1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the ScheduleDAG class, which is a base class used by 11 // scheduling implementation classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "pre-RA-sched" 16 #include "ScheduleDAGSDNodes.h" 17 #include "InstrEmitter.h" 18 #include "SDNodeDbgValue.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/MC/MCInstrItineraries.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetInstrInfo.h" 32 #include "llvm/Target/TargetLowering.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 using namespace llvm; 37 38 STATISTIC(LoadsClustered, "Number of loads clustered together"); 39 40 // This allows latency based scheduler to notice high latency instructions 41 // without a target itinerary. The choise if number here has more to do with 42 // balancing scheduler heursitics than with the actual machine latency. 43 static cl::opt<int> HighLatencyCycles( 44 "sched-high-latency-cycles", cl::Hidden, cl::init(10), 45 cl::desc("Roughly estimate the number of cycles that 'long latency'" 46 "instructions take for targets with no itinerary")); 47 48 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) 49 : ScheduleDAG(mf), BB(0), DAG(0), 50 InstrItins(mf.getTarget().getInstrItineraryData()) {} 51 52 /// Run - perform scheduling. 53 /// 54 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) { 55 BB = bb; 56 DAG = dag; 57 58 // Clear the scheduler's SUnit DAG. 59 ScheduleDAG::clearDAG(); 60 Sequence.clear(); 61 62 // Invoke the target's selection of scheduler. 63 Schedule(); 64 } 65 66 /// NewSUnit - Creates a new SUnit and return a ptr to it. 67 /// 68 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) { 69 #ifndef NDEBUG 70 const SUnit *Addr = 0; 71 if (!SUnits.empty()) 72 Addr = &SUnits[0]; 73 #endif 74 SUnits.push_back(SUnit(N, (unsigned)SUnits.size())); 75 assert((Addr == 0 || Addr == &SUnits[0]) && 76 "SUnits std::vector reallocated on the fly!"); 77 SUnits.back().OrigNode = &SUnits.back(); 78 SUnit *SU = &SUnits.back(); 79 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 80 if (!N || 81 (N->isMachineOpcode() && 82 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)) 83 SU->SchedulingPref = Sched::None; 84 else 85 SU->SchedulingPref = TLI.getSchedulingPreference(N); 86 return SU; 87 } 88 89 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { 90 SUnit *SU = newSUnit(Old->getNode()); 91 SU->OrigNode = Old->OrigNode; 92 SU->Latency = Old->Latency; 93 SU->isVRegCycle = Old->isVRegCycle; 94 SU->isCall = Old->isCall; 95 SU->isCallOp = Old->isCallOp; 96 SU->isTwoAddress = Old->isTwoAddress; 97 SU->isCommutable = Old->isCommutable; 98 SU->hasPhysRegDefs = Old->hasPhysRegDefs; 99 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; 100 SU->isScheduleHigh = Old->isScheduleHigh; 101 SU->isScheduleLow = Old->isScheduleLow; 102 SU->SchedulingPref = Old->SchedulingPref; 103 Old->isCloned = true; 104 return SU; 105 } 106 107 /// CheckForPhysRegDependency - Check if the dependency between def and use of 108 /// a specified operand is a physical register dependency. If so, returns the 109 /// register and the cost of copying the register. 110 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, 111 const TargetRegisterInfo *TRI, 112 const TargetInstrInfo *TII, 113 unsigned &PhysReg, int &Cost) { 114 if (Op != 2 || User->getOpcode() != ISD::CopyToReg) 115 return; 116 117 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 118 if (TargetRegisterInfo::isVirtualRegister(Reg)) 119 return; 120 121 unsigned ResNo = User->getOperand(2).getResNo(); 122 if (Def->isMachineOpcode()) { 123 const MCInstrDesc &II = TII->get(Def->getMachineOpcode()); 124 if (ResNo >= II.getNumDefs() && 125 II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) { 126 PhysReg = Reg; 127 const TargetRegisterClass *RC = 128 TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo)); 129 Cost = RC->getCopyCost(); 130 } 131 } 132 } 133 134 // Helper for AddGlue to clone node operands. 