017 Sel->eraseFromParent(); 2018 if (Cmp->use_empty()) 2019 Cmp->eraseFromParent(); 2020 return NewCond; 2021 } 2022 2023 /// OptimizeLoopTermCond - Change loop terminating condition to use the 2024 /// postinc iv when possible. 2025 void 2026 LSRInstance::OptimizeLoopTermCond() { 2027 SmallPtrSet<Instruction *, 4> PostIncs; 2028 2029 BasicBlock *LatchBlock = L->getLoopLatch(); 2030 SmallVector<BasicBlock*, 8> ExitingBlocks; 2031 L->getExitingBlocks(ExitingBlocks); 2032 2033 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 2034 BasicBlock *ExitingBlock = ExitingBlocks[i]; 2035 2036 // Get the terminating condition for the loop if possible. If we 2037 // can, we want to change it to use a post-incremented version of its 2038 // induction variable, to allow coalescing the live ranges for the IV into 2039 // one register value. 2040 2041 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2042 if (!TermBr) 2043 continue; 2044 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2045 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2046 continue; 2047 2048 // Search IVUsesByStride to find Cond's IVUse if there is one. 2049 IVStrideUse *CondUse = 0; 2050 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2051 if (!FindIVUserForCond(Cond, CondUse)) 2052 continue; 2053 2054 // If the trip count is computed in terms of a max (due to ScalarEvolution 2055 // being unable to find a sufficient guard, for example), change the loop 2056 // comparison to use SLT or ULT instead of NE. 2057 // One consequence of doing this now is that it disrupts the count-down 2058 // optimization. That's not always a bad thing though, because in such 2059 // cases it may still be worthwhile to avoid a max. 2060 Cond = OptimizeMax(Cond, CondUse); 2061 2062 // If this exiting block dominates the latch block, it may also use 2063 // the post-inc value if it won't be shared with other uses. 2064 // Check for dominance. 2065 if (!DT.dominates(ExitingBlock, LatchBlock)) 2066 continue; 2067 2068 // Conservatively avoid trying to use the post-inc value in non-latch 2069 // exits if there may be pre-inc users in intervening blocks. 2070 if (LatchBlock != ExitingBlock) 2071 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2072 // Test if the use is reachable from the exiting block. This dominator 2073 // query is a conservative approximation of reachability. 2074 if (&*UI != CondUse && 2075 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2076 // Conservatively assume there may be reuse if the quotient of their 2077 // strides could be a legal scale. 2078 const SCEV *A = IU.getStride(*CondUse, L); 2079 const SCEV *B = IU.getStride(*UI, L); 2080 if (!A || !B) continue; 2081 if (SE.getTypeSizeInBits(A->getType()) != 2082 SE.getTypeSizeInBits(B->getType())) { 2083 if (SE.getTypeSizeInBits(A->getType()) > 2084 SE.getTypeSizeInBits(B->getType())) 2085 B = SE.getSignExtendExpr(B, A->getType()); 2086 else 2087 A = SE.getSignExtendExpr(A, B->getType()); 2088 } 2089 if (const SCEVConstant *D = 2090 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2091 const ConstantInt *C = D->getValue(); 2092 // Stride of one or negative one can have reuse with non-addresses. 2093 if (C->isOne() || C->isAllOnesValue()) 2094 goto decline_post_inc; 2095 // Avoid weird situations. 2096 if (C->getValue().getMinSignedBits() >= 64 || 2097 C->getValue().isMinSignedValue()) 2098 goto decline_post_inc; 2099 // Check for possible scaled-address reuse. 2100 Type *AccessTy = getAccessType(UI->getUser()); 2101 int64_t Scale = C->getSExtValue(); 2102 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0, 2103 /*BaseOffset=*/ 0, 2104 /*HasBaseReg=*/ false, Scale)) 2105 goto decline_post_inc; 2106 Scale = -Scale; 2107 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0, 2108 /*BaseOffset=*/ 0, 2109 /*HasBaseReg=*/ false, Scale)) 2110 goto decline_post_inc; 2111 } 2112 } 2113 2114 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2115 << *Cond << '\n'); 2116 2117 // It's possible for the setcc instruction to be anywhere in the loop, and 2118 // possible for it to have multiple users. If it is not immediately before 2119 // the exiting block branch, move it. 2120 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2121 if (Cond->hasOneUse()) { 2122 Cond->moveBefore(TermBr); 2123 } else { 2124 // Clone the terminating condition and insert into the loopend. 2125 ICmpInst *OldCond = Cond; 2126 Cond = cast<ICmpInst>(Cond->clone()); 2127 Cond->setName(L->getHeader()->getName() + ".termcond"); 2128 ExitingBlock->getInstList().insert(TermBr, Cond); 2129 2130 // Clone the IVUse, as the old use still exists! 2131 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2132 TermBr->replaceUsesOfWith(OldCond, Cond); 2133 } 2134 } 2135 2136 // If we get to here, we know that we can transform the setcc instruction to 2137 // use the post-incremented version of the IV, allowing us to coalesce the 2138 // live ranges for the IV correctly. 2139 CondUse->transformToPostInc(L); 2140 Changed = true; 2141 2142 PostIncs.insert(Cond); 2143 decline_post_inc:; 2144 } 2145 2146 // Determine an insertion point for the loop induction variable increment. It 2147 // must dominate all the post-inc comparisons we just set up, and it must 2148 // dominate the loop latch edge. 2149 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2150 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(), 2151 E = PostIncs.end(); I != E; ++I) { 2152 BasicBlock *BB = 2153 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2154 (*I)->getParent()); 2155 if (BB == (*I)->getParent()) 2156 IVIncInsertPos = *I; 2157 else if (BB != IVIncInsertPos->getParent()) 2158 IVIncInsertPos = BB->getTerminator(); 2159 } 2160 } 2161 2162 /// reconcileNewOffset - Determine if the given use can accommodate a fixup 2163 /// at the given offset and other details. If so, update the use and 2164 /// return true. 2165 bool 2166 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 2167 LSRUse::KindType Kind, Type *AccessTy) { 2168 int64_t NewMinOffset = LU.MinOffset; 2169 int64_t NewMaxOffset = LU.MaxOffset; 2170 Type *NewAccessTy = AccessTy; 2171 2172 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2173 // something conservative, however this can pessimize in the case that one of 2174 // the uses will have all its uses outside the loop, for example. 2175 if (LU.Kind != Kind) 2176 return false; 2177 // Conservatively assume HasBaseReg is true for now. 2178 if (NewOffset < LU.MinOffset) { 2179 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0, 2180 LU.MaxOffset - NewOffset, HasBaseReg)) 2181 return false; 2182 NewMinOffset = NewOffset; 2183 } else if (NewOffset > LU.MaxOffset) { 2184 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0, 2185 NewOffset - LU.MinOffset, HasBaseReg)) 2186 return false; 2187 NewMaxOffset = NewOffset; 2188 } 2189 // Check for a mismatched access type, and fall back conservatively as needed. 2190 // TODO: Be less conservative when the type is similar and can use the same 2191 // addressing modes. 2192 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 2193 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 2194 2195 // Update the use. 2196 LU.MinOffset = NewMinOffset; 2197 LU.MaxOffset = NewMaxOffset; 2198 LU.AccessTy = NewAccessTy; 2199 if (NewOffset != LU.Offsets.back()) 2200 LU.Offsets.push_back(NewOffset); 2201 return true; 2202 } 2203 2204 /// getUse - Return an LSRUse index and an offset value for a fixup which 2205 /// needs the given expression, with the given kind and optional access type. 2206 /// Either reuse an existing use or create a new one, as needed. 2207 std::pair<size_t, int64_t> 2208 LSRInstance::getUse(const SCEV *&Expr, 2209 LSRUse::KindType Kind, Type *AccessTy) { 2210 const SCEV *Copy = Expr; 2211 int64_t Offset = ExtractImmediate(Expr, SE); 2212 2213 // Basic uses can't accept any offset, for example. 2214 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0, 2215 Offset, /*HasBaseReg=*/ true)) { 2216 Expr = Copy; 2217 Offset = 0; 2218 } 2219 2220 std::pair<UseMapTy::iterator, bool> P = 2221 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0)); 2222 if (!P.second) { 2223 // A use already existed with this base. 2224 size_t LUIdx = P.first->second; 2225 LSRUse &LU = Uses[LUIdx]; 2226 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2227 // Reuse this use. 2228 return std::make_pair(LUIdx, Offset); 2229 } 2230 2231 // Create a new use. 2232 size_t LUIdx = Uses.size(); 2233 P.first->second = LUIdx; 2234 Uses.push_back(LSRUse(Kind, AccessTy)); 2235 LSRUse &LU = Uses[LUIdx]; 2236 2237 // We don't need to track redundant offsets, but we don't need to go out 2238 // of our way here to avoid them. 2239 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 2240 LU.Offsets.push_back(Offset); 2241 2242 LU.MinOffset = Offset; 2243 LU.MaxOffset = Offset; 2244 return std::make_pair(LUIdx, Offset); 2245 } 2246 2247 /// DeleteUse - Delete the given use from the Uses list. 2248 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2249 if (&LU != &Uses.back()) 2250 std::swap(LU, Uses.back()); 2251 Uses.pop_back(); 2252 2253 // Update RegUses. 2254 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 2255 } 2256 2257 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 2258 /// a formula that has the same registers as the given formula. 2259 LSRUse * 2260 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2261 const LSRUse &OrigLU) { 2262 // Search all uses for the formula. This could be more clever. 2263 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2264 LSRUse &LU = Uses[LUIdx]; 2265 // Check whether this use is close enough to OrigLU, to see whether it's 2266 // worthwhile looking through its formulae. 2267 // Ignore ICmpZero uses because they may contain formulae generated by 2268 // GenerateICmpZeroScales, in which case adding fixup offsets may 2269 // be invalid. 2270 if (&LU != &OrigLU && 2271 LU.Kind != LSRUse::ICmpZero && 2272 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2273 LU.WidestFixupType == OrigLU.WidestFixupType && 2274 LU.HasFormulaWithSameRegs(OrigF)) { 2275 // Scan through this use's formulae. 2276 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 2277 E = LU.Formulae.end(); I != E; ++I) { 2278 const Formula &F = *I; 2279 // Check to see if this formula has the same registers and symbols 2280 // as OrigF. 2281 if (F.BaseRegs == OrigF.BaseRegs && 2282 F.ScaledReg == OrigF.ScaledReg && 2283 F.BaseGV == OrigF.BaseGV && 2284 F.Scale == OrigF.Scale && 2285 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2286 if (F.BaseOffset == 0) 2287 return &LU; 2288 // This is the formula where all the registers and symbols matched; 2289 // there aren't going to be any others. Since we declined it, we 2290 // can skip the rest of the formulae and proceed to the next LSRUse. 2291 break; 2292 } 2293 } 2294 } 2295 } 2296 2297 // Nothing looked good. 2298 return 0; 2299 } 2300 2301 void LSRInstance::CollectInterestingTypesAndFactors() { 2302 SmallSetVector<const SCEV *, 4> Strides; 2303 2304 // Collect interesting types and strides. 2305 SmallVector<const SCEV *, 4> Worklist; 2306 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2307 const SCEV *Expr = IU.getExpr(*UI); 2308 2309 // Collect interesting types. 2310 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2311 2312 // Add strides for mentioned loops. 2313 Worklist.push_back(Expr); 2314 do { 2315 const SCEV *S = Worklist.pop_back_val(); 2316 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2317 if (AR->getLoop() == L) 2318 Strides.insert(AR->getStepRecurrence(SE)); 2319 Worklist.push_back(AR->getStart()); 2320 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2321 Worklist.append(Add->op_begin(), Add->op_end()); 2322 } 2323 } while (!Worklist.empty()); 2324 } 2325 2326 // Compute interesting factors from the set of interesting strides. 2327 for (SmallSetVector<const SCEV *, 4>::const_iterator 2328 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2329 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2330 llvm::next(I); NewStrideIter != E; ++NewStrideIter) { 2331 const SCEV *OldStride = *I; 2332 const SCEV *NewStride = *NewStrideIter; 2333 2334 if (SE.getTypeSizeInBits(OldStride->getType()) != 2335 SE.getTypeSizeInBits(NewStride->getType())) { 2336 if (SE.getTypeSizeInBits(OldStride->getType()) > 2337 SE.getTypeSizeInBits(NewStride->getType())) 2338 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2339 else 2340 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2341 } 2342 if (const SCEVConstant *Factor = 2343 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2344 SE, true))) { 2345 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2346 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2347 } else if (const SCEVConstant *Factor = 2348 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2349 NewStride, 2350 SE, true))) { 2351 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2352 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2353 } 2354 } 2355 2356 // If all uses use the same type, don't bother looking for truncation-based 2357 // reuse. 