Home | History | Annotate | Download | only in src
      1 // Copyright (c) 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 
     30 // ---
     31 // Author: Sanjay Ghemawat <opensource (at) google.com>
     32 //
     33 // A malloc that uses a per-thread cache to satisfy small malloc requests.
     34 // (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
     35 //
     36 // See doc/tcmalloc.html for a high-level
     37 // description of how this malloc works.
     38 //
     39 // SYNCHRONIZATION
     40 //  1. The thread-specific lists are accessed without acquiring any locks.
     41 //     This is safe because each such list is only accessed by one thread.
     42 //  2. We have a lock per central free-list, and hold it while manipulating
     43 //     the central free list for a particular size.
     44 //  3. The central page allocator is protected by "pageheap_lock".
     45 //  4. The pagemap (which maps from page-number to descriptor),
     46 //     can be read without holding any locks, and written while holding
     47 //     the "pageheap_lock".
     48 //  5. To improve performance, a subset of the information one can get
     49 //     from the pagemap is cached in a data structure, pagemap_cache_,
     50 //     that atomically reads and writes its entries.  This cache can be
     51 //     read and written without locking.
     52 //
     53 //     This multi-threaded access to the pagemap is safe for fairly
     54 //     subtle reasons.  We basically assume that when an object X is
     55 //     allocated by thread A and deallocated by thread B, there must
     56 //     have been appropriate synchronization in the handoff of object
     57 //     X from thread A to thread B.  The same logic applies to pagemap_cache_.
     58 //
     59 // THE PAGEID-TO-SIZECLASS CACHE
     60 // Hot PageID-to-sizeclass mappings are held by pagemap_cache_.  If this cache
     61 // returns 0 for a particular PageID then that means "no information," not that
     62 // the sizeclass is 0.  The cache may have stale information for pages that do
     63 // not hold the beginning of any free()'able object.  Staleness is eliminated
     64 // in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
     65 // do_memalign() for all other relevant pages.
     66 //
     67 // PAGEMAP
     68 // -------
     69 // Page map contains a mapping from page id to Span.
     70 //
     71 // If Span s occupies pages [p..q],
     72 //      pagemap[p] == s
     73 //      pagemap[q] == s
     74 //      pagemap[p+1..q-1] are undefined
     75 //      pagemap[p-1] and pagemap[q+1] are defined:
     76 //         NULL if the corresponding page is not yet in the address space.
     77 //         Otherwise it points to a Span.  This span may be free
     78 //         or allocated.  If free, it is in one of pageheap's freelist.
     79 //
     80 // TODO: Bias reclamation to larger addresses
     81 // TODO: implement mallinfo/mallopt
     82 // TODO: Better testing
     83 //
     84 // 9/28/2003 (new page-level allocator replaces ptmalloc2):
     85 // * malloc/free of small objects goes from ~300 ns to ~50 ns.
     86 // * allocation of a reasonably complicated struct
     87 //   goes from about 1100 ns to about 300 ns.
     88 
     89 #include "config.h"
     90 #include <gperftools/tcmalloc.h>
     91 
     92 #include <errno.h>                      // for ENOMEM, EINVAL, errno
     93 #ifdef HAVE_SYS_CDEFS_H
     94 #include <sys/cdefs.h>                  // for __THROW
     95 #endif
     96 #if defined HAVE_STDINT_H
     97 #include <stdint.h>
     98 #elif defined HAVE_INTTYPES_H
     99 #include <inttypes.h>
    100 #else
    101 #include <sys/types.h>
    102 #endif
    103 #include <stddef.h>                     // for size_t, NULL
    104 #include <stdlib.h>                     // for getenv
    105 #include <string.h>                     // for strcmp, memset, strlen, etc
    106 #ifdef HAVE_UNISTD_H
    107 #include <unistd.h>                     // for getpagesize, write, etc
    108 #endif
    109 #include <algorithm>                    // for max, min
    110 #include <limits>                       // for numeric_limits
    111 #include <new>                          // for nothrow_t (ptr only), etc
    112 #include <vector>                       // for vector
    113 
    114 #include <gperftools/malloc_extension.h>
    115 #include <gperftools/malloc_hook.h>         // for MallocHook
    116 #include "base/basictypes.h"            // for int64
    117 #include "base/commandlineflags.h"      // for RegisterFlagValidator, etc
    118 #include "base/dynamic_annotations.h"   // for RunningOnValgrind
    119 #include "base/spinlock.h"              // for SpinLockHolder
    120 #include "central_freelist.h"  // for CentralFreeListPadded
    121 #include "common.h"            // for StackTrace, kPageShift, etc
    122 #include "internal_logging.h"  // for ASSERT, TCMalloc_Printer, etc
    123 #include "linked_list.h"       // for SLL_SetNext
    124 #include "malloc_hook-inl.h"       // for MallocHook::InvokeNewHook, etc
    125 #include "page_heap.h"         // for PageHeap, PageHeap::Stats
    126 #include "page_heap_allocator.h"  // for PageHeapAllocator
    127 #include "span.h"              // for Span, DLL_Prepend, etc
    128 #include "stack_trace_table.h"  // for StackTraceTable
    129 #include "static_vars.h"       // for Static
    130 #include "system-alloc.h"      // for DumpSystemAllocatorStats, etc
    131 #include "tcmalloc_guard.h"    // for TCMallocGuard
    132 #include "thread_cache.h"      // for ThreadCache
    133 
    134 // We only need malloc.h for struct mallinfo.
    135 #ifdef HAVE_STRUCT_MALLINFO
    136 // Malloc can be in several places on older versions of OS X.
    137 # if defined(HAVE_MALLOC_H)
    138 # include <malloc.h>
    139 # elif defined(HAVE_SYS_MALLOC_H)
    140 # include <sys/malloc.h>
    141 # elif defined(HAVE_MALLOC_MALLOC_H)
    142 # include <malloc/malloc.h>
    143 # endif
    144 #endif
    145 
    146 #if (defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)) && !defined(WIN32_OVERRIDE_ALLOCATORS)
    147 # define WIN32_DO_PATCHING 1
    148 #endif
    149 
    150 // Some windows file somewhere (at least on cygwin) #define's small (!)
    151 #undef small
    152 
    153 using STL_NAMESPACE::max;
    154 using STL_NAMESPACE::numeric_limits;
    155 using STL_NAMESPACE::vector;
    156 
    157 #include "libc_override.h"
    158 
    159 // __THROW is defined in glibc (via <sys/cdefs.h>).  It means,
    160 // counter-intuitively, "This function will never throw an exception."
    161 // It's an optional optimization tool, but we may need to use it to
    162 // match glibc prototypes.
    163 #ifndef __THROW    // I guess we're not on a glibc system
    164 # define __THROW   // __THROW is just an optimization, so ok to make it ""
    165 #endif
    166 
    167 using tcmalloc::AlignmentForSize;
    168 using tcmalloc::kLog;
    169 using tcmalloc::kCrash;
    170 using tcmalloc::kCrashWithStats;
    171 using tcmalloc::Log;
    172 using tcmalloc::PageHeap;
    173 using tcmalloc::PageHeapAllocator;
    174 using tcmalloc::SizeMap;
    175 using tcmalloc::Span;
    176 using tcmalloc::StackTrace;
    177 using tcmalloc::Static;
    178 using tcmalloc::ThreadCache;
    179 
    180 DECLARE_int64(tcmalloc_sample_parameter);
    181 DECLARE_double(tcmalloc_release_rate);
    182 
    183 // For windows, the printf we use to report large allocs is
    184 // potentially dangerous: it could cause a malloc that would cause an
    185 // infinite loop.  So by default we set the threshold to a huge number
    186 // on windows, so this bad situation will never trigger.  You can
    187 // always set TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD manually if you
    188 // want this functionality.
    189 #ifdef _WIN32
    190 const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 62;
    191 #else
    192 const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 30;
    193 #endif
    194 DEFINE_int64(tcmalloc_large_alloc_report_threshold,
    195              EnvToInt64("TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD",
    196                         kDefaultLargeAllocReportThreshold),
    197              "Allocations larger than this value cause a stack "
    198              "trace to be dumped to stderr.  The threshold for "
    199              "dumping stack traces is increased by a factor of 1.125 "
    200              "every time we print a message so that the threshold "
    201              "automatically goes up by a factor of ~1000 every 60 "
    202              "messages.  This bounds the amount of extra logging "
    203              "generated by this flag.  Default value of this flag "
    204              "is very large and therefore you should see no extra "
    205              "logging unless the flag is overridden.  Set to 0 to "
    206              "disable reporting entirely.");
    207 
    208 
    209 // We already declared these functions in tcmalloc.h, but we have to
    210 // declare them again to give them an ATTRIBUTE_SECTION: we want to
    211 // put all callers of MallocHook::Invoke* in this module into
    212 // ATTRIBUTE_SECTION(google_malloc) section, so that
    213 // MallocHook::GetCallerStackTrace can function accurately.