135 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, 136 SmallVectorImpl<EVT> &VTs, 137 SDValue ExtraOper = SDValue()) { 138 SmallVector<SDValue, 4> Ops; 139 for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I) 140 Ops.push_back(N->getOperand(I)); 141 142 if (ExtraOper.getNode()) 143 Ops.push_back(ExtraOper); 144 145 SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size()); 146 MachineSDNode::mmo_iterator Begin = 0, End = 0; 147 MachineSDNode *MN = dyn_cast<MachineSDNode>(N); 148 149 // Store memory references. 150 if (MN) { 151 Begin = MN->memoperands_begin(); 152 End = MN->memoperands_end(); 153 } 154 155 DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size()); 156 157 // Reset the memory references 158 if (MN) 159 MN->setMemRefs(Begin, End); 160 } 161 162 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) { 163 SmallVector<EVT, 4> VTs; 164 SDNode *GlueDestNode = Glue.getNode(); 165 166 // Don't add glue from a node to itself. 167 if (GlueDestNode == N) return false; 168 169 // Don't add a glue operand to something that already uses glue. 170 if (GlueDestNode && 171 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { 172 return false; 173 } 174 // Don't add glue to something that already has a glue value. 175 if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false; 176 177 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 178 VTs.push_back(N->getValueType(I)); 179 180 if (AddGlue) 181 VTs.push_back(MVT::Glue); 182 183 CloneNodeWithValues(N, DAG, VTs, Glue); 184 185 return true; 186 } 187 188 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the 189 // node even though simply shrinking the value list is sufficient. 190 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) { 191 assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue && 192 !N->hasAnyUseOfValue(N->getNumValues() - 1)) && 193 "expected an unused glue value"); 194 195 SmallVector<EVT, 4> VTs; 196 for (unsigned I = 0, E = N->getNumValues()-1; I != E; ++I) 197 VTs.push_back(N->getValueType(I)); 198 199 CloneNodeWithValues(N, DAG, VTs); 200 } 201 202 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them. 203 /// This function finds loads of the same base and different offsets. If the 204 /// offsets are not far apart (target specific), it add MVT::Glue inputs and 205 /// outputs to ensure they are scheduled together and in order. This 206 /// optimization may benefit some targets by improving cache locality. 207 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) { 208 SDNode *Chain = 0; 209 unsigned NumOps = Node->getNumOperands(); 210 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) 211 Chain = Node->getOperand(NumOps-1).getNode(); 212 if (!Chain) 213 return; 214 215 // Look for other loads of the same chain. Find loads that are loading from 216 // the same base pointer and different offsets. 217 SmallPtrSet<SDNode*, 16> Visited; 218 SmallVector<int64_t, 4> Offsets; 219 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode. 220 bool Cluster = false; 221 SDNode *Base = Node; 222 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); 223 I != E; ++I) { 224 SDNode *User = *I; 225 if (User == Node || !Visited.insert(User)) 226 continue; 227 int64_t Offset1, Offset2; 228 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || 229 Offset1 == Offset2) 230 // FIXME: Should be ok if they addresses are identical. But earlier 231 // optimizations really should have eliminated one of the loads. 232 continue; 233 if (O2SMap.insert(std::make_pair(Offset1, Base)).second) 234 Offsets.push_back(Offset1); 235 O2SMap.insert(std::make_pair(Offset2, User)); 236 Offsets.push_back(Offset2); 237 if (Offset2 < Offset1) 238 Base = User; 239 Cluster = true; 240 } 241 242 if (!Cluster) 243 return; 244 245 // Sort them in increasing order. 