Home | History | Annotate | Download | only in Scalar
      1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This transformation analyzes and transforms the induction variables (and
     11 // computations derived from them) into forms suitable for efficient execution
     12 // on the target.
     13 //
     14 // This pass performs a strength reduction on array references inside loops that
     15 // have as one or more of their components the loop induction variable, it
     16 // rewrites expressions to take advantage of scaled-index addressing modes
     17 // available on the target, and it performs a variety of other optimizations
     18 // related to loop induction variables.
     19 //
     20 // Terminology note: this code has a lot of handling for "post-increment" or
     21 // "post-inc" users. This is not talking about post-increment addressing modes;
     22 // it is instead talking about code like this:
     23 //
     24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
     25 //   ...
     26 //   %i.next = add %i, 1
     27 //   %c = icmp eq %i.next, %n
     28 //
     29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
     30 // it's useful to think about these as the same register, with some uses using
     31 // the value of the register before the add and some using // it after. In this
     32 // example, the icmp is a post-increment user, since it uses %i.next, which is
     33 // the value of the induction variable after the increment. The other common
     34 // case of post-increment users is users outside the loop.
     35 //
     36 // TODO: More sophistication in the way Formulae are generated and filtered.
     37 //
     38 // TODO: Handle multiple loops at a time.
     39 //
     40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
     41 //       of a GlobalValue?
     42 //
     43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
     44 //       smaller encoding (on x86 at least).
     45 //
     46 // TODO: When a negated register is used by an add (such as in a list of
     47 //       multiple base registers, or as the increment expression in an addrec),
     48 //       we may not actually need both reg and (-1 * reg) in registers; the
     49 //       negation can be implemented by using a sub instead of an add. The
     50 //       lack of support for taking this into consideration when making
     51 //       register pressure decisions is partly worked around by the "Special"
     52 //       use kind.
     53 //
     54 //===----------------------------------------------------------------------===//
     55 
     56 #define DEBUG_TYPE "loop-reduce"
     57 #include "llvm/Transforms/Scalar.h"
     58 #include "llvm/ADT/DenseSet.h"
     59 #include "llvm/ADT/SetVector.h"
     60 #include "llvm/ADT/SmallBitVector.h"
     61 #include "llvm/ADT/STLExtras.h"
     62 #include "llvm/Analysis/Dominators.h"
     63 #include "llvm/Analysis/IVUsers.h"
     64 #include "llvm/Analysis/LoopPass.h"
     65 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     66 #include "llvm/Analysis/TargetTransformInfo.h"
     67 #include "llvm/Assembly/Writer.h"
     68 #include "llvm/IR/Constants.h"
     69 #include "llvm/IR/DerivedTypes.h"
     70 #include "llvm/IR/Instructions.h"
     71 #include "llvm/IR/IntrinsicInst.h"
     72 #include "llvm/Support/CommandLine.h"
     73 #include "llvm/Support/Debug.h"
     74 #include "llvm/Support/ValueHandle.h"
     75 #include "llvm/Support/raw_ostream.h"
     76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     77 #include "llvm/Transforms/Utils/Local.h"
     78 #include <algorithm>
     79 using namespace llvm;
     80 
     81 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
     82 /// bail out. This threshold is far beyond the number of users that LSR can
     83 /// conceivably solve, so it should not affect generated code, but catches the
     84 /// worst cases before LSR burns too much compile time and stack space.
     85 static const unsigned MaxIVUsers = 200;
     86 
     87 // Temporary flag to cleanup congruent phis after LSR phi expansion.
     88 // It's currently disabled until we can determine whether it's truly useful or
     89 // not. The flag should be removed after the v3.0 release.
     90 // This is now needed for ivchains.
     91 static cl::opt<bool> EnablePhiElim(
     92   "enable-lsr-phielim", cl::Hidden, cl::init(true),
     93   cl::desc("Enable LSR phi elimination"));
     94 
     95 #ifndef NDEBUG
     96 // Stress test IV chain generation.
     97 static cl::opt<bool> StressIVChain(
     98   "stress-ivchain", cl::Hidden, cl::init(false),
     99   cl::desc("Stress test LSR IV chains"));
    100 #else
    101 static bool StressIVChain = false;
    102 #endif
    103 
    104 namespace {
    105 
    106 /// RegSortData - This class holds data which is used to order reuse candidates.
    107 class RegSortData {
    108 public:
    109   /// UsedByIndices - This represents the set of LSRUse indices which reference
    110   /// a particular register.
    111   SmallBitVector UsedByIndices;
    112 
    113   RegSortData() {}
    114 
    115   void print(raw_ostream &OS) const;
    116   void dump() const;
    117 };
    118 
    119 }
    120 
    121 void RegSortData::print(raw_ostream &OS) const {
    122   OS << "[NumUses=" << UsedByIndices.count() << ']';
    123 }
    124 
    125 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    126 void RegSortData::dump() const {
    127   print(errs()); errs() << '\n';
    128 }
    129 #endif
    130 
    131 namespace {
    132 
    133 /// RegUseTracker - Map register candidates to information about how they are
    134 /// used.
    135 class RegUseTracker {
    136   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
    137 
    138   RegUsesTy RegUsesMap;
    139   SmallVector<const SCEV *, 16> RegSequence;
    140 
    141 public:
    142   void CountRegister(const SCEV *Reg, size_t LUIdx);
    143   void DropRegister(const SCEV *Reg, size_t LUIdx);
    144   void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
    145 
    146   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
    147 
    148   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
    149 
    150   void clear();
    151 
    152   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
    153   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
    154   iterator begin() { return RegSequence.begin(); }
    155   iterator end()   { return RegSequence.end(); }
    156   const_iterator begin() const { return RegSequence.begin(); }
    157   const_iterator end() const   { return RegSequence.end(); }
    158 };
    159 
    160 }
    161 
    162 void
    163 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
    164   std::pair<RegUsesTy::iterator, bool> Pair =
    165     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
    166   RegSortData &RSD = Pair.first->second;
    167   if (Pair.second)
    168     RegSequence.push_back(Reg);
    169   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
    170   RSD.UsedByIndices.set(LUIdx);
    171 }
    172 
    173 void
    174 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
    175   RegUsesTy::iterator It = RegUsesMap.find(Reg);
    176   assert(It != RegUsesMap.end());
    177   RegSortData &RSD = It->second;
    178   assert(RSD.UsedByIndices.size() > LUIdx);
    179   RSD.UsedByIndices.reset(LUIdx);
    180 }
    181 
    182 void
    183 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
    184   assert(LUIdx <= LastLUIdx);
    185 
    186   // Update RegUses. The data structure is not optimized for this purpose;
    187   // we must iterate through it and update each of the bit vectors.
    188   for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
    189        I != E; ++I) {
    190     SmallBitVector &UsedByIndices = I->second.UsedByIndices;
    191     if (LUIdx < UsedByIndices.size())
    192       UsedByIndices[LUIdx] =
    193         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
    194     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
    195   }
    196 }
    197 
    198 bool
    199 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
    200   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
    201   if (I == RegUsesMap.end())
    202     return false;
    203   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
    204   int i = UsedByIndices.find_first();
    205   if (i == -1) return false;
    206   if ((size_t)i != LUIdx) return true;
    207   return UsedByIndices.find_next(i) != -1;
    208 }
    209 
    210 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
    211   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
    212   assert(I != RegUsesMap.end() && "Unknown register!");
    213   return I->second.UsedByIndices;
    214 }
    215 
    216 void RegUseTracker::clear() {
    217   RegUsesMap.clear();
    218   RegSequence.clear();
    219 }
    220 
    221 namespace {
    222 
    223 /// Formula - This class holds information that describes a formula for
    224 /// computing satisfying a use. It may include broken-out immediates and scaled
    225 /// registers.
    226 struct Formula {
    227   /// Global base address used for complex addressing.
    228   GlobalValue *BaseGV;
    229 
    230   /// Base offset for complex addressing.
    231   int64_t BaseOffset;
    232 
    233   /// Whether any complex addressing has a base register.
    234   bool HasBaseReg;
    235 
    236   /// The scale of any complex addressing.
    237   int64_t Scale;
    238 
    239   /// BaseRegs - The list of "base" registers for this use. When this is
    240   /// non-empty,
    241   SmallVector<const SCEV *, 4> BaseRegs;
    242 
    243   /// ScaledReg - The 'scaled' register for this use. This should be non-null
    244   /// when Scale is not zero.
    245   const SCEV *ScaledReg;
    246 
    247   /// UnfoldedOffset - An additional constant offset which added near the
    248   /// use. This requires a temporary register, but the offset itself can
    249   /// live in an add immediate field rather than a register.
    250   int64_t UnfoldedOffset;
    251 
    252   Formula()
    253       : BaseGV(0), BaseOffset(0), HasBaseReg(false), Scale(0), ScaledReg(0),
    254         UnfoldedOffset(0) {}
    255 
    256   void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
    257 
    258   unsigned getNumRegs() const;
    259   Type *getType() const;
    260 
    261   void DeleteBaseReg(const SCEV *&S);
    262 
    263   bool referencesReg(const SCEV *S) const;
    264   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
    265                                   const RegUseTracker &RegUses) const;
    266 
    267   void print(raw_ostream &OS) const;
    268   void dump() const;
    269 };
    270 
    271 }
    272 
    273 /// DoInitialMatch - Recursion helper for InitialMatch.
    274 static void DoInitialMatch(const SCEV *S, Loop *L,
    275                            SmallVectorImpl<const SCEV *> &Good,
    276                            SmallVectorImpl<const SCEV *> &Bad,
    277                            ScalarEvolution &SE) {
    278   // Collect expressions which properly dominate the loop header.
    279   if (SE.properlyDominates(S, L->getHeader())) {
    280     Good.push_back(S);
    281     return;
    282   }
    283 
    284   // Look at add operands.
    285   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    286     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    287          I != E; ++I)
    288       DoInitialMatch(*I, L, Good, Bad, SE);
    289     return;
    290   }
    291 
    292   // Look at addrec operands.
    293   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
    294     if (!AR->getStart()->isZero()) {
    295       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
    296       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
    297                                       AR->getStepRecurrence(SE),
    298                                       // FIXME: AR->getNoWrapFlags()
    299                                       AR->getLoop(), SCEV::FlagAnyWrap),
    300                      L, Good, Bad, SE);
    301       return;
    302     }
    303 
    304   // Handle a multiplication by -1 (negation) if it didn't fold.
    305   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
    306     if (Mul->getOperand(0)->isAllOnesValue()) {
    307       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
    308       const SCEV *NewMul = SE.getMulExpr(Ops);
    309 
    310       SmallVector<const SCEV *, 4> MyGood;
    311       SmallVector<const SCEV *, 4> MyBad;
    312       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
    313       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
    314         SE.getEffectiveSCEVType(NewMul->getType())));
    315       for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
    316            E = MyGood.end(); I != E; ++I)
    317         Good.push_back(SE.getMulExpr(NegOne, *I));
    318       for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
    319            E = MyBad.end(); I != E; ++I)
    320         Bad.push_back(SE.getMulExpr(NegOne, *I));
    321       return;
    322     }
    323 
    324   // Ok, we can't do anything interesting. Just stuff the whole thing into a
    325   // register and hope for the best.
    326   Bad.push_back(S);
    327 }
    328 
    329 /// InitialMatch - Incorporate loop-variant parts of S into this Formula,
    330 /// attempting to keep all loop-invariant and loop-computable values in a
    331 /// single base register.
    332 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
    333   SmallVector<const SCEV *, 4> Good;
    334   SmallVector<const SCEV *, 4> Bad;
    335   DoInitialMatch(S, L, Good, Bad, SE);
    336   if (!Good.empty()) {
    337     const SCEV *Sum = SE.getAddExpr(Good);
    338     if (!Sum->isZero())
    339       BaseRegs.push_back(Sum);
    340     HasBaseReg = true;
    341   }
    342   if (!Bad.empty()) {
    343     const SCEV *Sum = SE.getAddExpr(Bad);
    344     if (!Sum->isZero())
    345       BaseRegs.push_back(Sum);
    346     HasBaseReg = true;
    347   }
    348 }
    349 
    350 /// getNumRegs - Return the total number of register operands used by this
    351 /// formula. This does not include register uses implied by non-constant
    352 /// addrec strides.
    353 unsigned Formula::getNumRegs() const {
    354   return !!ScaledReg + BaseRegs.size();
    355 }
    356 
    357 /// getType - Return the type of this formula, if it has one, or null
    358 /// otherwise. This type is meaningless except for the bit size.
    359 Type *Formula::getType() const {
    360   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
    361          ScaledReg ? ScaledReg->getType() :
    362          BaseGV ? BaseGV->getType() :
    363          0;
    364 }
    365 
    366 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
    367 void Formula::DeleteBaseReg(const SCEV *&S) {
    368   if (&S != &BaseRegs.back())
    369     std::swap(S, BaseRegs.back());
    370   BaseRegs.pop_back();
    371 }
    372 
    373 /// referencesReg - Test if this formula references the given register.
    374 bool Formula::referencesReg(const SCEV *S) const {
    375   return S == ScaledReg ||
    376          std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
    377 }
    378 
    379 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
    380 /// which are used by uses other than the use with the given index.
    381 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
    382                                          const RegUseTracker &RegUses) const {
    383   if (ScaledReg)
    384     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
    385       return true;
    386   for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
    387        E = BaseRegs.end(); I != E; ++I)
    388     if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
    389       return true;
    390   return false;
    391 }
    392 
    393 void Formula::print(raw_ostream &OS) const {
    394   bool First = true;
    395   if (BaseGV) {
    396     if (!First) OS << " + "; else First = false;
    397     WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
    398   }
    399   if (BaseOffset != 0) {
    400     if (!First) OS << " + "; else First = false;
    401     OS << BaseOffset;
    402   }
    403   for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
    404        E = BaseRegs.end(); I != E; ++I) {
    405     if (!First) OS << " + "; else First = false;
    406     OS << "reg(" << **I << ')';
    407   }
    408   if (HasBaseReg && BaseRegs.empty()) {
    409     if (!First) OS << " + "; else First = false;
    410     OS << "**error: HasBaseReg**";
    411   } else if (!HasBaseReg && !BaseRegs.empty()) {
    412     if (!First) OS << " + "; else First = false;
    413     OS << "**error: !HasBaseReg**";
    414   }
    415   if (Scale != 0) {
    416     if (!First) OS << " + "; else First = false;
    417     OS << Scale << "*reg(";
    418     if (ScaledReg)
    419       OS << *ScaledReg;
    420     else
    421       OS << "<unknown>";
    422     OS << ')';
    423   }
    424   if (UnfoldedOffset != 0) {
    425     if (!First) OS << " + "; else First = false;
    426     OS << "imm(" << UnfoldedOffset << ')';
    427   }
    428 }
    429 
    430 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    431 void Formula::dump() const {
    432   print(errs()); errs() << '\n';
    433 }
    434 #endif
    435 
    436 /// isAddRecSExtable - Return true if the given addrec can be sign-extended
    437 /// without changing its value.
    438 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
    439   Type *WideTy =
    440     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
    441   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
    442 }
    443 
    444 /// isAddSExtable - Return true if the given add can be sign-extended
    445 /// without changing its value.
    446 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
    447   Type *WideTy =
    448     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
    449   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
    450 }
    451 
    452 /// isMulSExtable - Return true if the given mul can be sign-extended
    453 /// without changing its value.
    454 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
    455   Type *WideTy =
    456     IntegerType::get(SE.getContext(),
    457                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
    458   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
    459 }
    460 
    461 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
    462 /// and if the remainder is known to be zero,  or null otherwise. If
    463 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
    464 /// to Y, ignoring that the multiplication may overflow, which is useful when
    465 /// the result will be used in a context where the most significant bits are
    466 /// ignored.
    467 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
    468                                 ScalarEvolution &SE,
    469                                 bool IgnoreSignificantBits = false) {
    470   // Handle the trivial case, which works for any SCEV type.
    471   if (LHS == RHS)
    472     return SE.getConstant(LHS->getType(), 1);
    473 
    474   // Handle a few RHS special cases.
    475   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
    476   if (RC) {
    477     const APInt &RA = RC->getValue()->getValue();
    478     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
    479     // some folding.
    480     if (RA.isAllOnesValue())
    481       return SE.getMulExpr(LHS, RC);
    482     // Handle x /s 1 as x.
    483     if (RA == 1)
    484       return LHS;
    485   }
    486 
    487   // Check for a division of a constant by a constant.
    488   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
    489     if (!RC)
    490       return 0;
    491     const APInt &LA = C->getValue()->getValue();
    492     const APInt &RA = RC->getValue()->getValue();
    493     if (LA.srem(RA) != 0)
    494       return 0;
    495     return SE.getConstant(LA.sdiv(RA));
    496   }
    497 
    498   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
    499   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
    500     if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
    501       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
    502                                       IgnoreSignificantBits);
    503       if (!Step) return 0;
    504       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
    505                                        IgnoreSignificantBits);
    506       if (!Start) return 0;
    507       // FlagNW is independent of the start value, step direction, and is
    508       // preserved with smaller magnitude steps.
    509       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    510       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
    511     }
    512     return 0;
    513   }
    514 
    515   // Distribute the sdiv over add operands, if the add doesn't overflow.
    516   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
    517     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
    518       SmallVector<const SCEV *, 8> Ops;
    519       for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    520            I != E; ++I) {
    521         const SCEV *Op = getExactSDiv(*I, RHS, SE,
    522                                       IgnoreSignificantBits);
    523         if (!Op) return 0;
    524         Ops.push_back(Op);
    525       }
    526       return SE.getAddExpr(Ops);
    527     }
    528     return 0;
    529   }
    530 
    531   // Check for a multiply operand that we can pull RHS out of.
    532   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
    533     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
    534       SmallVector<const SCEV *, 4> Ops;
    535       bool Found = false;
    536       for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
    537            I != E; ++I) {
    538         const SCEV *S = *I;
    539         if (!Found)
    540           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
    541                                            IgnoreSignificantBits)) {
    542             S = Q;
    543             Found = true;
    544           }
    545         Ops.push_back(S);
    546       }
    547       return Found ? SE.getMulExpr(Ops) : 0;
    548     }
    549     return 0;
    550   }
    551 
    552   // Otherwise we don't know.
    553   return 0;
    554 }
    555 
    556 /// ExtractImmediate - If S involves the addition of a constant integer value,
    557 /// return that integer value, and mutate S to point to a new SCEV with that
    558 /// value excluded.
    559 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
    560   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    561     if (C->getValue()->getValue().getMinSignedBits() <= 64) {
    562       S = SE.getConstant(C->getType(), 0);
    563       return C->getValue()->getSExtValue();
    564     }
    565   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    566     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    567     int64_t Result = ExtractImmediate(NewOps.front(), SE);
    568     if (Result != 0)
    569       S = SE.getAddExpr(NewOps);
    570     return Result;
    571   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    572     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    573     int64_t Result = ExtractImmediate(NewOps.front(), SE);
    574     if (Result != 0)
    575       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
    576                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    577                            SCEV::FlagAnyWrap);
    578     return Result;
    579   }
    580   return 0;
    581 }
    582 
    583 /// ExtractSymbol - If S involves the addition of a GlobalValue address,
    584 /// return that symbol, and mutate S to point to a new SCEV with that
    585 /// value excluded.
    586 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
    587   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    588     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
    589       S = SE.getConstant(GV->getType(), 0);
    590       return GV;
    591     }
    592   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    593     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    594     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
    595     if (Result)
    596       S = SE.getAddExpr(NewOps);
    597     return Result;
    598   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    599     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    600     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
    601     if (Result)
    602       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
    603                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    604                            SCEV::FlagAnyWrap);
    605     return Result;
    606   }
    607   return 0;
    608 }
    609 
    610 /// isAddressUse - Returns true if the specified instruction is using the
    611 /// specified value as an address.
    612 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
    613   bool isAddress = isa<LoadInst>(Inst);
    614   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    615     if (SI->getOperand(1) == OperandVal)
    616       isAddress = true;
    617   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    618     // Addressing modes can also be folded into prefetches and a variety
    619     // of intrinsics.
    620     switch (II->getIntrinsicID()) {
    621       default: break;
    622       case Intrinsic::prefetch:
    623       case Intrinsic::x86_sse_storeu_ps:
    624       case Intrinsic::x86_sse2_storeu_pd:
    625       case Intrinsic::x86_sse2_storeu_dq:
    626       case Intrinsic::x86_sse2_storel_dq:
    627         if (II->getArgOperand(0) == OperandVal)
    628           isAddress = true;
    629         break;
    630     }
    631   }
    632   return isAddress;
    633 }
    634 
    635 /// getAccessType - Return the type of the memory being accessed.
    636 static Type *getAccessType(const Instruction *Inst) {
    637   Type *AccessTy = Inst->getType();
    638   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
    639     AccessTy = SI->getOperand(0)->getType();
    640   else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    641     // Addressing modes can also be folded into prefetches and a variety
    642     // of intrinsics.
    643     switch (II->getIntrinsicID()) {
    644     default: break;
    645     case Intrinsic::x86_sse_storeu_ps:
    646     case Intrinsic::x86_sse2_storeu_pd:
    647     case Intrinsic::x86_sse2_storeu_dq:
    648     case Intrinsic::x86_sse2_storel_dq:
    649       AccessTy = II->getArgOperand(0)->getType();
    650       break;
    651     }
    652   }
    653 
    654   // All pointers have the same requirements, so canonicalize them to an
    655   // arbitrary pointer type to minimize variation.
    656   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
    657     AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
    658                                 PTy->getAddressSpace());
    659 
    660   return AccessTy;
    661 }
    662 
    663 /// isExistingPhi - Return true if this AddRec is already a phi in its loop.
    664 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
    665   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
    666        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    667     if (SE.isSCEVable(PN->getType()) &&
    668         (SE.getEffectiveSCEVType(PN->getType()) ==
    669          SE.getEffectiveSCEVType(AR->getType())) &&
    670         SE.getSCEV(PN) == AR)
    671       return true;
    672   }
    673   return false;
    674 }
    675 
    676 /// Check if expanding this expression is likely to incur significant cost. This
    677 /// is tricky because SCEV doesn't track which expressions are actually computed
    678 /// by the current IR.