    214 #ifndef _WIN32   // windows doesn't have attribute_section, so don't bother
    215 extern "C" {
    216   void* tc_malloc(size_t size) __THROW
    217       ATTRIBUTE_SECTION(google_malloc);
    218   void tc_free(void* ptr) __THROW
    219       ATTRIBUTE_SECTION(google_malloc);
    220   void* tc_realloc(void* ptr, size_t size) __THROW
    221       ATTRIBUTE_SECTION(google_malloc);
    222   void* tc_calloc(size_t nmemb, size_t size) __THROW
    223       ATTRIBUTE_SECTION(google_malloc);
    224   void tc_cfree(void* ptr) __THROW
    225       ATTRIBUTE_SECTION(google_malloc);
    226 
    227   void* tc_memalign(size_t __alignment, size_t __size) __THROW
    228       ATTRIBUTE_SECTION(google_malloc);
    229   int tc_posix_memalign(void** ptr, size_t align, size_t size) __THROW
    230       ATTRIBUTE_SECTION(google_malloc);
    231   void* tc_valloc(size_t __size) __THROW
    232       ATTRIBUTE_SECTION(google_malloc);
    233   void* tc_pvalloc(size_t __size) __THROW
    234       ATTRIBUTE_SECTION(google_malloc);
    235 
    236   void tc_malloc_stats(void) __THROW
    237       ATTRIBUTE_SECTION(google_malloc);
    238   int tc_mallopt(int cmd, int value) __THROW
    239       ATTRIBUTE_SECTION(google_malloc);
    240 #ifdef HAVE_STRUCT_MALLINFO
    241   struct mallinfo tc_mallinfo(void) __THROW
    242       ATTRIBUTE_SECTION(google_malloc);
    243 #endif
    244 
    245   void* tc_new(size_t size)
    246       ATTRIBUTE_SECTION(google_malloc);
    247   void tc_delete(void* p) __THROW
    248       ATTRIBUTE_SECTION(google_malloc);
    249   void* tc_newarray(size_t size)
    250       ATTRIBUTE_SECTION(google_malloc);
    251   void tc_deletearray(void* p) __THROW
    252       ATTRIBUTE_SECTION(google_malloc);
    253 
    254   // And the nothrow variants of these:
    255   void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW
    256       ATTRIBUTE_SECTION(google_malloc);
    257   void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) __THROW
    258       ATTRIBUTE_SECTION(google_malloc);
    259   // Surprisingly, standard C++ library implementations use a
    260   // nothrow-delete internally.  See, eg:
    261   // http://www.dinkumware.com/manuals/?manual=compleat&page=new.html
    262   void tc_delete_nothrow(void* ptr, const std::nothrow_t&) __THROW
    263       ATTRIBUTE_SECTION(google_malloc);
    264   void tc_deletearray_nothrow(void* ptr, const std::nothrow_t&) __THROW
    265       ATTRIBUTE_SECTION(google_malloc);
    266 
    267   // Some non-standard extensions that we support.
    268 
    269   // This is equivalent to
    270   //    OS X: malloc_size()
    271   //    glibc: malloc_usable_size()
    272   //    Windows: _msize()
    273   size_t tc_malloc_size(void* p) __THROW
    274       ATTRIBUTE_SECTION(google_malloc);
    275 }  // extern "C"
    276 #endif  // #ifndef _WIN32
    277 
    278 // ----------------------- IMPLEMENTATION -------------------------------
    279 
    280 static int tc_new_mode = 0;  // See tc_set_new_mode().
    281 
    282 // Routines such as free() and realloc() catch some erroneous pointers
    283 // passed to them, and invoke the below when they do.  (An erroneous pointer
    284 // won't be caught if it's within a valid span or a stale span for which
    285 // the pagemap cache has a non-zero sizeclass.) This is a cheap (source-editing
    286 // required) kind of exception handling for these routines.
    287 namespace {
    288 void InvalidFree(void* ptr) {
    289   Log(kCrash, __FILE__, __LINE__, "Attempt to free invalid pointer", ptr);
    290 }
    291 
    292 size_t InvalidGetSizeForRealloc(const void* old_ptr) {
    293   Log(kCrash, __FILE__, __LINE__,
    294       "Attempt to realloc invalid pointer", old_ptr);
    295   return 0;
    296 }
    297 
    298 size_t InvalidGetAllocatedSize(const void* ptr) {
    299   Log(kCrash, __FILE__, __LINE__,
    300       "Attempt to get the size of an invalid pointer", ptr);
    301   return 0;
    302 }
    303 }  // unnamed namespace
    304 
    305 // Extract interesting stats
    306 struct TCMallocStats {
    307   uint64_t thread_bytes;      // Bytes in thread caches
    308   uint64_t central_bytes;     // Bytes in central cache
    309   uint64_t transfer_bytes;    // Bytes in central transfer cache
    310   uint64_t metadata_bytes;    // Bytes alloced for metadata
    311   PageHeap::Stats pageheap;   // Stats from page heap
    312 };
    313 
    314 // Get stats into "r".  Also get per-size-class counts if class_count != NULL
    315 static void ExtractStats(TCMallocStats* r, uint64_t* class_count,
    316                          PageHeap::SmallSpanStats* small_spans,
    317                          PageHeap::LargeSpanStats* large_spans) {
    318   r->central_bytes = 0;
    319   r->transfer_bytes = 0;
    320   for (int cl = 0; cl < kNumClasses; ++cl) {
    321     const int length = Static::central_cache()[cl].length();
    322     const int tc_length = Static::central_cache()[cl].tc_length();
    323     const size_t cache_overhead = Static::central_cache()[cl].OverheadBytes();
    324     const size_t size = static_cast<uint64_t>(
    325         Static::sizemap()->ByteSizeForClass(cl));
    326     r->central_bytes += (size * length) + cache_overhead;
    327     r->transfer_bytes += (size * tc_length);
    328     if (class_count) class_count[cl] = length + tc_length;
    329   }
    330 
    331   // Add stats from per-thread heaps
    332   r->thread_bytes = 0;
    333   { // scope
    334     SpinLockHolder h(Static::pageheap_lock());
    335     ThreadCache::GetThreadStats(&r->thread_bytes, class_count);
    336     r->metadata_bytes = tcmalloc::metadata_system_bytes();
    337     r->pageheap = Static::pageheap()->stats();
    338     if (small_spans != NULL) {
    339       Static::pageheap()->GetSmallSpanStats(small_spans);
    340     }
    341     if (large_spans != NULL) {
    342       Static::pageheap()->GetLargeSpanStats(large_spans);
    343     }
    344   }
    345 }
    346 
    347 static double PagesToMiB(uint64_t pages) {
    348   return (pages << kPageShift) / 1048576.0;
    349 }
    350 
    351 // WRITE stats to "out"
    352 static void DumpStats(TCMalloc_Printer* out, int level) {
    353   TCMallocStats stats;
    354   uint64_t class_count[kNumClasses];
    355   PageHeap::SmallSpanStats small;
    356   PageHeap::LargeSpanStats large;
    357   if (level >= 2) {
    358     ExtractStats(&stats, class_count, &small, &large);
    359   } else {
    360     ExtractStats(&stats, NULL, NULL, NULL);
    361   }
    362 
    363   static const double MiB = 1048576.0;
    364 
    365   const uint64_t virtual_memory_used = (stats.pageheap.system_bytes
    366                                         + stats.metadata_bytes);
    367   const uint64_t physical_memory_used = (virtual_memory_used
    368                                          - stats.pageheap.unmapped_bytes);
    369   const uint64_t bytes_in_use_by_app = (physical_memory_used
    370                                         - stats.metadata_bytes
    371                                         - stats.pageheap.free_bytes
    372                                         - stats.central_bytes
    373                                         - stats.transfer_bytes
    374                                         - stats.thread_bytes);
    375 
    376 #ifdef TCMALLOC_SMALL_BUT_SLOW
    377   out->printf(
    378       "NOTE:  SMALL MEMORY MODEL IS IN USE, PERFORMANCE MAY SUFFER.\n");
    379 #endif
    380   out->printf(
    381       "------------------------------------------------\n"
    382       "MALLOC:   %12" PRIu64 " (%7.1f MiB) Bytes in use by application\n"
    383       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in page heap freelist\n"
    384       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in central cache freelist\n"
    385       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in transfer cache freelist\n"
    386       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in thread cache freelists\n"
    387       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in malloc metadata\n"
    388       "MALLOC:   ------------\n"
    389       "MALLOC: = %12" PRIu64 " (%7.1f MiB) Actual memory used (physical + swap)\n"
    390       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes released to OS (aka unmapped)\n"
    391       "MALLOC:   ------------\n"
    392       "MALLOC: = %12" PRIu64 " (%7.1f MiB) Virtual address space used\n"
    393       "MALLOC:\n"
    394       "MALLOC:   %12" PRIu64 "              Spans in use\n"
    395       "MALLOC:   %12" PRIu64 "              Thread heaps in use\n"