246 std::sort(Offsets.begin(), Offsets.end()); 247 248 // Check if the loads are close enough. 249 SmallVector<SDNode*, 4> Loads; 250 unsigned NumLoads = 0; 251 int64_t BaseOff = Offsets[0]; 252 SDNode *BaseLoad = O2SMap[BaseOff]; 253 Loads.push_back(BaseLoad); 254 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { 255 int64_t Offset = Offsets[i]; 256 SDNode *Load = O2SMap[Offset]; 257 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads)) 258 break; // Stop right here. Ignore loads that are further away. 259 Loads.push_back(Load); 260 ++NumLoads; 261 } 262 263 if (NumLoads == 0) 264 return; 265 266 // Cluster loads by adding MVT::Glue outputs and inputs. This also 267 // ensure they are scheduled in order of increasing addresses. 268 SDNode *Lead = Loads[0]; 269 SDValue InGlue = SDValue(0, 0); 270 if (AddGlue(Lead, InGlue, true, DAG)) 271 InGlue = SDValue(Lead, Lead->getNumValues() - 1); 272 for (unsigned I = 1, E = Loads.size(); I != E; ++I) { 273 bool OutGlue = I < E - 1; 274 SDNode *Load = Loads[I]; 275 276 // If AddGlue fails, we could leave an unsused glue value. This should not 277 // cause any 278 if (AddGlue(Load, InGlue, OutGlue, DAG)) { 279 if (OutGlue) 280 InGlue = SDValue(Load, Load->getNumValues() - 1); 281 282 ++LoadsClustered; 283 } 284 else if (!OutGlue && InGlue.getNode()) 285 RemoveUnusedGlue(InGlue.getNode(), DAG); 286 } 287 } 288 289 /// ClusterNodes - Cluster certain nodes which should be scheduled together. 290 /// 291 void ScheduleDAGSDNodes::ClusterNodes() { 292 for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), 293 E = DAG->allnodes_end(); NI != E; ++NI) { 294 SDNode *Node = &*NI; 295 if (!Node || !Node->isMachineOpcode()) 296 continue; 297 298 unsigned Opc = Node->getMachineOpcode(); 299 const MCInstrDesc &MCID = TII->get(Opc); 300 if (MCID.mayLoad()) 301 // Cluster loads from "near" addresses into combined SUnits. 302 ClusterNeighboringLoads(Node); 303 } 304 } 305 306 void ScheduleDAGSDNodes::BuildSchedUnits() { 307 // During scheduling, the NodeId field of SDNode is used to map SDNodes 308 // to their associated SUnits by holding SUnits table indices. A value 309 // of -1 means the SDNode does not yet have an associated SUnit. 310 unsigned NumNodes = 0; 311 for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), 312 E = DAG->allnodes_end(); NI != E; ++NI) { 313 NI->setNodeId(-1); 314 ++NumNodes; 315 } 316 317 // Reserve entries in the vector for each of the SUnits we are creating. This 318 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get 319 // invalidated. 320 // FIXME: Multiply by 2 because we may clone nodes during scheduling. 321 // This is a temporary workaround. 322 SUnits.reserve(NumNodes * 2); 323 324 // Add all nodes in depth first order. 325 SmallVector<SDNode*, 64> Worklist; 326 SmallPtrSet<SDNode*, 64> Visited; 327 Worklist.push_back(DAG->getRoot().getNode()); 328 Visited.insert(DAG->getRoot().getNode()); 329 330 SmallVector<SUnit*, 8> CallSUnits; 331 while (!Worklist.empty()) { 332 SDNode *NI = Worklist.pop_back_val(); 333 334 // Add all operands to the worklist unless they've already been added. 335 for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i) 336 if (Visited.insert(NI->getOperand(i).getNode())) 337 Worklist.push_back(NI->getOperand(i).getNode()); 338 339 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. 340 continue; 341 342 // If this node has already been processed, stop now. 343 if (NI->getNodeId() != -1) continue; 344 345 SUnit *NodeSUnit = newSUnit(NI); 346 347 // See if anything is glued to this node, if so, add them to glued 348 // nodes. Nodes can have at most one glue input and one glue output. Glue 349 // is required to be the last operand and result of a node. 350 351 // Scan up to find glued preds. 