2358 if (Types.size() == 1) 2359 Types.clear(); 2360 2361 DEBUG(print_factors_and_types(dbgs())); 2362 } 2363 2364 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed 2365 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped 2366 /// Instructions to IVStrideUses, we could partially skip this. 2367 static User::op_iterator 2368 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2369 Loop *L, ScalarEvolution &SE) { 2370 for(; OI != OE; ++OI) { 2371 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2372 if (!SE.isSCEVable(Oper->getType())) 2373 continue; 2374 2375 if (const SCEVAddRecExpr *AR = 2376 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2377 if (AR->getLoop() == L) 2378 break; 2379 } 2380 } 2381 } 2382 return OI; 2383 } 2384 2385 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst 2386 /// operands, so wrap it in a convenient helper. 2387 static Value *getWideOperand(Value *Oper) { 2388 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2389 return Trunc->getOperand(0); 2390 return Oper; 2391 } 2392 2393 /// isCompatibleIVType - Return true if we allow an IV chain to include both 2394 /// types. 2395 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2396 Type *LType = LVal->getType(); 2397 Type *RType = RVal->getType(); 2398 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2399 } 2400 2401 /// getExprBase - Return an approximation of this SCEV expression's "base", or 2402 /// NULL for any constant. Returning the expression itself is 2403 /// conservative. Returning a deeper subexpression is more precise and valid as 2404 /// long as it isn't less complex than another subexpression. For expressions 2405 /// involving multiple unscaled values, we need to return the pointer-type 2406 /// SCEVUnknown. This avoids forming chains across objects, such as: 2407 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a. 2408 /// 2409 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2410 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2411 static const SCEV *getExprBase(const SCEV *S) { 2412 switch (S->getSCEVType()) { 2413 default: // uncluding scUnknown. 2414 return S; 2415 case scConstant: 2416 return 0; 2417 case scTruncate: 2418 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2419 case scZeroExtend: 2420 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2421 case scSignExtend: 2422 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2423 case scAddExpr: { 2424 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2425 // there's nothing more complex. 2426 // FIXME: not sure if we want to recognize negation. 2427 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2428 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2429 E(Add->op_begin()); I != E; ++I) { 2430 const SCEV *SubExpr = *I; 2431 if (SubExpr->getSCEVType() == scAddExpr) 2432 return getExprBase(SubExpr); 2433 2434 if (SubExpr->getSCEVType() != scMulExpr) 2435 return SubExpr; 2436 } 2437 return S; // all operands are scaled, be conservative. 2438 } 2439 case scAddRecExpr: 2440 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2441 } 2442 } 2443 2444 /// Return true if the chain increment is profitable to expand into a loop 2445 /// invariant value, which may require its own register. A profitable chain 2446 /// increment will be an offset relative to the same base. We allow such offsets 2447 /// to potentially be used as chain increment as long as it's not obviously 2448 /// expensive to expand using real instructions. 2449 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2450 const SCEV *IncExpr, 2451 ScalarEvolution &SE) { 2452 // Aggressively form chains when -stress-ivchain. 2453 if (StressIVChain) 2454 return true; 2455 2456 // Do not replace a constant offset from IV head with a nonconstant IV 2457 // increment. 2458 if (!isa<SCEVConstant>(IncExpr)) { 2459 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2460 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2461 return 0; 2462 } 2463 2464 SmallPtrSet<const SCEV*, 8> Processed; 2465 return !isHighCostExpansion(IncExpr, Processed, SE); 2466 } 2467 2468 /// Return true if the number of registers needed for the chain is estimated to 2469 /// be less than the number required for the individual IV users. First prohibit 2470 /// any IV users that keep the IV live across increments (the Users set should 2471 /// be empty). Next count the number and type of increments in the chain. 2472 /// 2473 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2474 /// effectively use postinc addressing modes. Only consider it profitable it the 2475 /// increments can be computed in fewer registers when chained. 2476 /// 2477 /// TODO: Consider IVInc free if it's already used in another chains. 2478 static bool 2479 isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users, 2480 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2481 if (StressIVChain) 2482 return true; 2483 2484 if (!Chain.hasIncs()) 2485 return false; 2486 2487 if (!Users.empty()) { 2488 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2489 for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(), 2490 E = Users.end(); I != E; ++I) { 2491 dbgs() << " " << **I << "\n"; 2492 }); 2493 return false; 2494 } 2495 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2496 2497 // The chain itself may require a register, so intialize cost to 1. 2498 int cost = 1; 2499 2500 // A complete chain likely eliminates the need for keeping the original IV in 2501 // a register. LSR does not currently know how to form a complete chain unless 2502 // the header phi already exists. 2503 if (isa<PHINode>(Chain.tailUserInst()) 2504 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2505 --cost; 2506 } 2507 const SCEV *LastIncExpr = 0; 2508 unsigned NumConstIncrements = 0; 2509 unsigned NumVarIncrements = 0; 2510 unsigned NumReusedIncrements = 0; 2511 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); 2512 I != E; ++I) { 2513 2514 if (I->IncExpr->isZero()) 2515 continue; 2516 2517 // Incrementing by zero or some constant is neutral. We assume constants can 2518 // be folded into an addressing mode or an add's immediate operand. 2519 if (isa<SCEVConstant>(I->IncExpr)) { 2520 ++NumConstIncrements; 2521 continue; 2522 } 2523 2524 if (I->IncExpr == LastIncExpr) 2525 ++NumReusedIncrements; 2526 else 2527 ++NumVarIncrements; 2528 2529 LastIncExpr = I->IncExpr; 2530 } 2531 // An IV chain with a single increment is handled by LSR's postinc 2532 // uses. However, a chain with multiple increments requires keeping the IV's 2533 // value live longer than it needs to be if chained. 2534 if (NumConstIncrements > 1) 2535 --cost; 2536 2537 // Materializing increment expressions in the preheader that didn't exist in 2538 // the original code may cost a register. For example, sign-extended array 2539 // indices can produce ridiculous increments like this: 2540 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2541 cost += NumVarIncrements; 2542 2543 // Reusing variable increments likely saves a register to hold the multiple of 2544 // the stride. 2545 cost -= NumReusedIncrements; 2546 2547 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2548 << "\n"); 2549 2550 return cost < 0; 2551 } 2552 2553 /// ChainInstruction - Add this IV user to an existing chain or make it the head 2554 /// of a new chain. 2555 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2556 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2557 // When IVs are used as types of varying widths, they are generally converted 2558 // to a wider type with some uses remaining narrow under a (free) trunc. 2559 Value *const NextIV = getWideOperand(IVOper); 2560 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2561 const SCEV *const OperExprBase = getExprBase(OperExpr); 2562 2563 // Visit all existing chains. Check if its IVOper can be computed as a 2564 // profitable loop invariant increment from the last link in the Chain. 2565 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2566 const SCEV *LastIncExpr = 0; 2567 for (; ChainIdx < NChains; ++ChainIdx) { 2568 IVChain &Chain = IVChainVec[ChainIdx]; 2569 2570 // Prune the solution space aggressively by checking that both IV operands 2571 // are expressions that operate on the same unscaled SCEVUnknown. This 2572 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2573 // first avoids creating extra SCEV expressions. 2574 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2575 continue; 2576 2577 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2578 if (!isCompatibleIVType(PrevIV, NextIV)) 2579 continue; 2580 2581 // A phi node terminates a chain. 2582 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2583 continue; 2584 2585 // The increment must be loop-invariant so it can be kept in a register. 2586 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2587 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2588 if (!SE.isLoopInvariant(IncExpr, L)) 2589 continue; 2590 2591 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2592 LastIncExpr = IncExpr; 2593 break; 2594 } 2595 } 2596 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2597 // bother for phi nodes, because they must be last in the chain. 2598 if (ChainIdx == NChains) { 2599 if (isa<PHINode>(UserInst)) 2600 return; 2601 if (NChains >= MaxChains && !StressIVChain) { 2602 DEBUG(dbgs() << "IV Chain Limit\n"); 2603 return; 2604 } 2605 LastIncExpr = OperExpr; 2606 // IVUsers may have skipped over sign/zero extensions. We don't currently 2607 // attempt to form chains involving extensions unless they can be hoisted 2608 // into this loop's AddRec. 2609 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2610 return; 2611 ++NChains; 2612 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2613 OperExprBase)); 2614 ChainUsersVec.resize(NChains); 2615 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2616 << ") IV=" << *LastIncExpr << "\n"); 2617 } else { 2618 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2619 << ") IV+" << *LastIncExpr << "\n"); 2620 // Add this IV user to the end of the chain. 2621 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2622 } 2623 IVChain &Chain = IVChainVec[ChainIdx]; 2624 2625 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2626 // This chain's NearUsers become FarUsers. 2627 if (!LastIncExpr->isZero()) { 2628 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2629 NearUsers.end()); 2630 NearUsers.clear(); 2631 } 2632 2633 // All other uses of IVOperand become near uses of the chain. 2634 // We currently ignore intermediate values within SCEV expressions, assuming 2635 // they will eventually be used be the current chain, or can be computed 2636 // from one of the chain increments. To be more precise we could 2637 // transitively follow its user and only add leaf IV users to the set. 2638 for (Value::use_iterator UseIter = IVOper->use_begin(), 2639 UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) { 2640 Instruction *OtherUse = dyn_cast<Instruction>(*UseIter); 2641 if (!OtherUse) 2642 continue; 2643 // Uses in the chain will no longer be uses if the chain is formed. 2644 // Include the head of the chain in this iteration (not Chain.begin()). 2645 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2646 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2647 for( ; IncIter != IncEnd; ++IncIter) { 2648 if (IncIter->UserInst == OtherUse) 2649 break; 2650 } 2651 if (IncIter != IncEnd) 2652 continue; 2653 2654 if (SE.isSCEVable(OtherUse->getType()) 2655 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2656 && IU.isIVUserOrOperand(OtherUse)) { 2657 continue; 2658 } 2659 NearUsers.insert(OtherUse); 2660 } 2661 2662 // Since this user is part of the chain, it's no longer considered a use 2663 // of the chain. 2664 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2665 } 2666 2667 /// CollectChains - Populate the vector of Chains. 2668 /// 2669 /// This decreases ILP at the architecture level. Targets with ample registers, 2670 /// multiple memory ports, and no register renaming probably don't want 2671 /// this. However, such targets should probably disable LSR altogether. 2672 /// 2673 /// The job of LSR is to make a reasonable choice of induction variables across 2674 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2675 /// ILP *within the loop* if the target wants it. 2676 /// 2677 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2678 /// will not reorder memory operations, it will recognize this as a chain, but 2679 /// will generate redundant IV increments. Ideally this would be corrected later 2680 /// by a smart scheduler: 2681 /// = A[i] 2682 /// = A[i+x] 2683 /// A[i] = 2684 /// A[i+x] = 2685 /// 2686 /// TODO: Walk the entire domtree within this loop, not just the path to the 2687 /// loop latch. This will discover chains on side paths, but requires 2688 /// maintaining multiple copies of the Chains state. 2689 void LSRInstance::CollectChains() { 2690 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2691 SmallVector<ChainUsers, 8> ChainUsersVec; 2692 2693 SmallVector<BasicBlock *,8> LatchPath; 2694 BasicBlock *LoopHeader = L->getHeader(); 2695 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2696 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2697 LatchPath.push_back(Rung->getBlock()); 2698 } 2699 LatchPath.push_back(LoopHeader); 2700 2701 // Walk the instruction stream from the loop header to the loop latch. 