    396       "MALLOC:   %12" PRIu64 "              Tcmalloc page size\n"
    397       "------------------------------------------------\n"
    398       "Call ReleaseFreeMemory() to release freelist memory to the OS"
    399       " (via madvise()).\n"
    400       "Bytes released to the OS take up virtual address space"
    401       " but no physical memory.\n",
    402       bytes_in_use_by_app, bytes_in_use_by_app / MiB,
    403       stats.pageheap.free_bytes, stats.pageheap.free_bytes / MiB,
    404       stats.central_bytes, stats.central_bytes / MiB,
    405       stats.transfer_bytes, stats.transfer_bytes / MiB,
    406       stats.thread_bytes, stats.thread_bytes / MiB,
    407       stats.metadata_bytes, stats.metadata_bytes / MiB,
    408       physical_memory_used, physical_memory_used / MiB,
    409       stats.pageheap.unmapped_bytes, stats.pageheap.unmapped_bytes / MiB,
    410       virtual_memory_used, virtual_memory_used / MiB,
    411       uint64_t(Static::span_allocator()->inuse()),
    412       uint64_t(ThreadCache::HeapsInUse()),
    413       uint64_t(kPageSize));
    414 
    415   if (level >= 2) {
    416     out->printf("------------------------------------------------\n");
    417     out->printf("Size class breakdown\n");
    418     out->printf("------------------------------------------------\n");
    419     uint64_t cumulative = 0;
    420     for (int cl = 0; cl < kNumClasses; ++cl) {
    421       if (class_count[cl] > 0) {
    422         uint64_t class_bytes =
    423             class_count[cl] * Static::sizemap()->ByteSizeForClass(cl);
    424         cumulative += class_bytes;
    425         out->printf("class %3d [ %8" PRIuS " bytes ] : "
    426                 "%8" PRIu64 " objs; %5.1f MiB; %5.1f cum MiB\n",
    427                 cl, Static::sizemap()->ByteSizeForClass(cl),
    428                 class_count[cl],
    429                 class_bytes / MiB,
    430                 cumulative / MiB);
    431       }
    432     }
    433 
    434     // append page heap info
    435     int nonempty_sizes = 0;
    436     for (int s = 0; s < kMaxPages; s++) {
    437       if (small.normal_length[s] + small.returned_length[s] > 0) {
    438         nonempty_sizes++;
    439       }
    440     }
    441     out->printf("------------------------------------------------\n");
    442     out->printf("PageHeap: %d sizes; %6.1f MiB free; %6.1f MiB unmapped\n",
    443                 nonempty_sizes, stats.pageheap.free_bytes / MiB,
    444                 stats.pageheap.unmapped_bytes / MiB);
    445     out->printf("------------------------------------------------\n");
    446     uint64_t total_normal = 0;
    447     uint64_t total_returned = 0;
    448     for (int s = 0; s < kMaxPages; s++) {
    449       const int n_length = small.normal_length[s];
    450       const int r_length = small.returned_length[s];
    451       if (n_length + r_length > 0) {
    452         uint64_t n_pages = s * n_length;
    453         uint64_t r_pages = s * r_length;
    454         total_normal += n_pages;
    455         total_returned += r_pages;
    456         out->printf("%6u pages * %6u spans ~ %6.1f MiB; %6.1f MiB cum"
    457                     "; unmapped: %6.1f MiB; %6.1f MiB cum\n",
    458                     s,
    459                     (n_length + r_length),
    460                     PagesToMiB(n_pages + r_pages),
    461                     PagesToMiB(total_normal + total_returned),
    462                     PagesToMiB(r_pages),
    463                     PagesToMiB(total_returned));
    464       }
    465     }
    466 
    467     total_normal += large.normal_pages;
    468     total_returned += large.returned_pages;
    469     out->printf(">255   large * %6u spans ~ %6.1f MiB; %6.1f MiB cum"
    470                 "; unmapped: %6.1f MiB; %6.1f MiB cum\n",
    471                 static_cast<unsigned int>(large.spans),
    472                 PagesToMiB(large.normal_pages + large.returned_pages),
    473                 PagesToMiB(total_normal + total_returned),
    474                 PagesToMiB(large.returned_pages),
    475                 PagesToMiB(total_returned));
    476   }
    477 }
    478 
    479 static void PrintStats(int level) {
    480   const int kBufferSize = 16 << 10;
    481   char* buffer = new char[kBufferSize];
    482   TCMalloc_Printer printer(buffer, kBufferSize);
    483   DumpStats(&printer, level);
    484   write(STDERR_FILENO, buffer, strlen(buffer));
    485   delete[] buffer;
    486 }
    487 
    488 static void** DumpHeapGrowthStackTraces() {
    489   // Count how much space we need
    490   int needed_slots = 0;
    491   {
    492     SpinLockHolder h(Static::pageheap_lock());
    493     for (StackTrace* t = Static::growth_stacks();
    494          t != NULL;
    495          t = reinterpret_cast<StackTrace*>(
    496              t->stack[tcmalloc::kMaxStackDepth-1])) {
    497       needed_slots += 3 + t->depth;
    498     }
    499     needed_slots += 100;            // Slop in case list grows
    500     needed_slots += needed_slots/8; // An extra 12.5% slop
    501   }
    502 
    503   void** result = new void*[needed_slots];
    504   if (result == NULL) {
    505     Log(kLog, __FILE__, __LINE__,
    506         "tcmalloc: allocation failed for stack trace slots",
    507         needed_slots * sizeof(*result));
    508     return NULL;
    509   }
    510 
    511   SpinLockHolder h(Static::pageheap_lock());
    512   int used_slots = 0;
    513   for (StackTrace* t = Static::growth_stacks();
    514        t != NULL;
    515        t = reinterpret_cast<StackTrace*>(
    516            t->stack[tcmalloc::kMaxStackDepth-1])) {
    517     ASSERT(used_slots < needed_slots);  // Need to leave room for terminator
    518     if (used_slots + 3 + t->depth >= needed_slots) {
    519       // No more room
    520       break;
    521     }
    522 
    523     result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
    524     result[used_slots+1] = reinterpret_cast<void*>(t->size);
    525     result[used_slots+2] = reinterpret_cast<void*>(t->depth);
    526     for (int d = 0; d < t->depth; d++) {
    527       result[used_slots+3+d] = t->stack[d];
    528     }
    529     used_slots += 3 + t->depth;
    530   }
    531   result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
    532   return result;
    533 }
    534 
    535 static void IterateOverRanges(void* arg, MallocExtension::RangeFunction func) {
    536   PageID page = 1;  // Some code may assume that page==0 is never used
    537   bool done = false;
    538   while (!done) {
    539     // Accumulate a small number of ranges in a local buffer
    540     static const int kNumRanges = 16;
    541     static base::MallocRange ranges[kNumRanges];
    542     int n = 0;
    543     {
    544       SpinLockHolder h(Static::pageheap_lock());
    545       while (n < kNumRanges) {
    546         if (!Static::pageheap()->GetNextRange(page, &ranges[n])) {
    547           done = true;
    548           break;
    549         } else {
    550           uintptr_t limit = ranges[n].address + ranges[n].length;
    551           page = (limit + kPageSize - 1) >> kPageShift;
    552           n++;
    553         }
    554       }
    555     }
    556 
    557     for (int i = 0; i < n; i++) {
    558       (*func)(arg, &ranges[i]);
    559     }
    560   }
    561 }
    562 
    563 // TCMalloc's support for extra malloc interfaces
    564 class TCMallocImplementation : public MallocExtension {
    565  private:
    566   // ReleaseToSystem() might release more than the requested bytes because
    567   // the page heap releases at the span granularity, and spans are of wildly
    568   // different sizes.  This member keeps track of the extra bytes bytes
    569   // released so that the app can periodically call ReleaseToSystem() to
    570   // release memory at a constant rate.
    571   // NOTE: Protected by Static::pageheap_lock().
    572   size_t extra_bytes_released_;
    573 
    574  public:
    575   TCMallocImplementation()
    576       : extra_bytes_released_(0) {
    577   }
    578 
    579   virtual void GetStats(char* buffer, int buffer_length) {
    580     ASSERT(buffer_length > 0);
    581     TCMalloc_Printer printer(buffer, buffer_length);
    582 
    583     // Print level one stats unless lots of space is available
    584     if (buffer_length < 10000) {
    585       DumpStats(&printer, 1);
    586     } else {
    587       DumpStats(&printer, 2);
    588     }
    589   }
    590 
    591   // We may print an extra, tcmalloc-specific warning message here.