352 SDNode *N = NI; 353 while (N->getNumOperands() && 354 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { 355 N = N->getOperand(N->getNumOperands()-1).getNode(); 356 assert(N->getNodeId() == -1 && "Node already inserted!"); 357 N->setNodeId(NodeSUnit->NodeNum); 358 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 359 NodeSUnit->isCall = true; 360 } 361 362 // Scan down to find any glued succs. 363 N = NI; 364 while (N->getValueType(N->getNumValues()-1) == MVT::Glue) { 365 SDValue GlueVal(N, N->getNumValues()-1); 366 367 // There are either zero or one users of the Glue result. 368 bool HasGlueUse = false; 369 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 370 UI != E; ++UI) 371 if (GlueVal.isOperandOf(*UI)) { 372 HasGlueUse = true; 373 assert(N->getNodeId() == -1 && "Node already inserted!"); 374 N->setNodeId(NodeSUnit->NodeNum); 375 N = *UI; 376 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 377 NodeSUnit->isCall = true; 378 break; 379 } 380 if (!HasGlueUse) break; 381 } 382 383 if (NodeSUnit->isCall) 384 CallSUnits.push_back(NodeSUnit); 385 386 // Schedule zero-latency TokenFactor below any nodes that may increase the 387 // schedule height. Otherwise, ancestors of the TokenFactor may appear to 388 // have false stalls. 389 if (NI->getOpcode() == ISD::TokenFactor) 390 NodeSUnit->isScheduleLow = true; 391 392 // If there are glue operands involved, N is now the bottom-most node 393 // of the sequence of nodes that are glued together. 394 // Update the SUnit. 395 NodeSUnit->setNode(N); 396 assert(N->getNodeId() == -1 && "Node already inserted!"); 397 N->setNodeId(NodeSUnit->NodeNum); 398 399 // Compute NumRegDefsLeft. This must be done before AddSchedEdges. 400 InitNumRegDefsLeft(NodeSUnit); 401 402 // Assign the Latency field of NodeSUnit using target-provided information. 403 computeLatency(NodeSUnit); 404 } 405 406 // Find all call operands. 407 while (!CallSUnits.empty()) { 408 SUnit *SU = CallSUnits.pop_back_val(); 409 for (const SDNode *SUNode = SU->getNode(); SUNode; 410 SUNode = SUNode->getGluedNode()) { 411 if (SUNode->getOpcode() != ISD::CopyToReg) 412 continue; 413 SDNode *SrcN = SUNode->getOperand(2).getNode(); 414 if (isPassiveNode(SrcN)) continue; // Not scheduled. 415 SUnit *SrcSU = &SUnits[SrcN->getNodeId()]; 416 SrcSU->isCallOp = true; 417 } 418 } 419 } 420 421 void ScheduleDAGSDNodes::AddSchedEdges() { 422 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 423 424 // Check to see if the scheduler cares about latencies. 425 bool UnitLatencies = forceUnitLatencies(); 426 427 // Pass 2: add the preds, succs, etc. 428 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { 429 SUnit *SU = &SUnits[su]; 430 SDNode *MainNode = SU->getNode(); 431 432 if (MainNode->isMachineOpcode()) { 433 unsigned Opc = MainNode->getMachineOpcode(); 434 const MCInstrDesc &MCID = TII->get(Opc); 435 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { 436 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { 437 SU->isTwoAddress = true; 438 break; 439 } 440 } 441 if (MCID.isCommutable()) 442 SU->isCommutable = true; 443 } 444 445 // Find all predecessors and successors of the group. 446 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) { 447 if (N->isMachineOpcode() && 448 TII->get(N->getMachineOpcode()).getImplicitDefs()) { 449 SU->hasPhysRegClobbers = true; 450 unsigned NumUsed = InstrEmitter::CountResults(N); 451 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) 452 --NumUsed; // Skip over unused values at the end. 453 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) 454 SU->hasPhysRegDefs = true; 455 } 456 457 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 458 SDNode *OpN = N->getOperand(i).getNode(); 459 if (isPassiveNode(OpN)) continue; // Not scheduled. 460 SUnit *OpSU = &SUnits[OpN->getNodeId()]; 461 assert(OpSU && "Node has no SUnit!"); 462 if (OpSU == SU) continue; // In the same group. 463 464 EVT OpVT = N->getOperand(i).getValueType(); 465 assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!"); 466 bool isChain = OpVT == MVT::Other; 467 468 unsigned PhysReg = 0; 469 int Cost = 1; 470 // Determine if this is a physical register dependency. 