1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #ifndef V8_UTILS_H_ 29 #define V8_UTILS_H_ 30 31 #include <stdlib.h> 32 #include <string.h> 33 #include <climits> 34 35 #include "globals.h" 36 #include "checks.h" 37 #include "allocation.h" 38 39 namespace v8 { 40 namespace internal { 41 42 // ---------------------------------------------------------------------------- 43 // General helper functions 44 45 #define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0) 46 47 // Returns true iff x is a power of 2 (or zero). Cannot be used with the 48 // maximally negative value of the type T (the -1 overflows). 49 template <typename T> 50 inline bool IsPowerOf2(T x) { 51 return IS_POWER_OF_TWO(x); 52 } 53 54 55 // X must be a power of 2. Returns the number of trailing zeros. 56 inline int WhichPowerOf2(uint32_t x) { 57 ASSERT(IsPowerOf2(x)); 58 ASSERT(x != 0); 59 int bits = 0; 60 #ifdef DEBUG 61 int original_x = x; 62 #endif 63 if (x >= 0x10000) { 64 bits += 16; 65 x >>= 16; 66 } 67 if (x >= 0x100) { 68 bits += 8; 69 x >>= 8; 70 } 71 if (x >= 0x10) { 72 bits += 4; 73 x >>= 4; 74 } 75 switch (x) { 76 default: UNREACHABLE(); 77 case 8: bits++; // Fall through. 78 case 4: bits++; // Fall through. 79 case 2: bits++; // Fall through. 80 case 1: break; 81 } 82 ASSERT_EQ(1 << bits, original_x); 83 return bits; 84 return 0; 85 } 86 87 88 // The C++ standard leaves the semantics of '>>' undefined for 89 // negative signed operands. Most implementations do the right thing, 90 // though. 91 inline int ArithmeticShiftRight(int x, int s) { 92 return x >> s; 93 } 94 95 96 // Compute the 0-relative offset of some absolute value x of type T. 97 // This allows conversion of Addresses and integral types into 98 // 0-relative int offsets. 99 template <typename T> 100 inline intptr_t OffsetFrom(T x) { 101 return x - static_cast<T>(0); 102 } 103 104 105 // Compute the absolute value of type T for some 0-relative offset x. 106 // This allows conversion of 0-relative int offsets into Addresses and 107 // integral types. 108 template <typename T> 109 inline T AddressFrom(intptr_t x) { 110 return static_cast<T>(static_cast<T>(0) + x); 111 } 112 113 114 // Return the largest multiple of m which is <= x. 115 template <typename T> 116 inline T RoundDown(T x, intptr_t m) { 117 ASSERT(IsPowerOf2(m)); 118 return AddressFrom<T>(OffsetFrom(x) & -m); 119 } 120 121 122 // Return the smallest multiple of m which is >= x. 123 template <typename T> 124 inline T RoundUp(T x, intptr_t m) { 125 return RoundDown<T>(static_cast<T>(x + m - 1), m); 126 } 127 128 129 template <typename T> 130 int Compare(const T& a, const T& b) { 131 if (a == b) 132 return 0; 133 else if (a < b) 134 return -1; 135 else 136 return 1; 137 } 138 139 140 template <typename T> 141 int PointerValueCompare(const T* a, const T* b) { 142 return Compare<T>(*a, *b); 143 } 144 145 146 // Compare function to compare the object pointer value of two 147 // handlified objects. The handles are passed as pointers to the 148 // handles. 149 template<typename T> class Handle; // Forward declaration. 150 template <typename T> 151 int HandleObjectPointerCompare(const Handle<T>* a, const Handle<T>* b) { 152 return Compare<T*>(*(*a), *(*b)); 153 } 154 155 156 // Returns the smallest power of two which is >= x. If you pass in a 157 // number that is already a power of two, it is returned as is. 158 // Implementation is from "Hacker's Delight" by Henry S. Warren, Jr., 159 // figure 3-3, page 48, where the function is called clp2. 160 inline uint32_t RoundUpToPowerOf2(uint32_t x) { 161 ASSERT(x <= 0x80000000u); 162 x = x - 1; 163 x = x | (x >> 1); 164 x = x | (x >> 2); 165 x = x | (x >> 4); 166 x = x | (x >> 8); 167 x = x | (x >> 16); 168 return x + 1; 169 } 170 171 172 inline uint32_t RoundDownToPowerOf2(uint32_t x) { 173 uint32_t rounded_up = RoundUpToPowerOf2(x); 174 if (rounded_up > x) return rounded_up >> 1; 175 return rounded_up; 176 } 177 178 179 template <typename T, typename U> 180 inline bool IsAligned(T value, U alignment) { 181 return (value & (alignment - 1)) == 0; 182 } 183 184 185 // Returns true if (addr + offset) is aligned. 