    679 ///
    680 /// We currently allow expansion of IV increments that involve adds,
    681 /// multiplication by constants, and AddRecs from existing phis.
    682 ///
    683 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
    684 /// obvious multiple of the UDivExpr.
    685 static bool isHighCostExpansion(const SCEV *S,
    686                                 SmallPtrSet<const SCEV*, 8> &Processed,
    687                                 ScalarEvolution &SE) {
    688   // Zero/One operand expressions
    689   switch (S->getSCEVType()) {
    690   case scUnknown:
    691   case scConstant:
    692     return false;
    693   case scTruncate:
    694     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
    695                                Processed, SE);
    696   case scZeroExtend:
    697     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
    698                                Processed, SE);
    699   case scSignExtend:
    700     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
    701                                Processed, SE);
    702   }
    703 
    704   if (!Processed.insert(S))
    705     return false;
    706 
    707   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    708     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    709          I != E; ++I) {
    710       if (isHighCostExpansion(*I, Processed, SE))
    711         return true;
    712     }
    713     return false;
    714   }
    715 
    716   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
    717     if (Mul->getNumOperands() == 2) {
    718       // Multiplication by a constant is ok
    719       if (isa<SCEVConstant>(Mul->getOperand(0)))
    720         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
    721 
    722       // If we have the value of one operand, check if an existing
    723       // multiplication already generates this expression.
    724       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
    725         Value *UVal = U->getValue();
    726         for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end();
    727              UI != UE; ++UI) {
    728           // If U is a constant, it may be used by a ConstantExpr.
    729           Instruction *User = dyn_cast<Instruction>(*UI);
    730           if (User && User->getOpcode() == Instruction::Mul
    731               && SE.isSCEVable(User->getType())) {
    732             return SE.getSCEV(User) == Mul;
    733           }
    734         }
    735       }
    736     }
    737   }
    738 
    739   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    740     if (isExistingPhi(AR, SE))
    741       return false;
    742   }
    743 
    744   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
    745   return true;
    746 }
    747 
    748 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
    749 /// specified set are trivially dead, delete them and see if this makes any of
    750 /// their operands subsequently dead.
    751 static bool
    752 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
    753   bool Changed = false;
    754 
    755   while (!DeadInsts.empty()) {
    756     Value *V = DeadInsts.pop_back_val();
    757     Instruction *I = dyn_cast_or_null<Instruction>(V);
    758 
    759     if (I == 0 || !isInstructionTriviallyDead(I))
    760       continue;
    761 
    762     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
    763       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
    764         *OI = 0;
    765         if (U->use_empty())
    766           DeadInsts.push_back(U);
    767       }
    768 
    769     I->eraseFromParent();
    770     Changed = true;
    771   }
    772 
    773   return Changed;
    774 }
    775 
    776 namespace {
    777 class LSRUse;
    778 }
    779 // Check if it is legal to fold 2 base registers.
    780 static bool isLegal2RegAMUse(const TargetTransformInfo &TTI, const LSRUse &LU,
    781                              const Formula &F);
    782 // Get the cost of the scaling factor used in F for LU.
    783 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
    784                                      const LSRUse &LU, const Formula &F);
    785 
    786 namespace {
    787 
    788 /// Cost - This class is used to measure and compare candidate formulae.
    789 class Cost {
    790   /// TODO: Some of these could be merged. Also, a lexical ordering
    791   /// isn't always optimal.
    792   unsigned NumRegs;
    793   unsigned AddRecCost;
    794   unsigned NumIVMuls;
    795   unsigned NumBaseAdds;
    796   unsigned ImmCost;
    797   unsigned SetupCost;
    798   unsigned ScaleCost;
    799 
    800 public:
    801   Cost()
    802     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
    803       SetupCost(0), ScaleCost(0) {}
    804 
    805   bool operator<(const Cost &Other) const;
    806 
    807   void Loose();
    808 
    809 #ifndef NDEBUG
    810   // Once any of the metrics loses, they must all remain losers.
    811   bool isValid() {
    812     return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
    813              | ImmCost | SetupCost | ScaleCost) != ~0u)
    814       || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
    815            & ImmCost & SetupCost & ScaleCost) == ~0u);
    816   }
    817 #endif
    818 
    819   bool isLoser() {
    820     assert(isValid() && "invalid cost");
    821     return NumRegs == ~0u;
    822   }
    823 
    824   void RateFormula(const TargetTransformInfo &TTI,
    825                    const Formula &F,
    826                    SmallPtrSet<const SCEV *, 16> &Regs,
    827                    const DenseSet<const SCEV *> &VisitedRegs,
    828                    const Loop *L,
    829                    const SmallVectorImpl<int64_t> &Offsets,
    830                    ScalarEvolution &SE, DominatorTree &DT,
    831                    const LSRUse &LU,
    832                    SmallPtrSet<const SCEV *, 16> *LoserRegs = 0);
    833 
    834   void print(raw_ostream &OS) const;
    835   void dump() const;
    836 
    837 private:
    838   void RateRegister(const SCEV *Reg,
    839                     SmallPtrSet<const SCEV *, 16> &Regs,
    840                     const Loop *L,
    841                     ScalarEvolution &SE, DominatorTree &DT);
    842   void RatePrimaryRegister(const SCEV *Reg,
    843                            SmallPtrSet<const SCEV *, 16> &Regs,
    844                            const Loop *L,
    845                            ScalarEvolution &SE, DominatorTree &DT,
    846                            SmallPtrSet<const SCEV *, 16> *LoserRegs);
    847 };
    848 
    849 }
    850 
    851 /// RateRegister - Tally up interesting quantities from the given register.
    852 void Cost::RateRegister(const SCEV *Reg,
    853                         SmallPtrSet<const SCEV *, 16> &Regs,
    854                         const Loop *L,
    855                         ScalarEvolution &SE, DominatorTree &DT) {
    856   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
    857     // If this is an addrec for another loop, don't second-guess its addrec phi
    858     // nodes. LSR isn't currently smart enough to reason about more than one
    859     // loop at a time. LSR has already run on inner loops, will not run on outer
    860     // loops, and cannot be expected to change sibling loops.
    861     if (AR->getLoop() != L) {
    862       // If the AddRec exists, consider it's register free and leave it alone.
    863       if (isExistingPhi(AR, SE))
    864         return;
    865 
    866       // Otherwise, do not consider this formula at all.
    867       Loose();
    868       return;
    869     }
    870     AddRecCost += 1; /// TODO: This should be a function of the stride.
    871 
    872     // Add the step value register, if it needs one.
    873     // TODO: The non-affine case isn't precisely modeled here.
    874     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
    875       if (!Regs.count(AR->getOperand(1))) {
    876         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
    877         if (isLoser())
    878           return;
    879       }
    880     }
    881   }
    882   ++NumRegs;
    883 
    884   // Rough heuristic; favor registers which don't require extra setup
    885   // instructions in the preheader.
    886   if (!isa<SCEVUnknown>(Reg) &&
    887       !isa<SCEVConstant>(Reg) &&
    888       !(isa<SCEVAddRecExpr>(Reg) &&
    889         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
    890          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
    891     ++SetupCost;
    892 
    893     NumIVMuls += isa<SCEVMulExpr>(Reg) &&
    894                  SE.hasComputableLoopEvolution(Reg, L);
    895 }
    896 
    897 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it
    898 /// before, rate it. Optional LoserRegs provides a way to declare any formula
    899 /// that refers to one of those regs an instant loser.
    900 void Cost::RatePrimaryRegister(const SCEV *Reg,
    901                                SmallPtrSet<const SCEV *, 16> &Regs,
    902                                const Loop *L,
    903                                ScalarEvolution &SE, DominatorTree &DT,
    904                                SmallPtrSet<const SCEV *, 16> *LoserRegs) {
    905   if (LoserRegs && LoserRegs->count(Reg)) {
    906     Loose();
    907     return;
    908   }
    909   if (Regs.insert(Reg)) {
    910     RateRegister(Reg, Regs, L, SE, DT);
    911     if (LoserRegs && isLoser())
    912       LoserRegs->insert(Reg);
    913   }
    914 }
    915 
    916 void Cost::RateFormula(const TargetTransformInfo &TTI,
    917                        const Formula &F,
    918                        SmallPtrSet<const SCEV *, 16> &Regs,
    919                        const DenseSet<const SCEV *> &VisitedRegs,
    920                        const Loop *L,
    921                        const SmallVectorImpl<int64_t> &Offsets,
    922                        ScalarEvolution &SE, DominatorTree &DT,
    923                        const LSRUse &LU,
    924                        SmallPtrSet<const SCEV *, 16> *LoserRegs) {
    925   // Tally up the registers.
    926   if (const SCEV *ScaledReg = F.ScaledReg) {
    927     if (VisitedRegs.count(ScaledReg)) {
    928       Loose();
    929       return;
    930     }
    931     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
    932     if (isLoser())
    933       return;
    934   }
    935   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
    936        E = F.BaseRegs.end(); I != E; ++I) {
    937     const SCEV *BaseReg = *I;
    938     if (VisitedRegs.count(BaseReg)) {
    939       Loose();
    940       return;
    941     }
    942     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
    943     if (isLoser())
    944       return;
    945   }
    946 
    947   // Determine how many (unfolded) adds we'll need inside the loop.
    948   size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0);
    949   if (NumBaseParts > 1)
    950     // Do not count the base and a possible second register if the target
    951     // allows to fold 2 registers.
    952     NumBaseAdds += NumBaseParts - (1 + isLegal2RegAMUse(TTI, LU, F));
    953 
    954   // Accumulate non-free scaling amounts.
    955   ScaleCost += getScalingFactorCost(TTI, LU, F);
    956 
    957   // Tally up the non-zero immediates.
    958   for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
    959        E = Offsets.end(); I != E; ++I) {
    960     int64_t Offset = (uint64_t)*I + F.BaseOffset;
    961     if (F.BaseGV)
    962       ImmCost += 64; // Handle symbolic values conservatively.
    963                      // TODO: This should probably be the pointer size.
    964     else if (Offset != 0)
    965       ImmCost += APInt(64, Offset, true).getMinSignedBits();
    966   }
    967   assert(isValid() && "invalid cost");
    968 }
    969 
    970 /// Loose - Set this cost to a losing value.
    971 void Cost::Loose() {
    972   NumRegs = ~0u;
    973   AddRecCost = ~0u;
    974   NumIVMuls = ~0u;
    975   NumBaseAdds = ~0u;
    976   ImmCost = ~0u;
    977   SetupCost = ~0u;
    978   ScaleCost = ~0u;
    979 }
    980 
    981 /// operator< - Choose the lower cost.
    982 bool Cost::operator<(const Cost &Other) const {
    983   if (NumRegs != Other.NumRegs)
    984     return NumRegs < Other.NumRegs;
    985   if (AddRecCost != Other.AddRecCost)
    986     return AddRecCost < Other.AddRecCost;
    987   if (NumIVMuls != Other.NumIVMuls)
    988     return NumIVMuls < Other.NumIVMuls;
    989   if (NumBaseAdds != Other.NumBaseAdds)
    990     return NumBaseAdds < Other.NumBaseAdds;
    991   if (ScaleCost != Other.ScaleCost)
    992     return ScaleCost < Other.ScaleCost;
    993   if (ImmCost != Other.ImmCost)
    994     return ImmCost < Other.ImmCost;
    995   if (SetupCost != Other.SetupCost)
    996     return SetupCost < Other.SetupCost;
    997   return false;
    998 }
    999 
   1000 void Cost::print(raw_ostream &OS) const {
   1001   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
   1002   if (AddRecCost != 0)
   1003     OS << ", with addrec cost " << AddRecCost;
   1004   if (NumIVMuls != 0)
   1005     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
   1006   if (NumBaseAdds != 0)
   1007     OS << ", plus " << NumBaseAdds << " base add"
   1008        << (NumBaseAdds == 1 ? "" : "s");
   1009   if (ScaleCost != 0)
   1010     OS << ", plus " << ScaleCost << " scale cost";
   1011   if (ImmCost != 0)
   1012     OS << ", plus " << ImmCost << " imm cost";
   1013   if (SetupCost != 0)
   1014     OS << ", plus " << SetupCost << " setup cost";
   1015 }
   1016 
   1017 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1018 void Cost::dump() const {
   1019   print(errs()); errs() << '\n';
   1020 }
   1021 #endif
   1022 
   1023 namespace {
   1024 
   1025 /// LSRFixup - An operand value in an instruction which is to be replaced
   1026 /// with some equivalent, possibly strength-reduced, replacement.
   1027 struct LSRFixup {
   1028   /// UserInst - The instruction which will be updated.
   1029   Instruction *UserInst;
   1030 
   1031   /// OperandValToReplace - The operand of the instruction which will
   1032   /// be replaced. The operand may be used more than once; every instance
   1033   /// will be replaced.
   1034   Value *OperandValToReplace;
   1035 
   1036   /// PostIncLoops - If this user is to use the post-incremented value of an
   1037   /// induction variable, this variable is non-null and holds the loop
   1038   /// associated with the induction variable.
   1039   PostIncLoopSet PostIncLoops;
   1040 
   1041   /// LUIdx - The index of the LSRUse describing the expression which
   1042   /// this fixup needs, minus an offset (below).
   1043   size_t LUIdx;
   1044 
   1045   /// Offset - A constant offset to be added to the LSRUse expression.
   1046   /// This allows multiple fixups to share the same LSRUse with different
   1047   /// offsets, for example in an unrolled loop.
   1048   int64_t Offset;
   1049 
   1050   bool isUseFullyOutsideLoop(const Loop *L) const;
   1051 
   1052   LSRFixup();
   1053 
   1054   void print(raw_ostream &OS) const;
   1055   void dump() const;
   1056 };
   1057 
   1058 }
   1059 
   1060 LSRFixup::LSRFixup()
   1061   : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
   1062 
   1063 /// isUseFullyOutsideLoop - Test whether this fixup always uses its
   1064 /// value outside of the given loop.
   1065 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
   1066   // PHI nodes use their value in their incoming blocks.
   1067   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
   1068     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1069       if (PN->getIncomingValue(i) == OperandValToReplace &&
   1070           L->contains(PN->getIncomingBlock(i)))
   1071         return false;
   1072     return true;
   1073   }
   1074 
   1075   return !L->contains(UserInst);
   1076 }
   1077 
   1078 void LSRFixup::print(raw_ostream &OS) const {
   1079   OS << "UserInst=";
   1080   // Store is common and interesting enough to be worth special-casing.
   1081   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
   1082     OS << "store ";
   1083     WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
   1084   } else if (UserInst->getType()->isVoidTy())
   1085     OS << UserInst->getOpcodeName();
   1086   else
   1087     WriteAsOperand(OS, UserInst, /*PrintType=*/false);
   1088 
   1089   OS << ", OperandValToReplace=";
   1090   WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
   1091 
   1092   for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
   1093        E = PostIncLoops.end(); I != E; ++I) {
   1094     OS << ", PostIncLoop=";
   1095     WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
   1096   }
   1097 
   1098   if (LUIdx != ~size_t(0))
   1099     OS << ", LUIdx=" << LUIdx;
   1100 
   1101   if (Offset != 0)
   1102     OS << ", Offset=" << Offset;
   1103 }
   1104 
   1105 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1106 void LSRFixup::dump() const {
   1107   print(errs()); errs() << '\n';
   1108 }
   1109 #endif
   1110 
   1111 namespace {
   1112 
   1113 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
   1114 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
   1115 struct UniquifierDenseMapInfo {
   1116   static SmallVector<const SCEV *, 4> getEmptyKey() {
   1117     SmallVector<const SCEV *, 4>  V;
   1118     V.push_back(reinterpret_cast<const SCEV *>(-1));
   1119     return V;
   1120   }
   1121 
   1122   static SmallVector<const SCEV *, 4> getTombstoneKey() {
   1123     SmallVector<const SCEV *, 4> V;
   1124     V.push_back(reinterpret_cast<const SCEV *>(-2));
   1125     return V;
   1126   }
   1127 
   1128   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
   1129     unsigned Result = 0;
   1130     for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
   1131          E = V.end(); I != E; ++I)
   1132       Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
   1133     return Result;
   1134   }
   1135 
   1136   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
   1137                       const SmallVector<const SCEV *, 4> &RHS) {
   1138     return LHS == RHS;
   1139   }
   1140 };
   1141 
   1142 /// LSRUse - This class holds the state that LSR keeps for each use in
   1143 /// IVUsers, as well as uses invented by LSR itself. It includes information
   1144 /// about what kinds of things can be folded into the user, information about
   1145 /// the user itself, and information about how the use may be satisfied.
   1146 /// TODO: Represent multiple users of the same expression in common?
   1147 class LSRUse {
   1148   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
   1149 
   1150 public:
   1151   /// KindType - An enum for a kind of use, indicating what types of
   1152   /// scaled and immediate operands it might support.
   1153   enum KindType {
   1154     Basic,   ///< A normal use, with no folding.
   1155     Special, ///< A special case of basic, allowing -1 scales.
   1156     Address, ///< An address use; folding according to TargetLowering
   1157     ICmpZero ///< An equality icmp with both operands folded into one.
   1158     // TODO: Add a generic icmp too?
   1159   };
   1160 
   1161   KindType Kind;
   1162   Type *AccessTy;
   1163 
   1164   SmallVector<int64_t, 8> Offsets;
   1165   int64_t MinOffset;
   1166   int64_t MaxOffset;
   1167 
   1168   /// AllFixupsOutsideLoop - This records whether all of the fixups using this
   1169   /// LSRUse are outside of the loop, in which case some special-case heuristics
   1170   /// may be used.
   1171   bool AllFixupsOutsideLoop;
   1172 
   1173   /// WidestFixupType - This records the widest use type for any fixup using
   1174   /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
   1175   /// max fixup widths to be equivalent, because the narrower one may be relying
   1176   /// on the implicit truncation to truncate away bogus bits.
   1177   Type *WidestFixupType;
   1178 
   1179   /// Formulae - A list of ways to build a value that can satisfy this user.
   1180   /// After the list is populated, one of these is selected heuristically and
   1181   /// used to formulate a replacement for OperandValToReplace in UserInst.
   1182   SmallVector<Formula, 12> Formulae;
   1183 
   1184   /// Regs - The set of register candidates used by all formulae in this LSRUse.
   1185   SmallPtrSet<const SCEV *, 4> Regs;
   1186 
   1187   LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
   1188                                       MinOffset(INT64_MAX),
   1189                                       MaxOffset(INT64_MIN),
   1190                                       AllFixupsOutsideLoop(true),
   1191                                       WidestFixupType(0) {}
   1192 
   1193   bool HasFormulaWithSameRegs(const Formula &F) const;
   1194   bool InsertFormula(const Formula &F);
   1195   void DeleteFormula(Formula &F);
   1196   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
   1197 
   1198   void print(raw_ostream &OS) const;
   1199   void dump() const;
   1200 };
   1201 
   1202 }
   1203 
   1204 /// HasFormula - Test whether this use as a formula which has the same
   1205 /// registers as the given formula.
   1206 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
   1207   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
   1208   if (F.ScaledReg) Key.push_back(F.ScaledReg);
   1209   // Unstable sort by host order ok, because this is only used for uniquifying.
   1210   std::sort(Key.begin(), Key.end());
   1211   return Uniquifier.count(Key);
   1212 }
   1213 
   1214 /// InsertFormula - If the given formula has not yet been inserted, add it to
   1215 /// the list, and return true. Return false otherwise.
   1216 bool LSRUse::InsertFormula(const Formula &F) {
   1217   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
   1218   if (F.ScaledReg) Key.push_back(F.ScaledReg);
   1219   // Unstable sort by host order ok, because this is only used for uniquifying.
   1220   std::sort(Key.begin(), Key.end());
   1221 
   1222   if (!Uniquifier.insert(Key).second)
   1223     return false;
   1224 
   1225   // Using a register to hold the value of 0 is not profitable.
   1226   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
   1227          "Zero allocated in a scaled register!");
   1228 #ifndef NDEBUG
   1229   for (SmallVectorImpl<const SCEV *>::const_iterator I =
   1230        F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
   1231     assert(!(*I)->isZero() && "Zero allocated in a base register!");
   1232 #endif
   1233 
   1234   // Add the formula to the list.
   1235   Formulae.push_back(F);
   1236 
   1237   // Record registers now being used by this use.
   1238   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
   1239 
   1240   return true;
   1241 }
   1242 
   1243 /// DeleteFormula - Remove the given formula from this use's list.
   1244 void LSRUse::DeleteFormula(Formula &F) {
   1245   if (&F != &Formulae.back())
   1246     std::swap(F, Formulae.back());
   1247   Formulae.pop_back();
   1248 }
   1249 
   1250 /// RecomputeRegs - Recompute the Regs field, and update RegUses.
   1251 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
   1252   // Now that we've filtered out some formulae, recompute the Regs set.
   1253   SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
   1254   Regs.clear();
   1255   for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
   1256        E = Formulae.end(); I != E; ++I) {
   1257     const Formula &F = *I;
   1258     if (F.ScaledReg) Regs.insert(F.ScaledReg);
   1259     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
   1260   }
   1261 
   1262   // Update the RegTracker.
   1263   for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
   1264        E = OldRegs.end(); I != E; ++I)
   1265     if (!Regs.count(*I))
   1266       RegUses.DropRegister(*I, LUIdx);
   1267 }
   1268 
   1269 void LSRUse::print(raw_ostream &OS) const {
   1270   OS << "LSR Use: Kind=";
   1271   switch (Kind) {
   1272   case Basic:    OS << "Basic"; break;
   1273   case Special:  OS << "Special"; break;
   1274   case ICmpZero: OS << "ICmpZero"; break;
   1275   case Address:
   1276     OS << "Address of ";
   1277     if (AccessTy->isPointerTy())
   1278       OS << "pointer"; // the full pointer type could be really verbose
   1279     else
   1280       OS << *AccessTy;
   1281   }
   1282 
   1283   OS << ", Offsets={";
   1284   for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
   1285        E = Offsets.end(); I != E; ++I) {
   1286     OS << *I;
   1287     if (llvm::next(I) != E)
   1288       OS << ',';
   1289   }
   1290   OS << '}';
   1291 
   1292   if (AllFixupsOutsideLoop)
   1293     OS << ", all-fixups-outside-loop";
   1294 
   1295   if (WidestFixupType)
   1296     OS << ", widest fixup type: " << *WidestFixupType;
   1297 }
   1298 
   1299 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1300 void LSRUse::dump() const {
   1301   print(errs()); errs() << '\n';
   1302 }
   1303 #endif
   1304 
   1305 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can
   1306 /// be completely folded into the user instruction at isel time. This includes
   1307 /// address-mode folding and special icmp tricks.