471 CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); 472 assert((PhysReg == 0 || !isChain) && 473 "Chain dependence via physreg data?"); 474 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler 475 // emits a copy from the physical register to a virtual register unless 476 // it requires a cross class copy (cost < 0). That means we are only 477 // treating "expensive to copy" register dependency as physical register 478 // dependency. This may change in the future though. 479 if (Cost >= 0 && !StressSched) 480 PhysReg = 0; 481 482 // If this is a ctrl dep, latency is 1. 483 unsigned OpLatency = isChain ? 1 : OpSU->Latency; 484 // Special-case TokenFactor chains as zero-latency. 485 if(isChain && OpN->getOpcode() == ISD::TokenFactor) 486 OpLatency = 0; 487 488 SDep Dep = isChain ? SDep(OpSU, SDep::Barrier) 489 : SDep(OpSU, SDep::Data, PhysReg); 490 Dep.setLatency(OpLatency); 491 if (!isChain && !UnitLatencies) { 492 computeOperandLatency(OpN, N, i, Dep); 493 ST.adjustSchedDependency(OpSU, SU, Dep); 494 } 495 496 if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) { 497 // Multiple register uses are combined in the same SUnit. For example, 498 // we could have a set of glued nodes with all their defs consumed by 499 // another set of glued nodes. Register pressure tracking sees this as 500 // a single use, so to keep pressure balanced we reduce the defs. 501 // 502 // We can't tell (without more book-keeping) if this results from 503 // glued nodes or duplicate operands. As long as we don't reduce 504 // NumRegDefsLeft to zero, we handle the common cases well. 505 --OpSU->NumRegDefsLeft; 506 } 507 } 508 } 509 } 510 } 511 512 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we 513 /// are input. This SUnit graph is similar to the SelectionDAG, but 514 /// excludes nodes that aren't interesting to scheduling, and represents 515 /// glued together nodes with a single SUnit. 516 void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) { 517 // Cluster certain nodes which should be scheduled together. 518 ClusterNodes(); 519 // Populate the SUnits array. 520 BuildSchedUnits(); 521 // Compute all the scheduling dependencies between nodes. 522 AddSchedEdges(); 523 } 524 525 // Initialize NumNodeDefs for the current Node's opcode. 526 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() { 527 // Check for phys reg copy. 528 if (!Node) 529 return; 530 531 if (!Node->isMachineOpcode()) { 532 if (Node->getOpcode() == ISD::CopyFromReg) 533 NodeNumDefs = 1; 534 else 535 NodeNumDefs = 0; 536 return; 537 } 538 unsigned POpc = Node->getMachineOpcode(); 539 if (POpc == TargetOpcode::IMPLICIT_DEF) { 540 // No register need be allocated for this. 541 NodeNumDefs = 0; 542 return; 543 } 544 unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs(); 545 // Some instructions define regs that are not represented in the selection DAG 546 // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues. 547 NodeNumDefs = std::min(Node->getNumValues(), NRegDefs); 548 DefIdx = 0; 549 } 550 551 // Construct a RegDefIter for this SUnit and find the first valid value. 552 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU, 553 const ScheduleDAGSDNodes *SD) 554 : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) { 555 InitNodeNumDefs(); 556 Advance(); 557 } 558 559 // Advance to the next valid value defined by the SUnit. 560 void ScheduleDAGSDNodes::RegDefIter::Advance() { 561 for (;Node;) { // Visit all glued nodes. 562 for (;DefIdx < NodeNumDefs; ++DefIdx) { 563 if (!Node->hasAnyUseOfValue(DefIdx)) 564 continue; 565 ValueType = Node->getSimpleValueType(DefIdx); 566 ++DefIdx; 567 return; // Found a normal regdef. 568 } 569 Node = Node->getGluedNode(); 570 if (Node == NULL) { 571 return; // No values left to visit. 