2702 for (SmallVectorImpl<BasicBlock *>::reverse_iterator 2703 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend(); 2704 BBIter != BBEnd; ++BBIter) { 2705 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end(); 2706 I != E; ++I) { 2707 // Skip instructions that weren't seen by IVUsers analysis. 2708 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I)) 2709 continue; 2710 2711 // Ignore users that are part of a SCEV expression. This way we only 2712 // consider leaf IV Users. This effectively rediscovers a portion of 2713 // IVUsers analysis but in program order this time. 2714 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I))) 2715 continue; 2716 2717 // Remove this instruction from any NearUsers set it may be in. 2718 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2719 ChainIdx < NChains; ++ChainIdx) { 2720 ChainUsersVec[ChainIdx].NearUsers.erase(I); 2721 } 2722 // Search for operands that can be chained. 2723 SmallPtrSet<Instruction*, 4> UniqueOperands; 2724 User::op_iterator IVOpEnd = I->op_end(); 2725 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE); 2726 while (IVOpIter != IVOpEnd) { 2727 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2728 if (UniqueOperands.insert(IVOpInst)) 2729 ChainInstruction(I, IVOpInst, ChainUsersVec); 2730 IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE); 2731 } 2732 } // Continue walking down the instructions. 2733 } // Continue walking down the domtree. 2734 // Visit phi backedges to determine if the chain can generate the IV postinc. 2735 for (BasicBlock::iterator I = L->getHeader()->begin(); 2736 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2737 if (!SE.isSCEVable(PN->getType())) 2738 continue; 2739 2740 Instruction *IncV = 2741 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2742 if (IncV) 2743 ChainInstruction(PN, IncV, ChainUsersVec); 2744 } 2745 // Remove any unprofitable chains. 2746 unsigned ChainIdx = 0; 2747 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2748 UsersIdx < NChains; ++UsersIdx) { 2749 if (!isProfitableChain(IVChainVec[UsersIdx], 2750 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2751 continue; 2752 // Preserve the chain at UsesIdx. 2753 if (ChainIdx != UsersIdx) 2754 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2755 FinalizeChain(IVChainVec[ChainIdx]); 2756 ++ChainIdx; 2757 } 2758 IVChainVec.resize(ChainIdx); 2759 } 2760 2761 void LSRInstance::FinalizeChain(IVChain &Chain) { 2762 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2763 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2764 2765 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); 2766 I != E; ++I) { 2767 DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n"); 2768 User::op_iterator UseI = 2769 std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand); 2770 assert(UseI != I->UserInst->op_end() && "cannot find IV operand"); 2771 IVIncSet.insert(UseI); 2772 } 2773 } 2774 2775 /// Return true if the IVInc can be folded into an addressing mode. 2776 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2777 Value *Operand, const TargetTransformInfo &TTI) { 2778 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2779 if (!IncConst || !isAddressUse(UserInst, Operand)) 2780 return false; 2781 2782 if (IncConst->getValue()->getValue().getMinSignedBits() > 64) 2783 return false; 2784 2785 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2786 if (!isAlwaysFoldable(TTI, LSRUse::Address, 2787 getAccessType(UserInst), /*BaseGV=*/ 0, 2788 IncOffset, /*HaseBaseReg=*/ false)) 2789 return false; 2790 2791 return true; 2792 } 2793 2794 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to 2795 /// materialize the IV user's operand from the previous IV user's operand. 2796 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2797 SmallVectorImpl<WeakVH> &DeadInsts) { 2798 // Find the new IVOperand for the head of the chain. It may have been replaced 2799 // by LSR. 2800 const IVInc &Head = Chain.Incs[0]; 2801 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2802 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2803 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2804 IVOpEnd, L, SE); 2805 Value *IVSrc = 0; 2806 while (IVOpIter != IVOpEnd) { 2807 IVSrc = getWideOperand(*IVOpIter); 2808 2809 // If this operand computes the expression that the chain needs, we may use 2810 // it. (Check this after setting IVSrc which is used below.) 2811 // 2812 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2813 // narrow for the chain, so we can no longer use it. We do allow using a 2814 // wider phi, assuming the LSR checked for free truncation. In that case we 2815 // should already have a truncate on this operand such that 2816 // getSCEV(IVSrc) == IncExpr. 2817 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2818 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2819 break; 2820 } 2821 IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE); 2822 } 2823 if (IVOpIter == IVOpEnd) { 2824 // Gracefully give up on this chain. 2825 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2826 return; 2827 } 2828 2829 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2830 Type *IVTy = IVSrc->getType(); 2831 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2832 const SCEV *LeftOverExpr = 0; 2833 for (IVChain::const_iterator IncI = Chain.begin(), 2834 IncE = Chain.end(); IncI != IncE; ++IncI) { 2835 2836 Instruction *InsertPt = IncI->UserInst; 2837 if (isa<PHINode>(InsertPt)) 2838 InsertPt = L->getLoopLatch()->getTerminator(); 2839 2840 // IVOper will replace the current IV User's operand. IVSrc is the IV 2841 // value currently held in a register. 2842 Value *IVOper = IVSrc; 2843 if (!IncI->IncExpr->isZero()) { 2844 // IncExpr was the result of subtraction of two narrow values, so must 2845 // be signed. 2846 const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy); 2847 LeftOverExpr = LeftOverExpr ? 2848 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2849 } 2850 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2851 // Expand the IV increment. 2852 Rewriter.clearPostInc(); 2853 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2854 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2855 SE.getUnknown(IncV)); 2856 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2857 2858 // If an IV increment can't be folded, use it as the next IV value. 2859 if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand, 2860 TTI)) { 2861 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2862 IVSrc = IVOper; 2863 LeftOverExpr = 0; 2864 } 2865 } 2866 Type *OperTy = IncI->IVOperand->getType(); 2867 if (IVTy != OperTy) { 2868 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2869 "cannot extend a chained IV"); 2870 IRBuilder<> Builder(InsertPt); 2871 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2872 } 2873 IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper); 2874 DeadInsts.push_back(IncI->IVOperand); 2875 } 2876 // If LSR created a new, wider phi, we may also replace its postinc. We only 2877 // do this if we also found a wide value for the head of the chain. 2878 if (isa<PHINode>(Chain.tailUserInst())) { 2879 for (BasicBlock::iterator I = L->getHeader()->begin(); 2880 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2881 if (!isCompatibleIVType(Phi, IVSrc)) 2882 continue; 2883 Instruction *PostIncV = dyn_cast<Instruction>( 2884 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2885 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2886 continue; 2887 Value *IVOper = IVSrc; 2888 Type *PostIncTy = PostIncV->getType(); 2889 if (IVTy != PostIncTy) { 2890 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2891 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2892 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2893 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2894 } 2895 Phi->replaceUsesOfWith(PostIncV, IVOper); 2896 DeadInsts.push_back(PostIncV); 2897 } 2898 } 2899 } 2900 2901 void LSRInstance::CollectFixupsAndInitialFormulae() { 2902 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2903 Instruction *UserInst = UI->getUser(); 2904 // Skip IV users that are part of profitable IV Chains. 2905 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(), 2906 UI->getOperandValToReplace()); 2907 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2908 if (IVIncSet.count(UseI)) 2909 continue; 2910 2911 // Record the uses. 2912 LSRFixup &LF = getNewFixup(); 2913 LF.UserInst = UserInst; 2914 LF.OperandValToReplace = UI->getOperandValToReplace(); 2915 LF.PostIncLoops = UI->getPostIncLoops(); 2916 2917 LSRUse::KindType Kind = LSRUse::Basic; 2918 Type *AccessTy = 0; 2919 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2920 Kind = LSRUse::Address; 2921 AccessTy = getAccessType(LF.UserInst); 2922 } 2923 2924 const SCEV *S = IU.getExpr(*UI); 2925 2926 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2927 // (N - i == 0), and this allows (N - i) to be the expression that we work 2928 // with rather than just N or i, so we can consider the register 2929 // requirements for both N and i at the same time. Limiting this code to 2930 // equality icmps is not a problem because all interesting loops use 2931 // equality icmps, thanks to IndVarSimplify. 2932 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 2933 if (CI->isEquality()) { 2934 // Swap the operands if needed to put the OperandValToReplace on the 2935 // left, for consistency. 2936 Value *NV = CI->getOperand(1); 2937 if (NV == LF.OperandValToReplace) { 2938 CI->setOperand(1, CI->getOperand(0)); 2939 CI->setOperand(0, NV); 2940 NV = CI->getOperand(1); 2941 Changed = true; 2942 } 2943 2944 // x == y --> x - y == 0 2945 const SCEV *N = SE.getSCEV(NV); 2946 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N)) { 2947 // S is normalized, so normalize N before folding it into S 2948 // to keep the result normalized. 2949 N = TransformForPostIncUse(Normalize, N, CI, 0, 2950 LF.PostIncLoops, SE, DT); 2951 Kind = LSRUse::ICmpZero; 2952 S = SE.getMinusSCEV(N, S); 2953 } 2954 2955 // -1 and the negations of all interesting strides (except the negation 2956 // of -1) are now also interesting. 2957 for (size_t i = 0, e = Factors.size(); i != e; ++i) 2958 if (Factors[i] != -1) 2959 Factors.insert(-(uint64_t)Factors[i]); 2960 Factors.insert(-1); 2961 } 2962 2963 // Set up the initial formula for this use. 2964 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 2965 LF.LUIdx = P.first; 2966 LF.Offset = P.second; 2967 LSRUse &LU = Uses[LF.LUIdx]; 2968 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2969 if (!LU.WidestFixupType || 2970 SE.getTypeSizeInBits(LU.WidestFixupType) < 2971 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2972 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2973 2974 // If this is the first use of this LSRUse, give it a formula. 2975 if (LU.Formulae.empty()) { 2976 InsertInitialFormula(S, LU, LF.LUIdx); 2977 CountRegisters(LU.Formulae.back(), LF.LUIdx); 2978 } 2979 } 2980 2981 DEBUG(print_fixups(dbgs())); 2982 } 2983 2984 /// InsertInitialFormula - Insert a formula for the given expression into 2985 /// the given use, separating out loop-variant portions from loop-invariant 2986 /// and loop-computable portions. 2987 void 2988 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 2989 Formula F; 2990 F.InitialMatch(S, L, SE); 2991 bool Inserted = InsertFormula(LU, LUIdx, F); 2992 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 2993 } 2994 2995 /// InsertSupplementalFormula - Insert a simple single-register formula for 2996 /// the given expression into the given use. 2997 void 2998 LSRInstance::InsertSupplementalFormula(const SCEV *S, 2999 LSRUse &LU, size_t LUIdx) { 3000 Formula F; 3001 F.BaseRegs.push_back(S); 3002 F.HasBaseReg = true; 3003 bool Inserted = InsertFormula(LU, LUIdx, F); 3004 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3005 } 3006 3007 /// CountRegisters - Note which registers are used by the given formula, 3008 /// updating RegUses. 3009 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3010 if (F.ScaledReg) 3011 RegUses.CountRegister(F.ScaledReg, LUIdx); 3012 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 3013 E = F.BaseRegs.end(); I != E; ++I) 3014 RegUses.CountRegister(*I, LUIdx); 3015 } 3016 3017 /// InsertFormula - If the given formula has not yet been inserted, add it to 3018 /// the list, and return true. Return false otherwise. 3019 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3020 if (!LU.InsertFormula(F)) 3021 return false; 3022 3023 CountRegisters(F, LUIdx); 3024 return true; 3025 } 3026 3027 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 3028 /// loop-invariant values which we're tracking. These other uses will pin these 3029 /// values in registers, making them less profitable for elimination. 3030 /// TODO: This currently misses non-constant addrec step registers. 