   1308 static bool isLegalUse(const TargetTransformInfo &TTI, LSRUse::KindType Kind,
   1309                        Type *AccessTy, GlobalValue *BaseGV, int64_t BaseOffset,
   1310                        bool HasBaseReg, int64_t Scale) {
   1311   switch (Kind) {
   1312   case LSRUse::Address:
   1313     return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
   1314 
   1315     // Otherwise, just guess that reg+reg addressing is legal.
   1316     //return ;
   1317 
   1318   case LSRUse::ICmpZero:
   1319     // There's not even a target hook for querying whether it would be legal to
   1320     // fold a GV into an ICmp.
   1321     if (BaseGV)
   1322       return false;
   1323 
   1324     // ICmp only has two operands; don't allow more than two non-trivial parts.
   1325     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
   1326       return false;
   1327 
   1328     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
   1329     // putting the scaled register in the other operand of the icmp.
   1330     if (Scale != 0 && Scale != -1)
   1331       return false;
   1332 
   1333     // If we have low-level target information, ask the target if it can fold an
   1334     // integer immediate on an icmp.
   1335     if (BaseOffset != 0) {
   1336       // We have one of:
   1337       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
   1338       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
   1339       // Offs is the ICmp immediate.
   1340       if (Scale == 0)
   1341         // The cast does the right thing with INT64_MIN.
   1342         BaseOffset = -(uint64_t)BaseOffset;
   1343       return TTI.isLegalICmpImmediate(BaseOffset);
   1344     }
   1345 
   1346     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
   1347     return true;
   1348 
   1349   case LSRUse::Basic:
   1350     // Only handle single-register values.
   1351     return !BaseGV && Scale == 0 && BaseOffset == 0;
   1352 
   1353   case LSRUse::Special:
   1354     // Special case Basic to handle -1 scales.
   1355     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
   1356   }
   1357 
   1358   llvm_unreachable("Invalid LSRUse Kind!");
   1359 }
   1360 
   1361 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
   1362                        int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
   1363                        GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
   1364                        int64_t Scale) {
   1365   // Check for overflow.
   1366   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
   1367       (MinOffset > 0))
   1368     return false;
   1369   MinOffset = (uint64_t)BaseOffset + MinOffset;
   1370   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
   1371       (MaxOffset > 0))
   1372     return false;
   1373   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
   1374 
   1375   return isLegalUse(TTI, Kind, AccessTy, BaseGV, MinOffset, HasBaseReg,
   1376                     Scale) &&
   1377          isLegalUse(TTI, Kind, AccessTy, BaseGV, MaxOffset, HasBaseReg, Scale);
   1378 }
   1379 
   1380 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
   1381                        int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
   1382                        const Formula &F) {
   1383   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
   1384                     F.BaseOffset, F.HasBaseReg, F.Scale);
   1385 }
   1386 
   1387 static bool isLegal2RegAMUse(const TargetTransformInfo &TTI, const LSRUse &LU,
   1388                              const Formula &F) {
   1389   // If F is used as an Addressing Mode, it may fold one Base plus one
   1390   // scaled register. If the scaled register is nil, do as if another
   1391   // element of the base regs is a 1-scaled register.
   1392   // This is possible if BaseRegs has at least 2 registers.
   1393 
   1394   // If this is not an address calculation, this is not an addressing mode
   1395   // use.
   1396   if (LU.Kind !=  LSRUse::Address)
   1397     return false;
   1398 
   1399   // F is already scaled.
   1400   if (F.Scale != 0)
   1401     return false;
   1402 
   1403   // We need to keep one register for the base and one to scale.
   1404   if (F.BaseRegs.size() < 2)
   1405     return false;
   1406 
   1407   return isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   1408                     F.BaseGV, F.BaseOffset, F.HasBaseReg, 1);
   1409  }
   1410 
   1411 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
   1412                                      const LSRUse &LU, const Formula &F) {
   1413   if (!F.Scale)
   1414     return 0;
   1415   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
   1416                     LU.AccessTy, F) && "Illegal formula in use.");
   1417 
   1418   switch (LU.Kind) {
   1419   case LSRUse::Address: {
   1420     // Check the scaling factor cost with both the min and max offsets.
   1421     int ScaleCostMinOffset =
   1422       TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
   1423                                F.BaseOffset + LU.MinOffset,
   1424                                F.HasBaseReg, F.Scale);
   1425     int ScaleCostMaxOffset =
   1426       TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
   1427                                F.BaseOffset + LU.MaxOffset,
   1428                                F.HasBaseReg, F.Scale);
   1429 
   1430     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
   1431            "Legal addressing mode has an illegal cost!");
   1432     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
   1433   }
   1434   case LSRUse::ICmpZero:
   1435     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg.
   1436     // Therefore, return 0 in case F.Scale == -1.
   1437     return F.Scale != -1;
   1438 
   1439   case LSRUse::Basic:
   1440   case LSRUse::Special:
   1441     return 0;
   1442   }
   1443 
   1444   llvm_unreachable("Invalid LSRUse Kind!");
   1445 }
   1446 
   1447 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
   1448                              LSRUse::KindType Kind, Type *AccessTy,
   1449                              GlobalValue *BaseGV, int64_t BaseOffset,
   1450                              bool HasBaseReg) {
   1451   // Fast-path: zero is always foldable.
   1452   if (BaseOffset == 0 && !BaseGV) return true;
   1453 
   1454   // Conservatively, create an address with an immediate and a
   1455   // base and a scale.
   1456   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
   1457 
   1458   // Canonicalize a scale of 1 to a base register if the formula doesn't
   1459   // already have a base register.
   1460   if (!HasBaseReg && Scale == 1) {
   1461     Scale = 0;
   1462     HasBaseReg = true;
   1463   }
   1464 
   1465   return isLegalUse(TTI, Kind, AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
   1466 }
   1467 
   1468 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
   1469                              ScalarEvolution &SE, int64_t MinOffset,
   1470                              int64_t MaxOffset, LSRUse::KindType Kind,
   1471                              Type *AccessTy, const SCEV *S, bool HasBaseReg) {
   1472   // Fast-path: zero is always foldable.
   1473   if (S->isZero()) return true;
   1474 
   1475   // Conservatively, create an address with an immediate and a
   1476   // base and a scale.
   1477   int64_t BaseOffset = ExtractImmediate(S, SE);
   1478   GlobalValue *BaseGV = ExtractSymbol(S, SE);
   1479 
   1480   // If there's anything else involved, it's not foldable.
   1481   if (!S->isZero()) return false;
   1482 
   1483   // Fast-path: zero is always foldable.
   1484   if (BaseOffset == 0 && !BaseGV) return true;
   1485 
   1486   // Conservatively, create an address with an immediate and a
   1487   // base and a scale.
   1488   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
   1489 
   1490   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
   1491                     BaseOffset, HasBaseReg, Scale);
   1492 }
   1493 
   1494 namespace {
   1495 
   1496 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
   1497 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
   1498 struct UseMapDenseMapInfo {
   1499   static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
   1500     return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
   1501   }
   1502 
   1503   static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
   1504     return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
   1505   }
   1506 
   1507   static unsigned
   1508   getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
   1509     unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
   1510     Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
   1511     return Result;
   1512   }
   1513 
   1514   static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
   1515                       const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
   1516     return LHS == RHS;
   1517   }
   1518 };
   1519 
   1520 /// IVInc - An individual increment in a Chain of IV increments.
   1521 /// Relate an IV user to an expression that computes the IV it uses from the IV
   1522 /// used by the previous link in the Chain.
   1523 ///
   1524 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
   1525 /// original IVOperand. The head of the chain's IVOperand is only valid during
   1526 /// chain collection, before LSR replaces IV users. During chain generation,
   1527 /// IncExpr can be used to find the new IVOperand that computes the same
   1528 /// expression.
   1529 struct IVInc {
   1530   Instruction *UserInst;
   1531   Value* IVOperand;
   1532   const SCEV *IncExpr;
   1533 
   1534   IVInc(Instruction *U, Value *O, const SCEV *E):
   1535     UserInst(U), IVOperand(O), IncExpr(E) {}
   1536 };
   1537 
   1538 // IVChain - The list of IV increments in program order.
   1539 // We typically add the head of a chain without finding subsequent links.
   1540 struct IVChain {
   1541   SmallVector<IVInc,1> Incs;
   1542   const SCEV *ExprBase;
   1543 
   1544   IVChain() : ExprBase(0) {}
   1545 
   1546   IVChain(const IVInc &Head, const SCEV *Base)
   1547     : Incs(1, Head), ExprBase(Base) {}
   1548 
   1549   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
   1550 
   1551   // begin - return the first increment in the chain.
   1552   const_iterator begin() const {
   1553     assert(!Incs.empty());
   1554     return llvm::next(Incs.begin());
   1555   }
   1556   const_iterator end() const {
   1557     return Incs.end();
   1558   }
   1559 
   1560   // hasIncs - Returns true if this chain contains any increments.
   1561   bool hasIncs() const { return Incs.size() >= 2; }
   1562 
   1563   // add - Add an IVInc to the end of this chain.
   1564   void add(const IVInc &X) { Incs.push_back(X); }
   1565 
   1566   // tailUserInst - Returns the last UserInst in the chain.
   1567   Instruction *tailUserInst() const { return Incs.back().UserInst; }
   1568 
   1569   // isProfitableIncrement - Returns true if IncExpr can be profitably added to
   1570   // this chain.
   1571   bool isProfitableIncrement(const SCEV *OperExpr,
   1572                              const SCEV *IncExpr,
   1573                              ScalarEvolution&);
   1574 };
   1575 
   1576 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
   1577 /// Distinguish between FarUsers that definitely cross IV increments and
   1578 /// NearUsers that may be used between IV increments.
   1579 struct ChainUsers {
   1580   SmallPtrSet<Instruction*, 4> FarUsers;
   1581   SmallPtrSet<Instruction*, 4> NearUsers;
   1582 };
   1583 
   1584 /// LSRInstance - This class holds state for the main loop strength reduction
   1585 /// logic.
   1586 class LSRInstance {
   1587   IVUsers &IU;
   1588   ScalarEvolution &SE;
   1589   DominatorTree &DT;
   1590   LoopInfo &LI;
   1591   const TargetTransformInfo &TTI;
   1592   Loop *const L;
   1593   bool Changed;
   1594 
   1595   /// IVIncInsertPos - This is the insert position that the current loop's
   1596   /// induction variable increment should be placed. In simple loops, this is
   1597   /// the latch block's terminator. But in more complicated cases, this is a
   1598   /// position which will dominate all the in-loop post-increment users.
   1599   Instruction *IVIncInsertPos;
   1600 
   1601   /// Factors - Interesting factors between use strides.
   1602   SmallSetVector<int64_t, 8> Factors;
   1603 
   1604   /// Types - Interesting use types, to facilitate truncation reuse.
   1605   SmallSetVector<Type *, 4> Types;
   1606 
   1607   /// Fixups - The list of operands which are to be replaced.
   1608   SmallVector<LSRFixup, 16> Fixups;
   1609 
   1610   /// Uses - The list of interesting uses.
   1611   SmallVector<LSRUse, 16> Uses;
   1612 
   1613   /// RegUses - Track which uses use which register candidates.
   1614   RegUseTracker RegUses;
   1615 
   1616   // Limit the number of chains to avoid quadratic behavior. We don't expect to
   1617   // have more than a few IV increment chains in a loop. Missing a Chain falls
   1618   // back to normal LSR behavior for those uses.
   1619   static const unsigned MaxChains = 8;
   1620 
   1621   /// IVChainVec - IV users can form a chain of IV increments.
   1622   SmallVector<IVChain, MaxChains> IVChainVec;
   1623 
   1624   /// IVIncSet - IV users that belong to profitable IVChains.
   1625   SmallPtrSet<Use*, MaxChains> IVIncSet;
   1626 
   1627   void OptimizeShadowIV();
   1628   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
   1629   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
   1630   void OptimizeLoopTermCond();
   1631 
   1632   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
   1633                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
   1634   void FinalizeChain(IVChain &Chain);
   1635   void CollectChains();
   1636   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
   1637                        SmallVectorImpl<WeakVH> &DeadInsts);
   1638 
   1639   void CollectInterestingTypesAndFactors();
   1640   void CollectFixupsAndInitialFormulae();
   1641 
   1642   LSRFixup &getNewFixup() {
   1643     Fixups.push_back(LSRFixup());
   1644     return Fixups.back();
   1645   }
   1646 
   1647   // Support for sharing of LSRUses between LSRFixups.
   1648   typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
   1649                    size_t,
   1650                    UseMapDenseMapInfo> UseMapTy;
   1651   UseMapTy UseMap;
   1652 
   1653   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
   1654                           LSRUse::KindType Kind, Type *AccessTy);
   1655 
   1656   std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
   1657                                     LSRUse::KindType Kind,
   1658                                     Type *AccessTy);
   1659 
   1660   void DeleteUse(LSRUse &LU, size_t LUIdx);
   1661 
   1662   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
   1663 
   1664   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
   1665   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
   1666   void CountRegisters(const Formula &F, size_t LUIdx);
   1667   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
   1668 
   1669   void CollectLoopInvariantFixupsAndFormulae();
   1670 
   1671   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
   1672                               unsigned Depth = 0);
   1673   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
   1674   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
   1675   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
   1676   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
   1677   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
   1678   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
   1679   void GenerateCrossUseConstantOffsets();
   1680   void GenerateAllReuseFormulae();
   1681 
   1682   void FilterOutUndesirableDedicatedRegisters();
   1683 
   1684   size_t EstimateSearchSpaceComplexity() const;
   1685   void NarrowSearchSpaceByDetectingSupersets();
   1686   void NarrowSearchSpaceByCollapsingUnrolledCode();
   1687   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
   1688   void NarrowSearchSpaceByPickingWinnerRegs();
   1689   void NarrowSearchSpaceUsingHeuristics();
   1690 
   1691   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
   1692                     Cost &SolutionCost,
   1693                     SmallVectorImpl<const Formula *> &Workspace,
   1694                     const Cost &CurCost,
   1695                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
   1696                     DenseSet<const SCEV *> &VisitedRegs) const;
   1697   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
   1698 
   1699   BasicBlock::iterator
   1700     HoistInsertPosition(BasicBlock::iterator IP,
   1701                         const SmallVectorImpl<Instruction *> &Inputs) const;
   1702   BasicBlock::iterator
   1703     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
   1704                                   const LSRFixup &LF,
   1705                                   const LSRUse &LU,
   1706                                   SCEVExpander &Rewriter) const;
   1707 
   1708   Value *Expand(const LSRFixup &LF,
   1709                 const Formula &F,
   1710                 BasicBlock::iterator IP,
   1711                 SCEVExpander &Rewriter,
   1712                 SmallVectorImpl<WeakVH> &DeadInsts) const;
   1713   void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
   1714                      const Formula &F,
   1715                      SCEVExpander &Rewriter,
   1716                      SmallVectorImpl<WeakVH> &DeadInsts,
   1717                      Pass *P) const;
   1718   void Rewrite(const LSRFixup &LF,
   1719                const Formula &F,
   1720                SCEVExpander &Rewriter,
   1721                SmallVectorImpl<WeakVH> &DeadInsts,
   1722                Pass *P) const;
   1723   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
   1724                          Pass *P);
   1725 
   1726 public:
   1727   LSRInstance(Loop *L, Pass *P);
   1728 
   1729   bool getChanged() const { return Changed; }
   1730 
   1731   void print_factors_and_types(raw_ostream &OS) const;
   1732   void print_fixups(raw_ostream &OS) const;
   1733   void print_uses(raw_ostream &OS) const;
   1734   void print(raw_ostream &OS) const;
   1735   void dump() const;
   1736 };
   1737 
   1738 }
   1739 
   1740 /// OptimizeShadowIV - If IV is used in a int-to-float cast
   1741 /// inside the loop then try to eliminate the cast operation.
   1742 void LSRInstance::OptimizeShadowIV() {
   1743   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
   1744   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1745     return;
   1746 
   1747   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
   1748        UI != E; /* empty */) {
   1749     IVUsers::const_iterator CandidateUI = UI;
   1750     ++UI;
   1751     Instruction *ShadowUse = CandidateUI->getUser();
   1752     Type *DestTy = 0;
   1753     bool IsSigned = false;
   1754 
   1755     /* If shadow use is a int->float cast then insert a second IV
   1756        to eliminate this cast.
   1757 
   1758          for (unsigned i = 0; i < n; ++i)
   1759            foo((double)i);
   1760 
   1761        is transformed into
   1762 
   1763          double d = 0.0;
   1764          for (unsigned i = 0; i < n; ++i, ++d)
   1765            foo(d);
   1766     */
   1767     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
   1768       IsSigned = false;
   1769       DestTy = UCast->getDestTy();
   1770     }
   1771     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
   1772       IsSigned = true;
   1773       DestTy = SCast->getDestTy();
   1774     }
   1775     if (!DestTy) continue;
   1776 
   1777     // If target does not support DestTy natively then do not apply
   1778     // this transformation.
   1779     if (!TTI.isTypeLegal(DestTy)) continue;
   1780 
   1781     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
   1782     if (!PH) continue;
   1783     if (PH->getNumIncomingValues() != 2) continue;
   1784 
   1785     Type *SrcTy = PH->getType();
   1786     int Mantissa = DestTy->getFPMantissaWidth();
   1787     if (Mantissa == -1) continue;
   1788     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
   1789       continue;
   1790 
   1791     unsigned Entry, Latch;
   1792     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
   1793       Entry = 0;
   1794       Latch = 1;
   1795     } else {
   1796       Entry = 1;
   1797       Latch = 0;
   1798     }
   1799 
   1800     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
   1801     if (!Init) continue;
   1802     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
   1803                                         (double)Init->getSExtValue() :
   1804                                         (double)Init->getZExtValue());
   1805 
   1806     BinaryOperator *Incr =
   1807       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
   1808     if (!Incr) continue;
   1809     if (Incr->getOpcode() != Instruction::Add
   1810         && Incr->getOpcode() != Instruction::Sub)
   1811       continue;
   1812 
   1813     /* Initialize new IV, double d = 0.0 in above example. */
   1814     ConstantInt *C = 0;
   1815     if (Incr->getOperand(0) == PH)
   1816       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
   1817     else if (Incr->getOperand(1) == PH)
   1818       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
   1819     else
   1820       continue;
   1821 
   1822     if (!C) continue;
   1823 
   1824     // Ignore negative constants, as the code below doesn't handle them
   1825     // correctly. TODO: Remove this restriction.
   1826     if (!C->getValue().isStrictlyPositive()) continue;
   1827 
   1828     /* Add new PHINode. */
   1829     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
   1830 
   1831     /* create new increment. '++d' in above example. */
   1832     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
   1833     BinaryOperator *NewIncr =
   1834       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
   1835                                Instruction::FAdd : Instruction::FSub,
   1836                              NewPH, CFP, "IV.S.next.", Incr);
   1837 
   1838     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
   1839     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
   1840 
   1841     /* Remove cast operation */
   1842     ShadowUse->replaceAllUsesWith(NewPH);
   1843     ShadowUse->eraseFromParent();
   1844     Changed = true;
   1845     break;
   1846   }
   1847 }
   1848 
   1849 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
   1850 /// set the IV user and stride information and return true, otherwise return
   1851 /// false.
   1852 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
   1853   for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
   1854     if (UI->getUser() == Cond) {
   1855       // NOTE: we could handle setcc instructions with multiple uses here, but
   1856       // InstCombine does it as well for simple uses, it's not clear that it
   1857       // occurs enough in real life to handle.
   1858       CondUse = UI;
   1859       return true;
   1860     }
   1861   return false;
   1862 }
   1863 
   1864 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
   1865 /// a max computation.
   1866 ///
   1867 /// This is a narrow solution to a specific, but acute, problem. For loops
   1868 /// like this:
   1869 ///
   1870 ///   i = 0;
   1871 ///   do {
   1872 ///     p[i] = 0.0;
   1873 ///   } while (++i < n);
   1874 ///
   1875 /// the trip count isn't just 'n', because 'n' might not be positive. And
   1876 /// unfortunately this can come up even for loops where the user didn't use
   1877 /// a C do-while loop. For example, seemingly well-behaved top-test loops
   1878 /// will commonly be lowered like this:
   1879 //
   1880 ///   if (n > 0) {
   1881 ///     i = 0;
   1882 ///     do {
   1883 ///       p[i] = 0.0;
   1884 ///     } while (++i < n);
   1885 ///   }
   1886 ///
   1887 /// and then it's possible for subsequent optimization to obscure the if
   1888 /// test in such a way that indvars can't find it.
   1889 ///
   1890 /// When indvars can't find the if test in loops like this, it creates a
   1891 /// max expression, which allows it to give the loop a canonical
   1892 /// induction variable:
   1893 ///
   1894 ///   i = 0;
   1895 ///   max = n < 1 ? 1 : n;
   1896 ///   do {
   1897 ///     p[i] = 0.0;
   1898 ///   } while (++i != max);
   1899 ///
   1900 /// Canonical induction variables are necessary because the loop passes
   1901 /// are designed around them. The most obvious example of this is the
   1902 /// LoopInfo analysis, which doesn't remember trip count values. It
   1903 /// expects to be able to rediscover the trip count each time it is
   1904 /// needed, and it does this using a simple analysis that only succeeds if
   1905 /// the loop has a canonical induction variable.
   1906 ///
   1907 /// However, when it comes time to generate code, the maximum operation
   1908 /// can be quite costly, especially if it's inside of an outer loop.
   1909 ///
   1910 /// This function solves this problem by detecting this type of loop and
   1911 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
   1912 /// the instructions for the maximum computation.
   1913 ///
   1914 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
   1915   // Check that the loop matches the pattern we're looking for.