572 } 573 InitNodeNumDefs(); 574 } 575 } 576 577 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) { 578 assert(SU->NumRegDefsLeft == 0 && "expect a new node"); 579 for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) { 580 assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected"); 581 ++SU->NumRegDefsLeft; 582 } 583 } 584 585 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) { 586 SDNode *N = SU->getNode(); 587 588 // TokenFactor operands are considered zero latency, and some schedulers 589 // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero 590 // whenever node latency is nonzero. 591 if (N && N->getOpcode() == ISD::TokenFactor) { 592 SU->Latency = 0; 593 return; 594 } 595 596 // Check to see if the scheduler cares about latencies. 597 if (forceUnitLatencies()) { 598 SU->Latency = 1; 599 return; 600 } 601 602 if (!InstrItins || InstrItins->isEmpty()) { 603 if (N && N->isMachineOpcode() && 604 TII->isHighLatencyDef(N->getMachineOpcode())) 605 SU->Latency = HighLatencyCycles; 606 else 607 SU->Latency = 1; 608 return; 609 } 610 611 // Compute the latency for the node. We use the sum of the latencies for 612 // all nodes glued together into this SUnit. 613 SU->Latency = 0; 614 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) 615 if (N->isMachineOpcode()) 616 SU->Latency += TII->getInstrLatency(InstrItins, N); 617 } 618 619 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use, 620 unsigned OpIdx, SDep& dep) const{ 621 // Check to see if the scheduler cares about latencies. 622 if (forceUnitLatencies()) 623 return; 624 625 if (dep.getKind() != SDep::Data) 626 return; 627 628 unsigned DefIdx = Use->getOperand(OpIdx).getResNo(); 629 if (Use->isMachineOpcode()) 630 // Adjust the use operand index by num of defs. 631 OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs(); 632 int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx); 633 if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg && 634 !BB->succ_empty()) { 635 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); 636 if (TargetRegisterInfo::isVirtualRegister(Reg)) 637 // This copy is a liveout value. It is likely coalesced, so reduce the 638 // latency so not to penalize the def. 639 // FIXME: need target specific adjustment here? 640 Latency = (Latency > 1) ? Latency - 1 : 1; 641 } 642 if (Latency >= 0) 643 dep.setLatency(Latency); 644 } 645 646 void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const { 647 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 648 if (!SU->getNode()) { 649 dbgs() << "PHYS REG COPY\n"; 650 return; 651 } 652 653 SU->getNode()->dump(DAG); 654 dbgs() << "\n"; 655 SmallVector<SDNode *, 4> GluedNodes; 656 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode()) 657 GluedNodes.push_back(N); 658 while (!GluedNodes.empty()) { 659 dbgs() << " "; 660 GluedNodes.back()->dump(DAG); 661 dbgs() << "\n"; 662 GluedNodes.pop_back(); 663 } 664 #endif 665 } 666 667 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 668 void ScheduleDAGSDNodes::dumpSchedule() const { 669 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 670 if (SUnit *SU = Sequence[i]) 671 SU->dump(this); 672 else 673 dbgs() << "**** NOOP ****\n"; 674 } 675 } 676 #endif 677 678 #ifndef NDEBUG 679 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that 680 /// their state is consistent with the nodes listed in Sequence. 