186 inline bool IsAddressAligned(Address addr, 187 intptr_t alignment, 188 int offset = 0) { 189 intptr_t offs = OffsetFrom(addr + offset); 190 return IsAligned(offs, alignment); 191 } 192 193 194 // Returns the maximum of the two parameters. 195 template <typename T> 196 T Max(T a, T b) { 197 return a < b ? b : a; 198 } 199 200 201 // Returns the minimum of the two parameters. 202 template <typename T> 203 T Min(T a, T b) { 204 return a < b ? a : b; 205 } 206 207 208 inline int StrLength(const char* string) { 209 size_t length = strlen(string); 210 ASSERT(length == static_cast<size_t>(static_cast<int>(length))); 211 return static_cast<int>(length); 212 } 213 214 215 // ---------------------------------------------------------------------------- 216 // BitField is a help template for encoding and decode bitfield with 217 // unsigned content. 218 template<class T, int shift, int size> 219 class BitField { 220 public: 221 // A uint32_t mask of bit field. To use all bits of a uint32 in a 222 // bitfield without compiler warnings we have to compute 2^32 without 223 // using a shift count of 32. 224 static const uint32_t kMask = ((1U << shift) << size) - (1U << shift); 225 226 // Value for the field with all bits set. 227 static const T kMax = static_cast<T>((1U << size) - 1); 228 229 // Tells whether the provided value fits into the bit field. 230 static bool is_valid(T value) { 231 return (static_cast<uint32_t>(value) & ~static_cast<uint32_t>(kMax)) == 0; 232 } 233 234 // Returns a uint32_t with the bit field value encoded. 235 static uint32_t encode(T value) { 236 ASSERT(is_valid(value)); 237 return static_cast<uint32_t>(value) << shift; 238 } 239 240 // Returns a uint32_t with the bit field value updated. 241 static uint32_t update(uint32_t previous, T value) { 242 return (previous & ~kMask) | encode(value); 243 } 244 245 // Extracts the bit field from the value. 246 static T decode(uint32_t value) { 247 return static_cast<T>((value & kMask) >> shift); 248 } 249 }; 250 251 252 // ---------------------------------------------------------------------------- 253 // Hash function. 254 255 static const uint32_t kZeroHashSeed = 0; 256 257 // Thomas Wang, Integer Hash Functions. 258 // http://www.concentric.net/~Ttwang/tech/inthash.htm 259 inline uint32_t ComputeIntegerHash(uint32_t key, uint32_t seed) { 260 uint32_t hash = key; 261 hash = hash ^ seed; 262 hash = ~hash + (hash << 15); // hash = (hash << 15) - hash - 1; 263 hash = hash ^ (hash >> 12); 264 hash = hash + (hash << 2); 265 hash = hash ^ (hash >> 4); 266 hash = hash * 2057; // hash = (hash + (hash << 3)) + (hash << 11); 267 hash = hash ^ (hash >> 16); 268 return hash; 269 } 270 271 272 inline uint32_t ComputeLongHash(uint64_t key) { 273 uint64_t hash = key; 274 hash = ~hash + (hash << 18); // hash = (hash << 18) - hash - 1; 275 hash = hash ^ (hash >> 31); 276 hash = hash * 21; // hash = (hash + (hash << 2)) + (hash << 4); 277 hash = hash ^ (hash >> 11); 278 hash = hash + (hash << 6); 279 hash = hash ^ (hash >> 22); 280 return (uint32_t) hash; 281 } 282 283 284 inline uint32_t ComputePointerHash(void* ptr) { 285 return ComputeIntegerHash( 286 static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr)), 287 v8::internal::kZeroHashSeed); 288 } 289 290 291 // ---------------------------------------------------------------------------- 292 // Miscellaneous 293 294 // A static resource holds a static instance that can be reserved in 295 // a local scope using an instance of Access. Attempts to re-reserve 296 // the instance will cause an error. 297 template <typename T> 298 class StaticResource { 299 public: 300 StaticResource() : is_reserved_(false) {} 301 302 private: 303 template <typename S> friend class Access; 304 T instance_; 305 bool is_reserved_; 306 }; 307 308 309 // Locally scoped access to a static resource. 