   1916   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
   1917       Cond->getPredicate() != CmpInst::ICMP_NE)
   1918     return Cond;
   1919 
   1920   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
   1921   if (!Sel || !Sel->hasOneUse()) return Cond;
   1922 
   1923   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
   1924   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1925     return Cond;
   1926   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
   1927 
   1928   // Add one to the backedge-taken count to get the trip count.
   1929   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
   1930   if (IterationCount != SE.getSCEV(Sel)) return Cond;
   1931 
   1932   // Check for a max calculation that matches the pattern. There's no check
   1933   // for ICMP_ULE here because the comparison would be with zero, which
   1934   // isn't interesting.
   1935   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
   1936   const SCEVNAryExpr *Max = 0;
   1937   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
   1938     Pred = ICmpInst::ICMP_SLE;
   1939     Max = S;
   1940   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
   1941     Pred = ICmpInst::ICMP_SLT;
   1942     Max = S;
   1943   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
   1944     Pred = ICmpInst::ICMP_ULT;
   1945     Max = U;
   1946   } else {
   1947     // No match; bail.
   1948     return Cond;
   1949   }
   1950 
   1951   // To handle a max with more than two operands, this optimization would
   1952   // require additional checking and setup.
   1953   if (Max->getNumOperands() != 2)
   1954     return Cond;
   1955 
   1956   const SCEV *MaxLHS = Max->getOperand(0);
   1957   const SCEV *MaxRHS = Max->getOperand(1);
   1958 
   1959   // ScalarEvolution canonicalizes constants to the left. For < and >, look
   1960   // for a comparison with 1. For <= and >=, a comparison with zero.
   1961   if (!MaxLHS ||
   1962       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
   1963     return Cond;
   1964 
   1965   // Check the relevant induction variable for conformance to
   1966   // the pattern.
   1967   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
   1968   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
   1969   if (!AR || !AR->isAffine() ||
   1970       AR->getStart() != One ||
   1971       AR->getStepRecurrence(SE) != One)
   1972     return Cond;
   1973 
   1974   assert(AR->getLoop() == L &&
   1975          "Loop condition operand is an addrec in a different loop!");
   1976 
   1977   // Check the right operand of the select, and remember it, as it will
   1978   // be used in the new comparison instruction.
   1979   Value *NewRHS = 0;
   1980   if (ICmpInst::isTrueWhenEqual(Pred)) {
   1981     // Look for n+1, and grab n.
   1982     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
   1983       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
   1984          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
   1985            NewRHS = BO->getOperand(0);
   1986     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
   1987       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
   1988         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
   1989           NewRHS = BO->getOperand(0);
   1990     if (!NewRHS)
   1991       return Cond;
   1992   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
   1993     NewRHS = Sel->getOperand(1);
   1994   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
   1995     NewRHS = Sel->getOperand(2);
   1996   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
   1997     NewRHS = SU->getValue();
   1998   else
   1999     // Max doesn't match expected pattern.
   2000     return Cond;
   2001 
   2002   // Determine the new comparison opcode. It may be signed or unsigned,
   2003   // and the original comparison may be either equality or inequality.
   2004   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
   2005     Pred = CmpInst::getInversePredicate(Pred);
   2006 
   2007   // Ok, everything looks ok to change the condition into an SLT or SGE and
   2008   // delete the max calculation.
   2009   ICmpInst *NewCond =
   2010     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
   2011 
   2012   // Delete the max calculation instructions.
   2013   Cond->replaceAllUsesWith(NewCond);
   2014   CondUse->setUser(NewCond);
   2015   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
   2016   Cond->eraseFromParent();
   2017   Sel->eraseFromParent();
   2018   if (Cmp->use_empty())
   2019     Cmp->eraseFromParent();
   2020   return NewCond;
   2021 }
   2022 
   2023 /// OptimizeLoopTermCond - Change loop terminating condition to use the
   2024 /// postinc iv when possible.
   2025 void
   2026 LSRInstance::OptimizeLoopTermCond() {
   2027   SmallPtrSet<Instruction *, 4> PostIncs;
   2028 
   2029   BasicBlock *LatchBlock = L->getLoopLatch();
   2030   SmallVector<BasicBlock*, 8> ExitingBlocks;
   2031   L->getExitingBlocks(ExitingBlocks);
   2032 
   2033   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
   2034     BasicBlock *ExitingBlock = ExitingBlocks[i];
   2035 
   2036     // Get the terminating condition for the loop if possible.  If we
   2037     // can, we want to change it to use a post-incremented version of its
   2038     // induction variable, to allow coalescing the live ranges for the IV into
   2039     // one register value.
   2040 
   2041     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
   2042     if (!TermBr)
   2043       continue;
   2044     // FIXME: Overly conservative, termination condition could be an 'or' etc..
   2045     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
   2046       continue;
   2047 
   2048     // Search IVUsesByStride to find Cond's IVUse if there is one.
   2049     IVStrideUse *CondUse = 0;
   2050     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
   2051     if (!FindIVUserForCond(Cond, CondUse))
   2052       continue;
   2053 
   2054     // If the trip count is computed in terms of a max (due to ScalarEvolution
   2055     // being unable to find a sufficient guard, for example), change the loop
   2056     // comparison to use SLT or ULT instead of NE.
   2057     // One consequence of doing this now is that it disrupts the count-down
   2058     // optimization. That's not always a bad thing though, because in such
   2059     // cases it may still be worthwhile to avoid a max.
   2060     Cond = OptimizeMax(Cond, CondUse);
   2061 
   2062     // If this exiting block dominates the latch block, it may also use
   2063     // the post-inc value if it won't be shared with other uses.
   2064     // Check for dominance.
   2065     if (!DT.dominates(ExitingBlock, LatchBlock))
   2066       continue;
   2067 
   2068     // Conservatively avoid trying to use the post-inc value in non-latch
   2069     // exits if there may be pre-inc users in intervening blocks.
   2070     if (LatchBlock != ExitingBlock)
   2071       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
   2072         // Test if the use is reachable from the exiting block. This dominator
   2073         // query is a conservative approximation of reachability.
   2074         if (&*UI != CondUse &&
   2075             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
   2076           // Conservatively assume there may be reuse if the quotient of their
   2077           // strides could be a legal scale.
   2078           const SCEV *A = IU.getStride(*CondUse, L);
   2079           const SCEV *B = IU.getStride(*UI, L);
   2080           if (!A || !B) continue;
   2081           if (SE.getTypeSizeInBits(A->getType()) !=
   2082               SE.getTypeSizeInBits(B->getType())) {
   2083             if (SE.getTypeSizeInBits(A->getType()) >
   2084                 SE.getTypeSizeInBits(B->getType()))
   2085               B = SE.getSignExtendExpr(B, A->getType());
   2086             else
   2087               A = SE.getSignExtendExpr(A, B->getType());
   2088           }
   2089           if (const SCEVConstant *D =
   2090                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
   2091             const ConstantInt *C = D->getValue();
   2092             // Stride of one or negative one can have reuse with non-addresses.
   2093             if (C->isOne() || C->isAllOnesValue())
   2094               goto decline_post_inc;
   2095             // Avoid weird situations.
   2096             if (C->getValue().getMinSignedBits() >= 64 ||
   2097                 C->getValue().isMinSignedValue())
   2098               goto decline_post_inc;
   2099             // Check for possible scaled-address reuse.
   2100             Type *AccessTy = getAccessType(UI->getUser());
   2101             int64_t Scale = C->getSExtValue();
   2102             if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0,
   2103                                           /*BaseOffset=*/ 0,
   2104                                           /*HasBaseReg=*/ false, Scale))
   2105               goto decline_post_inc;
   2106             Scale = -Scale;
   2107             if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0,
   2108                                           /*BaseOffset=*/ 0,
   2109                                           /*HasBaseReg=*/ false, Scale))
   2110               goto decline_post_inc;
   2111           }
   2112         }
   2113 
   2114     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
   2115                  << *Cond << '\n');
   2116 
   2117     // It's possible for the setcc instruction to be anywhere in the loop, and
   2118     // possible for it to have multiple users.  If it is not immediately before
   2119     // the exiting block branch, move it.
   2120     if (&*++BasicBlock::iterator(Cond) != TermBr) {
   2121       if (Cond->hasOneUse()) {
   2122         Cond->moveBefore(TermBr);
   2123       } else {
   2124         // Clone the terminating condition and insert into the loopend.
   2125         ICmpInst *OldCond = Cond;
   2126         Cond = cast<ICmpInst>(Cond->clone());
   2127         Cond->setName(L->getHeader()->getName() + ".termcond");
   2128         ExitingBlock->getInstList().insert(TermBr, Cond);
   2129 
   2130         // Clone the IVUse, as the old use still exists!
   2131         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
   2132         TermBr->replaceUsesOfWith(OldCond, Cond);
   2133       }
   2134     }
   2135 
   2136     // If we get to here, we know that we can transform the setcc instruction to
   2137     // use the post-incremented version of the IV, allowing us to coalesce the
   2138     // live ranges for the IV correctly.
   2139     CondUse->transformToPostInc(L);
   2140     Changed = true;
   2141 
   2142     PostIncs.insert(Cond);
   2143   decline_post_inc:;
   2144   }
   2145 
   2146   // Determine an insertion point for the loop induction variable increment. It
   2147   // must dominate all the post-inc comparisons we just set up, and it must
   2148   // dominate the loop latch edge.
   2149   IVIncInsertPos = L->getLoopLatch()->getTerminator();
   2150   for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
   2151        E = PostIncs.end(); I != E; ++I) {
   2152     BasicBlock *BB =
   2153       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
   2154                                     (*I)->getParent());
   2155     if (BB == (*I)->getParent())
   2156       IVIncInsertPos = *I;
   2157     else if (BB != IVIncInsertPos->getParent())
   2158       IVIncInsertPos = BB->getTerminator();
   2159   }
   2160 }
   2161 
   2162 /// reconcileNewOffset - Determine if the given use can accommodate a fixup
   2163 /// at the given offset and other details. If so, update the use and
   2164 /// return true.
   2165 bool
   2166 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
   2167                                 LSRUse::KindType Kind, Type *AccessTy) {
   2168   int64_t NewMinOffset = LU.MinOffset;
   2169   int64_t NewMaxOffset = LU.MaxOffset;
   2170   Type *NewAccessTy = AccessTy;
   2171 
   2172   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
   2173   // something conservative, however this can pessimize in the case that one of
   2174   // the uses will have all its uses outside the loop, for example.
   2175   if (LU.Kind != Kind)
   2176     return false;
   2177   // Conservatively assume HasBaseReg is true for now.
   2178   if (NewOffset < LU.MinOffset) {
   2179     if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
   2180                           LU.MaxOffset - NewOffset, HasBaseReg))
   2181       return false;
   2182     NewMinOffset = NewOffset;
   2183   } else if (NewOffset > LU.MaxOffset) {
   2184     if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
   2185                           NewOffset - LU.MinOffset, HasBaseReg))
   2186       return false;
   2187     NewMaxOffset = NewOffset;
   2188   }
   2189   // Check for a mismatched access type, and fall back conservatively as needed.
   2190   // TODO: Be less conservative when the type is similar and can use the same
   2191   // addressing modes.
   2192   if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
   2193     NewAccessTy = Type::getVoidTy(AccessTy->getContext());
   2194 
   2195   // Update the use.
   2196   LU.MinOffset = NewMinOffset;
   2197   LU.MaxOffset = NewMaxOffset;
   2198   LU.AccessTy = NewAccessTy;
   2199   if (NewOffset != LU.Offsets.back())
   2200     LU.Offsets.push_back(NewOffset);
   2201   return true;
   2202 }
   2203 
   2204 /// getUse - Return an LSRUse index and an offset value for a fixup which
   2205 /// needs the given expression, with the given kind and optional access type.
   2206 /// Either reuse an existing use or create a new one, as needed.
   2207 std::pair<size_t, int64_t>
   2208 LSRInstance::getUse(const SCEV *&Expr,
   2209                     LSRUse::KindType Kind, Type *AccessTy) {
   2210   const SCEV *Copy = Expr;
   2211   int64_t Offset = ExtractImmediate(Expr, SE);
   2212 
   2213   // Basic uses can't accept any offset, for example.
   2214   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
   2215                         Offset, /*HasBaseReg=*/ true)) {
   2216     Expr = Copy;
   2217     Offset = 0;
   2218   }
   2219 
   2220   std::pair<UseMapTy::iterator, bool> P =
   2221     UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
   2222   if (!P.second) {
   2223     // A use already existed with this base.
   2224     size_t LUIdx = P.first->second;
   2225     LSRUse &LU = Uses[LUIdx];
   2226     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
   2227       // Reuse this use.
   2228       return std::make_pair(LUIdx, Offset);
   2229   }
   2230 
   2231   // Create a new use.
   2232   size_t LUIdx = Uses.size();
   2233   P.first->second = LUIdx;
   2234   Uses.push_back(LSRUse(Kind, AccessTy));
   2235   LSRUse &LU = Uses[LUIdx];
   2236 
   2237   // We don't need to track redundant offsets, but we don't need to go out
   2238   // of our way here to avoid them.
   2239   if (LU.Offsets.empty() || Offset != LU.Offsets.back())
   2240     LU.Offsets.push_back(Offset);
   2241 
   2242   LU.MinOffset = Offset;
   2243   LU.MaxOffset = Offset;
   2244   return std::make_pair(LUIdx, Offset);
   2245 }
   2246 
   2247 /// DeleteUse - Delete the given use from the Uses list.
   2248 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
   2249   if (&LU != &Uses.back())
   2250     std::swap(LU, Uses.back());
   2251   Uses.pop_back();
   2252 
   2253   // Update RegUses.
   2254   RegUses.SwapAndDropUse(LUIdx, Uses.size());
   2255 }
   2256 
   2257 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has
   2258 /// a formula that has the same registers as the given formula.
   2259 LSRUse *
   2260 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
   2261                                        const LSRUse &OrigLU) {
   2262   // Search all uses for the formula. This could be more clever.
   2263   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   2264     LSRUse &LU = Uses[LUIdx];
   2265     // Check whether this use is close enough to OrigLU, to see whether it's
   2266     // worthwhile looking through its formulae.
   2267     // Ignore ICmpZero uses because they may contain formulae generated by
   2268     // GenerateICmpZeroScales, in which case adding fixup offsets may
   2269     // be invalid.
   2270     if (&LU != &OrigLU &&
   2271         LU.Kind != LSRUse::ICmpZero &&
   2272         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
   2273         LU.WidestFixupType == OrigLU.WidestFixupType &&
   2274         LU.HasFormulaWithSameRegs(OrigF)) {
   2275       // Scan through this use's formulae.
   2276       for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   2277            E = LU.Formulae.end(); I != E; ++I) {
   2278         const Formula &F = *I;
   2279         // Check to see if this formula has the same registers and symbols
   2280         // as OrigF.
   2281         if (F.BaseRegs == OrigF.BaseRegs &&
   2282             F.ScaledReg == OrigF.ScaledReg &&
   2283             F.BaseGV == OrigF.BaseGV &&
   2284             F.Scale == OrigF.Scale &&
   2285             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
   2286           if (F.BaseOffset == 0)
   2287             return &LU;
   2288           // This is the formula where all the registers and symbols matched;
   2289           // there aren't going to be any others. Since we declined it, we
   2290           // can skip the rest of the formulae and proceed to the next LSRUse.
   2291           break;
   2292         }
   2293       }
   2294     }
   2295   }
   2296 
   2297   // Nothing looked good.
   2298   return 0;
   2299 }
   2300 
   2301 void LSRInstance::CollectInterestingTypesAndFactors() {
   2302   SmallSetVector<const SCEV *, 4> Strides;
   2303 
   2304   // Collect interesting types and strides.
   2305   SmallVector<const SCEV *, 4> Worklist;
   2306   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   2307     const SCEV *Expr = IU.getExpr(*UI);
   2308 
   2309     // Collect interesting types.
   2310     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
   2311 
   2312     // Add strides for mentioned loops.
   2313     Worklist.push_back(Expr);
   2314     do {
   2315       const SCEV *S = Worklist.pop_back_val();
   2316       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   2317         if (AR->getLoop() == L)
   2318           Strides.insert(AR->getStepRecurrence(SE));
   2319         Worklist.push_back(AR->getStart());
   2320       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   2321         Worklist.append(Add->op_begin(), Add->op_end());
   2322       }
   2323     } while (!Worklist.empty());
   2324   }
   2325 
   2326   // Compute interesting factors from the set of interesting strides.
   2327   for (SmallSetVector<const SCEV *, 4>::const_iterator
   2328        I = Strides.begin(), E = Strides.end(); I != E; ++I)
   2329     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
   2330          llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
   2331       const SCEV *OldStride = *I;
   2332       const SCEV *NewStride = *NewStrideIter;
   2333 
   2334       if (SE.getTypeSizeInBits(OldStride->getType()) !=
   2335           SE.getTypeSizeInBits(NewStride->getType())) {
   2336         if (SE.getTypeSizeInBits(OldStride->getType()) >
   2337             SE.getTypeSizeInBits(NewStride->getType()))
   2338           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
   2339         else
   2340           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
   2341       }
   2342       if (const SCEVConstant *Factor =
   2343             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
   2344                                                         SE, true))) {
   2345         if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
   2346           Factors.insert(Factor->getValue()->getValue().getSExtValue());
   2347       } else if (const SCEVConstant *Factor =
   2348                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
   2349                                                                NewStride,
   2350                                                                SE, true))) {
   2351         if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
   2352           Factors.insert(Factor->getValue()->getValue().getSExtValue());
   2353       }
   2354     }
   2355 
   2356   // If all uses use the same type, don't bother looking for truncation-based
   2357   // reuse.
   2358   if (Types.size() == 1)
   2359     Types.clear();
   2360 
   2361   DEBUG(print_factors_and_types(dbgs()));
   2362 }
   2363 
   2364 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed
   2365 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
   2366 /// Instructions to IVStrideUses, we could partially skip this.
   2367 static User::op_iterator
   2368 findIVOperand(User::op_iterator OI, User::op_iterator OE,
   2369               Loop *L, ScalarEvolution &SE) {
   2370   for(; OI != OE; ++OI) {
   2371     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
   2372       if (!SE.isSCEVable(Oper->getType()))
   2373         continue;
   2374 
   2375       if (const SCEVAddRecExpr *AR =
   2376           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
   2377         if (AR->getLoop() == L)
   2378           break;
   2379       }
   2380     }
   2381   }
   2382   return OI;
   2383 }
   2384 
   2385 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst
   2386 /// operands, so wrap it in a convenient helper.
   2387 static Value *getWideOperand(Value *Oper) {
   2388   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
   2389     return Trunc->getOperand(0);
   2390   return Oper;
   2391 }
   2392 
   2393 /// isCompatibleIVType - Return true if we allow an IV chain to include both
   2394 /// types.
   2395 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
   2396   Type *LType = LVal->getType();
   2397   Type *RType = RVal->getType();
   2398   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
   2399 }
   2400 
   2401 /// getExprBase - Return an approximation of this SCEV expression's "base", or
   2402 /// NULL for any constant. Returning the expression itself is
   2403 /// conservative. Returning a deeper subexpression is more precise and valid as
   2404 /// long as it isn't less complex than another subexpression. For expressions
   2405 /// involving multiple unscaled values, we need to return the pointer-type
   2406 /// SCEVUnknown. This avoids forming chains across objects, such as:
   2407 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
   2408 ///
   2409 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
   2410 /// SCEVUnknown, we simply return the rightmost SCEV operand.
   2411 static const SCEV *getExprBase(const SCEV *S) {
   2412   switch (S->getSCEVType()) {
   2413   default: // uncluding scUnknown.
   2414     return S;
   2415   case scConstant:
   2416     return 0;
   2417   case scTruncate:
   2418     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
   2419   case scZeroExtend:
   2420     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
   2421   case scSignExtend:
   2422     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
   2423   case scAddExpr: {
   2424     // Skip over scaled operands (scMulExpr) to follow add operands as long as
   2425     // there's nothing more complex.
   2426     // FIXME: not sure if we want to recognize negation.
   2427     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
   2428     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
   2429            E(Add->op_begin()); I != E; ++I) {
   2430       const SCEV *SubExpr = *I;
   2431       if (SubExpr->getSCEVType() == scAddExpr)
   2432         return getExprBase(SubExpr);
   2433 
   2434       if (SubExpr->getSCEVType() != scMulExpr)
   2435         return SubExpr;
   2436     }
   2437     return S; // all operands are scaled, be conservative.
   2438   }
   2439   case scAddRecExpr:
   2440     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
   2441   }
   2442 }
   2443 
   2444 /// Return true if the chain increment is profitable to expand into a loop
   2445 /// invariant value, which may require its own register. A profitable chain
   2446 /// increment will be an offset relative to the same base. We allow such offsets
   2447 /// to potentially be used as chain increment as long as it's not obviously
   2448 /// expensive to expand using real instructions.
   2449 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
   2450                                     const SCEV *IncExpr,
   2451                                     ScalarEvolution &SE) {
   2452   // Aggressively form chains when -stress-ivchain.
   2453   if (StressIVChain)
   2454     return true;
   2455 
   2456   // Do not replace a constant offset from IV head with a nonconstant IV
   2457   // increment.
   2458   if (!isa<SCEVConstant>(IncExpr)) {
   2459     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
   2460     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
   2461       return 0;
   2462   }
   2463 
   2464   SmallPtrSet<const SCEV*, 8> Processed;
   2465   return !isHighCostExpansion(IncExpr, Processed, SE);
   2466 }
   2467 
   2468 /// Return true if the number of registers needed for the chain is estimated to
   2469 /// be less than the number required for the individual IV users. First prohibit
   2470 /// any IV users that keep the IV live across increments (the Users set should
   2471 /// be empty). Next count the number and type of increments in the chain.
   2472 ///
   2473 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
   2474 /// effectively use postinc addressing modes. Only consider it profitable it the
   2475 /// increments can be computed in fewer registers when chained.
   2476 ///
   2477 /// TODO: Consider IVInc free if it's already used in another chains.