681 /// 682 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) { 683 unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp); 684 unsigned Noops = 0; 685 for (unsigned i = 0, e = Sequence.size(); i != e; ++i) 686 if (!Sequence[i]) 687 ++Noops; 688 assert(Sequence.size() - Noops == ScheduledNodes && 689 "The number of nodes scheduled doesn't match the expected number!"); 690 } 691 #endif // NDEBUG 692 693 namespace { 694 struct OrderSorter { 695 bool operator()(const std::pair<unsigned, MachineInstr*> &A, 696 const std::pair<unsigned, MachineInstr*> &B) { 697 return A.first < B.first; 698 } 699 }; 700 } 701 702 /// ProcessSDDbgValues - Process SDDbgValues associated with this node. 703 static void 704 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, 705 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders, 706 DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) { 707 if (!N->getHasDebugValue()) 708 return; 709 710 // Opportunistically insert immediate dbg_value uses, i.e. those with source 711 // order number right after the N. 712 MachineBasicBlock *BB = Emitter.getBlock(); 713 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); 714 ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N); 715 for (unsigned i = 0, e = DVs.size(); i != e; ++i) { 716 if (DVs[i]->isInvalidated()) 717 continue; 718 unsigned DVOrder = DVs[i]->getOrder(); 719 if (!Order || DVOrder == ++Order) { 720 MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap); 721 if (DbgMI) { 722 Orders.push_back(std::make_pair(DVOrder, DbgMI)); 723 BB->insert(InsertPos, DbgMI); 724 } 725 DVs[i]->setIsInvalidated(); 726 } 727 } 728 } 729 730 // ProcessSourceNode - Process nodes with source order numbers. These are added 731 // to a vector which EmitSchedule uses to determine how to insert dbg_value 732 // instructions in the right order. 733 static void 734 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, 735 DenseMap<SDValue, unsigned> &VRBaseMap, 736 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders, 737 SmallSet<unsigned, 8> &Seen) { 738 unsigned Order = N->getIROrder(); 739 if (!Order || !Seen.insert(Order)) { 740 // Process any valid SDDbgValues even if node does not have any order 741 // assigned. 742 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0); 743 return; 744 } 745 746 MachineBasicBlock *BB = Emitter.getBlock(); 747 if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) { 748 // Did not insert any instruction. 749 Orders.push_back(std::make_pair(Order, (MachineInstr*)0)); 750 return; 751 } 752 753 Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos()))); 754 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order); 755 } 756 757 void ScheduleDAGSDNodes:: 758 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap, 759 MachineBasicBlock::iterator InsertPos) { 760 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 761 I != E; ++I) { 762 if (I->isCtrl()) continue; // ignore chain preds 763 if (I->getSUnit()->CopyDstRC) { 764 // Copy to physical register. 765 DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit()); 766 assert(VRI != VRBaseMap.end() && "Node emitted out of order - late"); 767 // Find the destination physical register. 768 unsigned Reg = 0; 769 for (SUnit::const_succ_iterator II = SU->Succs.begin(), 770 EE = SU->Succs.end(); II != EE; ++II) { 771 if (II->isCtrl()) continue; // ignore chain preds 772 if (II->getReg()) { 773 Reg = II->getReg(); 774 break; 775 } 776 } 777 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg) 778 .addReg(VRI->second); 779 } else { 780 // Copy from physical register. 781 assert(I->getReg() && "Unknown physical register!"); 782 unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC); 783 bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second; 784 (void)isNew; // Silence compiler warning. 785 assert(isNew && "Node emitted out of order - early"); 786 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase) 787 .addReg(I->getReg()); 788 } 789 break; 790 } 791 } 792 793 /// EmitSchedule - Emit the machine code in scheduled order. Return the new 794 /// InsertPos and MachineBasicBlock that contains this insertion 795 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does 796 /// not necessarily refer to returned BB. The emitter may split blocks. 