310 template <typename T> 311 class Access { 312 public: 313 explicit Access(StaticResource<T>* resource) 314 : resource_(resource) 315 , instance_(&resource->instance_) { 316 ASSERT(!resource->is_reserved_); 317 resource->is_reserved_ = true; 318 } 319 320 ~Access() { 321 resource_->is_reserved_ = false; 322 resource_ = NULL; 323 instance_ = NULL; 324 } 325 326 T* value() { return instance_; } 327 T* operator -> () { return instance_; } 328 329 private: 330 StaticResource<T>* resource_; 331 T* instance_; 332 }; 333 334 335 template <typename T> 336 class Vector { 337 public: 338 Vector() : start_(NULL), length_(0) {} 339 Vector(T* data, int length) : start_(data), length_(length) { 340 ASSERT(length == 0 || (length > 0 && data != NULL)); 341 } 342 343 static Vector<T> New(int length) { 344 return Vector<T>(NewArray<T>(length), length); 345 } 346 347 // Returns a vector using the same backing storage as this one, 348 // spanning from and including 'from', to but not including 'to'. 349 Vector<T> SubVector(int from, int to) { 350 ASSERT(to <= length_); 351 ASSERT(from < to); 352 ASSERT(0 <= from); 353 return Vector<T>(start() + from, to - from); 354 } 355 356 // Returns the length of the vector. 357 int length() const { return length_; } 358 359 // Returns whether or not the vector is empty. 360 bool is_empty() const { return length_ == 0; } 361 362 // Returns the pointer to the start of the data in the vector. 363 T* start() const { return start_; } 364 365 // Access individual vector elements - checks bounds in debug mode. 366 T& operator[](int index) const { 367 ASSERT(0 <= index && index < length_); 368 return start_[index]; 369 } 370 371 const T& at(int index) const { return operator[](index); } 372 373 T& first() { return start_[0]; } 374 375 T& last() { return start_[length_ - 1]; } 376 377 // Returns a clone of this vector with a new backing store. 378 Vector<T> Clone() const { 379 T* result = NewArray<T>(length_); 380 for (int i = 0; i < length_; i++) result[i] = start_[i]; 381 return Vector<T>(result, length_); 382 } 383 384 void Sort(int (*cmp)(const T*, const T*)) { 385 typedef int (*RawComparer)(const void*, const void*); 386 qsort(start(), 387 length(), 388 sizeof(T), 389 reinterpret_cast<RawComparer>(cmp)); 390 } 391 392 void Sort() { 393 Sort(PointerValueCompare<T>); 394 } 395 396 void Truncate(int length) { 397 ASSERT(length <= length_); 398 length_ = length; 399 } 400 401 // Releases the array underlying this vector. Once disposed the 402 // vector is empty. 403 void Dispose() { 404 DeleteArray(start_); 405 start_ = NULL; 406 length_ = 0; 407 } 408 409 inline Vector<T> operator+(int offset) { 410 ASSERT(offset < length_); 411 return Vector<T>(start_ + offset, length_ - offset); 412 } 413 414 // Factory method for creating empty vectors. 415 static Vector<T> empty() { return Vector<T>(NULL, 0); } 416 417 template<typename S> 418 static Vector<T> cast(Vector<S> input) { 419 return Vector<T>(reinterpret_cast<T*>(input.start()), 420 input.length() * sizeof(S) / sizeof(T)); 421 } 422 423 protected: 424 void set_start(T* start) { start_ = start; } 425 426 private: 427 T* start_; 428 int length_; 429 }; 430 431 432 // A pointer that can only be set once and doesn't allow NULL values. 433 template<typename T> 434 class SetOncePointer { 435 public: 436 SetOncePointer() : pointer_(NULL) { } 437 438 bool is_set() const { return pointer_ != NULL; } 439 440 T* get() const { 441 ASSERT(pointer_ != NULL); 442 return pointer_; 443 } 444 445 void set(T* value) { 446 ASSERT(pointer_ == NULL && value != NULL); 447 pointer_ = value; 448 } 449 450 private: 451 T* pointer_; 452 }; 453 454 455 template <typename T, int kSize> 456 class EmbeddedVector : public Vector<T> { 457 public: 458 EmbeddedVector() : Vector<T>(buffer_, kSize) { } 459 460 explicit EmbeddedVector(T initial_value) : Vector<T>(buffer_, kSize) { 461 for (int i = 0; i < kSize; ++i) { 462 buffer_[i] = initial_value; 463 } 464 } 465 466 // When copying, make underlying Vector to reference our buffer. 