3031 /// TODO: Should this give more weight to users inside the loop? 3032 void 3033 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3034 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3035 SmallPtrSet<const SCEV *, 8> Inserted; 3036 3037 while (!Worklist.empty()) { 3038 const SCEV *S = Worklist.pop_back_val(); 3039 3040 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3041 Worklist.append(N->op_begin(), N->op_end()); 3042 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3043 Worklist.push_back(C->getOperand()); 3044 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3045 Worklist.push_back(D->getLHS()); 3046 Worklist.push_back(D->getRHS()); 3047 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3048 if (!Inserted.insert(U)) continue; 3049 const Value *V = U->getValue(); 3050 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3051 // Look for instructions defined outside the loop. 3052 if (L->contains(Inst)) continue; 3053 } else if (isa<UndefValue>(V)) 3054 // Undef doesn't have a live range, so it doesn't matter. 3055 continue; 3056 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 3057 UI != UE; ++UI) { 3058 const Instruction *UserInst = dyn_cast<Instruction>(*UI); 3059 // Ignore non-instructions. 3060 if (!UserInst) 3061 continue; 3062 // Ignore instructions in other functions (as can happen with 3063 // Constants). 3064 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3065 continue; 3066 // Ignore instructions not dominated by the loop. 3067 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3068 UserInst->getParent() : 3069 cast<PHINode>(UserInst)->getIncomingBlock( 3070 PHINode::getIncomingValueNumForOperand(UI.getOperandNo())); 3071 if (!DT.dominates(L->getHeader(), UseBB)) 3072 continue; 3073 // Ignore uses which are part of other SCEV expressions, to avoid 3074 // analyzing them multiple times. 3075 if (SE.isSCEVable(UserInst->getType())) { 3076 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3077 // If the user is a no-op, look through to its uses. 3078 if (!isa<SCEVUnknown>(UserS)) 3079 continue; 3080 if (UserS == U) { 3081 Worklist.push_back( 3082 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3083 continue; 3084 } 3085 } 3086 // Ignore icmp instructions which are already being analyzed. 3087 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3088 unsigned OtherIdx = !UI.getOperandNo(); 3089 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3090 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3091 continue; 3092 } 3093 3094 LSRFixup &LF = getNewFixup(); 3095 LF.UserInst = const_cast<Instruction *>(UserInst); 3096 LF.OperandValToReplace = UI.getUse(); 3097 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0); 3098 LF.LUIdx = P.first; 3099 LF.Offset = P.second; 3100 LSRUse &LU = Uses[LF.LUIdx]; 3101 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3102 if (!LU.WidestFixupType || 3103 SE.getTypeSizeInBits(LU.WidestFixupType) < 3104 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3105 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3106 InsertSupplementalFormula(U, LU, LF.LUIdx); 3107 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3108 break; 3109 } 3110 } 3111 } 3112 } 3113 3114 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 3115 /// separate registers. If C is non-null, multiply each subexpression by C. 3116 /// 3117 /// Return remainder expression after factoring the subexpressions captured by 3118 /// Ops. If Ops is complete, return NULL. 3119 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3120 SmallVectorImpl<const SCEV *> &Ops, 3121 const Loop *L, 3122 ScalarEvolution &SE, 3123 unsigned Depth = 0) { 3124 // Arbitrarily cap recursion to protect compile time. 3125 if (Depth >= 3) 3126 return S; 3127 3128 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3129 // Break out add operands. 3130 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 3131 I != E; ++I) { 3132 const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1); 3133 if (Remainder) 3134 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3135 } 3136 return 0; 3137 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3138 // Split a non-zero base out of an addrec. 3139 if (AR->getStart()->isZero()) 3140 return S; 3141 3142 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3143 C, Ops, L, SE, Depth+1); 3144 // Split the non-zero AddRec unless it is part of a nested recurrence that 3145 // does not pertain to this loop. 3146 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3147 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3148 Remainder = 0; 3149 } 3150 if (Remainder != AR->getStart()) { 3151 if (!Remainder) 3152 Remainder = SE.getConstant(AR->getType(), 0); 3153 return SE.getAddRecExpr(Remainder, 3154 AR->getStepRecurrence(SE), 3155 AR->getLoop(), 3156 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3157 SCEV::FlagAnyWrap); 3158 } 3159 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3160 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3161 if (Mul->getNumOperands() != 2) 3162 return S; 3163 if (const SCEVConstant *Op0 = 3164 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3165 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3166 const SCEV *Remainder = 3167 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3168 if (Remainder) 3169 Ops.push_back(SE.getMulExpr(C, Remainder)); 3170 return 0; 3171 } 3172 } 3173 return S; 3174 } 3175 3176 /// GenerateReassociations - Split out subexpressions from adds and the bases of 3177 /// addrecs. 3178 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3179 Formula Base, 3180 unsigned Depth) { 3181 // Arbitrarily cap recursion to protect compile time. 3182 if (Depth >= 3) return; 3183 3184 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3185 const SCEV *BaseReg = Base.BaseRegs[i]; 3186 3187 SmallVector<const SCEV *, 8> AddOps; 3188 const SCEV *Remainder = CollectSubexprs(BaseReg, 0, AddOps, L, SE); 3189 if (Remainder) 3190 AddOps.push_back(Remainder); 3191 3192 if (AddOps.size() == 1) continue; 3193 3194 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3195 JE = AddOps.end(); J != JE; ++J) { 3196 3197 // Loop-variant "unknown" values are uninteresting; we won't be able to 3198 // do anything meaningful with them. 3199 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3200 continue; 3201 3202 // Don't pull a constant into a register if the constant could be folded 3203 // into an immediate field. 3204 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3205 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3206 continue; 3207 3208 // Collect all operands except *J. 3209 SmallVector<const SCEV *, 8> InnerAddOps 3210 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3211 InnerAddOps.append 3212 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3213 3214 // Don't leave just a constant behind in a register if the constant could 3215 // be folded into an immediate field. 3216 if (InnerAddOps.size() == 1 && 3217 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3218 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3219 continue; 3220 3221 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3222 if (InnerSum->isZero()) 3223 continue; 3224 Formula F = Base; 3225 3226 // Add the remaining pieces of the add back into the new formula. 3227 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3228 if (InnerSumSC && 3229 SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3230 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3231 InnerSumSC->getValue()->getZExtValue())) { 3232 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 3233 InnerSumSC->getValue()->getZExtValue(); 3234 F.BaseRegs.erase(F.BaseRegs.begin() + i); 3235 } else 3236 F.BaseRegs[i] = InnerSum; 3237 3238 // Add J as its own register, or an unfolded immediate. 3239 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3240 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3241 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3242 SC->getValue()->getZExtValue())) 3243 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 3244 SC->getValue()->getZExtValue(); 3245 else 3246 F.BaseRegs.push_back(*J); 3247 3248 if (InsertFormula(LU, LUIdx, F)) 3249 // If that formula hadn't been seen before, recurse to find more like 3250 // it. 3251 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1); 3252 } 3253 } 3254 } 3255 3256 /// GenerateCombinations - Generate a formula consisting of all of the 3257 /// loop-dominating registers added into a single register. 3258 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3259 Formula Base) { 3260 // This method is only interesting on a plurality of registers. 3261 if (Base.BaseRegs.size() <= 1) return; 3262 3263 Formula F = Base; 3264 F.BaseRegs.clear(); 3265 SmallVector<const SCEV *, 4> Ops; 3266 for (SmallVectorImpl<const SCEV *>::const_iterator 3267 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { 3268 const SCEV *BaseReg = *I; 3269 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3270 !SE.hasComputableLoopEvolution(BaseReg, L)) 3271 Ops.push_back(BaseReg); 3272 else 3273 F.BaseRegs.push_back(BaseReg); 3274 } 3275 if (Ops.size() > 1) { 3276 const SCEV *Sum = SE.getAddExpr(Ops); 3277 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3278 // opportunity to fold something. For now, just ignore such cases 3279 // rather than proceed with zero in a register. 3280 if (!Sum->isZero()) { 3281 F.BaseRegs.push_back(Sum); 3282 (void)InsertFormula(LU, LUIdx, F); 3283 } 3284 } 3285 } 3286 3287 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 3288 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3289 Formula Base) { 3290 // We can't add a symbolic offset if the address already contains one. 3291 if (Base.BaseGV) return; 3292 3293 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3294 const SCEV *G = Base.BaseRegs[i]; 3295 GlobalValue *GV = ExtractSymbol(G, SE); 3296 if (G->isZero() || !GV) 3297 continue; 3298 Formula F = Base; 3299 F.BaseGV = GV; 3300 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3301 continue; 3302 F.BaseRegs[i] = G; 3303 (void)InsertFormula(LU, LUIdx, F); 3304 } 3305 } 3306 3307 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3308 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3309 Formula Base) { 3310 // TODO: For now, just add the min and max offset, because it usually isn't 3311 // worthwhile looking at everything inbetween. 3312 SmallVector<int64_t, 2> Worklist; 3313 Worklist.push_back(LU.MinOffset); 3314 if (LU.MaxOffset != LU.MinOffset) 3315 Worklist.push_back(LU.MaxOffset); 3316 3317 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3318 const SCEV *G = Base.BaseRegs[i]; 3319 3320 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), 3321 E = Worklist.end(); I != E; ++I) { 3322 Formula F = Base; 3323 F.BaseOffset = (uint64_t)Base.BaseOffset - *I; 3324 if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind, 3325 LU.AccessTy, F)) { 3326 // Add the offset to the base register. 3327 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); 3328 // If it cancelled out, drop the base register, otherwise update it. 3329 if (NewG->isZero()) { 3330 std::swap(F.BaseRegs[i], F.BaseRegs.back()); 3331 F.BaseRegs.pop_back(); 3332 } else 3333 F.BaseRegs[i] = NewG; 3334 3335 (void)InsertFormula(LU, LUIdx, F); 3336 } 3337 } 3338 3339 int64_t Imm = ExtractImmediate(G, SE); 3340 if (G->isZero() || Imm == 0) 3341 continue; 3342 Formula F = Base; 3343 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3344 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3345 continue; 3346 F.BaseRegs[i] = G; 3347 (void)InsertFormula(LU, LUIdx, F); 3348 } 3349 } 3350 3351 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 3352 /// the comparison. For example, x == y -> x*c == y*c. 3353 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3354 Formula Base) { 3355 if (LU.Kind != LSRUse::ICmpZero) return; 3356 3357 // Determine the integer type for the base formula. 3358 Type *IntTy = Base.getType(); 3359 if (!IntTy) return; 3360 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3361 3362 // Don't do this if there is more than one offset. 3363 if (LU.MinOffset != LU.MaxOffset) return; 3364 3365 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3366 3367 // Check each interesting stride. 3368 for (SmallSetVector<int64_t, 8>::const_iterator 3369 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3370 int64_t Factor = *I; 3371 3372 // Check that the multiplication doesn't overflow. 3373 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3374 continue; 3375 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3376 if (NewBaseOffset / Factor != Base.BaseOffset) 3377 continue; 3378 3379 // Check that multiplying with the use offset doesn't overflow. 3380 int64_t Offset = LU.MinOffset; 3381 if (Offset == INT64_MIN && Factor == -1) 3382 continue; 3383 Offset = (uint64_t)Offset * Factor; 3384 if (Offset / Factor != LU.MinOffset) 3385 continue; 3386 3387 Formula F = Base; 3388 F.BaseOffset = NewBaseOffset; 3389 3390 // Check that this scale is legal. 3391 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3392 continue; 3393 3394 // Compensate for the use having MinOffset built into it. 3395 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3396 3397 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3398 3399 // Check that multiplying with each base register doesn't overflow. 3400 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3401 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3402 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3403 goto next; 3404 } 3405 3406 // Check that multiplying with the scaled register doesn't overflow. 3407 if (F.ScaledReg) { 3408 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3409 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3410 continue; 3411 } 3412 3413 // Check that multiplying with the unfolded offset doesn't overflow. 