797 MachineBasicBlock *ScheduleDAGSDNodes:: 798 EmitSchedule(MachineBasicBlock::iterator &InsertPos) { 799 InstrEmitter Emitter(BB, InsertPos); 800 DenseMap<SDValue, unsigned> VRBaseMap; 801 DenseMap<SUnit*, unsigned> CopyVRBaseMap; 802 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders; 803 SmallSet<unsigned, 8> Seen; 804 bool HasDbg = DAG->hasDebugValues(); 805 806 // If this is the first BB, emit byval parameter dbg_value's. 807 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) { 808 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin(); 809 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd(); 810 for (; PDI != PDE; ++PDI) { 811 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap); 812 if (DbgMI) 813 BB->insert(InsertPos, DbgMI); 814 } 815 } 816 817 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 818 SUnit *SU = Sequence[i]; 819 if (!SU) { 820 // Null SUnit* is a noop. 821 TII->insertNoop(*Emitter.getBlock(), InsertPos); 822 continue; 823 } 824 825 // For pre-regalloc scheduling, create instructions corresponding to the 826 // SDNode and any glued SDNodes and append them to the block. 827 if (!SU->getNode()) { 828 // Emit a copy. 829 EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos); 830 continue; 831 } 832 833 SmallVector<SDNode *, 4> GluedNodes; 834 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode()) 835 GluedNodes.push_back(N); 836 while (!GluedNodes.empty()) { 837 SDNode *N = GluedNodes.back(); 838 Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned, 839 VRBaseMap); 840 // Remember the source order of the inserted instruction. 841 if (HasDbg) 842 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen); 843 GluedNodes.pop_back(); 844 } 845 Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, 846 VRBaseMap); 847 // Remember the source order of the inserted instruction. 848 if (HasDbg) 849 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, 850 Seen); 851 } 852 853 // Insert all the dbg_values which have not already been inserted in source 854 // order sequence. 855 if (HasDbg) { 856 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI(); 857 858 // Sort the source order instructions and use the order to insert debug 859 // values. 860 std::sort(Orders.begin(), Orders.end(), OrderSorter()); 861 862 SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); 863 SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); 864 // Now emit the rest according to source order. 865 unsigned LastOrder = 0; 866 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { 867 unsigned Order = Orders[i].first; 868 MachineInstr *MI = Orders[i].second; 869 // Insert all SDDbgValue's whose order(s) are before "Order". 870 if (!MI) 871 continue; 872 for (; DI != DE && 873 (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) { 874 if ((*DI)->isInvalidated()) 875 continue; 876 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap); 877 if (DbgMI) { 878 if (!LastOrder) 879 // Insert to start of the BB (after PHIs). 880 BB->insert(BBBegin, DbgMI); 881 else { 882 // Insert at the instruction, which may be in a different 883 // block, if the block was split by a custom inserter. 884 MachineBasicBlock::iterator Pos = MI; 885 MI->getParent()->insert(Pos, DbgMI); 886 } 887 } 888 } 889 LastOrder = Order; 890 } 891 // Add trailing DbgValue's before the terminator. FIXME: May want to add 892 // some of them before one or more conditional branches? 893 SmallVector<MachineInstr*, 8> DbgMIs; 894 while (DI != DE) { 895 if (!(*DI)->isInvalidated()) 896 if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap)) 897 DbgMIs.push_back(DbgMI); 898 ++DI; 899 } 900 901 MachineBasicBlock *InsertBB = Emitter.getBlock(); 902 MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator(); 903 InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end()); 904 } 905 906 InsertPos = Emitter.getInsertPos(); 907 return Emitter.getBlock(); 908 } 909 910 /// Return the basic block label. 911 std::string ScheduleDAGSDNodes::getDAGName() const { 912 return "sunit-dag." + BB->getFullName(); 913 } 914