    592   virtual void GetHeapSample(MallocExtensionWriter* writer) {
    593     if (FLAGS_tcmalloc_sample_parameter == 0) {
    594       const char* const kWarningMsg =
    595           "%warn\n"
    596           "%warn This heap profile does not have any data in it, because\n"
    597           "%warn the application was run with heap sampling turned off.\n"
    598           "%warn To get useful data from GetHeapSample(), you must\n"
    599           "%warn set the environment variable TCMALLOC_SAMPLE_PARAMETER to\n"
    600           "%warn a positive sampling period, such as 524288.\n"
    601           "%warn\n";
    602       writer->append(kWarningMsg, strlen(kWarningMsg));
    603     }
    604     MallocExtension::GetHeapSample(writer);
    605   }
    606 
    607   virtual void** ReadStackTraces(int* sample_period) {
    608     tcmalloc::StackTraceTable table;
    609     {
    610       SpinLockHolder h(Static::pageheap_lock());
    611       Span* sampled = Static::sampled_objects();
    612       for (Span* s = sampled->next; s != sampled; s = s->next) {
    613         table.AddTrace(*reinterpret_cast<StackTrace*>(s->objects));
    614       }
    615     }
    616     *sample_period = ThreadCache::GetCache()->GetSamplePeriod();
    617     return table.ReadStackTracesAndClear(); // grabs and releases pageheap_lock
    618   }
    619 
    620   virtual void** ReadHeapGrowthStackTraces() {
    621     return DumpHeapGrowthStackTraces();
    622   }
    623 
    624   virtual void Ranges(void* arg, RangeFunction func) {
    625     IterateOverRanges(arg, func);
    626   }
    627 
    628   virtual bool GetNumericProperty(const char* name, size_t* value) {
    629     ASSERT(name != NULL);
    630 
    631     if (strcmp(name, "generic.current_allocated_bytes") == 0) {
    632       TCMallocStats stats;
    633       ExtractStats(&stats, NULL, NULL, NULL);
    634       *value = stats.pageheap.system_bytes
    635                - stats.thread_bytes
    636                - stats.central_bytes
    637                - stats.transfer_bytes
    638                - stats.pageheap.free_bytes
    639                - stats.pageheap.unmapped_bytes;
    640       return true;
    641     }
    642 
    643     if (strcmp(name, "generic.heap_size") == 0) {
    644       TCMallocStats stats;
    645       ExtractStats(&stats, NULL, NULL, NULL);
    646       *value = stats.pageheap.system_bytes;
    647       return true;
    648     }
    649 
    650     if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
    651       // Kept for backwards compatibility.  Now defined externally as:
    652       //    pageheap_free_bytes + pageheap_unmapped_bytes.
    653       SpinLockHolder l(Static::pageheap_lock());
    654       PageHeap::Stats stats = Static::pageheap()->stats();
    655       *value = stats.free_bytes + stats.unmapped_bytes;
    656       return true;
    657     }
    658 
    659     if (strcmp(name, "tcmalloc.central_cache_free_bytes") == 0) {
    660       TCMallocStats stats;
    661       ExtractStats(&stats, NULL, NULL, NULL);
    662       *value = stats.central_bytes;
    663       return true;
    664     }
    665 
    666     if (strcmp(name, "tcmalloc.transfer_cache_free_bytes") == 0) {
    667       TCMallocStats stats;
    668       ExtractStats(&stats, NULL, NULL, NULL);
    669       *value = stats.transfer_bytes;
    670       return true;
    671     }
    672 
    673     if (strcmp(name, "tcmalloc.thread_cache_free_bytes") == 0) {
    674       TCMallocStats stats;
    675       ExtractStats(&stats, NULL, NULL, NULL);
    676       *value = stats.thread_bytes;
    677       return true;
    678     }
    679 
    680     if (strcmp(name, "tcmalloc.pageheap_free_bytes") == 0) {
    681       SpinLockHolder l(Static::pageheap_lock());
    682       *value = Static::pageheap()->stats().free_bytes;
    683       return true;
    684     }
    685 
    686     if (strcmp(name, "tcmalloc.pageheap_unmapped_bytes") == 0) {
    687       SpinLockHolder l(Static::pageheap_lock());
    688       *value = Static::pageheap()->stats().unmapped_bytes;
    689       return true;
    690     }
    691 
    692     if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
    693       SpinLockHolder l(Static::pageheap_lock());
    694       *value = ThreadCache::overall_thread_cache_size();
    695       return true;
    696     }
    697 
    698     if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
    699       TCMallocStats stats;
    700       ExtractStats(&stats, NULL, NULL, NULL);
    701       *value = stats.thread_bytes;
    702       return true;
    703     }
    704 
    705     return false;
    706   }
    707 
    708   virtual bool SetNumericProperty(const char* name, size_t value) {
    709     ASSERT(name != NULL);
    710 
    711     if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
    712       SpinLockHolder l(Static::pageheap_lock());
    713       ThreadCache::set_overall_thread_cache_size(value);
    714       return true;
    715     }
    716 
    717     return false;
    718   }
    719 
    720   virtual void MarkThreadIdle() {
    721     ThreadCache::BecomeIdle();
    722   }
    723 
    724   virtual void MarkThreadBusy();  // Implemented below
    725 
    726   virtual SysAllocator* GetSystemAllocator() {
    727     SpinLockHolder h(Static::pageheap_lock());
    728     return sys_alloc;
    729   }
    730 
    731   virtual void SetSystemAllocator(SysAllocator* alloc) {
    732     SpinLockHolder h(Static::pageheap_lock());
    733     sys_alloc = alloc;
    734   }
    735 
    736   virtual void ReleaseToSystem(size_t num_bytes) {
    737     SpinLockHolder h(Static::pageheap_lock());
    738     if (num_bytes <= extra_bytes_released_) {
    739       // We released too much on a prior call, so don't release any
    740       // more this time.
    741       extra_bytes_released_ = extra_bytes_released_ - num_bytes;
    742       return;
    743     }
    744     num_bytes = num_bytes - extra_bytes_released_;
    745     // num_bytes might be less than one page.  If we pass zero to
    746     // ReleaseAtLeastNPages, it won't do anything, so we release a whole
    747     // page now and let extra_bytes_released_ smooth it out over time.
    748     Length num_pages = max<Length>(num_bytes >> kPageShift, 1);
    749     size_t bytes_released = Static::pageheap()->ReleaseAtLeastNPages(
    750         num_pages) << kPageShift;
    751     if (bytes_released > num_bytes) {
    752       extra_bytes_released_ = bytes_released - num_bytes;
    753     } else {
    754       // The PageHeap wasn't able to release num_bytes.  Don't try to
    755       // compensate with a big release next time.  Specifically,
    756       // ReleaseFreeMemory() calls ReleaseToSystem(LONG_MAX).
    757       extra_bytes_released_ = 0;
    758     }
    759   }
    760 
    761   virtual void SetMemoryReleaseRate(double rate) {
    762     FLAGS_tcmalloc_release_rate = rate;
    763   }
    764 
    765   virtual double GetMemoryReleaseRate() {
    766     return FLAGS_tcmalloc_release_rate;
    767   }
    768   virtual size_t GetEstimatedAllocatedSize(size_t size) {
    769     if (size <= kMaxSize) {
    770       const size_t cl = Static::sizemap()->SizeClass(size);
    771       const size_t alloc_size = Static::sizemap()->ByteSizeForClass(cl);
    772       return alloc_size;
    773     } else {
    774       return tcmalloc::pages(size) << kPageShift;
    775     }
    776   }
    777 
    778   // This just calls GetSizeWithCallback, but because that's in an
    779   // unnamed namespace, we need to move the definition below it in the
    780   // file.
    781   virtual size_t GetAllocatedSize(const void* ptr);
    782 
    783   // This duplicates some of the logic in GetSizeWithCallback, but is
    784   // faster.  This is important on OS X, where this function is called
    785   // on every allocation operation.
    786   virtual Ownership GetOwnership(const void* ptr) {
    787     const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
    788     // The rest of tcmalloc assumes that all allocated pointers use at
    789     // most kAddressBits bits.  If ptr doesn't, then it definitely
    790     // wasn't alloacted by tcmalloc.