   2478 static bool
   2479 isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
   2480                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
   2481   if (StressIVChain)
   2482     return true;
   2483 
   2484   if (!Chain.hasIncs())
   2485     return false;
   2486 
   2487   if (!Users.empty()) {
   2488     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
   2489           for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(),
   2490                  E = Users.end(); I != E; ++I) {
   2491             dbgs() << "  " << **I << "\n";
   2492           });
   2493     return false;
   2494   }
   2495   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
   2496 
   2497   // The chain itself may require a register, so intialize cost to 1.
   2498   int cost = 1;
   2499 
   2500   // A complete chain likely eliminates the need for keeping the original IV in
   2501   // a register. LSR does not currently know how to form a complete chain unless
   2502   // the header phi already exists.
   2503   if (isa<PHINode>(Chain.tailUserInst())
   2504       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
   2505     --cost;
   2506   }
   2507   const SCEV *LastIncExpr = 0;
   2508   unsigned NumConstIncrements = 0;
   2509   unsigned NumVarIncrements = 0;
   2510   unsigned NumReusedIncrements = 0;
   2511   for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
   2512        I != E; ++I) {
   2513 
   2514     if (I->IncExpr->isZero())
   2515       continue;
   2516 
   2517     // Incrementing by zero or some constant is neutral. We assume constants can
   2518     // be folded into an addressing mode or an add's immediate operand.
   2519     if (isa<SCEVConstant>(I->IncExpr)) {
   2520       ++NumConstIncrements;
   2521       continue;
   2522     }
   2523 
   2524     if (I->IncExpr == LastIncExpr)
   2525       ++NumReusedIncrements;
   2526     else
   2527       ++NumVarIncrements;
   2528 
   2529     LastIncExpr = I->IncExpr;
   2530   }
   2531   // An IV chain with a single increment is handled by LSR's postinc
   2532   // uses. However, a chain with multiple increments requires keeping the IV's
   2533   // value live longer than it needs to be if chained.
   2534   if (NumConstIncrements > 1)
   2535     --cost;
   2536 
   2537   // Materializing increment expressions in the preheader that didn't exist in
   2538   // the original code may cost a register. For example, sign-extended array
   2539   // indices can produce ridiculous increments like this:
   2540   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
   2541   cost += NumVarIncrements;
   2542 
   2543   // Reusing variable increments likely saves a register to hold the multiple of
   2544   // the stride.
   2545   cost -= NumReusedIncrements;
   2546 
   2547   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
   2548                << "\n");
   2549 
   2550   return cost < 0;
   2551 }
   2552 
   2553 /// ChainInstruction - Add this IV user to an existing chain or make it the head
   2554 /// of a new chain.
   2555 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
   2556                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
   2557   // When IVs are used as types of varying widths, they are generally converted
   2558   // to a wider type with some uses remaining narrow under a (free) trunc.
   2559   Value *const NextIV = getWideOperand(IVOper);
   2560   const SCEV *const OperExpr = SE.getSCEV(NextIV);
   2561   const SCEV *const OperExprBase = getExprBase(OperExpr);
   2562 
   2563   // Visit all existing chains. Check if its IVOper can be computed as a
   2564   // profitable loop invariant increment from the last link in the Chain.
   2565   unsigned ChainIdx = 0, NChains = IVChainVec.size();
   2566   const SCEV *LastIncExpr = 0;
   2567   for (; ChainIdx < NChains; ++ChainIdx) {
   2568     IVChain &Chain = IVChainVec[ChainIdx];
   2569 
   2570     // Prune the solution space aggressively by checking that both IV operands
   2571     // are expressions that operate on the same unscaled SCEVUnknown. This
   2572     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
   2573     // first avoids creating extra SCEV expressions.
   2574     if (!StressIVChain && Chain.ExprBase != OperExprBase)
   2575       continue;
   2576 
   2577     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
   2578     if (!isCompatibleIVType(PrevIV, NextIV))
   2579       continue;
   2580 
   2581     // A phi node terminates a chain.
   2582     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
   2583       continue;
   2584 
   2585     // The increment must be loop-invariant so it can be kept in a register.
   2586     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
   2587     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
   2588     if (!SE.isLoopInvariant(IncExpr, L))
   2589       continue;
   2590 
   2591     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
   2592       LastIncExpr = IncExpr;
   2593       break;
   2594     }
   2595   }
   2596   // If we haven't found a chain, create a new one, unless we hit the max. Don't
   2597   // bother for phi nodes, because they must be last in the chain.
   2598   if (ChainIdx == NChains) {
   2599     if (isa<PHINode>(UserInst))
   2600       return;
   2601     if (NChains >= MaxChains && !StressIVChain) {
   2602       DEBUG(dbgs() << "IV Chain Limit\n");
   2603       return;
   2604     }
   2605     LastIncExpr = OperExpr;
   2606     // IVUsers may have skipped over sign/zero extensions. We don't currently
   2607     // attempt to form chains involving extensions unless they can be hoisted
   2608     // into this loop's AddRec.
   2609     if (!isa<SCEVAddRecExpr>(LastIncExpr))
   2610       return;
   2611     ++NChains;
   2612     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
   2613                                  OperExprBase));
   2614     ChainUsersVec.resize(NChains);
   2615     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
   2616                  << ") IV=" << *LastIncExpr << "\n");
   2617   } else {
   2618     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
   2619                  << ") IV+" << *LastIncExpr << "\n");
   2620     // Add this IV user to the end of the chain.
   2621     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
   2622   }
   2623   IVChain &Chain = IVChainVec[ChainIdx];
   2624 
   2625   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
   2626   // This chain's NearUsers become FarUsers.
   2627   if (!LastIncExpr->isZero()) {
   2628     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
   2629                                             NearUsers.end());
   2630     NearUsers.clear();
   2631   }
   2632 
   2633   // All other uses of IVOperand become near uses of the chain.
   2634   // We currently ignore intermediate values within SCEV expressions, assuming
   2635   // they will eventually be used be the current chain, or can be computed
   2636   // from one of the chain increments. To be more precise we could
   2637   // transitively follow its user and only add leaf IV users to the set.
   2638   for (Value::use_iterator UseIter = IVOper->use_begin(),
   2639          UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) {
   2640     Instruction *OtherUse = dyn_cast<Instruction>(*UseIter);
   2641     if (!OtherUse)
   2642       continue;
   2643     // Uses in the chain will no longer be uses if the chain is formed.
   2644     // Include the head of the chain in this iteration (not Chain.begin()).
   2645     IVChain::const_iterator IncIter = Chain.Incs.begin();
   2646     IVChain::const_iterator IncEnd = Chain.Incs.end();
   2647     for( ; IncIter != IncEnd; ++IncIter) {
   2648       if (IncIter->UserInst == OtherUse)
   2649         break;
   2650     }
   2651     if (IncIter != IncEnd)
   2652       continue;
   2653 
   2654     if (SE.isSCEVable(OtherUse->getType())
   2655         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
   2656         && IU.isIVUserOrOperand(OtherUse)) {
   2657       continue;
   2658     }
   2659     NearUsers.insert(OtherUse);
   2660   }
   2661 
   2662   // Since this user is part of the chain, it's no longer considered a use
   2663   // of the chain.
   2664   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
   2665 }
   2666 
   2667 /// CollectChains - Populate the vector of Chains.
   2668 ///
   2669 /// This decreases ILP at the architecture level. Targets with ample registers,
   2670 /// multiple memory ports, and no register renaming probably don't want
   2671 /// this. However, such targets should probably disable LSR altogether.
   2672 ///
   2673 /// The job of LSR is to make a reasonable choice of induction variables across
   2674 /// the loop. Subsequent passes can easily "unchain" computation exposing more
   2675 /// ILP *within the loop* if the target wants it.
   2676 ///
   2677 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
   2678 /// will not reorder memory operations, it will recognize this as a chain, but
   2679 /// will generate redundant IV increments. Ideally this would be corrected later
   2680 /// by a smart scheduler:
   2681 ///        = A[i]
   2682 ///        = A[i+x]
   2683 /// A[i]   =
   2684 /// A[i+x] =
   2685 ///
   2686 /// TODO: Walk the entire domtree within this loop, not just the path to the
   2687 /// loop latch. This will discover chains on side paths, but requires
   2688 /// maintaining multiple copies of the Chains state.
   2689 void LSRInstance::CollectChains() {
   2690   DEBUG(dbgs() << "Collecting IV Chains.\n");
   2691   SmallVector<ChainUsers, 8> ChainUsersVec;
   2692 
   2693   SmallVector<BasicBlock *,8> LatchPath;
   2694   BasicBlock *LoopHeader = L->getHeader();
   2695   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
   2696        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
   2697     LatchPath.push_back(Rung->getBlock());
   2698   }
   2699   LatchPath.push_back(LoopHeader);
   2700 
   2701   // Walk the instruction stream from the loop header to the loop latch.
   2702   for (SmallVectorImpl<BasicBlock *>::reverse_iterator
   2703          BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
   2704        BBIter != BBEnd; ++BBIter) {
   2705     for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
   2706          I != E; ++I) {
   2707       // Skip instructions that weren't seen by IVUsers analysis.
   2708       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
   2709         continue;
   2710 
   2711       // Ignore users that are part of a SCEV expression. This way we only
   2712       // consider leaf IV Users. This effectively rediscovers a portion of
   2713       // IVUsers analysis but in program order this time.
   2714       if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
   2715         continue;
   2716 
   2717       // Remove this instruction from any NearUsers set it may be in.
   2718       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
   2719            ChainIdx < NChains; ++ChainIdx) {
   2720         ChainUsersVec[ChainIdx].NearUsers.erase(I);
   2721       }
   2722       // Search for operands that can be chained.
   2723       SmallPtrSet<Instruction*, 4> UniqueOperands;
   2724       User::op_iterator IVOpEnd = I->op_end();
   2725       User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
   2726       while (IVOpIter != IVOpEnd) {
   2727         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
   2728         if (UniqueOperands.insert(IVOpInst))
   2729           ChainInstruction(I, IVOpInst, ChainUsersVec);
   2730         IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
   2731       }
   2732     } // Continue walking down the instructions.
   2733   } // Continue walking down the domtree.
   2734   // Visit phi backedges to determine if the chain can generate the IV postinc.
   2735   for (BasicBlock::iterator I = L->getHeader()->begin();
   2736        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   2737     if (!SE.isSCEVable(PN->getType()))
   2738       continue;
   2739 
   2740     Instruction *IncV =
   2741       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
   2742     if (IncV)
   2743       ChainInstruction(PN, IncV, ChainUsersVec);
   2744   }
   2745   // Remove any unprofitable chains.
   2746   unsigned ChainIdx = 0;
   2747   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
   2748        UsersIdx < NChains; ++UsersIdx) {
   2749     if (!isProfitableChain(IVChainVec[UsersIdx],
   2750                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
   2751       continue;
   2752     // Preserve the chain at UsesIdx.
   2753     if (ChainIdx != UsersIdx)
   2754       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
   2755     FinalizeChain(IVChainVec[ChainIdx]);
   2756     ++ChainIdx;
   2757   }
   2758   IVChainVec.resize(ChainIdx);
   2759 }
   2760 
   2761 void LSRInstance::FinalizeChain(IVChain &Chain) {
   2762   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
   2763   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
   2764 
   2765   for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
   2766        I != E; ++I) {
   2767     DEBUG(dbgs() << "        Inc: " << *I->UserInst << "\n");
   2768     User::op_iterator UseI =
   2769       std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
   2770     assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
   2771     IVIncSet.insert(UseI);
   2772   }
   2773 }
   2774 
   2775 /// Return true if the IVInc can be folded into an addressing mode.
   2776 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
   2777                              Value *Operand, const TargetTransformInfo &TTI) {
   2778   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
   2779   if (!IncConst || !isAddressUse(UserInst, Operand))
   2780     return false;
   2781 
   2782   if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
   2783     return false;
   2784 
   2785   int64_t IncOffset = IncConst->getValue()->getSExtValue();
   2786   if (!isAlwaysFoldable(TTI, LSRUse::Address,
   2787                         getAccessType(UserInst), /*BaseGV=*/ 0,
   2788                         IncOffset, /*HaseBaseReg=*/ false))
   2789     return false;
   2790 
   2791   return true;
   2792 }
   2793 
   2794 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
   2795 /// materialize the IV user's operand from the previous IV user's operand.
   2796 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
   2797                                   SmallVectorImpl<WeakVH> &DeadInsts) {
   2798   // Find the new IVOperand for the head of the chain. It may have been replaced
   2799   // by LSR.
   2800   const IVInc &Head = Chain.Incs[0];
   2801   User::op_iterator IVOpEnd = Head.UserInst->op_end();
   2802   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
   2803   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
   2804                                              IVOpEnd, L, SE);
   2805   Value *IVSrc = 0;
   2806   while (IVOpIter != IVOpEnd) {
   2807     IVSrc = getWideOperand(*IVOpIter);
   2808 
   2809     // If this operand computes the expression that the chain needs, we may use
   2810     // it. (Check this after setting IVSrc which is used below.)
   2811     //
   2812     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
   2813     // narrow for the chain, so we can no longer use it. We do allow using a
   2814     // wider phi, assuming the LSR checked for free truncation. In that case we
   2815     // should already have a truncate on this operand such that
   2816     // getSCEV(IVSrc) == IncExpr.
   2817     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
   2818         || SE.getSCEV(IVSrc) == Head.IncExpr) {
   2819       break;
   2820     }
   2821     IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
   2822   }
   2823   if (IVOpIter == IVOpEnd) {
   2824     // Gracefully give up on this chain.
   2825     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
   2826     return;
   2827   }
   2828 
   2829   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
   2830   Type *IVTy = IVSrc->getType();
   2831   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
   2832   const SCEV *LeftOverExpr = 0;
   2833   for (IVChain::const_iterator IncI = Chain.begin(),
   2834          IncE = Chain.end(); IncI != IncE; ++IncI) {
   2835 
   2836     Instruction *InsertPt = IncI->UserInst;
   2837     if (isa<PHINode>(InsertPt))
   2838       InsertPt = L->getLoopLatch()->getTerminator();
   2839 
   2840     // IVOper will replace the current IV User's operand. IVSrc is the IV
   2841     // value currently held in a register.
   2842     Value *IVOper = IVSrc;
   2843     if (!IncI->IncExpr->isZero()) {
   2844       // IncExpr was the result of subtraction of two narrow values, so must
   2845       // be signed.
   2846       const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
   2847       LeftOverExpr = LeftOverExpr ?
   2848         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
   2849     }
   2850     if (LeftOverExpr && !LeftOverExpr->isZero()) {
   2851       // Expand the IV increment.
   2852       Rewriter.clearPostInc();
   2853       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
   2854       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
   2855                                              SE.getUnknown(IncV));
   2856       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
   2857 
   2858       // If an IV increment can't be folded, use it as the next IV value.
   2859       if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
   2860                             TTI)) {
   2861         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
   2862         IVSrc = IVOper;
   2863         LeftOverExpr = 0;
   2864       }
   2865     }
   2866     Type *OperTy = IncI->IVOperand->getType();
   2867     if (IVTy != OperTy) {
   2868       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
   2869              "cannot extend a chained IV");
   2870       IRBuilder<> Builder(InsertPt);
   2871       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
   2872     }
   2873     IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
   2874     DeadInsts.push_back(IncI->IVOperand);
   2875   }
   2876   // If LSR created a new, wider phi, we may also replace its postinc. We only
   2877   // do this if we also found a wide value for the head of the chain.
   2878   if (isa<PHINode>(Chain.tailUserInst())) {
   2879     for (BasicBlock::iterator I = L->getHeader()->begin();
   2880          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
   2881       if (!isCompatibleIVType(Phi, IVSrc))
   2882         continue;
   2883       Instruction *PostIncV = dyn_cast<Instruction>(
   2884         Phi->getIncomingValueForBlock(L->getLoopLatch()));
   2885       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
   2886         continue;
   2887       Value *IVOper = IVSrc;
   2888       Type *PostIncTy = PostIncV->getType();
   2889       if (IVTy != PostIncTy) {
   2890         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
   2891         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
   2892         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
   2893         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
   2894       }
   2895       Phi->replaceUsesOfWith(PostIncV, IVOper);
   2896       DeadInsts.push_back(PostIncV);
   2897     }
   2898   }
   2899 }
   2900 
   2901 void LSRInstance::CollectFixupsAndInitialFormulae() {
   2902   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   2903     Instruction *UserInst = UI->getUser();
   2904     // Skip IV users that are part of profitable IV Chains.
   2905     User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
   2906                                        UI->getOperandValToReplace());
   2907     assert(UseI != UserInst->op_end() && "cannot find IV operand");
   2908     if (IVIncSet.count(UseI))
   2909       continue;
   2910 
   2911     // Record the uses.
   2912     LSRFixup &LF = getNewFixup();
   2913     LF.UserInst = UserInst;
   2914     LF.OperandValToReplace = UI->getOperandValToReplace();
   2915     LF.PostIncLoops = UI->getPostIncLoops();
   2916 
   2917     LSRUse::KindType Kind = LSRUse::Basic;
   2918     Type *AccessTy = 0;
   2919     if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
   2920       Kind = LSRUse::Address;
   2921       AccessTy = getAccessType(LF.UserInst);
   2922     }
   2923 
   2924     const SCEV *S = IU.getExpr(*UI);
   2925 
   2926     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
   2927     // (N - i == 0), and this allows (N - i) to be the expression that we work
   2928     // with rather than just N or i, so we can consider the register
   2929     // requirements for both N and i at the same time. Limiting this code to
   2930     // equality icmps is not a problem because all interesting loops use
   2931     // equality icmps, thanks to IndVarSimplify.
   2932     if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
   2933       if (CI->isEquality()) {
   2934         // Swap the operands if needed to put the OperandValToReplace on the
   2935         // left, for consistency.
   2936         Value *NV = CI->getOperand(1);
   2937         if (NV == LF.OperandValToReplace) {
   2938           CI->setOperand(1, CI->getOperand(0));
   2939           CI->setOperand(0, NV);
   2940           NV = CI->getOperand(1);
   2941           Changed = true;
   2942         }
   2943 
   2944         // x == y  -->  x - y == 0
   2945         const SCEV *N = SE.getSCEV(NV);
   2946         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N)) {
   2947           // S is normalized, so normalize N before folding it into S
   2948           // to keep the result normalized.
   2949           N = TransformForPostIncUse(Normalize, N, CI, 0,
   2950                                      LF.PostIncLoops, SE, DT);
   2951           Kind = LSRUse::ICmpZero;
   2952           S = SE.getMinusSCEV(N, S);
   2953         }
   2954 
   2955         // -1 and the negations of all interesting strides (except the negation
   2956         // of -1) are now also interesting.
   2957         for (size_t i = 0, e = Factors.size(); i != e; ++i)
   2958           if (Factors[i] != -1)
   2959             Factors.insert(-(uint64_t)Factors[i]);
   2960         Factors.insert(-1);
   2961       }
   2962 
   2963     // Set up the initial formula for this use.
   2964     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
   2965     LF.LUIdx = P.first;
   2966     LF.Offset = P.second;
   2967     LSRUse &LU = Uses[LF.LUIdx];
   2968     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
   2969     if (!LU.WidestFixupType ||
   2970         SE.getTypeSizeInBits(LU.WidestFixupType) <
   2971         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
   2972       LU.WidestFixupType = LF.OperandValToReplace->getType();
   2973 
   2974     // If this is the first use of this LSRUse, give it a formula.
   2975     if (LU.Formulae.empty()) {
   2976       InsertInitialFormula(S, LU, LF.LUIdx);
   2977       CountRegisters(LU.Formulae.back(), LF.LUIdx);
   2978     }
   2979   }
   2980 
   2981   DEBUG(print_fixups(dbgs()));
   2982 }
   2983 
   2984 /// InsertInitialFormula - Insert a formula for the given expression into
   2985 /// the given use, separating out loop-variant portions from loop-invariant
   2986 /// and loop-computable portions.
   2987 void
   2988 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
   2989   Formula F;
   2990   F.InitialMatch(S, L, SE);
   2991   bool Inserted = InsertFormula(LU, LUIdx, F);
   2992   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
   2993 }
   2994 
   2995 /// InsertSupplementalFormula - Insert a simple single-register formula for
   2996 /// the given expression into the given use.
   2997 void
   2998 LSRInstance::InsertSupplementalFormula(const SCEV *S,
   2999                                        LSRUse &LU, size_t LUIdx) {
   3000   Formula F;
   3001   F.BaseRegs.push_back(S);
   3002   F.HasBaseReg = true;
   3003   bool Inserted = InsertFormula(LU, LUIdx, F);
   3004   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
   3005 }
   3006 
   3007 /// CountRegisters - Note which registers are used by the given formula,
   3008 /// updating RegUses.
   3009 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
   3010   if (F.ScaledReg)
   3011     RegUses.CountRegister(F.ScaledReg, LUIdx);
   3012   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
   3013        E = F.BaseRegs.end(); I != E; ++I)
   3014     RegUses.CountRegister(*I, LUIdx);
   3015 }
   3016 
   3017 /// InsertFormula - If the given formula has not yet been inserted, add it to
   3018 /// the list, and return true. Return false otherwise.
   3019 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
   3020   if (!LU.InsertFormula(F))
   3021     return false;
   3022 
   3023   CountRegisters(F, LUIdx);
   3024   return true;
   3025 }
   3026 
   3027 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
   3028 /// loop-invariant values which we're tracking. These other uses will pin these
   3029 /// values in registers, making them less profitable for elimination.
   3030 /// TODO: This currently misses non-constant addrec step registers.
   3031 /// TODO: Should this give more weight to users inside the loop?
   3032 void
   3033 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
   3034   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
   3035   SmallPtrSet<const SCEV *, 8> Inserted;
   3036 
   3037   while (!Worklist.empty()) {
   3038     const SCEV *S = Worklist.pop_back_val();
   3039 
   3040     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
   3041       Worklist.append(N->op_begin(), N->op_end());
   3042     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
   3043       Worklist.push_back(C->getOperand());
   3044     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
   3045       Worklist.push_back(D->getLHS());
   3046       Worklist.push_back(D->getRHS());
   3047     } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   3048       if (!Inserted.insert(U)) continue;
   3049       const Value *V = U->getValue();
   3050       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
   3051         // Look for instructions defined outside the loop.
   3052         if (L->contains(Inst)) continue;
   3053       } else if (isa<UndefValue>(V))
   3054         // Undef doesn't have a live range, so it doesn't matter.