467 EmbeddedVector(const EmbeddedVector& rhs) 468 : Vector<T>(rhs) { 469 memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize); 470 set_start(buffer_); 471 } 472 473 EmbeddedVector& operator=(const EmbeddedVector& rhs) { 474 if (this == &rhs) return *this; 475 Vector<T>::operator=(rhs); 476 memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize); 477 this->set_start(buffer_); 478 return *this; 479 } 480 481 private: 482 T buffer_[kSize]; 483 }; 484 485 486 template <typename T> 487 class ScopedVector : public Vector<T> { 488 public: 489 explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { } 490 ~ScopedVector() { 491 DeleteArray(this->start()); 492 } 493 494 private: 495 DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector); 496 }; 497 498 499 inline Vector<const char> CStrVector(const char* data) { 500 return Vector<const char>(data, StrLength(data)); 501 } 502 503 inline Vector<char> MutableCStrVector(char* data) { 504 return Vector<char>(data, StrLength(data)); 505 } 506 507 inline Vector<char> MutableCStrVector(char* data, int max) { 508 int length = StrLength(data); 509 return Vector<char>(data, (length < max) ? length : max); 510 } 511 512 513 /* 514 * A class that collects values into a backing store. 515 * Specialized versions of the class can allow access to the backing store 516 * in different ways. 517 * There is no guarantee that the backing store is contiguous (and, as a 518 * consequence, no guarantees that consecutively added elements are adjacent 519 * in memory). The collector may move elements unless it has guaranteed not 520 * to. 521 */ 522 template <typename T, int growth_factor = 2, int max_growth = 1 * MB> 523 class Collector { 524 public: 525 explicit Collector(int initial_capacity = kMinCapacity) 526 : index_(0), size_(0) { 527 current_chunk_ = Vector<T>::New(initial_capacity); 528 } 529 530 virtual ~Collector() { 531 // Free backing store (in reverse allocation order). 532 current_chunk_.Dispose(); 533 for (int i = chunks_.length() - 1; i >= 0; i--) { 534 chunks_.at(i).Dispose(); 535 } 536 } 537 538 // Add a single element. 539 inline void Add(T value) { 540 if (index_ >= current_chunk_.length()) { 541 Grow(1); 542 } 543 current_chunk_[index_] = value; 544 index_++; 545 size_++; 546 } 547 548 // Add a block of contiguous elements and return a Vector backed by the 549 // memory area. 550 // A basic Collector will keep this vector valid as long as the Collector 551 // is alive. 552 inline Vector<T> AddBlock(int size, T initial_value) { 553 ASSERT(size > 0); 554 if (size > current_chunk_.length() - index_) { 555 Grow(size); 556 } 557 T* position = current_chunk_.start() + index_; 558 index_ += size; 559 size_ += size; 560 for (int i = 0; i < size; i++) { 561 position[i] = initial_value; 562 } 563 return Vector<T>(position, size); 564 } 565 566 567 // Add a contiguous block of elements and return a vector backed 568 // by the added block. 569 // A basic Collector will keep this vector valid as long as the Collector 570 // is alive. 571 inline Vector<T> AddBlock(Vector<const T> source) { 572 if (source.length() > current_chunk_.length() - index_) { 573 Grow(source.length()); 574 } 575 T* position = current_chunk_.start() + index_; 576 index_ += source.length(); 577 size_ += source.length(); 578 for (int i = 0; i < source.length(); i++) { 579 position[i] = source[i]; 580 } 581 return Vector<T>(position, source.length()); 582 } 583 584 585 // Write the contents of the collector into the provided vector. 586 void WriteTo(Vector<T> destination) { 587 ASSERT(size_ <= destination.length()); 588 int position = 0; 589 for (int i = 0; i < chunks_.length(); i++) { 590 Vector<T> chunk = chunks_.at(i); 591 for (int j = 0; j < chunk.length(); j++) { 592 destination[position] = chunk[j]; 593 position++; 594 } 595 } 596 for (int i = 0; i < index_; i++) { 597 destination[position] = current_chunk_[i]; 598 position++; 599 } 600 } 601 602 // Allocate a single contiguous vector, copy all the collected 603 // elements to the vector, and return it. 604 // The caller is responsible for freeing the memory of the returned 605 // vector (e.g., using Vector::Dispose). 