    791     if ((p >> (kAddressBits - kPageShift)) > 0) {
    792       return kNotOwned;
    793     }
    794     size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
    795     if (cl != 0) {
    796       return kOwned;
    797     }
    798     const Span *span = Static::pageheap()->GetDescriptor(p);
    799     return span ? kOwned : kNotOwned;
    800   }
    801 
    802   virtual void GetFreeListSizes(vector<MallocExtension::FreeListInfo>* v) {
    803     static const char* kCentralCacheType = "tcmalloc.central";
    804     static const char* kTransferCacheType = "tcmalloc.transfer";
    805     static const char* kThreadCacheType = "tcmalloc.thread";
    806     static const char* kPageHeapType = "tcmalloc.page";
    807     static const char* kPageHeapUnmappedType = "tcmalloc.page_unmapped";
    808     static const char* kLargeSpanType = "tcmalloc.large";
    809     static const char* kLargeUnmappedSpanType = "tcmalloc.large_unmapped";
    810 
    811     v->clear();
    812 
    813     // central class information
    814     int64 prev_class_size = 0;
    815     for (int cl = 1; cl < kNumClasses; ++cl) {
    816       size_t class_size = Static::sizemap()->ByteSizeForClass(cl);
    817       MallocExtension::FreeListInfo i;
    818       i.min_object_size = prev_class_size + 1;
    819       i.max_object_size = class_size;
    820       i.total_bytes_free =
    821           Static::central_cache()[cl].length() * class_size;
    822       i.type = kCentralCacheType;
    823       v->push_back(i);
    824 
    825       // transfer cache
    826       i.total_bytes_free =
    827           Static::central_cache()[cl].tc_length() * class_size;
    828       i.type = kTransferCacheType;
    829       v->push_back(i);
    830 
    831       prev_class_size = Static::sizemap()->ByteSizeForClass(cl);
    832     }
    833 
    834     // Add stats from per-thread heaps
    835     uint64_t class_count[kNumClasses];
    836     memset(class_count, 0, sizeof(class_count));
    837     {
    838       SpinLockHolder h(Static::pageheap_lock());
    839       uint64_t thread_bytes = 0;
    840       ThreadCache::GetThreadStats(&thread_bytes, class_count);
    841     }
    842 
    843     prev_class_size = 0;
    844     for (int cl = 1; cl < kNumClasses; ++cl) {
    845       MallocExtension::FreeListInfo i;
    846       i.min_object_size = prev_class_size + 1;
    847       i.max_object_size = Static::sizemap()->ByteSizeForClass(cl);
    848       i.total_bytes_free =
    849           class_count[cl] * Static::sizemap()->ByteSizeForClass(cl);
    850       i.type = kThreadCacheType;
    851       v->push_back(i);
    852     }
    853 
    854     // append page heap info
    855     PageHeap::SmallSpanStats small;
    856     PageHeap::LargeSpanStats large;
    857     {
    858       SpinLockHolder h(Static::pageheap_lock());
    859       Static::pageheap()->GetSmallSpanStats(&small);
    860       Static::pageheap()->GetLargeSpanStats(&large);
    861     }
    862 
    863     // large spans: mapped
    864     MallocExtension::FreeListInfo span_info;
    865     span_info.type = kLargeSpanType;
    866     span_info.max_object_size = (numeric_limits<size_t>::max)();
    867     span_info.min_object_size = kMaxPages << kPageShift;
    868     span_info.total_bytes_free = large.normal_pages << kPageShift;
    869     v->push_back(span_info);
    870 
    871     // large spans: unmapped
    872     span_info.type = kLargeUnmappedSpanType;
    873     span_info.total_bytes_free = large.returned_pages << kPageShift;
    874     v->push_back(span_info);
    875 
    876     // small spans
    877     for (int s = 1; s < kMaxPages; s++) {
    878       MallocExtension::FreeListInfo i;
    879       i.max_object_size = (s << kPageShift);
    880       i.min_object_size = ((s - 1) << kPageShift);
    881 
    882       i.type = kPageHeapType;
    883       i.total_bytes_free = (s << kPageShift) * small.normal_length[s];
    884       v->push_back(i);
    885 
    886       i.type = kPageHeapUnmappedType;
    887       i.total_bytes_free = (s << kPageShift) * small.returned_length[s];
    888       v->push_back(i);
    889     }
    890   }
    891 };
    892 
    893 // The constructor allocates an object to ensure that initialization
    894 // runs before main(), and therefore we do not have a chance to become
    895 // multi-threaded before initialization.  We also create the TSD key
    896 // here.  Presumably by the time this constructor runs, glibc is in
    897 // good enough shape to handle pthread_key_create().
    898 //
    899 // The constructor also takes the opportunity to tell STL to use
    900 // tcmalloc.  We want to do this early, before construct time, so
    901 // all user STL allocations go through tcmalloc (which works really
    902 // well for STL).
    903 //
    904 // The destructor prints stats when the program exits.
    905 static int tcmallocguard_refcount = 0;  // no lock needed: runs before main()
    906 TCMallocGuard::TCMallocGuard() {
    907   if (tcmallocguard_refcount++ == 0) {
    908 #ifdef HAVE_TLS    // this is true if the cc/ld/libc combo support TLS
    909     // Check whether the kernel also supports TLS (needs to happen at runtime)
    910     tcmalloc::CheckIfKernelSupportsTLS();
    911 #endif
    912     ReplaceSystemAlloc();    // defined in libc_override_*.h
    913     tc_free(tc_malloc(1));
    914     ThreadCache::InitTSD();
    915     tc_free(tc_malloc(1));
    916     // Either we, or debugallocation.cc, or valgrind will control memory
    917     // management.  We register our extension if we're the winner.
    918 #ifdef TCMALLOC_USING_DEBUGALLOCATION
    919     // Let debugallocation register its extension.
    920 #else
    921     if (RunningOnValgrind()) {
    922       // Let Valgrind uses its own malloc (so don't register our extension).
    923     } else {
    924       MallocExtension::Register(new TCMallocImplementation);
    925     }
    926 #endif
    927   }
    928 }
    929 
    930 TCMallocGuard::~TCMallocGuard() {
    931   if (--tcmallocguard_refcount == 0) {
    932     const char* env = getenv("MALLOCSTATS");
    933     if (env != NULL) {
    934       int level = atoi(env);
    935       if (level < 1) level = 1;
    936       PrintStats(level);
    937     }
    938   }
    939 }
    940 #ifndef WIN32_OVERRIDE_ALLOCATORS
    941 static TCMallocGuard module_enter_exit_hook;
    942 #endif
    943 
    944 //-------------------------------------------------------------------
    945 // Helpers for the exported routines below
    946 //-------------------------------------------------------------------
    947 
    948 static inline bool CheckCachedSizeClass(void *ptr) {
    949   PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
    950   size_t cached_value = Static::pageheap()->GetSizeClassIfCached(p);
    951   return cached_value == 0 ||
    952       cached_value == Static::pageheap()->GetDescriptor(p)->sizeclass;
    953 }
    954 
    955 static inline void* CheckedMallocResult(void *result) {
    956   ASSERT(result == NULL || CheckCachedSizeClass(result));
    957   return result;
    958 }
    959 
    960 static inline void* SpanToMallocResult(Span *span) {
    961   Static::pageheap()->CacheSizeClass(span->start, 0);
    962   return
    963       CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift));
    964 }
    965 
    966 static void* DoSampledAllocation(size_t size) {
    967   // Grab the stack trace outside the heap lock
    968   StackTrace tmp;
    969   tmp.depth = GetStackTrace(tmp.stack, tcmalloc::kMaxStackDepth, 1);
    970   tmp.size = size;
    971 
    972   SpinLockHolder h(Static::pageheap_lock());
    973   // Allocate span
    974   Span *span = Static::pageheap()->New(tcmalloc::pages(size == 0 ? 1 : size));
    975   if (span == NULL) {
    976     return NULL;
    977   }
    978 
    979   // Allocate stack trace
    980   StackTrace *stack = Static::stacktrace_allocator()->New();
    981   if (stack == NULL) {
    982     // Sampling failed because of lack of memory
    983     return span;
    984   }
    985   *stack = tmp;
    986   span->sample = 1;
    987   span->objects = stack;
    988   tcmalloc::DLL_Prepend(Static::sampled_objects(), span);
    989 
    990   return SpanToMallocResult(span);
    991 }
    992 
    993 namespace {
    994 
    995 // Copy of FLAGS_tcmalloc_large_alloc_report_threshold with
    996 // automatic increases factored in.
    997 static int64_t large_alloc_threshold =
    998   (kPageSize > FLAGS_tcmalloc_large_alloc_report_threshold
    999    ? kPageSize : FLAGS_tcmalloc_large_alloc_report_threshold);
   1000 
   1001 static void ReportLargeAlloc(Length num_pages, void* result) {
   1002   StackTrace stack;
   1003   stack.depth = GetStackTrace(stack.stack, tcmalloc::kMaxStackDepth, 1);
   1004 
   1005   static const int N = 1000;
   1006   char buffer[N];
   1007   TCMalloc_Printer printer(buffer, N);
   1008   printer.printf("tcmalloc: large alloc %"PRIu64" bytes == %p @ ",
   1009                  static_cast<uint64>(num_pages) << kPageShift,
   1010                  result);
   1011   for (int i = 0; i < stack.depth; i++) {
   1012     printer.printf(" %p", stack.stack[i]);
   1013   }
   1014   printer.printf("\n");
   1015   write(STDERR_FILENO, buffer, strlen(buffer));
   1016 }
   1017 
   1018 inline void* cpp_alloc(size_t size, bool nothrow);
   1019 inline void* do_malloc(size_t size);
   1020 
   1021 // TODO(willchan): Investigate whether or not lining this much is harmful to
   1022 // performance.
   1023 // This is equivalent to do_malloc() except when tc_new_mode is set to true.
   1024 // Otherwise, it will run the std::new_handler if set.
   1025 inline void* do_malloc_or_cpp_alloc(size_t size) {
   1026   return tc_new_mode ? cpp_alloc(size, true) : do_malloc(size);
   1027 }
   1028 
   1029 void* cpp_memalign(size_t align, size_t size);
   1030 void* do_memalign(size_t align, size_t size);
   1031 
   1032 inline void* do_memalign_or_cpp_memalign(size_t align, size_t size) {
   1033   return tc_new_mode ? cpp_memalign(align, size) : do_memalign(align, size);
   1034 }
   1035 
   1036 // Must be called with the page lock held.
   1037 inline bool should_report_large(Length num_pages) {
   1038   const int64 threshold = large_alloc_threshold;
   1039   if (threshold > 0 && num_pages >= (threshold >> kPageShift)) {
   1040     // Increase the threshold by 1/8 every time we generate a report.
   1041     // We cap the threshold at 8GiB to avoid overflow problems.