   3055         continue;
   3056       for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
   3057            UI != UE; ++UI) {
   3058         const Instruction *UserInst = dyn_cast<Instruction>(*UI);
   3059         // Ignore non-instructions.
   3060         if (!UserInst)
   3061           continue;
   3062         // Ignore instructions in other functions (as can happen with
   3063         // Constants).
   3064         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
   3065           continue;
   3066         // Ignore instructions not dominated by the loop.
   3067         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
   3068           UserInst->getParent() :
   3069           cast<PHINode>(UserInst)->getIncomingBlock(
   3070             PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
   3071         if (!DT.dominates(L->getHeader(), UseBB))
   3072           continue;
   3073         // Ignore uses which are part of other SCEV expressions, to avoid
   3074         // analyzing them multiple times.
   3075         if (SE.isSCEVable(UserInst->getType())) {
   3076           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
   3077           // If the user is a no-op, look through to its uses.
   3078           if (!isa<SCEVUnknown>(UserS))
   3079             continue;
   3080           if (UserS == U) {
   3081             Worklist.push_back(
   3082               SE.getUnknown(const_cast<Instruction *>(UserInst)));
   3083             continue;
   3084           }
   3085         }
   3086         // Ignore icmp instructions which are already being analyzed.
   3087         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
   3088           unsigned OtherIdx = !UI.getOperandNo();
   3089           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
   3090           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
   3091             continue;
   3092         }
   3093 
   3094         LSRFixup &LF = getNewFixup();
   3095         LF.UserInst = const_cast<Instruction *>(UserInst);
   3096         LF.OperandValToReplace = UI.getUse();
   3097         std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
   3098         LF.LUIdx = P.first;
   3099         LF.Offset = P.second;
   3100         LSRUse &LU = Uses[LF.LUIdx];
   3101         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
   3102         if (!LU.WidestFixupType ||
   3103             SE.getTypeSizeInBits(LU.WidestFixupType) <
   3104             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
   3105           LU.WidestFixupType = LF.OperandValToReplace->getType();
   3106         InsertSupplementalFormula(U, LU, LF.LUIdx);
   3107         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
   3108         break;
   3109       }
   3110     }
   3111   }
   3112 }
   3113 
   3114 /// CollectSubexprs - Split S into subexpressions which can be pulled out into
   3115 /// separate registers. If C is non-null, multiply each subexpression by C.
   3116 ///
   3117 /// Return remainder expression after factoring the subexpressions captured by
   3118 /// Ops. If Ops is complete, return NULL.
   3119 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
   3120                                    SmallVectorImpl<const SCEV *> &Ops,
   3121                                    const Loop *L,
   3122                                    ScalarEvolution &SE,
   3123                                    unsigned Depth = 0) {
   3124   // Arbitrarily cap recursion to protect compile time.
   3125   if (Depth >= 3)
   3126     return S;
   3127 
   3128   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   3129     // Break out add operands.
   3130     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
   3131          I != E; ++I) {
   3132       const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1);
   3133       if (Remainder)
   3134         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
   3135     }
   3136     return 0;
   3137   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   3138     // Split a non-zero base out of an addrec.
   3139     if (AR->getStart()->isZero())
   3140       return S;
   3141 
   3142     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
   3143                                             C, Ops, L, SE, Depth+1);
   3144     // Split the non-zero AddRec unless it is part of a nested recurrence that
   3145     // does not pertain to this loop.
   3146     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
   3147       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
   3148       Remainder = 0;
   3149     }
   3150     if (Remainder != AR->getStart()) {
   3151       if (!Remainder)
   3152         Remainder = SE.getConstant(AR->getType(), 0);
   3153       return SE.getAddRecExpr(Remainder,
   3154                               AR->getStepRecurrence(SE),
   3155                               AR->getLoop(),
   3156                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
   3157                               SCEV::FlagAnyWrap);
   3158     }
   3159   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   3160     // Break (C * (a + b + c)) into C*a + C*b + C*c.
   3161     if (Mul->getNumOperands() != 2)
   3162       return S;
   3163     if (const SCEVConstant *Op0 =
   3164         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
   3165       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
   3166       const SCEV *Remainder =
   3167         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
   3168       if (Remainder)
   3169         Ops.push_back(SE.getMulExpr(C, Remainder));
   3170       return 0;
   3171     }
   3172   }
   3173   return S;
   3174 }
   3175 
   3176 /// GenerateReassociations - Split out subexpressions from adds and the bases of
   3177 /// addrecs.
   3178 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
   3179                                          Formula Base,
   3180                                          unsigned Depth) {
   3181   // Arbitrarily cap recursion to protect compile time.
   3182   if (Depth >= 3) return;
   3183 
   3184   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
   3185     const SCEV *BaseReg = Base.BaseRegs[i];
   3186 
   3187     SmallVector<const SCEV *, 8> AddOps;
   3188     const SCEV *Remainder = CollectSubexprs(BaseReg, 0, AddOps, L, SE);
   3189     if (Remainder)
   3190       AddOps.push_back(Remainder);
   3191 
   3192     if (AddOps.size() == 1) continue;
   3193 
   3194     for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
   3195          JE = AddOps.end(); J != JE; ++J) {
   3196 
   3197       // Loop-variant "unknown" values are uninteresting; we won't be able to
   3198       // do anything meaningful with them.
   3199       if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
   3200         continue;
   3201 
   3202       // Don't pull a constant into a register if the constant could be folded
   3203       // into an immediate field.
   3204       if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
   3205                            LU.AccessTy, *J, Base.getNumRegs() > 1))
   3206         continue;
   3207 
   3208       // Collect all operands except *J.
   3209       SmallVector<const SCEV *, 8> InnerAddOps
   3210         (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
   3211       InnerAddOps.append
   3212         (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
   3213 
   3214       // Don't leave just a constant behind in a register if the constant could
   3215       // be folded into an immediate field.
   3216       if (InnerAddOps.size() == 1 &&
   3217           isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
   3218                            LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
   3219         continue;
   3220 
   3221       const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
   3222       if (InnerSum->isZero())
   3223         continue;
   3224       Formula F = Base;
   3225 
   3226       // Add the remaining pieces of the add back into the new formula.
   3227       const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
   3228       if (InnerSumSC &&
   3229           SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
   3230           TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
   3231                                   InnerSumSC->getValue()->getZExtValue())) {
   3232         F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
   3233                            InnerSumSC->getValue()->getZExtValue();
   3234         F.BaseRegs.erase(F.BaseRegs.begin() + i);
   3235       } else
   3236         F.BaseRegs[i] = InnerSum;
   3237 
   3238       // Add J as its own register, or an unfolded immediate.
   3239       const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
   3240       if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
   3241           TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
   3242                                   SC->getValue()->getZExtValue()))
   3243         F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
   3244                            SC->getValue()->getZExtValue();
   3245       else
   3246         F.BaseRegs.push_back(*J);
   3247 
   3248       if (InsertFormula(LU, LUIdx, F))
   3249         // If that formula hadn't been seen before, recurse to find more like
   3250         // it.
   3251         GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
   3252     }
   3253   }
   3254 }
   3255 
   3256 /// GenerateCombinations - Generate a formula consisting of all of the
   3257 /// loop-dominating registers added into a single register.
   3258 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
   3259                                        Formula Base) {
   3260   // This method is only interesting on a plurality of registers.
   3261   if (Base.BaseRegs.size() <= 1) return;
   3262 
   3263   Formula F = Base;
   3264   F.BaseRegs.clear();
   3265   SmallVector<const SCEV *, 4> Ops;
   3266   for (SmallVectorImpl<const SCEV *>::const_iterator
   3267        I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
   3268     const SCEV *BaseReg = *I;
   3269     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
   3270         !SE.hasComputableLoopEvolution(BaseReg, L))
   3271       Ops.push_back(BaseReg);
   3272     else
   3273       F.BaseRegs.push_back(BaseReg);
   3274   }
   3275   if (Ops.size() > 1) {
   3276     const SCEV *Sum = SE.getAddExpr(Ops);
   3277     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
   3278     // opportunity to fold something. For now, just ignore such cases
   3279     // rather than proceed with zero in a register.
   3280     if (!Sum->isZero()) {
   3281       F.BaseRegs.push_back(Sum);
   3282       (void)InsertFormula(LU, LUIdx, F);
   3283     }
   3284   }
   3285 }
   3286 
   3287 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
   3288 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
   3289                                           Formula Base) {
   3290   // We can't add a symbolic offset if the address already contains one.
   3291   if (Base.BaseGV) return;
   3292 
   3293   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
   3294     const SCEV *G = Base.BaseRegs[i];
   3295     GlobalValue *GV = ExtractSymbol(G, SE);
   3296     if (G->isZero() || !GV)
   3297       continue;
   3298     Formula F = Base;
   3299     F.BaseGV = GV;
   3300     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
   3301       continue;
   3302     F.BaseRegs[i] = G;
   3303     (void)InsertFormula(LU, LUIdx, F);
   3304   }
   3305 }
   3306 
   3307 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
   3308 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
   3309                                           Formula Base) {
   3310   // TODO: For now, just add the min and max offset, because it usually isn't
   3311   // worthwhile looking at everything inbetween.
   3312   SmallVector<int64_t, 2> Worklist;
   3313   Worklist.push_back(LU.MinOffset);
   3314   if (LU.MaxOffset != LU.MinOffset)
   3315     Worklist.push_back(LU.MaxOffset);
   3316 
   3317   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
   3318     const SCEV *G = Base.BaseRegs[i];
   3319 
   3320     for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
   3321          E = Worklist.end(); I != E; ++I) {
   3322       Formula F = Base;
   3323       F.BaseOffset = (uint64_t)Base.BaseOffset - *I;
   3324       if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind,
   3325                      LU.AccessTy, F)) {
   3326         // Add the offset to the base register.
   3327         const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
   3328         // If it cancelled out, drop the base register, otherwise update it.
   3329         if (NewG->isZero()) {
   3330           std::swap(F.BaseRegs[i], F.BaseRegs.back());
   3331           F.BaseRegs.pop_back();
   3332         } else
   3333           F.BaseRegs[i] = NewG;
   3334 
   3335         (void)InsertFormula(LU, LUIdx, F);
   3336       }
   3337     }
   3338 
   3339     int64_t Imm = ExtractImmediate(G, SE);
   3340     if (G->isZero() || Imm == 0)
   3341       continue;
   3342     Formula F = Base;
   3343     F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
   3344     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
   3345       continue;
   3346     F.BaseRegs[i] = G;
   3347     (void)InsertFormula(LU, LUIdx, F);
   3348   }
   3349 }
   3350 
   3351 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
   3352 /// the comparison. For example, x == y -> x*c == y*c.
   3353 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
   3354                                          Formula Base) {
   3355   if (LU.Kind != LSRUse::ICmpZero) return;
   3356 
   3357   // Determine the integer type for the base formula.
   3358   Type *IntTy = Base.getType();
   3359   if (!IntTy) return;
   3360   if (SE.getTypeSizeInBits(IntTy) > 64) return;
   3361 
   3362   // Don't do this if there is more than one offset.
   3363   if (LU.MinOffset != LU.MaxOffset) return;
   3364 
   3365   assert(!Base.BaseGV && "ICmpZero use is not legal!");
   3366 
   3367   // Check each interesting stride.
   3368   for (SmallSetVector<int64_t, 8>::const_iterator
   3369        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   3370     int64_t Factor = *I;
   3371 
   3372     // Check that the multiplication doesn't overflow.
   3373     if (Base.BaseOffset == INT64_MIN && Factor == -1)
   3374       continue;
   3375     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
   3376     if (NewBaseOffset / Factor != Base.BaseOffset)
   3377       continue;
   3378 
   3379     // Check that multiplying with the use offset doesn't overflow.
   3380     int64_t Offset = LU.MinOffset;
   3381     if (Offset == INT64_MIN && Factor == -1)
   3382       continue;
   3383     Offset = (uint64_t)Offset * Factor;
   3384     if (Offset / Factor != LU.MinOffset)
   3385       continue;
   3386 
   3387     Formula F = Base;
   3388     F.BaseOffset = NewBaseOffset;
   3389 
   3390     // Check that this scale is legal.
   3391     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
   3392       continue;
   3393 
   3394     // Compensate for the use having MinOffset built into it.
   3395     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
   3396 
   3397     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
   3398 
   3399     // Check that multiplying with each base register doesn't overflow.
   3400     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
   3401       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
   3402       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
   3403         goto next;
   3404     }
   3405 
   3406     // Check that multiplying with the scaled register doesn't overflow.
   3407     if (F.ScaledReg) {
   3408       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
   3409       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
   3410         continue;
   3411     }
   3412 
   3413     // Check that multiplying with the unfolded offset doesn't overflow.
   3414     if (F.UnfoldedOffset != 0) {
   3415       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
   3416         continue;
   3417       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
   3418       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
   3419         continue;
   3420     }
   3421 
   3422     // If we make it here and it's legal, add it.
   3423     (void)InsertFormula(LU, LUIdx, F);
   3424   next:;
   3425   }
   3426 }
   3427 
   3428 /// GenerateScales - Generate stride factor reuse formulae by making use of
   3429 /// scaled-offset address modes, for example.
   3430 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
   3431   // Determine the integer type for the base formula.
   3432   Type *IntTy = Base.getType();
   3433   if (!IntTy) return;
   3434 
   3435   // If this Formula already has a scaled register, we can't add another one.
   3436   if (Base.Scale != 0) return;
   3437 
   3438   // Check each interesting stride.
   3439   for (SmallSetVector<int64_t, 8>::const_iterator
   3440        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   3441     int64_t Factor = *I;
   3442 
   3443     Base.Scale = Factor;
   3444     Base.HasBaseReg = Base.BaseRegs.size() > 1;
   3445     // Check whether this scale is going to be legal.
   3446     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   3447                     Base)) {
   3448       // As a special-case, handle special out-of-loop Basic users specially.
   3449       // TODO: Reconsider this special case.
   3450       if (LU.Kind == LSRUse::Basic &&
   3451           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
   3452                      LU.AccessTy, Base) &&
   3453           LU.AllFixupsOutsideLoop)
   3454         LU.Kind = LSRUse::Special;
   3455       else
   3456         continue;
   3457     }
   3458     // For an ICmpZero, negating a solitary base register won't lead to
   3459     // new solutions.
   3460     if (LU.Kind == LSRUse::ICmpZero &&
   3461         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
   3462       continue;
   3463     // For each addrec base reg, apply the scale, if possible.
   3464     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3465       if (const SCEVAddRecExpr *AR =
   3466             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
   3467         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
   3468         if (FactorS->isZero())
   3469           continue;
   3470         // Divide out the factor, ignoring high bits, since we'll be
   3471         // scaling the value back up in the end.
   3472         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
   3473           // TODO: This could be optimized to avoid all the copying.
   3474           Formula F = Base;
   3475           F.ScaledReg = Quotient;
   3476           F.DeleteBaseReg(F.BaseRegs[i]);
   3477           (void)InsertFormula(LU, LUIdx, F);
   3478         }
   3479       }
   3480   }
   3481 }
   3482 
   3483 /// GenerateTruncates - Generate reuse formulae from different IV types.
   3484 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
   3485   // Don't bother truncating symbolic values.
   3486   if (Base.BaseGV) return;
   3487 
   3488   // Determine the integer type for the base formula.
   3489   Type *DstTy = Base.getType();
   3490   if (!DstTy) return;
   3491   DstTy = SE.getEffectiveSCEVType(DstTy);
   3492 
   3493   for (SmallSetVector<Type *, 4>::const_iterator
   3494        I = Types.begin(), E = Types.end(); I != E; ++I) {
   3495     Type *SrcTy = *I;
   3496     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
   3497       Formula F = Base;
   3498 
   3499       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
   3500       for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
   3501            JE = F.BaseRegs.end(); J != JE; ++J)
   3502         *J = SE.getAnyExtendExpr(*J, SrcTy);
   3503 
   3504       // TODO: This assumes we've done basic processing on all uses and
   3505       // have an idea what the register usage is.
   3506       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
   3507         continue;
   3508 
   3509       (void)InsertFormula(LU, LUIdx, F);
   3510     }
   3511   }
   3512 }
   3513 
   3514 namespace {
   3515 
   3516 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
   3517 /// defer modifications so that the search phase doesn't have to worry about
   3518 /// the data structures moving underneath it.
   3519 struct WorkItem {
   3520   size_t LUIdx;
   3521   int64_t Imm;
   3522   const SCEV *OrigReg;
   3523 
   3524   WorkItem(size_t LI, int64_t I, const SCEV *R)
   3525     : LUIdx(LI), Imm(I), OrigReg(R) {}
   3526 
   3527   void print(raw_ostream &OS) const;
   3528   void dump() const;
   3529 };
   3530 
   3531 }
   3532 
   3533 void WorkItem::print(raw_ostream &OS) const {
   3534   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
   3535      << " , add offset " << Imm;
   3536 }
   3537 
   3538 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   3539 void WorkItem::dump() const {
   3540   print(errs()); errs() << '\n';
   3541 }
   3542 #endif
   3543 
   3544 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant
   3545 /// distance apart and try to form reuse opportunities between them.
   3546 void LSRInstance::GenerateCrossUseConstantOffsets() {
   3547   // Group the registers by their value without any added constant offset.
   3548   typedef std::map<int64_t, const SCEV *> ImmMapTy;
   3549   typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
   3550   RegMapTy Map;
   3551   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
   3552   SmallVector<const SCEV *, 8> Sequence;
   3553   for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
   3554        I != E; ++I) {
   3555     const SCEV *Reg = *I;
   3556     int64_t Imm = ExtractImmediate(Reg, SE);
   3557     std::pair<RegMapTy::iterator, bool> Pair =
   3558       Map.insert(std::make_pair(Reg, ImmMapTy()));
   3559     if (Pair.second)
   3560       Sequence.push_back(Reg);
   3561     Pair.first->second.insert(std::make_pair(Imm, *I));
   3562     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
   3563   }
   3564 
   3565   // Now examine each set of registers with the same base value. Build up
   3566   // a list of work to do and do the work in a separate step so that we're
   3567   // not adding formulae and register counts while we're searching.
   3568   SmallVector<WorkItem, 32> WorkItems;
   3569   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
   3570   for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
   3571        E = Sequence.end(); I != E; ++I) {
   3572     const SCEV *Reg = *I;
   3573     const ImmMapTy &Imms = Map.find(Reg)->second;
   3574 
   3575     // It's not worthwhile looking for reuse if there's only one offset.
   3576     if (Imms.size() == 1)
   3577       continue;
   3578 
   3579     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
   3580           for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
   3581                J != JE; ++J)
   3582             dbgs() << ' ' << J->first;
   3583           dbgs() << '\n');
   3584 
   3585     // Examine each offset.
   3586     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
   3587          J != JE; ++J) {
   3588       const SCEV *OrigReg = J->second;
   3589 
   3590       int64_t JImm = J->first;
   3591       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
   3592 
   3593       if (!isa<SCEVConstant>(OrigReg) &&
   3594           UsedByIndicesMap[Reg].count() == 1) {
   3595         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
   3596         continue;
   3597       }
   3598 
   3599       // Conservatively examine offsets between this orig reg a few selected
   3600       // other orig regs.
   3601       ImmMapTy::const_iterator OtherImms[] = {
   3602         Imms.begin(), prior(Imms.end()),
   3603         Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
   3604       };
   3605       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
   3606         ImmMapTy::const_iterator M = OtherImms[i];
   3607         if (M == J || M == JE) continue;
   3608 
   3609         // Compute the difference between the two.
   3610         int64_t Imm = (uint64_t)JImm - M->first;
   3611         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
   3612              LUIdx = UsedByIndices.find_next(LUIdx))
   3613           // Make a memo of this use, offset, and register tuple.
   3614           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
   3615             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
   3616       }
   3617     }
   3618   }
   3619 
   3620   Map.clear();
   3621   Sequence.clear();
   3622   UsedByIndicesMap.clear();
   3623   UniqueItems.clear();
   3624 
   3625   // Now iterate through the worklist and add new formulae.
   3626   for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
   3627        E = WorkItems.end(); I != E; ++I) {
   3628     const WorkItem &WI = *I;
   3629     size_t LUIdx = WI.LUIdx;
   3630     LSRUse &LU = Uses[LUIdx];
   3631     int64_t Imm = WI.Imm;
   3632     const SCEV *OrigReg = WI.OrigReg;
   3633 
   3634     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
   3635     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
   3636     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
   3637 
   3638     // TODO: Use a more targeted data structure.
   3639     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
   3640       const Formula &F = LU.Formulae[L];
   3641       // Use the immediate in the scaled register.
   3642       if (F.ScaledReg == OrigReg) {
   3643         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
   3644         // Don't create 50 + reg(-50).
   3645         if (F.referencesReg(SE.getSCEV(
   3646                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
   3647           continue;
   3648         Formula NewF = F;
   3649         NewF.BaseOffset = Offset;
   3650         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   3651                         NewF))
   3652           continue;
   3653         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
   3654 
   3655         // If the new scale is a constant in a register, and adding the constant
   3656         // value to the immediate would produce a value closer to zero than the
   3657         // immediate itself, then the formula isn't worthwhile.
   3658         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
   3659           if (C->getValue()->isNegative() !=
   3660                 (NewF.BaseOffset < 0) &&
   3661               (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale))
   3662                 .ule(abs64(NewF.BaseOffset)))
   3663             continue;
   3664 
   3665         // OK, looks good.
   3666         (void)InsertFormula(LU, LUIdx, NewF);
   3667       } else {
   3668         // Use the immediate in a base register.
   3669         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
   3670           const SCEV *BaseReg = F.BaseRegs[N];
   3671           if (BaseReg != OrigReg)
   3672             continue;
   3673           Formula NewF = F;
   3674           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
   3675           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
   3676                           LU.Kind, LU.AccessTy, NewF)) {
   3677             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
   3678               continue;
   3679             NewF = F;
   3680             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
   3681           }
   3682           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
   3683 
   3684           // If the new formula has a constant in a register, and adding the
   3685           // constant value to the immediate would produce a value closer to
   3686           // zero than the immediate itself, then the formula isn't worthwhile.