606 Vector<T> ToVector() { 607 Vector<T> new_store = Vector<T>::New(size_); 608 WriteTo(new_store); 609 return new_store; 610 } 611 612 // Resets the collector to be empty. 613 virtual void Reset(); 614 615 // Total number of elements added to collector so far. 616 inline int size() { return size_; } 617 618 protected: 619 static const int kMinCapacity = 16; 620 List<Vector<T> > chunks_; 621 Vector<T> current_chunk_; // Block of memory currently being written into. 622 int index_; // Current index in current chunk. 623 int size_; // Total number of elements in collector. 624 625 // Creates a new current chunk, and stores the old chunk in the chunks_ list. 626 void Grow(int min_capacity) { 627 ASSERT(growth_factor > 1); 628 int new_capacity; 629 int current_length = current_chunk_.length(); 630 if (current_length < kMinCapacity) { 631 // The collector started out as empty. 632 new_capacity = min_capacity * growth_factor; 633 if (new_capacity < kMinCapacity) new_capacity = kMinCapacity; 634 } else { 635 int growth = current_length * (growth_factor - 1); 636 if (growth > max_growth) { 637 growth = max_growth; 638 } 639 new_capacity = current_length + growth; 640 if (new_capacity < min_capacity) { 641 new_capacity = min_capacity + growth; 642 } 643 } 644 NewChunk(new_capacity); 645 ASSERT(index_ + min_capacity <= current_chunk_.length()); 646 } 647 648 // Before replacing the current chunk, give a subclass the option to move 649 // some of the current data into the new chunk. The function may update 650 // the current index_ value to represent data no longer in the current chunk. 651 // Returns the initial index of the new chunk (after copied data). 652 virtual void NewChunk(int new_capacity) { 653 Vector<T> new_chunk = Vector<T>::New(new_capacity); 654 if (index_ > 0) { 655 chunks_.Add(current_chunk_.SubVector(0, index_)); 656 } else { 657 current_chunk_.Dispose(); 658 } 659 current_chunk_ = new_chunk; 660 index_ = 0; 661 } 662 }; 663 664 665 /* 666 * A collector that allows sequences of values to be guaranteed to 667 * stay consecutive. 668 * If the backing store grows while a sequence is active, the current 669 * sequence might be moved, but after the sequence is ended, it will 670 * not move again. 671 * NOTICE: Blocks allocated using Collector::AddBlock(int) can move 672 * as well, if inside an active sequence where another element is added. 673 */ 674 template <typename T, int growth_factor = 2, int max_growth = 1 * MB> 675 class SequenceCollector : public Collector<T, growth_factor, max_growth> { 676 public: 677 explicit SequenceCollector(int initial_capacity) 678 : Collector<T, growth_factor, max_growth>(initial_capacity), 679 sequence_start_(kNoSequence) { } 680 681 virtual ~SequenceCollector() {} 682 683 void StartSequence() { 684 ASSERT(sequence_start_ == kNoSequence); 685 sequence_start_ = this->index_; 686 } 687 688 Vector<T> EndSequence() { 689 ASSERT(sequence_start_ != kNoSequence); 690 int sequence_start = sequence_start_; 691 sequence_start_ = kNoSequence; 692 if (sequence_start == this->index_) return Vector<T>(); 693 return this->current_chunk_.SubVector(sequence_start, this->index_); 694 } 695 696 // Drops the currently added sequence, and all collected elements in it. 697 void DropSequence() { 698 ASSERT(sequence_start_ != kNoSequence); 699 int sequence_length = this->index_ - sequence_start_; 700 this->index_ = sequence_start_; 701 this->size_ -= sequence_length; 702 sequence_start_ = kNoSequence; 703 } 704 705 virtual void Reset() { 706 sequence_start_ = kNoSequence; 707 this->Collector<T, growth_factor, max_growth>::Reset(); 708 } 709 710 private: 711 static const int kNoSequence = -1; 712 int sequence_start_; 713 714 // Move the currently active sequence to the new chunk. 715 virtual void NewChunk(int new_capacity) { 716 if (sequence_start_ == kNoSequence) { 717 // Fall back on default behavior if no sequence has been started. 