   1042     large_alloc_threshold = (threshold + threshold/8 < 8ll<<30
   1043                              ? threshold + threshold/8 : 8ll<<30);
   1044     return true;
   1045   }
   1046   return false;
   1047 }
   1048 
   1049 // Helper for do_malloc().
   1050 inline void* do_malloc_pages(ThreadCache* heap, size_t size) {
   1051   void* result;
   1052   bool report_large;
   1053 
   1054   Length num_pages = tcmalloc::pages(size);
   1055   size = num_pages << kPageShift;
   1056 
   1057   if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
   1058     result = DoSampledAllocation(size);
   1059 
   1060     SpinLockHolder h(Static::pageheap_lock());
   1061     report_large = should_report_large(num_pages);
   1062   } else {
   1063     SpinLockHolder h(Static::pageheap_lock());
   1064     Span* span = Static::pageheap()->New(num_pages);
   1065     result = (span == NULL ? NULL : SpanToMallocResult(span));
   1066     report_large = should_report_large(num_pages);
   1067   }
   1068 
   1069   if (report_large) {
   1070     ReportLargeAlloc(num_pages, result);
   1071   }
   1072   return result;
   1073 }
   1074 
   1075 inline void* do_malloc(size_t size) {
   1076   void* ret = NULL;
   1077 
   1078   // The following call forces module initialization
   1079   ThreadCache* heap = ThreadCache::GetCache();
   1080   if (size <= kMaxSize) {
   1081     size_t cl = Static::sizemap()->SizeClass(size);
   1082     size = Static::sizemap()->class_to_size(cl);
   1083 
   1084     if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
   1085       ret = DoSampledAllocation(size);
   1086     } else {
   1087       // The common case, and also the simplest.  This just pops the
   1088       // size-appropriate freelist, after replenishing it if it's empty.
   1089       ret = CheckedMallocResult(heap->Allocate(size, cl));
   1090     }
   1091   } else {
   1092     ret = do_malloc_pages(heap, size);
   1093   }
   1094   if (ret == NULL) errno = ENOMEM;
   1095   return ret;
   1096 }
   1097 
   1098 inline void* do_calloc(size_t n, size_t elem_size) {
   1099   // Overflow check
   1100   const size_t size = n * elem_size;
   1101   if (elem_size != 0 && size / elem_size != n) return NULL;
   1102 
   1103   void* result = do_malloc_or_cpp_alloc(size);
   1104   if (result != NULL) {
   1105     memset(result, 0, size);
   1106   }
   1107   return result;
   1108 }
   1109 
   1110 static inline ThreadCache* GetCacheIfPresent() {
   1111   void* const p = ThreadCache::GetCacheIfPresent();
   1112   return reinterpret_cast<ThreadCache*>(p);
   1113 }
   1114 
   1115 // This lets you call back to a given function pointer if ptr is invalid.
   1116 // It is used primarily by windows code which wants a specialized callback.
   1117 inline void do_free_with_callback(void* ptr, void (*invalid_free_fn)(void*)) {
   1118   if (ptr == NULL) return;
   1119   if (Static::pageheap() == NULL) {
   1120     // We called free() before malloc().  This can occur if the
   1121     // (system) malloc() is called before tcmalloc is loaded, and then
   1122     // free() is called after tcmalloc is loaded (and tc_free has
   1123     // replaced free), but before the global constructor has run that
   1124     // sets up the tcmalloc data structures.
   1125     (*invalid_free_fn)(ptr);  // Decide how to handle the bad free request
   1126     return;
   1127   }
   1128   const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
   1129   Span* span = NULL;
   1130   size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
   1131 
   1132   if (cl == 0) {
   1133     span = Static::pageheap()->GetDescriptor(p);
   1134     if (!span) {
   1135       // span can be NULL because the pointer passed in is invalid
   1136       // (not something returned by malloc or friends), or because the
   1137       // pointer was allocated with some other allocator besides
   1138       // tcmalloc.  The latter can happen if tcmalloc is linked in via
   1139       // a dynamic library, but is not listed last on the link line.
   1140       // In that case, libraries after it on the link line will
   1141       // allocate with libc malloc, but free with tcmalloc's free.
   1142       (*invalid_free_fn)(ptr);  // Decide how to handle the bad free request
   1143       return;
   1144     }
   1145     cl = span->sizeclass;
   1146     Static::pageheap()->CacheSizeClass(p, cl);
   1147   }
   1148   if (cl != 0) {
   1149     ASSERT(!Static::pageheap()->GetDescriptor(p)->sample);
   1150     ThreadCache* heap = GetCacheIfPresent();
   1151     if (heap != NULL) {
   1152       heap->Deallocate(ptr, cl);
   1153     } else {
   1154       // Delete directly into central cache
   1155       tcmalloc::SLL_SetNext(ptr, NULL);
   1156       Static::central_cache()[cl].InsertRange(ptr, ptr, 1);
   1157     }
   1158   } else {
   1159     SpinLockHolder h(Static::pageheap_lock());
   1160     ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
   1161     ASSERT(span != NULL && span->start == p);
   1162     if (span->sample) {
   1163       StackTrace* st = reinterpret_cast<StackTrace*>(span->objects);
   1164       tcmalloc::DLL_Remove(span);
   1165       Static::stacktrace_allocator()->Delete(st);
   1166       span->objects = NULL;
   1167     }
   1168     Static::pageheap()->Delete(span);
   1169   }
   1170 }
   1171 
   1172 // The default "do_free" that uses the default callback.
   1173 inline void do_free(void* ptr) {
   1174   return do_free_with_callback(ptr, &InvalidFree);
   1175 }
   1176 
   1177 // NOTE: some logic here is duplicated in GetOwnership (above), for
   1178 // speed.  If you change this function, look at that one too.
   1179 inline size_t GetSizeWithCallback(const void* ptr,
   1180                                   size_t (*invalid_getsize_fn)(const void*)) {
   1181   if (ptr == NULL)
   1182     return 0;
   1183   const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
   1184   size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
   1185   if (cl != 0) {
   1186     return Static::sizemap()->ByteSizeForClass(cl);
   1187   } else {
   1188     const Span *span = Static::pageheap()->GetDescriptor(p);
   1189     if (span == NULL) {  // means we do not own this memory
   1190       return (*invalid_getsize_fn)(ptr);
   1191     } else if (span->sizeclass != 0) {
   1192       Static::pageheap()->CacheSizeClass(p, span->sizeclass);
   1193       return Static::sizemap()->ByteSizeForClass(span->sizeclass);
   1194     } else {
   1195       return span->length << kPageShift;
   1196     }
   1197   }
   1198 }
   1199 
   1200 // This lets you call back to a given function pointer if ptr is invalid.
   1201 // It is used primarily by windows code which wants a specialized callback.
   1202 inline void* do_realloc_with_callback(
   1203     void* old_ptr, size_t new_size,
   1204     void (*invalid_free_fn)(void*),
   1205     size_t (*invalid_get_size_fn)(const void*)) {
   1206   // Get the size of the old entry
   1207   const size_t old_size = GetSizeWithCallback(old_ptr, invalid_get_size_fn);
   1208 
   1209   // Reallocate if the new size is larger than the old size,
   1210   // or if the new size is significantly smaller than the old size.
   1211   // We do hysteresis to avoid resizing ping-pongs:
   1212   //    . If we need to grow, grow to max(new_size, old_size * 1.X)
   1213   //    . Don't shrink unless new_size < old_size * 0.Y
   1214   // X and Y trade-off time for wasted space.  For now we do 1.25 and 0.5.
   1215   const int lower_bound_to_grow = old_size + old_size / 4;
   1216   const int upper_bound_to_shrink = old_size / 2;
   1217   if ((new_size > old_size) || (new_size < upper_bound_to_shrink)) {
   1218     // Need to reallocate.
   1219     void* new_ptr = NULL;
   1220 
   1221     if (new_size > old_size && new_size < lower_bound_to_grow) {
   1222       new_ptr = do_malloc_or_cpp_alloc(lower_bound_to_grow);
   1223     }
   1224     if (new_ptr == NULL) {
   1225       // Either new_size is not a tiny increment, or last do_malloc failed.
   1226       new_ptr = do_malloc_or_cpp_alloc(new_size);
   1227     }
   1228     if (new_ptr == NULL) {
   1229       return NULL;
   1230     }
   1231     MallocHook::InvokeNewHook(new_ptr, new_size);
   1232     memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
   1233     MallocHook::InvokeDeleteHook(old_ptr);
   1234     // We could use a variant of do_free() that leverages the fact
   1235     // that we already know the sizeclass of old_ptr.  The benefit
   1236     // would be small, so don't bother.
   1237     do_free_with_callback(old_ptr, invalid_free_fn);
   1238     return new_ptr;
   1239   } else {
   1240     // We still need to call hooks to report the updated size:
   1241     MallocHook::InvokeDeleteHook(old_ptr);
   1242     MallocHook::InvokeNewHook(old_ptr, new_size);
   1243     return old_ptr;
   1244   }
   1245 }
   1246 
   1247 inline void* do_realloc(void* old_ptr, size_t new_size) {
   1248   return do_realloc_with_callback(old_ptr, new_size,
   1249                                   &InvalidFree, &InvalidGetSizeForRealloc);
   1250 }
   1251 
   1252 // For use by exported routines below that want specific alignments
   1253 //
   1254 // Note: this code can be slow for alignments > 16, and can
   1255 // significantly fragment memory.  The expectation is that
   1256 // memalign/posix_memalign/valloc/pvalloc will not be invoked very
   1257 // often.  This requirement simplifies our implementation and allows
   1258 // us to tune for expected allocation patterns.