   3687           for (SmallVectorImpl<const SCEV *>::const_iterator
   3688                J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
   3689                J != JE; ++J)
   3690             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
   3691               if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt(
   3692                    abs64(NewF.BaseOffset)) &&
   3693                   (C->getValue()->getValue() +
   3694                    NewF.BaseOffset).countTrailingZeros() >=
   3695                    countTrailingZeros<uint64_t>(NewF.BaseOffset))
   3696                 goto skip_formula;
   3697 
   3698           // Ok, looks good.
   3699           (void)InsertFormula(LU, LUIdx, NewF);
   3700           break;
   3701         skip_formula:;
   3702         }
   3703       }
   3704     }
   3705   }
   3706 }
   3707 
   3708 /// GenerateAllReuseFormulae - Generate formulae for each use.
   3709 void
   3710 LSRInstance::GenerateAllReuseFormulae() {
   3711   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
   3712   // queries are more precise.
   3713   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3714     LSRUse &LU = Uses[LUIdx];
   3715     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3716       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
   3717     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3718       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
   3719   }
   3720   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3721     LSRUse &LU = Uses[LUIdx];
   3722     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3723       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
   3724     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3725       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
   3726     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3727       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
   3728     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3729       GenerateScales(LU, LUIdx, LU.Formulae[i]);
   3730   }
   3731   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3732     LSRUse &LU = Uses[LUIdx];
   3733     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3734       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
   3735   }
   3736 
   3737   GenerateCrossUseConstantOffsets();
   3738 
   3739   DEBUG(dbgs() << "\n"
   3740                   "After generating reuse formulae:\n";
   3741         print_uses(dbgs()));
   3742 }
   3743 
   3744 /// If there are multiple formulae with the same set of registers used
   3745 /// by other uses, pick the best one and delete the others.
   3746 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
   3747   DenseSet<const SCEV *> VisitedRegs;
   3748   SmallPtrSet<const SCEV *, 16> Regs;
   3749   SmallPtrSet<const SCEV *, 16> LoserRegs;
   3750 #ifndef NDEBUG
   3751   bool ChangedFormulae = false;
   3752 #endif
   3753 
   3754   // Collect the best formula for each unique set of shared registers. This
   3755   // is reset for each use.
   3756   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
   3757     BestFormulaeTy;
   3758   BestFormulaeTy BestFormulae;
   3759 
   3760   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3761     LSRUse &LU = Uses[LUIdx];
   3762     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
   3763 
   3764     bool Any = false;
   3765     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
   3766          FIdx != NumForms; ++FIdx) {
   3767       Formula &F = LU.Formulae[FIdx];
   3768 
   3769       // Some formulas are instant losers. For example, they may depend on
   3770       // nonexistent AddRecs from other loops. These need to be filtered
   3771       // immediately, otherwise heuristics could choose them over others leading
   3772       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
   3773       // avoids the need to recompute this information across formulae using the
   3774       // same bad AddRec. Passing LoserRegs is also essential unless we remove
   3775       // the corresponding bad register from the Regs set.
   3776       Cost CostF;
   3777       Regs.clear();
   3778       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU,
   3779                         &LoserRegs);
   3780       if (CostF.isLoser()) {
   3781         // During initial formula generation, undesirable formulae are generated
   3782         // by uses within other loops that have some non-trivial address mode or
   3783         // use the postinc form of the IV. LSR needs to provide these formulae
   3784         // as the basis of rediscovering the desired formula that uses an AddRec
   3785         // corresponding to the existing phi. Once all formulae have been
   3786         // generated, these initial losers may be pruned.
   3787         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
   3788               dbgs() << "\n");
   3789       }
   3790       else {
   3791         SmallVector<const SCEV *, 4> Key;
   3792         for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
   3793                JE = F.BaseRegs.end(); J != JE; ++J) {
   3794           const SCEV *Reg = *J;
   3795           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
   3796             Key.push_back(Reg);
   3797         }
   3798         if (F.ScaledReg &&
   3799             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
   3800           Key.push_back(F.ScaledReg);
   3801         // Unstable sort by host order ok, because this is only used for
   3802         // uniquifying.
   3803         std::sort(Key.begin(), Key.end());
   3804 
   3805         std::pair<BestFormulaeTy::const_iterator, bool> P =
   3806           BestFormulae.insert(std::make_pair(Key, FIdx));
   3807         if (P.second)
   3808           continue;
   3809 
   3810         Formula &Best = LU.Formulae[P.first->second];
   3811 
   3812         Cost CostBest;
   3813         Regs.clear();
   3814         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE,
   3815                              DT, LU);
   3816         if (CostF < CostBest)
   3817           std::swap(F, Best);
   3818         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
   3819               dbgs() << "\n"
   3820                         "    in favor of formula "; Best.print(dbgs());
   3821               dbgs() << '\n');
   3822       }
   3823 #ifndef NDEBUG
   3824       ChangedFormulae = true;
   3825 #endif
   3826       LU.DeleteFormula(F);
   3827       --FIdx;
   3828       --NumForms;
   3829       Any = true;
   3830     }
   3831 
   3832     // Now that we've filtered out some formulae, recompute the Regs set.
   3833     if (Any)
   3834       LU.RecomputeRegs(LUIdx, RegUses);
   3835 
   3836     // Reset this to prepare for the next use.
   3837     BestFormulae.clear();
   3838   }
   3839 
   3840   DEBUG(if (ChangedFormulae) {
   3841           dbgs() << "\n"
   3842                     "After filtering out undesirable candidates:\n";
   3843           print_uses(dbgs());
   3844         });
   3845 }
   3846 
   3847 // This is a rough guess that seems to work fairly well.
   3848 static const size_t ComplexityLimit = UINT16_MAX;
   3849 
   3850 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of
   3851 /// solutions the solver might have to consider. It almost never considers
   3852 /// this many solutions because it prune the search space, but the pruning
   3853 /// isn't always sufficient.
   3854 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
   3855   size_t Power = 1;
   3856   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
   3857        E = Uses.end(); I != E; ++I) {
   3858     size_t FSize = I->Formulae.size();
   3859     if (FSize >= ComplexityLimit) {
   3860       Power = ComplexityLimit;
   3861       break;
   3862     }
   3863     Power *= FSize;
   3864     if (Power >= ComplexityLimit)
   3865       break;
   3866   }
   3867   return Power;
   3868 }
   3869 
   3870 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
   3871 /// of the registers of another formula, it won't help reduce register
   3872 /// pressure (though it may not necessarily hurt register pressure); remove
   3873 /// it to simplify the system.
   3874 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
   3875   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   3876     DEBUG(dbgs() << "The search space is too complex.\n");
   3877 
   3878     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
   3879                     "which use a superset of registers used by other "
   3880                     "formulae.\n");
   3881 
   3882     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3883       LSRUse &LU = Uses[LUIdx];
   3884       bool Any = false;
   3885       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
   3886         Formula &F = LU.Formulae[i];
   3887         // Look for a formula with a constant or GV in a register. If the use
   3888         // also has a formula with that same value in an immediate field,
   3889         // delete the one that uses a register.
   3890         for (SmallVectorImpl<const SCEV *>::const_iterator
   3891              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
   3892           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
   3893             Formula NewF = F;
   3894             NewF.BaseOffset += C->getValue()->getSExtValue();
   3895             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
   3896                                 (I - F.BaseRegs.begin()));
   3897             if (LU.HasFormulaWithSameRegs(NewF)) {
   3898               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
   3899               LU.DeleteFormula(F);
   3900               --i;
   3901               --e;
   3902               Any = true;
   3903               break;
   3904             }
   3905           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
   3906             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
   3907               if (!F.BaseGV) {
   3908                 Formula NewF = F;
   3909                 NewF.BaseGV = GV;
   3910                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
   3911                                     (I - F.BaseRegs.begin()));
   3912                 if (LU.HasFormulaWithSameRegs(NewF)) {
   3913                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
   3914                         dbgs() << '\n');
   3915                   LU.DeleteFormula(F);
   3916                   --i;
   3917                   --e;
   3918                   Any = true;
   3919                   break;
   3920                 }
   3921               }
   3922           }
   3923         }
   3924       }
   3925       if (Any)
   3926         LU.RecomputeRegs(LUIdx, RegUses);
   3927     }
   3928 
   3929     DEBUG(dbgs() << "After pre-selection:\n";
   3930           print_uses(dbgs()));
   3931   }
   3932 }
   3933 
   3934 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
   3935 /// for expressions like A, A+1, A+2, etc., allocate a single register for
   3936 /// them.
   3937 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
   3938   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
   3939     return;
   3940 
   3941   DEBUG(dbgs() << "The search space is too complex.\n"
   3942                   "Narrowing the search space by assuming that uses separated "
   3943                   "by a constant offset will use the same registers.\n");
   3944 
   3945   // This is especially useful for unrolled loops.
   3946 
   3947   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3948     LSRUse &LU = Uses[LUIdx];
   3949     for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   3950          E = LU.Formulae.end(); I != E; ++I) {
   3951       const Formula &F = *I;
   3952       if (F.BaseOffset == 0 || F.Scale != 0)
   3953         continue;
   3954 
   3955       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
   3956       if (!LUThatHas)
   3957         continue;
   3958 
   3959       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
   3960                               LU.Kind, LU.AccessTy))
   3961         continue;
   3962 
   3963       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
   3964 
   3965       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
   3966 
   3967       // Update the relocs to reference the new use.
   3968       for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
   3969            E = Fixups.end(); I != E; ++I) {
   3970         LSRFixup &Fixup = *I;
   3971         if (Fixup.LUIdx == LUIdx) {
   3972           Fixup.LUIdx = LUThatHas - &Uses.front();
   3973           Fixup.Offset += F.BaseOffset;
   3974           // Add the new offset to LUThatHas' offset list.
   3975           if (LUThatHas->Offsets.back() != Fixup.Offset) {
   3976             LUThatHas->Offsets.push_back(Fixup.Offset);
   3977             if (Fixup.Offset > LUThatHas->MaxOffset)
   3978               LUThatHas->MaxOffset = Fixup.Offset;
   3979             if (Fixup.Offset < LUThatHas->MinOffset)
   3980               LUThatHas->MinOffset = Fixup.Offset;
   3981           }
   3982           DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
   3983         }
   3984         if (Fixup.LUIdx == NumUses-1)
   3985           Fixup.LUIdx = LUIdx;
   3986       }
   3987 
   3988       // Delete formulae from the new use which are no longer legal.
   3989       bool Any = false;
   3990       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
   3991         Formula &F = LUThatHas->Formulae[i];
   3992         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
   3993                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
   3994           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
   3995                 dbgs() << '\n');
   3996           LUThatHas->DeleteFormula(F);
   3997           --i;
   3998           --e;
   3999           Any = true;
   4000         }
   4001       }
   4002 
   4003       if (Any)
   4004         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
   4005 
   4006       // Delete the old use.
   4007       DeleteUse(LU, LUIdx);
   4008       --LUIdx;
   4009       --NumUses;
   4010       break;
   4011     }
   4012   }
   4013 
   4014   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
   4015 }
   4016 
   4017 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
   4018 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
   4019 /// we've done more filtering, as it may be able to find more formulae to
   4020 /// eliminate.
   4021 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
   4022   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   4023     DEBUG(dbgs() << "The search space is too complex.\n");
   4024 
   4025     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
   4026                     "undesirable dedicated registers.\n");
   4027 
   4028     FilterOutUndesirableDedicatedRegisters();
   4029 
   4030     DEBUG(dbgs() << "After pre-selection:\n";
   4031           print_uses(dbgs()));
   4032   }
   4033 }
   4034 
   4035 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
   4036 /// to be profitable, and then in any use which has any reference to that
   4037 /// register, delete all formulae which do not reference that register.
   4038 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
   4039   // With all other options exhausted, loop until the system is simple
   4040   // enough to handle.
   4041   SmallPtrSet<const SCEV *, 4> Taken;
   4042   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   4043     // Ok, we have too many of formulae on our hands to conveniently handle.
   4044     // Use a rough heuristic to thin out the list.
   4045     DEBUG(dbgs() << "The search space is too complex.\n");
   4046 
   4047     // Pick the register which is used by the most LSRUses, which is likely
   4048     // to be a good reuse register candidate.
   4049     const SCEV *Best = 0;
   4050     unsigned BestNum = 0;
   4051     for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
   4052          I != E; ++I) {
   4053       const SCEV *Reg = *I;
   4054       if (Taken.count(Reg))
   4055         continue;
   4056       if (!Best)
   4057         Best = Reg;
   4058       else {
   4059         unsigned Count = RegUses.getUsedByIndices(Reg).count();
   4060         if (Count > BestNum) {
   4061           Best = Reg;
   4062           BestNum = Count;
   4063         }
   4064       }
   4065     }
   4066 
   4067     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
   4068                  << " will yield profitable reuse.\n");
   4069     Taken.insert(Best);
   4070 
   4071     // In any use with formulae which references this register, delete formulae
   4072     // which don't reference it.
   4073     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   4074       LSRUse &LU = Uses[LUIdx];
   4075       if (!LU.Regs.count(Best)) continue;
   4076 
   4077       bool Any = false;
   4078       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
   4079         Formula &F = LU.Formulae[i];
   4080         if (!F.referencesReg(Best)) {
   4081           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
   4082           LU.DeleteFormula(F);
   4083           --e;
   4084           --i;
   4085           Any = true;
   4086           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
   4087           continue;
   4088         }
   4089       }
   4090 
   4091       if (Any)
   4092         LU.RecomputeRegs(LUIdx, RegUses);
   4093     }
   4094 
   4095     DEBUG(dbgs() << "After pre-selection:\n";
   4096           print_uses(dbgs()));
   4097   }
   4098 }
   4099 
   4100 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
   4101 /// formulae to choose from, use some rough heuristics to prune down the number
   4102 /// of formulae. This keeps the main solver from taking an extraordinary amount
   4103 /// of time in some worst-case scenarios.
   4104 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
   4105   NarrowSearchSpaceByDetectingSupersets();
   4106   NarrowSearchSpaceByCollapsingUnrolledCode();
   4107   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
   4108   NarrowSearchSpaceByPickingWinnerRegs();
   4109 }
   4110 
   4111 /// SolveRecurse - This is the recursive solver.
   4112 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
   4113                                Cost &SolutionCost,
   4114                                SmallVectorImpl<const Formula *> &Workspace,
   4115                                const Cost &CurCost,
   4116                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
   4117                                DenseSet<const SCEV *> &VisitedRegs) const {
   4118   // Some ideas:
   4119   //  - prune more:
   4120   //    - use more aggressive filtering
   4121   //    - sort the formula so that the most profitable solutions are found first
   4122   //    - sort the uses too
   4123   //  - search faster:
   4124   //    - don't compute a cost, and then compare. compare while computing a cost
   4125   //      and bail early.
   4126   //    - track register sets with SmallBitVector
   4127 
   4128   const LSRUse &LU = Uses[Workspace.size()];
   4129 
   4130   // If this use references any register that's already a part of the
   4131   // in-progress solution, consider it a requirement that a formula must
   4132   // reference that register in order to be considered. This prunes out
   4133   // unprofitable searching.
   4134   SmallSetVector<const SCEV *, 4> ReqRegs;
   4135   for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
   4136        E = CurRegs.end(); I != E; ++I)
   4137     if (LU.Regs.count(*I))
   4138       ReqRegs.insert(*I);
   4139 
   4140   SmallPtrSet<const SCEV *, 16> NewRegs;
   4141   Cost NewCost;
   4142   for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   4143        E = LU.Formulae.end(); I != E; ++I) {
   4144     const Formula &F = *I;
   4145 
   4146     // Ignore formulae which do not use any of the required registers.
   4147     bool SatisfiedReqReg = true;
   4148     for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
   4149          JE = ReqRegs.end(); J != JE; ++J) {
   4150       const SCEV *Reg = *J;
   4151       if ((!F.ScaledReg || F.ScaledReg != Reg) &&
   4152           std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
   4153           F.BaseRegs.end()) {
   4154         SatisfiedReqReg = false;
   4155         break;
   4156       }
   4157     }
   4158     if (!SatisfiedReqReg) {
   4159       // If none of the formulae satisfied the required registers, then we could
   4160       // clear ReqRegs and try again. Currently, we simply give up in this case.
   4161       continue;
   4162     }
   4163 
   4164     // Evaluate the cost of the current formula. If it's already worse than
   4165     // the current best, prune the search at that point.
   4166     NewCost = CurCost;
   4167     NewRegs = CurRegs;
   4168     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT,
   4169                         LU);
   4170     if (NewCost < SolutionCost) {
   4171       Workspace.push_back(&F);
   4172       if (Workspace.size() != Uses.size()) {
   4173         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
   4174                      NewRegs, VisitedRegs);
   4175         if (F.getNumRegs() == 1 && Workspace.size() == 1)
   4176           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
   4177       } else {
   4178         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
   4179               dbgs() << ".\n Regs:";
   4180               for (SmallPtrSet<const SCEV *, 16>::const_iterator
   4181                    I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
   4182                 dbgs() << ' ' << **I;
   4183               dbgs() << '\n');
   4184 
   4185         SolutionCost = NewCost;
   4186         Solution = Workspace;
   4187       }
   4188       Workspace.pop_back();
   4189     }
   4190   }
   4191 }
   4192 
   4193 /// Solve - Choose one formula from each use. Return the results in the given
   4194 /// Solution vector.
   4195 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
   4196   SmallVector<const Formula *, 8> Workspace;
   4197   Cost SolutionCost;
   4198   SolutionCost.Loose();
   4199   Cost CurCost;
   4200   SmallPtrSet<const SCEV *, 16> CurRegs;
   4201   DenseSet<const SCEV *> VisitedRegs;
   4202   Workspace.reserve(Uses.size());
   4203 
   4204   // SolveRecurse does all the work.
   4205   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
   4206                CurRegs, VisitedRegs);
   4207   if (Solution.empty()) {
   4208     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
   4209     return;
   4210   }
   4211 
   4212   // Ok, we've now made all our decisions.
   4213   DEBUG(dbgs() << "\n"
   4214                   "The chosen solution requires "; SolutionCost.print(dbgs());
   4215         dbgs() << ":\n";
   4216         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
   4217           dbgs() << "  ";
   4218           Uses[i].print(dbgs());
   4219           dbgs() << "\n"
   4220                     "    ";
   4221           Solution[i]->print(dbgs());
   4222           dbgs() << '\n';
   4223         });
   4224 
   4225   assert(Solution.size() == Uses.size() && "Malformed solution!");
   4226 }
   4227 
   4228 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
   4229 /// the dominator tree far as we can go while still being dominated by the
   4230 /// input positions. This helps canonicalize the insert position, which
   4231 /// encourages sharing.
   4232 BasicBlock::iterator
   4233 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
   4234                                  const SmallVectorImpl<Instruction *> &Inputs)
   4235                                                                          const {
   4236   for (;;) {
   4237     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
   4238     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
   4239 
   4240     BasicBlock *IDom;
   4241     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
   4242       if (!Rung) return IP;
   4243       Rung = Rung->getIDom();
   4244       if (!Rung) return IP;
   4245       IDom = Rung->getBlock();
   4246 
   4247       // Don't climb into a loop though.
   4248       const Loop *IDomLoop = LI.getLoopFor(IDom);
   4249       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
   4250       if (IDomDepth <= IPLoopDepth &&
   4251           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
   4252         break;
   4253     }
   4254 
   4255     bool AllDominate = true;
   4256     Instruction *BetterPos = 0;
   4257     Instruction *Tentative = IDom->getTerminator();
   4258     for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
   4259          E = Inputs.end(); I != E; ++I) {
   4260       Instruction *Inst = *I;
   4261       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
   4262         AllDominate = false;
   4263         break;
   4264       }
   4265       // Attempt to find an insert position in the middle of the block,
   4266       // instead of at the end, so that it can be used for other expansions.
   4267       if (IDom == Inst->getParent() &&
   4268           (!BetterPos || !DT.dominates(Inst, BetterPos)))
   4269         BetterPos = llvm::next(BasicBlock::iterator(Inst));
   4270     }
   4271     if (!AllDominate)
   4272       break;
   4273     if (BetterPos)
   4274       IP = BetterPos;
   4275     else
   4276       IP = Tentative;
   4277   }
   4278 
   4279   return IP;
   4280 }
   4281 
   4282 /// AdjustInsertPositionForExpand - Determine an input position which will be
   4283 /// dominated by the operands and which will dominate the result.
   4284 BasicBlock::iterator
   4285 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
   4286                                            const LSRFixup &LF,
   4287                                            const LSRUse &LU,
   4288                                            SCEVExpander &Rewriter) const {
   4289   // Collect some instructions which must be dominated by the
   4290   // expanding replacement. These must be dominated by any operands that
   4291   // will be required in the expansion.
   4292   SmallVector<Instruction *, 4> Inputs;
   4293   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
   4294     Inputs.push_back(I);
   4295   if (LU.Kind == LSRUse::ICmpZero)
   4296     if (Instruction *I =
   4297           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
   4298       Inputs.push_back(I);
   4299   if (LF.PostIncLoops.count(L)) {
   4300     if (LF.isUseFullyOutsideLoop(L))
   4301       Inputs.push_back(L->getLoopLatch()->getTerminator());
   4302     else
   4303       Inputs.push_back(IVIncInsertPos);
   4304   }
   4305   // The expansion must also be dominated by the increment positions of any
   4306   // loops it for which it is using post-inc mode.
   4307   for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
   4308        E = LF.PostIncLoops.end(); I != E; ++I) {
   4309     const Loop *PIL = *I;
   4310     if (PIL == L) continue;
   4311 
   4312     // Be dominated by the loop exit.
   4313     SmallVector<BasicBlock *, 4> ExitingBlocks;
   4314     PIL->getExitingBlocks(ExitingBlocks);
   4315     if (!ExitingBlocks.empty()) {
   4316       BasicBlock *BB = ExitingBlocks[0];
   4317       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
   4318         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
   4319       Inputs.push_back(BB->getTerminator());
   4320     }
   4321   }
   4322 
   4323   assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
   4324          && !isa<DbgInfoIntrinsic>(LowestIP) &&
   4325          "Insertion point must be a normal instruction");
   4326 
   4327   // Then, climb up the immediate dominator tree as far as we can go while
   4328   // still being dominated by the input positions.