3414 if (F.UnfoldedOffset != 0) { 3415 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3416 continue; 3417 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3418 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3419 continue; 3420 } 3421 3422 // If we make it here and it's legal, add it. 3423 (void)InsertFormula(LU, LUIdx, F); 3424 next:; 3425 } 3426 } 3427 3428 /// GenerateScales - Generate stride factor reuse formulae by making use of 3429 /// scaled-offset address modes, for example. 3430 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3431 // Determine the integer type for the base formula. 3432 Type *IntTy = Base.getType(); 3433 if (!IntTy) return; 3434 3435 // If this Formula already has a scaled register, we can't add another one. 3436 if (Base.Scale != 0) return; 3437 3438 // Check each interesting stride. 3439 for (SmallSetVector<int64_t, 8>::const_iterator 3440 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3441 int64_t Factor = *I; 3442 3443 Base.Scale = Factor; 3444 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3445 // Check whether this scale is going to be legal. 3446 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3447 Base)) { 3448 // As a special-case, handle special out-of-loop Basic users specially. 3449 // TODO: Reconsider this special case. 3450 if (LU.Kind == LSRUse::Basic && 3451 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3452 LU.AccessTy, Base) && 3453 LU.AllFixupsOutsideLoop) 3454 LU.Kind = LSRUse::Special; 3455 else 3456 continue; 3457 } 3458 // For an ICmpZero, negating a solitary base register won't lead to 3459 // new solutions. 3460 if (LU.Kind == LSRUse::ICmpZero && 3461 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3462 continue; 3463 // For each addrec base reg, apply the scale, if possible. 3464 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3465 if (const SCEVAddRecExpr *AR = 3466 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3467 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3468 if (FactorS->isZero()) 3469 continue; 3470 // Divide out the factor, ignoring high bits, since we'll be 3471 // scaling the value back up in the end. 3472 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3473 // TODO: This could be optimized to avoid all the copying. 3474 Formula F = Base; 3475 F.ScaledReg = Quotient; 3476 F.DeleteBaseReg(F.BaseRegs[i]); 3477 (void)InsertFormula(LU, LUIdx, F); 3478 } 3479 } 3480 } 3481 } 3482 3483 /// GenerateTruncates - Generate reuse formulae from different IV types. 3484 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3485 // Don't bother truncating symbolic values. 3486 if (Base.BaseGV) return; 3487 3488 // Determine the integer type for the base formula. 3489 Type *DstTy = Base.getType(); 3490 if (!DstTy) return; 3491 DstTy = SE.getEffectiveSCEVType(DstTy); 3492 3493 for (SmallSetVector<Type *, 4>::const_iterator 3494 I = Types.begin(), E = Types.end(); I != E; ++I) { 3495 Type *SrcTy = *I; 3496 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3497 Formula F = Base; 3498 3499 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); 3500 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), 3501 JE = F.BaseRegs.end(); J != JE; ++J) 3502 *J = SE.getAnyExtendExpr(*J, SrcTy); 3503 3504 // TODO: This assumes we've done basic processing on all uses and 3505 // have an idea what the register usage is. 3506 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3507 continue; 3508 3509 (void)InsertFormula(LU, LUIdx, F); 3510 } 3511 } 3512 } 3513 3514 namespace { 3515 3516 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 3517 /// defer modifications so that the search phase doesn't have to worry about 3518 /// the data structures moving underneath it. 3519 struct WorkItem { 3520 size_t LUIdx; 3521 int64_t Imm; 3522 const SCEV *OrigReg; 3523 3524 WorkItem(size_t LI, int64_t I, const SCEV *R) 3525 : LUIdx(LI), Imm(I), OrigReg(R) {} 3526 3527 void print(raw_ostream &OS) const; 3528 void dump() const; 3529 }; 3530 3531 } 3532 3533 void WorkItem::print(raw_ostream &OS) const { 3534 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3535 << " , add offset " << Imm; 3536 } 3537 3538 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3539 void WorkItem::dump() const { 3540 print(errs()); errs() << '\n'; 3541 } 3542 #endif 3543 3544 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 3545 /// distance apart and try to form reuse opportunities between them. 3546 void LSRInstance::GenerateCrossUseConstantOffsets() { 3547 // Group the registers by their value without any added constant offset. 3548 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3549 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; 3550 RegMapTy Map; 3551 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3552 SmallVector<const SCEV *, 8> Sequence; 3553 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3554 I != E; ++I) { 3555 const SCEV *Reg = *I; 3556 int64_t Imm = ExtractImmediate(Reg, SE); 3557 std::pair<RegMapTy::iterator, bool> Pair = 3558 Map.insert(std::make_pair(Reg, ImmMapTy())); 3559 if (Pair.second) 3560 Sequence.push_back(Reg); 3561 Pair.first->second.insert(std::make_pair(Imm, *I)); 3562 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); 3563 } 3564 3565 // Now examine each set of registers with the same base value. Build up 3566 // a list of work to do and do the work in a separate step so that we're 3567 // not adding formulae and register counts while we're searching. 3568 SmallVector<WorkItem, 32> WorkItems; 3569 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3570 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), 3571 E = Sequence.end(); I != E; ++I) { 3572 const SCEV *Reg = *I; 3573 const ImmMapTy &Imms = Map.find(Reg)->second; 3574 3575 // It's not worthwhile looking for reuse if there's only one offset. 3576 if (Imms.size() == 1) 3577 continue; 3578 3579 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3580 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3581 J != JE; ++J) 3582 dbgs() << ' ' << J->first; 3583 dbgs() << '\n'); 3584 3585 // Examine each offset. 3586 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3587 J != JE; ++J) { 3588 const SCEV *OrigReg = J->second; 3589 3590 int64_t JImm = J->first; 3591 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3592 3593 if (!isa<SCEVConstant>(OrigReg) && 3594 UsedByIndicesMap[Reg].count() == 1) { 3595 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3596 continue; 3597 } 3598 3599 // Conservatively examine offsets between this orig reg a few selected 3600 // other orig regs. 3601 ImmMapTy::const_iterator OtherImms[] = { 3602 Imms.begin(), prior(Imms.end()), 3603 Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2) 3604 }; 3605 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3606 ImmMapTy::const_iterator M = OtherImms[i]; 3607 if (M == J || M == JE) continue; 3608 3609 // Compute the difference between the two. 3610 int64_t Imm = (uint64_t)JImm - M->first; 3611 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3612 LUIdx = UsedByIndices.find_next(LUIdx)) 3613 // Make a memo of this use, offset, and register tuple. 3614 if (UniqueItems.insert(std::make_pair(LUIdx, Imm))) 3615 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3616 } 3617 } 3618 } 3619 3620 Map.clear(); 3621 Sequence.clear(); 3622 UsedByIndicesMap.clear(); 3623 UniqueItems.clear(); 3624 3625 // Now iterate through the worklist and add new formulae. 3626 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), 3627 E = WorkItems.end(); I != E; ++I) { 3628 const WorkItem &WI = *I; 3629 size_t LUIdx = WI.LUIdx; 3630 LSRUse &LU = Uses[LUIdx]; 3631 int64_t Imm = WI.Imm; 3632 const SCEV *OrigReg = WI.OrigReg; 3633 3634 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3635 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3636 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3637 3638 // TODO: Use a more targeted data structure. 3639 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3640 const Formula &F = LU.Formulae[L]; 3641 // Use the immediate in the scaled register. 3642 if (F.ScaledReg == OrigReg) { 3643 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3644 // Don't create 50 + reg(-50). 3645 if (F.referencesReg(SE.getSCEV( 3646 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3647 continue; 3648 Formula NewF = F; 3649 NewF.BaseOffset = Offset; 3650 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3651 NewF)) 3652 continue; 3653 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3654 3655 // If the new scale is a constant in a register, and adding the constant 3656 // value to the immediate would produce a value closer to zero than the 3657 // immediate itself, then the formula isn't worthwhile. 3658 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3659 if (C->getValue()->isNegative() != 3660 (NewF.BaseOffset < 0) && 3661 (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale)) 3662 .ule(abs64(NewF.BaseOffset))) 3663 continue; 3664 3665 // OK, looks good. 3666 (void)InsertFormula(LU, LUIdx, NewF); 3667 } else { 3668 // Use the immediate in a base register. 3669 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3670 const SCEV *BaseReg = F.BaseRegs[N]; 3671 if (BaseReg != OrigReg) 3672 continue; 3673 Formula NewF = F; 3674 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3675 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3676 LU.Kind, LU.AccessTy, NewF)) { 3677 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3678 continue; 3679 NewF = F; 3680 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3681 } 3682 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3683 3684 // If the new formula has a constant in a register, and adding the 3685 // constant value to the immediate would produce a value closer to 3686 // zero than the immediate itself, then the formula isn't worthwhile. 3687 for (SmallVectorImpl<const SCEV *>::const_iterator 3688 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); 3689 J != JE; ++J) 3690 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) 3691 if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt( 3692 abs64(NewF.BaseOffset)) && 3693 (C->getValue()->getValue() + 3694 NewF.BaseOffset).countTrailingZeros() >= 3695 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3696 goto skip_formula; 3697 3698 // Ok, looks good. 3699 (void)InsertFormula(LU, LUIdx, NewF); 3700 break; 3701 skip_formula:; 3702 } 3703 } 3704 } 3705 } 3706 } 3707 3708 /// GenerateAllReuseFormulae - Generate formulae for each use. 3709 void 3710 LSRInstance::GenerateAllReuseFormulae() { 3711 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3712 // queries are more precise. 3713 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3714 LSRUse &LU = Uses[LUIdx]; 3715 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3716 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3717 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3718 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3719 } 3720 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3721 LSRUse &LU = Uses[LUIdx]; 3722 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3723 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3724 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3725 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3726 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3727 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3728 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3729 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3730 } 3731 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3732 LSRUse &LU = Uses[LUIdx]; 3733 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3734 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3735 } 3736 3737 GenerateCrossUseConstantOffsets(); 3738 3739 DEBUG(dbgs() << "\n" 3740 "After generating reuse formulae:\n"; 3741 print_uses(dbgs())); 3742 } 3743 3744 /// If there are multiple formulae with the same set of registers used 3745 /// by other uses, pick the best one and delete the others. 3746 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3747 DenseSet<const SCEV *> VisitedRegs; 3748 SmallPtrSet<const SCEV *, 16> Regs; 3749 SmallPtrSet<const SCEV *, 16> LoserRegs; 3750 #ifndef NDEBUG 3751 bool ChangedFormulae = false; 3752 #endif 3753 3754 // Collect the best formula for each unique set of shared registers. This 3755 // is reset for each use. 3756 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3757 BestFormulaeTy; 3758 BestFormulaeTy BestFormulae; 3759 3760 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3761 LSRUse &LU = Uses[LUIdx]; 3762 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3763 3764 bool Any = false; 3765 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3766 FIdx != NumForms; ++FIdx) { 3767 Formula &F = LU.Formulae[FIdx]; 3768 3769 // Some formulas are instant losers. For example, they may depend on 3770 // nonexistent AddRecs from other loops. These need to be filtered 3771 // immediately, otherwise heuristics could choose them over others leading 3772 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3773 // avoids the need to recompute this information across formulae using the 3774 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3775 // the corresponding bad register from the Regs set. 3776 Cost CostF; 3777 Regs.clear(); 3778 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU, 3779 &LoserRegs); 3780 if (CostF.isLoser()) { 3781 // During initial formula generation, undesirable formulae are generated 3782 // by uses within other loops that have some non-trivial address mode or 3783 // use the postinc form of the IV. LSR needs to provide these formulae 3784 // as the basis of rediscovering the desired formula that uses an AddRec 3785 // corresponding to the existing phi. Once all formulae have been 3786 // generated, these initial losers may be pruned. 