   1259 void* do_memalign(size_t align, size_t size) {
   1260   ASSERT((align & (align - 1)) == 0);
   1261   ASSERT(align > 0);
   1262   if (size + align < size) return NULL;         // Overflow
   1263 
   1264   // Fall back to malloc if we would already align this memory access properly.
   1265   if (align <= AlignmentForSize(size)) {
   1266     void* p = do_malloc(size);
   1267     ASSERT((reinterpret_cast<uintptr_t>(p) % align) == 0);
   1268     return p;
   1269   }
   1270 
   1271   if (Static::pageheap() == NULL) ThreadCache::InitModule();
   1272 
   1273   // Allocate at least one byte to avoid boundary conditions below
   1274   if (size == 0) size = 1;
   1275 
   1276   if (size <= kMaxSize && align < kPageSize) {
   1277     // Search through acceptable size classes looking for one with
   1278     // enough alignment.  This depends on the fact that
   1279     // InitSizeClasses() currently produces several size classes that
   1280     // are aligned at powers of two.  We will waste time and space if
   1281     // we miss in the size class array, but that is deemed acceptable
   1282     // since memalign() should be used rarely.
   1283     int cl = Static::sizemap()->SizeClass(size);
   1284     while (cl < kNumClasses &&
   1285            ((Static::sizemap()->class_to_size(cl) & (align - 1)) != 0)) {
   1286       cl++;
   1287     }
   1288     if (cl < kNumClasses) {
   1289       ThreadCache* heap = ThreadCache::GetCache();
   1290       size = Static::sizemap()->class_to_size(cl);
   1291       return CheckedMallocResult(heap->Allocate(size, cl));
   1292     }
   1293   }
   1294 
   1295   // We will allocate directly from the page heap
   1296   SpinLockHolder h(Static::pageheap_lock());
   1297 
   1298   if (align <= kPageSize) {
   1299     // Any page-level allocation will be fine
   1300     // TODO: We could put the rest of this page in the appropriate
   1301     // TODO: cache but it does not seem worth it.
   1302     Span* span = Static::pageheap()->New(tcmalloc::pages(size));
   1303     return span == NULL ? NULL : SpanToMallocResult(span);
   1304   }
   1305 
   1306   // Allocate extra pages and carve off an aligned portion
   1307   const Length alloc = tcmalloc::pages(size + align);
   1308   Span* span = Static::pageheap()->New(alloc);
   1309   if (span == NULL) return NULL;
   1310 
   1311   // Skip starting portion so that we end up aligned
   1312   Length skip = 0;
   1313   while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
   1314     skip++;
   1315   }
   1316   ASSERT(skip < alloc);
   1317   if (skip > 0) {
   1318     Span* rest = Static::pageheap()->Split(span, skip);
   1319     Static::pageheap()->Delete(span);
   1320     span = rest;
   1321   }
   1322 
   1323   // Skip trailing portion that we do not need to return
   1324   const Length needed = tcmalloc::pages(size);
   1325   ASSERT(span->length >= needed);
   1326   if (span->length > needed) {
   1327     Span* trailer = Static::pageheap()->Split(span, needed);
   1328     Static::pageheap()->Delete(trailer);
   1329   }
   1330   return SpanToMallocResult(span);
   1331 }
   1332 
   1333 // Helpers for use by exported routines below:
   1334 
   1335 inline void do_malloc_stats() {
   1336   PrintStats(1);
   1337 }
   1338 
   1339 inline int do_mallopt(int cmd, int value) {
   1340   return 1;     // Indicates error
   1341 }
   1342 
   1343 #ifdef HAVE_STRUCT_MALLINFO
   1344 inline struct mallinfo do_mallinfo() {
   1345   TCMallocStats stats;
   1346   ExtractStats(&stats, NULL, NULL, NULL);
   1347 
   1348   // Just some of the fields are filled in.
   1349   struct mallinfo info;
   1350   memset(&info, 0, sizeof(info));
   1351 
   1352   // Unfortunately, the struct contains "int" field, so some of the
   1353   // size values will be truncated.
   1354   info.arena     = static_cast<int>(stats.pageheap.system_bytes);
   1355   info.fsmblks   = static_cast<int>(stats.thread_bytes
   1356                                     + stats.central_bytes
   1357                                     + stats.transfer_bytes);
   1358   info.fordblks  = static_cast<int>(stats.pageheap.free_bytes +
   1359                                     stats.pageheap.unmapped_bytes);
   1360   info.uordblks  = static_cast<int>(stats.pageheap.system_bytes
   1361                                     - stats.thread_bytes
   1362                                     - stats.central_bytes
   1363                                     - stats.transfer_bytes
   1364                                     - stats.pageheap.free_bytes
   1365                                     - stats.pageheap.unmapped_bytes);
   1366 
   1367   return info;
   1368 }
   1369 #endif  // HAVE_STRUCT_MALLINFO
   1370 
   1371 static SpinLock set_new_handler_lock(SpinLock::LINKER_INITIALIZED);
   1372 
   1373 inline void* cpp_alloc(size_t size, bool nothrow) {
   1374   for (;;) {
   1375     void* p = do_malloc(size);
   1376 #ifdef PREANSINEW
   1377     return p;
   1378 #else
   1379     if (p == NULL) {  // allocation failed
   1380       // Get the current new handler.  NB: this function is not
   1381       // thread-safe.  We make a feeble stab at making it so here, but
   1382       // this lock only protects against tcmalloc interfering with
   1383       // itself, not with other libraries calling set_new_handler.
   1384       std::new_handler nh;
   1385       {
   1386         SpinLockHolder h(&set_new_handler_lock);
   1387         nh = std::set_new_handler(0);
   1388         (void) std::set_new_handler(nh);
   1389       }
   1390 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
   1391       if (nh) {
   1392         // Since exceptions are disabled, we don't really know if new_handler
   1393         // failed.  Assume it will abort if it fails.
   1394         (*nh)();
   1395         continue;
   1396       }
   1397       return 0;
   1398 #else
   1399       // If no new_handler is established, the allocation failed.
   1400       if (!nh) {
   1401         if (nothrow) return 0;
   1402         throw std::bad_alloc();
   1403       }
   1404       // Otherwise, try the new_handler.  If it returns, retry the
   1405       // allocation.  If it throws std::bad_alloc, fail the allocation.
   1406       // if it throws something else, don't interfere.
   1407       try {
   1408         (*nh)();
   1409       } catch (const std::bad_alloc&) {
   1410         if (!nothrow) throw;
   1411         return p;
   1412       }
   1413 #endif  // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
   1414     } else {  // allocation success
   1415       return p;
   1416     }
   1417 #endif  // PREANSINEW
   1418   }
   1419 }
   1420 
   1421 void* cpp_memalign(size_t align, size_t size) {
   1422   for (;;) {
   1423     void* p = do_memalign(align, size);
   1424 #ifdef PREANSINEW
   1425     return p;
   1426 #else
   1427     if (p == NULL) {  // allocation failed
   1428       // Get the current new handler.  NB: this function is not
   1429       // thread-safe.  We make a feeble stab at making it so here, but
   1430       // this lock only protects against tcmalloc interfering with
   1431       // itself, not with other libraries calling set_new_handler.
   1432       std::new_handler nh;
   1433       {
   1434         SpinLockHolder h(&set_new_handler_lock);
   1435         nh = std::set_new_handler(0);
   1436         (void) std::set_new_handler(nh);
   1437       }
   1438 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
   1439       if (nh) {
   1440         // Since exceptions are disabled, we don't really know if new_handler
   1441         // failed.  Assume it will abort if it fails.
   1442         (*nh)();
   1443         continue;
   1444       }
   1445       return 0;
   1446 #else
   1447       // If no new_handler is established, the allocation failed.
   1448       if (!nh)
   1449         return 0;
   1450 
   1451       // Otherwise, try the new_handler.  If it returns, retry the
   1452       // allocation.  If it throws std::bad_alloc, fail the allocation.
   1453       // if it throws something else, don't interfere.
   1454       try {
   1455         (*nh)();
   1456       } catch (const std::bad_alloc&) {
   1457         return p;
   1458       }
   1459 #endif  // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
   1460     } else {  // allocation success
   1461       return p;
   1462     }
   1463 #endif  // PREANSINEW
   1464   }
   1465 }
   1466 
   1467 }  // end unnamed namespace
   1468 
   1469 // As promised, the definition of this function, declared above.
   1470 size_t TCMallocImplementation::GetAllocatedSize(const void* ptr) {
   1471   ASSERT(TCMallocImplementation::GetOwnership(ptr)
   1472          != TCMallocImplementation::kNotOwned);
   1473   return GetSizeWithCallback(ptr, &InvalidGetAllocatedSize);
   1474 }
   1475 
   1476 void TCMallocImplementation::MarkThreadBusy() {
   1477   // Allocate to force the creation of a thread cache, but avoid
   1478   // invoking any hooks.