   4329   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
   4330 
   4331   // Don't insert instructions before PHI nodes.
   4332   while (isa<PHINode>(IP)) ++IP;
   4333 
   4334   // Ignore landingpad instructions.
   4335   while (isa<LandingPadInst>(IP)) ++IP;
   4336 
   4337   // Ignore debug intrinsics.
   4338   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
   4339 
   4340   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
   4341   // IP consistent across expansions and allows the previously inserted
   4342   // instructions to be reused by subsequent expansion.
   4343   while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
   4344 
   4345   return IP;
   4346 }
   4347 
   4348 /// Expand - Emit instructions for the leading candidate expression for this
   4349 /// LSRUse (this is called "expanding").
   4350 Value *LSRInstance::Expand(const LSRFixup &LF,
   4351                            const Formula &F,
   4352                            BasicBlock::iterator IP,
   4353                            SCEVExpander &Rewriter,
   4354                            SmallVectorImpl<WeakVH> &DeadInsts) const {
   4355   const LSRUse &LU = Uses[LF.LUIdx];
   4356 
   4357   // Determine an input position which will be dominated by the operands and
   4358   // which will dominate the result.
   4359   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
   4360 
   4361   // Inform the Rewriter if we have a post-increment use, so that it can
   4362   // perform an advantageous expansion.
   4363   Rewriter.setPostInc(LF.PostIncLoops);
   4364 
   4365   // This is the type that the user actually needs.
   4366   Type *OpTy = LF.OperandValToReplace->getType();
   4367   // This will be the type that we'll initially expand to.
   4368   Type *Ty = F.getType();
   4369   if (!Ty)
   4370     // No type known; just expand directly to the ultimate type.
   4371     Ty = OpTy;
   4372   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
   4373     // Expand directly to the ultimate type if it's the right size.
   4374     Ty = OpTy;
   4375   // This is the type to do integer arithmetic in.
   4376   Type *IntTy = SE.getEffectiveSCEVType(Ty);
   4377 
   4378   // Build up a list of operands to add together to form the full base.
   4379   SmallVector<const SCEV *, 8> Ops;
   4380 
   4381   // Expand the BaseRegs portion.
   4382   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
   4383        E = F.BaseRegs.end(); I != E; ++I) {
   4384     const SCEV *Reg = *I;
   4385     assert(!Reg->isZero() && "Zero allocated in a base register!");
   4386 
   4387     // If we're expanding for a post-inc user, make the post-inc adjustment.
   4388     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
   4389     Reg = TransformForPostIncUse(Denormalize, Reg,
   4390                                  LF.UserInst, LF.OperandValToReplace,
   4391                                  Loops, SE, DT);
   4392 
   4393     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
   4394   }
   4395 
   4396   // Expand the ScaledReg portion.
   4397   Value *ICmpScaledV = 0;
   4398   if (F.Scale != 0) {
   4399     const SCEV *ScaledS = F.ScaledReg;
   4400 
   4401     // If we're expanding for a post-inc user, make the post-inc adjustment.
   4402     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
   4403     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
   4404                                      LF.UserInst, LF.OperandValToReplace,
   4405                                      Loops, SE, DT);
   4406 
   4407     if (LU.Kind == LSRUse::ICmpZero) {
   4408       // An interesting way of "folding" with an icmp is to use a negated
   4409       // scale, which we'll implement by inserting it into the other operand
   4410       // of the icmp.
   4411       assert(F.Scale == -1 &&
   4412              "The only scale supported by ICmpZero uses is -1!");
   4413       ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
   4414     } else {
   4415       // Otherwise just expand the scaled register and an explicit scale,
   4416       // which is expected to be matched as part of the address.
   4417 
   4418       // Flush the operand list to suppress SCEVExpander hoisting address modes.
   4419       if (!Ops.empty() && LU.Kind == LSRUse::Address) {
   4420         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4421         Ops.clear();
   4422         Ops.push_back(SE.getUnknown(FullV));
   4423       }
   4424       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
   4425       ScaledS = SE.getMulExpr(ScaledS,
   4426                               SE.getConstant(ScaledS->getType(), F.Scale));
   4427       Ops.push_back(ScaledS);
   4428     }
   4429   }
   4430 
   4431   // Expand the GV portion.
   4432   if (F.BaseGV) {
   4433     // Flush the operand list to suppress SCEVExpander hoisting.
   4434     if (!Ops.empty()) {
   4435       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4436       Ops.clear();
   4437       Ops.push_back(SE.getUnknown(FullV));
   4438     }
   4439     Ops.push_back(SE.getUnknown(F.BaseGV));
   4440   }
   4441 
   4442   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
   4443   // unfolded offsets. LSR assumes they both live next to their uses.
   4444   if (!Ops.empty()) {
   4445     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4446     Ops.clear();
   4447     Ops.push_back(SE.getUnknown(FullV));
   4448   }
   4449 
   4450   // Expand the immediate portion.
   4451   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
   4452   if (Offset != 0) {
   4453     if (LU.Kind == LSRUse::ICmpZero) {
   4454       // The other interesting way of "folding" with an ICmpZero is to use a
   4455       // negated immediate.
   4456       if (!ICmpScaledV)
   4457         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
   4458       else {
   4459         Ops.push_back(SE.getUnknown(ICmpScaledV));
   4460         ICmpScaledV = ConstantInt::get(IntTy, Offset);
   4461       }
   4462     } else {
   4463       // Just add the immediate values. These again are expected to be matched
   4464       // as part of the address.
   4465       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
   4466     }
   4467   }
   4468 
   4469   // Expand the unfolded offset portion.
   4470   int64_t UnfoldedOffset = F.UnfoldedOffset;
   4471   if (UnfoldedOffset != 0) {
   4472     // Just add the immediate values.
   4473     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
   4474                                                        UnfoldedOffset)));
   4475   }
   4476 
   4477   // Emit instructions summing all the operands.
   4478   const SCEV *FullS = Ops.empty() ?
   4479                       SE.getConstant(IntTy, 0) :
   4480                       SE.getAddExpr(Ops);
   4481   Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
   4482 
   4483   // We're done expanding now, so reset the rewriter.
   4484   Rewriter.clearPostInc();
   4485 
   4486   // An ICmpZero Formula represents an ICmp which we're handling as a
   4487   // comparison against zero. Now that we've expanded an expression for that
   4488   // form, update the ICmp's other operand.
   4489   if (LU.Kind == LSRUse::ICmpZero) {
   4490     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
   4491     DeadInsts.push_back(CI->getOperand(1));
   4492     assert(!F.BaseGV && "ICmp does not support folding a global value and "
   4493                            "a scale at the same time!");
   4494     if (F.Scale == -1) {
   4495       if (ICmpScaledV->getType() != OpTy) {
   4496         Instruction *Cast =
   4497           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
   4498                                                    OpTy, false),
   4499                            ICmpScaledV, OpTy, "tmp", CI);
   4500         ICmpScaledV = Cast;
   4501       }
   4502       CI->setOperand(1, ICmpScaledV);
   4503     } else {
   4504       assert(F.Scale == 0 &&
   4505              "ICmp does not support folding a global value and "
   4506              "a scale at the same time!");
   4507       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
   4508                                            -(uint64_t)Offset);
   4509       if (C->getType() != OpTy)
   4510         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
   4511                                                           OpTy, false),
   4512                                   C, OpTy);
   4513 
   4514       CI->setOperand(1, C);
   4515     }
   4516   }
   4517 
   4518   return FullV;
   4519 }
   4520 
   4521 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
   4522 /// of their operands effectively happens in their predecessor blocks, so the
   4523 /// expression may need to be expanded in multiple places.
   4524 void LSRInstance::RewriteForPHI(PHINode *PN,
   4525                                 const LSRFixup &LF,
   4526                                 const Formula &F,
   4527                                 SCEVExpander &Rewriter,
   4528                                 SmallVectorImpl<WeakVH> &DeadInsts,
   4529                                 Pass *P) const {
   4530   DenseMap<BasicBlock *, Value *> Inserted;
   4531   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   4532     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
   4533       BasicBlock *BB = PN->getIncomingBlock(i);
   4534 
   4535       // If this is a critical edge, split the edge so that we do not insert
   4536       // the code on all predecessor/successor paths.  We do this unless this
   4537       // is the canonical backedge for this loop, which complicates post-inc
   4538       // users.
   4539       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
   4540           !isa<IndirectBrInst>(BB->getTerminator())) {
   4541         BasicBlock *Parent = PN->getParent();
   4542         Loop *PNLoop = LI.getLoopFor(Parent);
   4543         if (!PNLoop || Parent != PNLoop->getHeader()) {
   4544           // Split the critical edge.
   4545           BasicBlock *NewBB = 0;
   4546           if (!Parent->isLandingPad()) {
   4547             NewBB = SplitCriticalEdge(BB, Parent, P,
   4548                                       /*MergeIdenticalEdges=*/true,
   4549                                       /*DontDeleteUselessPhis=*/true);
   4550           } else {
   4551             SmallVector<BasicBlock*, 2> NewBBs;
   4552             SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs);
   4553             NewBB = NewBBs[0];
   4554           }
   4555           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
   4556           // phi predecessors are identical. The simple thing to do is skip
   4557           // splitting in this case rather than complicate the API.
   4558           if (NewBB) {
   4559             // If PN is outside of the loop and BB is in the loop, we want to
   4560             // move the block to be immediately before the PHI block, not
   4561             // immediately after BB.
   4562             if (L->contains(BB) && !L->contains(PN))
   4563               NewBB->moveBefore(PN->getParent());
   4564 
   4565             // Splitting the edge can reduce the number of PHI entries we have.
   4566             e = PN->getNumIncomingValues();
   4567             BB = NewBB;
   4568             i = PN->getBasicBlockIndex(BB);
   4569           }
   4570         }
   4571       }
   4572 
   4573       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
   4574         Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
   4575       if (!Pair.second)
   4576         PN->setIncomingValue(i, Pair.first->second);
   4577       else {
   4578         Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
   4579 
   4580         // If this is reuse-by-noop-cast, insert the noop cast.
   4581         Type *OpTy = LF.OperandValToReplace->getType();
   4582         if (FullV->getType() != OpTy)
   4583           FullV =
   4584             CastInst::Create(CastInst::getCastOpcode(FullV, false,
   4585                                                      OpTy, false),
   4586                              FullV, LF.OperandValToReplace->getType(),
   4587                              "tmp", BB->getTerminator());
   4588 
   4589         PN->setIncomingValue(i, FullV);
   4590         Pair.first->second = FullV;
   4591       }
   4592     }
   4593 }
   4594 
   4595 /// Rewrite - Emit instructions for the leading candidate expression for this
   4596 /// LSRUse (this is called "expanding"), and update the UserInst to reference
   4597 /// the newly expanded value.
   4598 void LSRInstance::Rewrite(const LSRFixup &LF,
   4599                           const Formula &F,
   4600                           SCEVExpander &Rewriter,
   4601                           SmallVectorImpl<WeakVH> &DeadInsts,
   4602                           Pass *P) const {
   4603   // First, find an insertion point that dominates UserInst. For PHI nodes,
   4604   // find the nearest block which dominates all the relevant uses.
   4605   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
   4606     RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
   4607   } else {
   4608     Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
   4609 
   4610     // If this is reuse-by-noop-cast, insert the noop cast.
   4611     Type *OpTy = LF.OperandValToReplace->getType();
   4612     if (FullV->getType() != OpTy) {
   4613       Instruction *Cast =
   4614         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
   4615                          FullV, OpTy, "tmp", LF.UserInst);
   4616       FullV = Cast;
   4617     }
   4618 
   4619     // Update the user. ICmpZero is handled specially here (for now) because
   4620     // Expand may have updated one of the operands of the icmp already, and
   4621     // its new value may happen to be equal to LF.OperandValToReplace, in
   4622     // which case doing replaceUsesOfWith leads to replacing both operands
   4623     // with the same value. TODO: Reorganize this.
   4624     if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
   4625       LF.UserInst->setOperand(0, FullV);
   4626     else
   4627       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
   4628   }
   4629 
   4630   DeadInsts.push_back(LF.OperandValToReplace);
   4631 }
   4632 
   4633 /// ImplementSolution - Rewrite all the fixup locations with new values,
   4634 /// following the chosen solution.
   4635 void
   4636 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
   4637                                Pass *P) {
   4638   // Keep track of instructions we may have made dead, so that
   4639   // we can remove them after we are done working.
   4640   SmallVector<WeakVH, 16> DeadInsts;
   4641 
   4642   SCEVExpander Rewriter(SE, "lsr");
   4643 #ifndef NDEBUG
   4644   Rewriter.setDebugType(DEBUG_TYPE);
   4645 #endif
   4646   Rewriter.disableCanonicalMode();
   4647   Rewriter.enableLSRMode();
   4648   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
   4649 
   4650   // Mark phi nodes that terminate chains so the expander tries to reuse them.
   4651   for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
   4652          ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
   4653     if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst()))
   4654       Rewriter.setChainedPhi(PN);
   4655   }
   4656 
   4657   // Expand the new value definitions and update the users.
   4658   for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
   4659        E = Fixups.end(); I != E; ++I) {
   4660     const LSRFixup &Fixup = *I;
   4661 
   4662     Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
   4663 
   4664     Changed = true;
   4665   }
   4666 
   4667   for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
   4668          ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
   4669     GenerateIVChain(*ChainI, Rewriter, DeadInsts);
   4670     Changed = true;
   4671   }
   4672   // Clean up after ourselves. This must be done before deleting any
   4673   // instructions.
   4674   Rewriter.clear();
   4675 
   4676   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
   4677 }
   4678 
   4679 LSRInstance::LSRInstance(Loop *L, Pass *P)
   4680     : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()),
   4681       DT(P->getAnalysis<DominatorTree>()), LI(P->getAnalysis<LoopInfo>()),
   4682       TTI(P->getAnalysis<TargetTransformInfo>()), L(L), Changed(false),
   4683       IVIncInsertPos(0) {
   4684   // If LoopSimplify form is not available, stay out of trouble.
   4685   if (!L->isLoopSimplifyForm())
   4686     return;
   4687 
   4688   // If there's no interesting work to be done, bail early.
   4689   if (IU.empty()) return;
   4690 
   4691   // If there's too much analysis to be done, bail early. We won't be able to
   4692   // model the problem anyway.
   4693   unsigned NumUsers = 0;
   4694   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   4695     if (++NumUsers > MaxIVUsers) {
   4696       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L
   4697             << "\n");
   4698       return;
   4699     }
   4700   }
   4701 
   4702 #ifndef NDEBUG
   4703   // All dominating loops must have preheaders, or SCEVExpander may not be able
   4704   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
   4705   //
   4706   // IVUsers analysis should only create users that are dominated by simple loop
   4707   // headers. Since this loop should dominate all of its users, its user list
   4708   // should be empty if this loop itself is not within a simple loop nest.
   4709   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
   4710        Rung; Rung = Rung->getIDom()) {
   4711     BasicBlock *BB = Rung->getBlock();
   4712     const Loop *DomLoop = LI.getLoopFor(BB);
   4713     if (DomLoop && DomLoop->getHeader() == BB) {
   4714       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
   4715     }
   4716   }
   4717 #endif // DEBUG
   4718 
   4719   DEBUG(dbgs() << "\nLSR on loop ";
   4720         WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
   4721         dbgs() << ":\n");
   4722 
   4723   // First, perform some low-level loop optimizations.
   4724   OptimizeShadowIV();
   4725   OptimizeLoopTermCond();
   4726 
   4727   // If loop preparation eliminates all interesting IV users, bail.
   4728   if (IU.empty()) return;
   4729 
   4730   // Skip nested loops until we can model them better with formulae.
   4731   if (!L->empty()) {
   4732     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
   4733     return;
   4734   }
   4735 
   4736   // Start collecting data and preparing for the solver.
   4737   CollectChains();
   4738   CollectInterestingTypesAndFactors();
   4739   CollectFixupsAndInitialFormulae();
   4740   CollectLoopInvariantFixupsAndFormulae();
   4741 
   4742   assert(!Uses.empty() && "IVUsers reported at least one use");
   4743   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
   4744         print_uses(dbgs()));
   4745 
   4746   // Now use the reuse data to generate a bunch of interesting ways
   4747   // to formulate the values needed for the uses.
   4748   GenerateAllReuseFormulae();
   4749 
   4750   FilterOutUndesirableDedicatedRegisters();
   4751   NarrowSearchSpaceUsingHeuristics();
   4752 
   4753   SmallVector<const Formula *, 8> Solution;
   4754   Solve(Solution);
   4755 
   4756   // Release memory that is no longer needed.
   4757   Factors.clear();
   4758   Types.clear();
   4759   RegUses.clear();
   4760 
   4761   if (Solution.empty())
   4762     return;
   4763 
   4764 #ifndef NDEBUG
   4765   // Formulae should be legal.
   4766   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end();
   4767        I != E; ++I) {
   4768     const LSRUse &LU = *I;
   4769     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
   4770                                                   JE = LU.Formulae.end();
   4771          J != JE; ++J)
   4772       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   4773                         *J) && "Illegal formula generated!");
   4774   };
   4775 #endif
   4776 
   4777   // Now that we've decided what we want, make it so.
   4778   ImplementSolution(Solution, P);
   4779 }
   4780 
   4781 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
   4782   if (Factors.empty() && Types.empty()) return;
   4783 
   4784   OS << "LSR has identified the following interesting factors and types: ";
   4785   bool First = true;
   4786 
   4787   for (SmallSetVector<int64_t, 8>::const_iterator
   4788        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   4789     if (!First) OS << ", ";
   4790     First = false;
   4791     OS << '*' << *I;
   4792   }
   4793 
   4794   for (SmallSetVector<Type *, 4>::const_iterator
   4795        I = Types.begin(), E = Types.end(); I != E; ++I) {
   4796     if (!First) OS << ", ";
   4797     First = false;
   4798     OS << '(' << **I << ')';
   4799   }
   4800   OS << '\n';
   4801 }
   4802 
   4803 void LSRInstance::print_fixups(raw_ostream &OS) const {
   4804   OS << "LSR is examining the following fixup sites:\n";
   4805   for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
   4806        E = Fixups.end(); I != E; ++I) {
   4807     dbgs() << "  ";
   4808     I->print(OS);
   4809     OS << '\n';
   4810   }
   4811 }
   4812 
   4813 void LSRInstance::print_uses(raw_ostream &OS) const {
   4814   OS << "LSR is examining the following uses:\n";
   4815   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
   4816        E = Uses.end(); I != E; ++I) {
   4817     const LSRUse &LU = *I;
   4818     dbgs() << "  ";
   4819     LU.print(OS);
   4820     OS << '\n';
   4821     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
   4822          JE = LU.Formulae.end(); J != JE; ++J) {
   4823       OS << "    ";
   4824       J->print(OS);
   4825       OS << '\n';
   4826     }
   4827   }
   4828 }
   4829 
   4830 void LSRInstance::print(raw_ostream &OS) const {
   4831   print_factors_and_types(OS);
   4832   print_fixups(OS);
   4833   print_uses(OS);
   4834 }
   4835 
   4836 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   4837 void LSRInstance::dump() const {
   4838   print(errs()); errs() << '\n';
   4839 }
   4840 #endif
   4841 
   4842 namespace {
   4843 
   4844 class LoopStrengthReduce : public LoopPass {
   4845 public:
   4846   static char ID; // Pass ID, replacement for typeid
   4847   LoopStrengthReduce();
   4848 
   4849 private:
   4850   bool runOnLoop(Loop *L, LPPassManager &LPM);
   4851   void getAnalysisUsage(AnalysisUsage &AU) const;
   4852 };
   4853 
   4854 }
   4855 
   4856 char LoopStrengthReduce::ID = 0;
   4857 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
   4858                 "Loop Strength Reduction", false, false)
   4859 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
   4860 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
   4861 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
   4862 INITIALIZE_PASS_DEPENDENCY(IVUsers)
   4863 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
   4864 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
   4865 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
   4866                 "Loop Strength Reduction", false, false)
   4867 
   4868 
   4869 Pass *llvm::createLoopStrengthReducePass() {
   4870   return new LoopStrengthReduce();
   4871 }
   4872 
   4873 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
   4874   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
   4875 }
   4876 
   4877 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
   4878   // We split critical edges, so we change the CFG.  However, we do update
   4879   // many analyses if they are around.
   4880   AU.addPreservedID(LoopSimplifyID);
   4881 
   4882   AU.addRequired<LoopInfo>();
   4883   AU.addPreserved<LoopInfo>();
   4884   AU.addRequiredID(LoopSimplifyID);
   4885   AU.addRequired<DominatorTree>();
   4886   AU.addPreserved<DominatorTree>();
   4887   AU.addRequired<ScalarEvolution>();
   4888   AU.addPreserved<ScalarEvolution>();
   4889   // Requiring LoopSimplify a second time here prevents IVUsers from running
   4890   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
   4891   AU.addRequiredID(LoopSimplifyID);
   4892   AU.addRequired<IVUsers>();
   4893   AU.addPreserved<IVUsers>();
   4894   AU.addRequired<TargetTransformInfo>();
   4895 }
   4896 
   4897 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
   4898   bool Changed = false;
   4899 
   4900   // Run the main LSR transformation.
   4901   Changed |= LSRInstance(L, this).getChanged();
   4902 
   4903   // Remove any extra phis created by processing inner loops.
   4904   Changed |= DeleteDeadPHIs(L->getHeader());
   4905   if (EnablePhiElim && L->isLoopSimplifyForm()) {
   4906     SmallVector<WeakVH, 16> DeadInsts;
   4907     SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
   4908 #ifndef NDEBUG
   4909     Rewriter.setDebugType(DEBUG_TYPE);
   4910 #endif
   4911     unsigned numFolded =
   4912         Rewriter.replaceCongruentIVs(L, &getAnalysis<DominatorTree>(),
   4913                                      DeadInsts,
   4914                                      &getAnalysis<TargetTransformInfo>());
   4915     if (numFolded) {
   4916       Changed = true;
   4917       DeleteTriviallyDeadInstructions(DeadInsts);
   4918       DeleteDeadPHIs(L->getHeader());
   4919     }
   4920   }
   4921   return Changed;
   4922 }
   4923