3787 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3788 dbgs() << "\n"); 3789 } 3790 else { 3791 SmallVector<const SCEV *, 4> Key; 3792 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), 3793 JE = F.BaseRegs.end(); J != JE; ++J) { 3794 const SCEV *Reg = *J; 3795 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3796 Key.push_back(Reg); 3797 } 3798 if (F.ScaledReg && 3799 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3800 Key.push_back(F.ScaledReg); 3801 // Unstable sort by host order ok, because this is only used for 3802 // uniquifying. 3803 std::sort(Key.begin(), Key.end()); 3804 3805 std::pair<BestFormulaeTy::const_iterator, bool> P = 3806 BestFormulae.insert(std::make_pair(Key, FIdx)); 3807 if (P.second) 3808 continue; 3809 3810 Formula &Best = LU.Formulae[P.first->second]; 3811 3812 Cost CostBest; 3813 Regs.clear(); 3814 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE, 3815 DT, LU); 3816 if (CostF < CostBest) 3817 std::swap(F, Best); 3818 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3819 dbgs() << "\n" 3820 " in favor of formula "; Best.print(dbgs()); 3821 dbgs() << '\n'); 3822 } 3823 #ifndef NDEBUG 3824 ChangedFormulae = true; 3825 #endif 3826 LU.DeleteFormula(F); 3827 --FIdx; 3828 --NumForms; 3829 Any = true; 3830 } 3831 3832 // Now that we've filtered out some formulae, recompute the Regs set. 3833 if (Any) 3834 LU.RecomputeRegs(LUIdx, RegUses); 3835 3836 // Reset this to prepare for the next use. 3837 BestFormulae.clear(); 3838 } 3839 3840 DEBUG(if (ChangedFormulae) { 3841 dbgs() << "\n" 3842 "After filtering out undesirable candidates:\n"; 3843 print_uses(dbgs()); 3844 }); 3845 } 3846 3847 // This is a rough guess that seems to work fairly well. 3848 static const size_t ComplexityLimit = UINT16_MAX; 3849 3850 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 3851 /// solutions the solver might have to consider. It almost never considers 3852 /// this many solutions because it prune the search space, but the pruning 3853 /// isn't always sufficient. 3854 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 3855 size_t Power = 1; 3856 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3857 E = Uses.end(); I != E; ++I) { 3858 size_t FSize = I->Formulae.size(); 3859 if (FSize >= ComplexityLimit) { 3860 Power = ComplexityLimit; 3861 break; 3862 } 3863 Power *= FSize; 3864 if (Power >= ComplexityLimit) 3865 break; 3866 } 3867 return Power; 3868 } 3869 3870 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 3871 /// of the registers of another formula, it won't help reduce register 3872 /// pressure (though it may not necessarily hurt register pressure); remove 3873 /// it to simplify the system. 3874 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 3875 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3876 DEBUG(dbgs() << "The search space is too complex.\n"); 3877 3878 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 3879 "which use a superset of registers used by other " 3880 "formulae.\n"); 3881 3882 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3883 LSRUse &LU = Uses[LUIdx]; 3884 bool Any = false; 3885 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3886 Formula &F = LU.Formulae[i]; 3887 // Look for a formula with a constant or GV in a register. If the use 3888 // also has a formula with that same value in an immediate field, 3889 // delete the one that uses a register. 3890 for (SmallVectorImpl<const SCEV *>::const_iterator 3891 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 3892 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 3893 Formula NewF = F; 3894 NewF.BaseOffset += C->getValue()->getSExtValue(); 3895 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3896 (I - F.BaseRegs.begin())); 3897 if (LU.HasFormulaWithSameRegs(NewF)) { 3898 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3899 LU.DeleteFormula(F); 3900 --i; 3901 --e; 3902 Any = true; 3903 break; 3904 } 3905 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 3906 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 3907 if (!F.BaseGV) { 3908 Formula NewF = F; 3909 NewF.BaseGV = GV; 3910 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3911 (I - F.BaseRegs.begin())); 3912 if (LU.HasFormulaWithSameRegs(NewF)) { 3913 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3914 dbgs() << '\n'); 3915 LU.DeleteFormula(F); 3916 --i; 3917 --e; 3918 Any = true; 3919 break; 3920 } 3921 } 3922 } 3923 } 3924 } 3925 if (Any) 3926 LU.RecomputeRegs(LUIdx, RegUses); 3927 } 3928 3929 DEBUG(dbgs() << "After pre-selection:\n"; 3930 print_uses(dbgs())); 3931 } 3932 } 3933 3934 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 3935 /// for expressions like A, A+1, A+2, etc., allocate a single register for 3936 /// them. 3937 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 3938 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 3939 return; 3940 3941 DEBUG(dbgs() << "The search space is too complex.\n" 3942 "Narrowing the search space by assuming that uses separated " 3943 "by a constant offset will use the same registers.\n"); 3944 3945 // This is especially useful for unrolled loops. 3946 3947 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3948 LSRUse &LU = Uses[LUIdx]; 3949 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3950 E = LU.Formulae.end(); I != E; ++I) { 3951 const Formula &F = *I; 3952 if (F.BaseOffset == 0 || F.Scale != 0) 3953 continue; 3954 3955 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 3956 if (!LUThatHas) 3957 continue; 3958 3959 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 3960 LU.Kind, LU.AccessTy)) 3961 continue; 3962 3963 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 3964 3965 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 3966 3967 // Update the relocs to reference the new use. 3968 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), 3969 E = Fixups.end(); I != E; ++I) { 3970 LSRFixup &Fixup = *I; 3971 if (Fixup.LUIdx == LUIdx) { 3972 Fixup.LUIdx = LUThatHas - &Uses.front(); 3973 Fixup.Offset += F.BaseOffset; 3974 // Add the new offset to LUThatHas' offset list. 3975 if (LUThatHas->Offsets.back() != Fixup.Offset) { 3976 LUThatHas->Offsets.push_back(Fixup.Offset); 3977 if (Fixup.Offset > LUThatHas->MaxOffset) 3978 LUThatHas->MaxOffset = Fixup.Offset; 3979 if (Fixup.Offset < LUThatHas->MinOffset) 3980 LUThatHas->MinOffset = Fixup.Offset; 3981 } 3982 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 3983 } 3984 if (Fixup.LUIdx == NumUses-1) 3985 Fixup.LUIdx = LUIdx; 3986 } 3987 3988 // Delete formulae from the new use which are no longer legal. 3989 bool Any = false; 3990 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 3991 Formula &F = LUThatHas->Formulae[i]; 3992 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 3993 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 3994 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3995 dbgs() << '\n'); 3996 LUThatHas->DeleteFormula(F); 3997 --i; 3998 --e; 3999 Any = true; 4000 } 4001 } 4002 4003 if (Any) 4004 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4005 4006 // Delete the old use. 4007 DeleteUse(LU, LUIdx); 4008 --LUIdx; 4009 --NumUses; 4010 break; 4011 } 4012 } 4013 4014 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4015 } 4016 4017 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 4018 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4019 /// we've done more filtering, as it may be able to find more formulae to 4020 /// eliminate. 4021 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4022 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4023 DEBUG(dbgs() << "The search space is too complex.\n"); 4024 4025 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4026 "undesirable dedicated registers.\n"); 4027 4028 FilterOutUndesirableDedicatedRegisters(); 4029 4030 DEBUG(dbgs() << "After pre-selection:\n"; 4031 print_uses(dbgs())); 4032 } 4033 } 4034 4035 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 4036 /// to be profitable, and then in any use which has any reference to that 4037 /// register, delete all formulae which do not reference that register. 4038 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4039 // With all other options exhausted, loop until the system is simple 4040 // enough to handle. 4041 SmallPtrSet<const SCEV *, 4> Taken; 4042 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4043 // Ok, we have too many of formulae on our hands to conveniently handle. 4044 // Use a rough heuristic to thin out the list. 4045 DEBUG(dbgs() << "The search space is too complex.\n"); 4046 4047 // Pick the register which is used by the most LSRUses, which is likely 4048 // to be a good reuse register candidate. 4049 const SCEV *Best = 0; 4050 unsigned BestNum = 0; 4051 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 4052 I != E; ++I) { 4053 const SCEV *Reg = *I; 4054 if (Taken.count(Reg)) 4055 continue; 4056 if (!Best) 4057 Best = Reg; 4058 else { 4059 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4060 if (Count > BestNum) { 4061 Best = Reg; 4062 BestNum = Count; 4063 } 4064 } 4065 } 4066 4067 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4068 << " will yield profitable reuse.\n"); 4069 Taken.insert(Best); 4070 4071 // In any use with formulae which references this register, delete formulae 4072 // which don't reference it. 4073 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4074 LSRUse &LU = Uses[LUIdx]; 4075 if (!LU.Regs.count(Best)) continue; 4076 4077 bool Any = false; 4078 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4079 Formula &F = LU.Formulae[i]; 4080 if (!F.referencesReg(Best)) { 4081 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4082 LU.DeleteFormula(F); 4083 --e; 4084 --i; 4085 Any = true; 4086 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4087 continue; 4088 } 4089 } 4090 4091 if (Any) 4092 LU.RecomputeRegs(LUIdx, RegUses); 4093 } 4094 4095 DEBUG(dbgs() << "After pre-selection:\n"; 4096 print_uses(dbgs())); 4097 } 4098 } 4099 4100 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 4101 /// formulae to choose from, use some rough heuristics to prune down the number 4102 /// of formulae. This keeps the main solver from taking an extraordinary amount 4103 /// of time in some worst-case scenarios. 4104 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4105 NarrowSearchSpaceByDetectingSupersets(); 4106 NarrowSearchSpaceByCollapsingUnrolledCode(); 4107 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4108 NarrowSearchSpaceByPickingWinnerRegs(); 4109 } 4110 4111 /// SolveRecurse - This is the recursive solver. 4112 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4113 Cost &SolutionCost, 4114 SmallVectorImpl<const Formula *> &Workspace, 4115 const Cost &CurCost, 4116 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4117 DenseSet<const SCEV *> &VisitedRegs) const { 4118 // Some ideas: 4119 // - prune more: 4120 // - use more aggressive filtering 4121 // - sort the formula so that the most profitable solutions are found first 4122 // - sort the uses too 4123 // - search faster: 4124 // - don't compute a cost, and then compare. compare while computing a cost 4125 // and bail early. 4126 // - track register sets with SmallBitVector 4127 4128 const LSRUse &LU = Uses[Workspace.size()]; 4129 4130 // If this use references any register that's already a part of the 4131 // in-progress solution, consider it a requirement that a formula must 4132 // reference that register in order to be considered. This prunes out 4133 // unprofitable searching. 4134 SmallSetVector<const SCEV *, 4> ReqRegs; 4135 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(), 4136 E = CurRegs.end(); I != E; ++I) 4137 if (LU.Regs.count(*I)) 4138 ReqRegs.insert(*I); 4139 4140 SmallPtrSet<const SCEV *, 16> NewRegs; 4141 Cost NewCost; 4142 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 4143 E = LU.Formulae.end(); I != E; ++I) { 4144 const Formula &F = *I; 4145 4146 // Ignore formulae which do not use any of the required registers. 4147 bool SatisfiedReqReg = true; 4148 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), 4149 JE = ReqRegs.end(); J != JE; ++J) { 4150 const SCEV *Reg = *J; 4151 if ((!F.ScaledReg || F.ScaledReg != Reg) && 4152 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) == 4153 F.BaseRegs.end()) { 4154 SatisfiedReqReg = false; 4155 break; 4156 } 4157 } 4158 if (!SatisfiedReqReg) { 4159 // If none of the formulae satisfied the required registers, then we could 4160 // clear ReqRegs and try again. Currently, we simply give up in this case. 4161 continue; 4162 } 4163 4164 // Evaluate the cost of the current formula. If it's already worse than 4165 // the current best, prune the search at that point. 