   1479   do_free(do_malloc(0));
   1480 }
   1481 
   1482 //-------------------------------------------------------------------
   1483 // Exported routines
   1484 //-------------------------------------------------------------------
   1485 
   1486 extern "C" PERFTOOLS_DLL_DECL const char* tc_version(
   1487     int* major, int* minor, const char** patch) __THROW {
   1488   if (major) *major = TC_VERSION_MAJOR;
   1489   if (minor) *minor = TC_VERSION_MINOR;
   1490   if (patch) *patch = TC_VERSION_PATCH;
   1491   return TC_VERSION_STRING;
   1492 }
   1493 
   1494 // This function behaves similarly to MSVC's _set_new_mode.
   1495 // If flag is 0 (default), calls to malloc will behave normally.
   1496 // If flag is 1, calls to malloc will behave like calls to new,
   1497 // and the std_new_handler will be invoked on failure.
   1498 // Returns the previous mode.
   1499 extern "C" PERFTOOLS_DLL_DECL int tc_set_new_mode(int flag) __THROW {
   1500   int old_mode = tc_new_mode;
   1501   tc_new_mode = flag;
   1502   return old_mode;
   1503 }
   1504 
   1505 #ifndef TCMALLOC_USING_DEBUGALLOCATION  // debugallocation.cc defines its own
   1506 
   1507 // CAVEAT: The code structure below ensures that MallocHook methods are always
   1508 //         called from the stack frame of the invoked allocation function.
   1509 //         heap-checker.cc depends on this to start a stack trace from
   1510 //         the call to the (de)allocation function.
   1511 
   1512 extern "C" PERFTOOLS_DLL_DECL void* tc_malloc(size_t size) __THROW {
   1513   void* result = do_malloc_or_cpp_alloc(size);
   1514   MallocHook::InvokeNewHook(result, size);
   1515   return result;
   1516 }
   1517 
   1518 extern "C" PERFTOOLS_DLL_DECL void tc_free(void* ptr) __THROW {
   1519   MallocHook::InvokeDeleteHook(ptr);
   1520   do_free(ptr);
   1521 }
   1522 
   1523 extern "C" PERFTOOLS_DLL_DECL void* tc_calloc(size_t n,
   1524                                               size_t elem_size) __THROW {
   1525   void* result = do_calloc(n, elem_size);
   1526   MallocHook::InvokeNewHook(result, n * elem_size);
   1527   return result;
   1528 }
   1529 
   1530 extern "C" PERFTOOLS_DLL_DECL void tc_cfree(void* ptr) __THROW {
   1531   MallocHook::InvokeDeleteHook(ptr);
   1532   do_free(ptr);
   1533 }
   1534 
   1535 extern "C" PERFTOOLS_DLL_DECL void* tc_realloc(void* old_ptr,
   1536                                                size_t new_size) __THROW {
   1537   if (old_ptr == NULL) {
   1538     void* result = do_malloc_or_cpp_alloc(new_size);
   1539     MallocHook::InvokeNewHook(result, new_size);
   1540     return result;
   1541   }
   1542   if (new_size == 0) {
   1543     MallocHook::InvokeDeleteHook(old_ptr);
   1544     do_free(old_ptr);
   1545     return NULL;
   1546   }
   1547   return do_realloc(old_ptr, new_size);
   1548 }
   1549 
   1550 extern "C" PERFTOOLS_DLL_DECL void* tc_new(size_t size) {
   1551   void* p = cpp_alloc(size, false);
   1552   // We keep this next instruction out of cpp_alloc for a reason: when
   1553   // it's in, and new just calls cpp_alloc, the optimizer may fold the
   1554   // new call into cpp_alloc, which messes up our whole section-based
   1555   // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc
   1556   // isn't the last thing this fn calls, and prevents the folding.
   1557   MallocHook::InvokeNewHook(p, size);
   1558   return p;
   1559 }
   1560 
   1561 extern "C" PERFTOOLS_DLL_DECL void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW {
   1562   void* p = cpp_alloc(size, true);
   1563   MallocHook::InvokeNewHook(p, size);
   1564   return p;
   1565 }
   1566 
   1567 extern "C" PERFTOOLS_DLL_DECL void tc_delete(void* p) __THROW {
   1568   MallocHook::InvokeDeleteHook(p);
   1569   do_free(p);
   1570 }
   1571 
   1572 // Standard C++ library implementations define and use this
   1573 // (via ::operator delete(ptr, nothrow)).
   1574 // But it's really the same as normal delete, so we just do the same thing.
   1575 extern "C" PERFTOOLS_DLL_DECL void tc_delete_nothrow(void* p, const std::nothrow_t&) __THROW {
   1576   MallocHook::InvokeDeleteHook(p);
   1577   do_free(p);
   1578 }
   1579 
   1580 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray(size_t size) {
   1581   void* p = cpp_alloc(size, false);
   1582   // We keep this next instruction out of cpp_alloc for a reason: when
   1583   // it's in, and new just calls cpp_alloc, the optimizer may fold the
   1584   // new call into cpp_alloc, which messes up our whole section-based
   1585   // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc
   1586   // isn't the last thing this fn calls, and prevents the folding.
   1587   MallocHook::InvokeNewHook(p, size);
   1588   return p;
   1589 }
   1590 
   1591 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_nothrow(size_t size, const std::nothrow_t&)
   1592     __THROW {
   1593   void* p = cpp_alloc(size, true);
   1594   MallocHook::InvokeNewHook(p, size);
   1595   return p;
   1596 }
   1597 
   1598 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray(void* p) __THROW {
   1599   MallocHook::InvokeDeleteHook(p);
   1600   do_free(p);
   1601 }
   1602 
   1603 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_nothrow(void* p, const std::nothrow_t&) __THROW {
   1604   MallocHook::InvokeDeleteHook(p);
   1605   do_free(p);
   1606 }
   1607 
   1608 extern "C" PERFTOOLS_DLL_DECL void* tc_memalign(size_t align,
   1609                                                 size_t size) __THROW {
   1610   void* result = do_memalign_or_cpp_memalign(align, size);
   1611   MallocHook::InvokeNewHook(result, size);
   1612   return result;
   1613 }
   1614 
   1615 extern "C" PERFTOOLS_DLL_DECL int tc_posix_memalign(
   1616     void** result_ptr, size_t align, size_t size) __THROW {
   1617   if (((align % sizeof(void*)) != 0) ||
   1618       ((align & (align - 1)) != 0) ||
   1619       (align == 0)) {
   1620     return EINVAL;
   1621   }
   1622 
   1623   void* result = do_memalign_or_cpp_memalign(align, size);
   1624   MallocHook::InvokeNewHook(result, size);
   1625   if (result == NULL) {
   1626     return ENOMEM;
   1627   } else {
   1628     *result_ptr = result;
   1629     return 0;
   1630   }
   1631 }
   1632 
   1633 static size_t pagesize = 0;
   1634 
   1635 extern "C" PERFTOOLS_DLL_DECL void* tc_valloc(size_t size) __THROW {
   1636   // Allocate page-aligned object of length >= size bytes
   1637   if (pagesize == 0) pagesize = getpagesize();
   1638   void* result = do_memalign_or_cpp_memalign(pagesize, size);
   1639   MallocHook::InvokeNewHook(result, size);
   1640   return result;
   1641 }
   1642 
   1643 extern "C" PERFTOOLS_DLL_DECL void* tc_pvalloc(size_t size) __THROW {
   1644   // Round up size to a multiple of pagesize
   1645   if (pagesize == 0) pagesize = getpagesize();
   1646   if (size == 0) {     // pvalloc(0) should allocate one page, according to
   1647     size = pagesize;   // http://man.free4web.biz/man3/libmpatrol.3.html
   1648   }
   1649   size = (size + pagesize - 1) & ~(pagesize - 1);
   1650   void* result = do_memalign_or_cpp_memalign(pagesize, size);
   1651   MallocHook::InvokeNewHook(result, size);
   1652   return result;
   1653 }
   1654 
   1655 extern "C" PERFTOOLS_DLL_DECL void tc_malloc_stats(void) __THROW {
   1656   do_malloc_stats();
   1657 }
   1658 
   1659 extern "C" PERFTOOLS_DLL_DECL int tc_mallopt(int cmd, int value) __THROW {
   1660   return do_mallopt(cmd, value);
   1661 }
   1662 
   1663 #ifdef HAVE_STRUCT_MALLINFO
   1664 extern "C" PERFTOOLS_DLL_DECL struct mallinfo tc_mallinfo(void) __THROW {
   1665   return do_mallinfo();
   1666 }
   1667 #endif
   1668 
   1669 extern "C" PERFTOOLS_DLL_DECL size_t tc_malloc_size(void* ptr) __THROW {
   1670   return MallocExtension::instance()->GetAllocatedSize(ptr);
   1671 }
   1672 
   1673 #endif  // TCMALLOC_USING_DEBUGALLOCATION
   1674