4166 NewCost = CurCost; 4167 NewRegs = CurRegs; 4168 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT, 4169 LU); 4170 if (NewCost < SolutionCost) { 4171 Workspace.push_back(&F); 4172 if (Workspace.size() != Uses.size()) { 4173 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4174 NewRegs, VisitedRegs); 4175 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4176 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4177 } else { 4178 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4179 dbgs() << ".\n Regs:"; 4180 for (SmallPtrSet<const SCEV *, 16>::const_iterator 4181 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) 4182 dbgs() << ' ' << **I; 4183 dbgs() << '\n'); 4184 4185 SolutionCost = NewCost; 4186 Solution = Workspace; 4187 } 4188 Workspace.pop_back(); 4189 } 4190 } 4191 } 4192 4193 /// Solve - Choose one formula from each use. Return the results in the given 4194 /// Solution vector. 4195 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4196 SmallVector<const Formula *, 8> Workspace; 4197 Cost SolutionCost; 4198 SolutionCost.Loose(); 4199 Cost CurCost; 4200 SmallPtrSet<const SCEV *, 16> CurRegs; 4201 DenseSet<const SCEV *> VisitedRegs; 4202 Workspace.reserve(Uses.size()); 4203 4204 // SolveRecurse does all the work. 4205 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4206 CurRegs, VisitedRegs); 4207 if (Solution.empty()) { 4208 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4209 return; 4210 } 4211 4212 // Ok, we've now made all our decisions. 4213 DEBUG(dbgs() << "\n" 4214 "The chosen solution requires "; SolutionCost.print(dbgs()); 4215 dbgs() << ":\n"; 4216 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4217 dbgs() << " "; 4218 Uses[i].print(dbgs()); 4219 dbgs() << "\n" 4220 " "; 4221 Solution[i]->print(dbgs()); 4222 dbgs() << '\n'; 4223 }); 4224 4225 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4226 } 4227 4228 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 4229 /// the dominator tree far as we can go while still being dominated by the 4230 /// input positions. This helps canonicalize the insert position, which 4231 /// encourages sharing. 4232 BasicBlock::iterator 4233 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4234 const SmallVectorImpl<Instruction *> &Inputs) 4235 const { 4236 for (;;) { 4237 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4238 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4239 4240 BasicBlock *IDom; 4241 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4242 if (!Rung) return IP; 4243 Rung = Rung->getIDom(); 4244 if (!Rung) return IP; 4245 IDom = Rung->getBlock(); 4246 4247 // Don't climb into a loop though. 4248 const Loop *IDomLoop = LI.getLoopFor(IDom); 4249 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4250 if (IDomDepth <= IPLoopDepth && 4251 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4252 break; 4253 } 4254 4255 bool AllDominate = true; 4256 Instruction *BetterPos = 0; 4257 Instruction *Tentative = IDom->getTerminator(); 4258 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), 4259 E = Inputs.end(); I != E; ++I) { 4260 Instruction *Inst = *I; 4261 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4262 AllDominate = false; 4263 break; 4264 } 4265 // Attempt to find an insert position in the middle of the block, 4266 // instead of at the end, so that it can be used for other expansions. 4267 if (IDom == Inst->getParent() && 4268 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4269 BetterPos = llvm::next(BasicBlock::iterator(Inst)); 4270 } 4271 if (!AllDominate) 4272 break; 4273 if (BetterPos) 4274 IP = BetterPos; 4275 else 4276 IP = Tentative; 4277 } 4278 4279 return IP; 4280 } 4281 4282 /// AdjustInsertPositionForExpand - Determine an input position which will be 4283 /// dominated by the operands and which will dominate the result. 4284 BasicBlock::iterator 4285 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4286 const LSRFixup &LF, 4287 const LSRUse &LU, 4288 SCEVExpander &Rewriter) const { 4289 // Collect some instructions which must be dominated by the 4290 // expanding replacement. These must be dominated by any operands that 4291 // will be required in the expansion. 4292 SmallVector<Instruction *, 4> Inputs; 4293 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4294 Inputs.push_back(I); 4295 if (LU.Kind == LSRUse::ICmpZero) 4296 if (Instruction *I = 4297 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4298 Inputs.push_back(I); 4299 if (LF.PostIncLoops.count(L)) { 4300 if (LF.isUseFullyOutsideLoop(L)) 4301 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4302 else 4303 Inputs.push_back(IVIncInsertPos); 4304 } 4305 // The expansion must also be dominated by the increment positions of any 4306 // loops it for which it is using post-inc mode. 4307 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), 4308 E = LF.PostIncLoops.end(); I != E; ++I) { 4309 const Loop *PIL = *I; 4310 if (PIL == L) continue; 4311 4312 // Be dominated by the loop exit. 4313 SmallVector<BasicBlock *, 4> ExitingBlocks; 4314 PIL->getExitingBlocks(ExitingBlocks); 4315 if (!ExitingBlocks.empty()) { 4316 BasicBlock *BB = ExitingBlocks[0]; 4317 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4318 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4319 Inputs.push_back(BB->getTerminator()); 4320 } 4321 } 4322 4323 assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP) 4324 && !isa<DbgInfoIntrinsic>(LowestIP) && 4325 "Insertion point must be a normal instruction"); 4326 4327 // Then, climb up the immediate dominator tree as far as we can go while 4328 // still being dominated by the input positions. 4329 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4330 4331 // Don't insert instructions before PHI nodes. 4332 while (isa<PHINode>(IP)) ++IP; 4333 4334 // Ignore landingpad instructions. 4335 while (isa<LandingPadInst>(IP)) ++IP; 4336 4337 // Ignore debug intrinsics. 4338 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4339 4340 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4341 // IP consistent across expansions and allows the previously inserted 4342 // instructions to be reused by subsequent expansion. 4343 while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP; 4344 4345 return IP; 4346 } 4347 4348 /// Expand - Emit instructions for the leading candidate expression for this 4349 /// LSRUse (this is called "expanding"). 4350 Value *LSRInstance::Expand(const LSRFixup &LF, 4351 const Formula &F, 4352 BasicBlock::iterator IP, 4353 SCEVExpander &Rewriter, 4354 SmallVectorImpl<WeakVH> &DeadInsts) const { 4355 const LSRUse &LU = Uses[LF.LUIdx]; 4356 4357 // Determine an input position which will be dominated by the operands and 4358 // which will dominate the result. 4359 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4360 4361 // Inform the Rewriter if we have a post-increment use, so that it can 4362 // perform an advantageous expansion. 4363 Rewriter.setPostInc(LF.PostIncLoops); 4364 4365 // This is the type that the user actually needs. 4366 Type *OpTy = LF.OperandValToReplace->getType(); 4367 // This will be the type that we'll initially expand to. 4368 Type *Ty = F.getType(); 4369 if (!Ty) 4370 // No type known; just expand directly to the ultimate type. 4371 Ty = OpTy; 4372 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4373 // Expand directly to the ultimate type if it's the right size. 4374 Ty = OpTy; 4375 // This is the type to do integer arithmetic in. 4376 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4377 4378 // Build up a list of operands to add together to form the full base. 4379 SmallVector<const SCEV *, 8> Ops; 4380 4381 // Expand the BaseRegs portion. 4382 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 4383 E = F.BaseRegs.end(); I != E; ++I) { 4384 const SCEV *Reg = *I; 4385 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4386 4387 // If we're expanding for a post-inc user, make the post-inc adjustment. 4388 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4389 Reg = TransformForPostIncUse(Denormalize, Reg, 4390 LF.UserInst, LF.OperandValToReplace, 4391 Loops, SE, DT); 4392 4393 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP))); 4394 } 4395 4396 // Expand the ScaledReg portion. 4397 Value *ICmpScaledV = 0; 4398 if (F.Scale != 0) { 4399 const SCEV *ScaledS = F.ScaledReg; 4400 4401 // If we're expanding for a post-inc user, make the post-inc adjustment. 4402 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4403 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4404 LF.UserInst, LF.OperandValToReplace, 4405 Loops, SE, DT); 4406 4407 if (LU.Kind == LSRUse::ICmpZero) { 4408 // An interesting way of "folding" with an icmp is to use a negated 4409 // scale, which we'll implement by inserting it into the other operand 4410 // of the icmp. 4411 assert(F.Scale == -1 && 4412 "The only scale supported by ICmpZero uses is -1!"); 4413 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP); 4414 } else { 4415 // Otherwise just expand the scaled register and an explicit scale, 4416 // which is expected to be matched as part of the address. 4417 4418 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4419 if (!Ops.empty() && LU.Kind == LSRUse::Address) { 4420 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4421 Ops.clear(); 4422 Ops.push_back(SE.getUnknown(FullV)); 4423 } 4424 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP)); 4425 ScaledS = SE.getMulExpr(ScaledS, 4426 SE.getConstant(ScaledS->getType(), F.Scale)); 4427 Ops.push_back(ScaledS); 4428 } 4429 } 4430 4431 // Expand the GV portion. 4432 if (F.BaseGV) { 4433 // Flush the operand list to suppress SCEVExpander hoisting. 4434 if (!Ops.empty()) { 4435 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4436 Ops.clear(); 4437 Ops.push_back(SE.getUnknown(FullV)); 4438 } 4439 Ops.push_back(SE.getUnknown(F.BaseGV)); 4440 } 4441 4442 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4443 // unfolded offsets. LSR assumes they both live next to their uses. 4444 if (!Ops.empty()) { 4445 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4446 Ops.clear(); 4447 Ops.push_back(SE.getUnknown(FullV)); 4448 } 4449 4450 // Expand the immediate portion. 4451 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4452 if (Offset != 0) { 4453 if (LU.Kind == LSRUse::ICmpZero) { 4454 // The other interesting way of "folding" with an ICmpZero is to use a 4455 // negated immediate. 4456 if (!ICmpScaledV) 4457 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4458 else { 4459 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4460 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4461 } 4462 } else { 4463 // Just add the immediate values. These again are expected to be matched 4464 // as part of the address. 4465 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4466 } 4467 } 4468 4469 // Expand the unfolded offset portion. 4470 int64_t UnfoldedOffset = F.UnfoldedOffset; 4471 if (UnfoldedOffset != 0) { 4472 // Just add the immediate values. 4473 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4474 UnfoldedOffset))); 4475 } 4476 4477 // Emit instructions summing all the operands. 4478 const SCEV *FullS = Ops.empty() ? 4479 SE.getConstant(IntTy, 0) : 4480 SE.getAddExpr(Ops); 4481 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 4482 4483 // We're done expanding now, so reset the rewriter. 4484 Rewriter.clearPostInc(); 4485 4486 // An ICmpZero Formula represents an ICmp which we're handling as a 4487 // comparison against zero. Now that we've expanded an expression for that 4488 // form, update the ICmp's other operand. 4489 if (LU.Kind == LSRUse::ICmpZero) { 4490 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4491 DeadInsts.push_back(CI->getOperand(1)); 4492 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4493 "a scale at the same time!"); 4494 if (F.Scale == -1) { 4495 if (ICmpScaledV->getType() != OpTy) { 4496 Instruction *Cast = 4497 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4498 OpTy, false), 4499 ICmpScaledV, OpTy, "tmp", CI); 4500 ICmpScaledV = Cast; 4501 } 4502 CI->setOperand(1, ICmpScaledV); 4503 } else { 4504 assert(F.Scale == 0 && 4505 "ICmp does not support folding a global value and " 4506 "a scale at the same time!"); 4507 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4508 -(uint64_t)Offset); 4509 if (C->getType() != OpTy) 4510 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4511 OpTy, false), 4512 C, OpTy); 4513 4514 CI->setOperand(1, C); 4515 } 4516 } 4517 4518 return FullV; 4519 } 4520 4521 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 4522 /// of their operands effectively happens in their predecessor blocks, so the 4523 /// expression may need to be expanded in multiple places. 4524 void LSRInstance::RewriteForPHI(PHINode *PN, 4525 const LSRFixup &LF, 4526 const Formula &F, 4527 SCEVExpander &Rewriter, 4528 SmallVectorImpl<WeakVH> &DeadInsts, 4529 Pass *P) const { 4530 DenseMap<BasicBlock *, Value *> Inserted; 4531 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4532 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4533 BasicBlock *BB = PN->getIncomingBlock(i); 4534 4535 // If this is a critical edge, split the edge so that we do not insert 4536 // the code on all predecessor/successor paths. We do this unless this 4537 // is the canonical backedge for this loop, which complicates post-inc 4538 // users. 4539 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4540 !isa<IndirectBrInst>(BB->getTerminator())) { 4541 BasicBlock *Parent = PN->getParent(); 4542 Loop *PNLoop = LI.getLoopFor(Parent); 4543 if (!PNLoop || Parent != PNLoop->getHeader()) { 4544 // Split the critical edge. 4545 BasicBlock *NewBB = 0; 4546 if (!Parent->isLandingPad()) { 4547 NewBB = SplitCriticalEdge(BB, Parent, P, 4548 /*MergeIdenticalEdges=*/true, 4549 /*DontDeleteUselessPhis=*/true); 4550 } else { 4551 SmallVector<BasicBlock*, 2> NewBBs; 4552 SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs); 4553 NewBB = NewBBs[0]; 4554 } 4555 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4556 // phi predecessors are identical. The simple thing to do is skip 4557 // splitting in this case rather than complicate the API. 4558 if (NewBB) { 4559 // If PN is outside of the loop and BB is in the loop, we want to 4560 // move the block to be immediately before the PHI block, not 4561 // immediately after BB. 4562 if (L->contains(BB) && !L->contains(PN)) 4563 NewBB->moveBefore(PN->getParent()); 4564 4565 // Splitting the edge can reduce the number of PHI entries we have. 4566 e = PN->getNumIncomingValues(); 4567 BB = NewBB; 4568 i = PN->getBasicBlockIndex(BB); 4569 } 4570 } 4571 } 4572 4573 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4574 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0))); 4575 if (!Pair.second) 4576 PN->setIncomingValue(i, Pair.first->second); 4577 else { 4578 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 4579 4580 // If this is reuse-by-noop-cast, insert the noop cast. 4581 Type *OpTy = LF.OperandValToReplace->getType(); 4582 if (FullV->getType() != OpTy) 4583 FullV = 4584 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4585 OpTy, false), 4586 FullV, LF.OperandValToReplace->getType(), 4587 "tmp", BB->getTerminator()); 4588 4589 PN->setIncomingValue(i, FullV); 4590 Pair.first->second = FullV; 4591 } 4592 } 4593 } 4594 4595 /// Rewrite - Emit instructions for the leading candidate expression for this 4596 /// LSRUse (this is called "expanding"), and update the UserInst to reference 4597 /// the newly expanded value. 4598 void LSRInstance::Rewrite(const LSRFixup &LF, 4599 const Formula &F, 4600 SCEVExpander &Rewriter, 4601 SmallVectorImpl<WeakVH> &DeadInsts, 4602 Pass *P) const { 4603 // First, find an insertion point that dominates UserInst. For PHI nodes, 4604 // find the nearest block which dominates all the relevant uses. 4605 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4606 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 4607 } else { 4608 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 4609 4610 // If this is reuse-by-noop-cast, insert the noop cast. 4611 Type *OpTy = LF.OperandValToReplace->getType(); 4612 if (FullV->getType() != OpTy) { 4613 Instruction *Cast = 4614 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4615 FullV, OpTy, "tmp", LF.UserInst); 4616 FullV = Cast; 4617 } 4618 4619 // Update the user. ICmpZero is handled specially here (for now) because 4620 // Expand may have updated one of the operands of the icmp already, and 4621 // its new value may happen to be equal to LF.OperandValToReplace, in 4622 // which case doing replaceUsesOfWith leads to replacing both operands 4623 // with the same value. TODO: Reorganize this. 4624 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 4625 LF.UserInst->setOperand(0, FullV); 4626 else 4627 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4628 } 4629 4630 DeadInsts.push_back(LF.OperandValToReplace); 4631 } 4632 4633 /// ImplementSolution - Rewrite all the fixup locations with new values, 4634 /// following the chosen solution. 4635 void 4636 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 4637 Pass *P) { 4638 // Keep track of instructions we may have made dead, so that 4639 // we can remove them after we are done working. 4640 SmallVector<WeakVH, 16> DeadInsts; 4641 4642 SCEVExpander Rewriter(SE, "lsr"); 4643 #ifndef NDEBUG 4644 Rewriter.setDebugType(DEBUG_TYPE); 4645 #endif 4646 Rewriter.disableCanonicalMode(); 4647 Rewriter.enableLSRMode(); 4648 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4649 4650 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4651 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4652 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4653 if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst())) 4654 Rewriter.setChainedPhi(PN); 4655 } 4656 4657 // Expand the new value definitions and update the users. 4658 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4659 E = Fixups.end(); I != E; ++I) { 4660 const LSRFixup &Fixup = *I; 4661 4662 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 4663 4664 Changed = true; 4665 } 4666 4667 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4668 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4669 GenerateIVChain(*ChainI, Rewriter, DeadInsts); 4670 Changed = true; 4671 } 4672 // Clean up after ourselves. This must be done before deleting any 4673 // instructions. 4674 Rewriter.clear(); 4675 4676 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4677 } 4678 4679 LSRInstance::LSRInstance(Loop *L, Pass *P) 4680 : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()), 4681 DT(P->getAnalysis<DominatorTree>()), LI(P->getAnalysis<LoopInfo>()), 4682 TTI(P->getAnalysis<TargetTransformInfo>()), L(L), Changed(false), 4683 IVIncInsertPos(0) { 4684 // If LoopSimplify form is not available, stay out of trouble. 4685 if (!L->isLoopSimplifyForm()) 4686 return; 4687 4688 // If there's no interesting work to be done, bail early. 4689 if (IU.empty()) return; 4690 4691 // If there's too much analysis to be done, bail early. We won't be able to 4692 // model the problem anyway. 4693 unsigned NumUsers = 0; 4694 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 4695 if (++NumUsers > MaxIVUsers) { 4696 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L 4697 << "\n"); 4698 return; 4699 } 4700 } 4701 4702 #ifndef NDEBUG 4703 // All dominating loops must have preheaders, or SCEVExpander may not be able 4704 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4705 // 4706 // IVUsers analysis should only create users that are dominated by simple loop 4707 // headers. Since this loop should dominate all of its users, its user list 4708 // should be empty if this loop itself is not within a simple loop nest. 4709 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4710 Rung; Rung = Rung->getIDom()) { 4711 BasicBlock *BB = Rung->getBlock(); 4712 const Loop *DomLoop = LI.getLoopFor(BB); 4713 if (DomLoop && DomLoop->getHeader() == BB) { 4714 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4715 } 4716 } 4717 #endif // DEBUG 4718 4719 DEBUG(dbgs() << "\nLSR on loop "; 4720 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false); 4721 dbgs() << ":\n"); 4722 4723 // First, perform some low-level loop optimizations. 4724 OptimizeShadowIV(); 4725 OptimizeLoopTermCond(); 4726 4727 // If loop preparation eliminates all interesting IV users, bail. 4728 if (IU.empty()) return; 4729 4730 // Skip nested loops until we can model them better with formulae. 4731 if (!L->empty()) { 4732 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4733 return; 4734 } 4735 4736 // Start collecting data and preparing for the solver. 4737 CollectChains(); 4738 CollectInterestingTypesAndFactors(); 4739 CollectFixupsAndInitialFormulae(); 4740 CollectLoopInvariantFixupsAndFormulae(); 4741 4742 assert(!Uses.empty() && "IVUsers reported at least one use"); 4743 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4744 print_uses(dbgs())); 4745 4746 // Now use the reuse data to generate a bunch of interesting ways 4747 // to formulate the values needed for the uses. 4748 GenerateAllReuseFormulae(); 4749 4750 FilterOutUndesirableDedicatedRegisters(); 4751 NarrowSearchSpaceUsingHeuristics(); 4752 4753 SmallVector<const Formula *, 8> Solution; 4754 Solve(Solution); 4755 4756 // Release memory that is no longer needed. 4757 Factors.clear(); 4758 Types.clear(); 4759 RegUses.clear(); 4760 4761 if (Solution.empty()) 4762 return; 4763 4764 #ifndef NDEBUG 4765 // Formulae should be legal. 4766 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end(); 4767 I != E; ++I) { 4768 const LSRUse &LU = *I; 4769 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 4770 JE = LU.Formulae.end(); 4771 J != JE; ++J) 4772 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4773 *J) && "Illegal formula generated!"); 4774 }; 4775 #endif 4776 4777 // Now that we've decided what we want, make it so. 4778 ImplementSolution(Solution, P); 4779 } 4780 4781 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4782 if (Factors.empty() && Types.empty()) return; 4783 4784 OS << "LSR has identified the following interesting factors and types: "; 4785 bool First = true; 4786 4787 for (SmallSetVector<int64_t, 8>::const_iterator 4788 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 4789 if (!First) OS << ", "; 4790 First = false; 4791 OS << '*' << *I; 4792 } 4793 4794 for (SmallSetVector<Type *, 4>::const_iterator 4795 I = Types.begin(), E = Types.end(); I != E; ++I) { 4796 if (!First) OS << ", "; 4797 First = false; 4798 OS << '(' << **I << ')'; 4799 } 4800 OS << '\n'; 4801 } 4802 4803 void LSRInstance::print_fixups(raw_ostream &OS) const { 4804 OS << "LSR is examining the following fixup sites:\n"; 4805 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4806 E = Fixups.end(); I != E; ++I) { 4807 dbgs() << " "; 4808 I->print(OS); 4809 OS << '\n'; 4810 } 4811 } 4812 4813 void LSRInstance::print_uses(raw_ostream &OS) const { 4814 OS << "LSR is examining the following uses:\n"; 4815 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 4816 E = Uses.end(); I != E; ++I) { 4817 const LSRUse &LU = *I; 4818 dbgs() << " "; 4819 LU.print(OS); 4820 OS << '\n'; 4821 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 4822 JE = LU.Formulae.end(); J != JE; ++J) { 4823 OS << " "; 4824 J->print(OS); 4825 OS << '\n'; 4826 } 4827 } 4828 } 4829 4830 void LSRInstance::print(raw_ostream &OS) const { 4831 print_factors_and_types(OS); 4832 print_fixups(OS); 4833 print_uses(OS); 4834 } 4835 4836 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4837 void LSRInstance::dump() const { 4838 print(errs()); errs() << '\n'; 4839 } 4840 #endif 4841 4842 namespace { 4843 4844 class LoopStrengthReduce : public LoopPass { 4845 public: 4846 static char ID; // Pass ID, replacement for typeid 4847 LoopStrengthReduce(); 4848 4849 private: 4850 bool runOnLoop(Loop *L, LPPassManager &LPM); 4851 void getAnalysisUsage(AnalysisUsage &AU) const; 4852 }; 4853 4854 } 4855 4856 char LoopStrengthReduce::ID = 0; 4857 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 4858 "Loop Strength Reduction", false, false) 4859 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 4860 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 4861 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 4862 INITIALIZE_PASS_DEPENDENCY(IVUsers) 4863 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 4864 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4865 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 4866 "Loop Strength Reduction", false, false) 4867 4868 4869 Pass *llvm::createLoopStrengthReducePass() { 4870 return new LoopStrengthReduce(); 4871 } 4872 4873 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 4874 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 4875 } 4876 4877 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 4878 // We split critical edges, so we change the CFG. However, we do update 4879 // many analyses if they are around. 4880 AU.addPreservedID(LoopSimplifyID); 4881 4882 AU.addRequired<LoopInfo>(); 4883 AU.addPreserved<LoopInfo>(); 4884 AU.addRequiredID(LoopSimplifyID); 4885 AU.addRequired<DominatorTree>(); 4886 AU.addPreserved<DominatorTree>(); 4887 AU.addRequired<ScalarEvolution>(); 4888 AU.addPreserved<ScalarEvolution>(); 4889 // Requiring LoopSimplify a second time here prevents IVUsers from running 4890 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 4891 AU.addRequiredID(LoopSimplifyID); 4892 AU.addRequired<IVUsers>(); 4893 AU.addPreserved<IVUsers>(); 4894 AU.addRequired<TargetTransformInfo>(); 4895 } 4896 4897 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 4898 bool Changed = false; 4899 4900 // Run the main LSR transformation. 4901 Changed |= LSRInstance(L, this).getChanged(); 4902 4903 // Remove any extra phis created by processing inner loops. 4904 Changed |= DeleteDeadPHIs(L->getHeader()); 4905 if (EnablePhiElim && L->isLoopSimplifyForm()) { 4906 SmallVector<WeakVH, 16> DeadInsts; 4907 SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr"); 4908 #ifndef NDEBUG 4909 Rewriter.setDebugType(DEBUG_TYPE); 4910 #endif 4911 unsigned numFolded = 4912 Rewriter.replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), 4913 DeadInsts, 4914 &getAnalysis<TargetTransformInfo>()); 4915 if (numFolded) { 4916 Changed = true; 4917 DeleteTriviallyDeadInstructions(DeadInsts); 4918 DeleteDeadPHIs(L->getHeader()); 4919 } 4920 } 4921 return Changed; 4922 } 4923