718 this->Collector<T, growth_factor, max_growth>::NewChunk(new_capacity); 719 return; 720 } 721 int sequence_length = this->index_ - sequence_start_; 722 Vector<T> new_chunk = Vector<T>::New(sequence_length + new_capacity); 723 ASSERT(sequence_length < new_chunk.length()); 724 for (int i = 0; i < sequence_length; i++) { 725 new_chunk[i] = this->current_chunk_[sequence_start_ + i]; 726 } 727 if (sequence_start_ > 0) { 728 this->chunks_.Add(this->current_chunk_.SubVector(0, sequence_start_)); 729 } else { 730 this->current_chunk_.Dispose(); 731 } 732 this->current_chunk_ = new_chunk; 733 this->index_ = sequence_length; 734 sequence_start_ = 0; 735 } 736 }; 737 738 739 // Compare ASCII/16bit chars to ASCII/16bit chars. 740 template <typename lchar, typename rchar> 741 inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) { 742 const lchar* limit = lhs + chars; 743 #ifdef V8_HOST_CAN_READ_UNALIGNED 744 if (sizeof(*lhs) == sizeof(*rhs)) { 745 // Number of characters in a uintptr_t. 746 static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs); // NOLINT 747 while (lhs <= limit - kStepSize) { 748 if (*reinterpret_cast<const uintptr_t*>(lhs) != 749 *reinterpret_cast<const uintptr_t*>(rhs)) { 750 break; 751 } 752 lhs += kStepSize; 753 rhs += kStepSize; 754 } 755 } 756 #endif 757 while (lhs < limit) { 758 int r = static_cast<int>(*lhs) - static_cast<int>(*rhs); 759 if (r != 0) return r; 760 ++lhs; 761 ++rhs; 762 } 763 return 0; 764 } 765 766 767 // Calculate 10^exponent. 768 inline int TenToThe(int exponent) { 769 ASSERT(exponent <= 9); 770 ASSERT(exponent >= 1); 771 int answer = 10; 772 for (int i = 1; i < exponent; i++) answer *= 10; 773 return answer; 774 } 775 776 777 // The type-based aliasing rule allows the compiler to assume that pointers of 778 // different types (for some definition of different) never alias each other. 779 // Thus the following code does not work: 780 // 781 // float f = foo(); 782 // int fbits = *(int*)(&f); 783 // 784 // The compiler 'knows' that the int pointer can't refer to f since the types 785 // don't match, so the compiler may cache f in a register, leaving random data 786 // in fbits. Using C++ style casts makes no difference, however a pointer to 787 // char data is assumed to alias any other pointer. This is the 'memcpy 788 // exception'. 789 // 790 // Bit_cast uses the memcpy exception to move the bits from a variable of one 791 // type of a variable of another type. Of course the end result is likely to 792 // be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005) 793 // will completely optimize BitCast away. 794 // 795 // There is an additional use for BitCast. 796 // Recent gccs will warn when they see casts that may result in breakage due to 797 // the type-based aliasing rule. If you have checked that there is no breakage 798 // you can use BitCast to cast one pointer type to another. This confuses gcc 799 // enough that it can no longer see that you have cast one pointer type to 800 // another thus avoiding the warning. 801 802 // We need different implementations of BitCast for pointer and non-pointer 803 // values. We use partial specialization of auxiliary struct to work around 804 // issues with template functions overloading. 805 template <class Dest, class Source> 806 struct BitCastHelper { 807 STATIC_ASSERT(sizeof(Dest) == sizeof(Source)); 808 809 INLINE(static Dest cast(const Source& source)) { 810 Dest dest; 811 memcpy(&dest, &source, sizeof(dest)); 812 return dest; 813 } 814 }; 815 816 template <class Dest, class Source> 817 struct BitCastHelper<Dest, Source*> { 818 INLINE(static Dest cast(Source* source)) { 819 return BitCastHelper<Dest, uintptr_t>:: 820 cast(reinterpret_cast<uintptr_t>(source)); 821 } 822 }; 823 824 template <class Dest, class Source> 825 INLINE(Dest BitCast(const Source& source)); 826 827 template <class Dest, class Source> 828 inline Dest BitCast(const Source& source) { 829 return BitCastHelper<Dest, Source>::cast(source); 830 } 831 832 833 template<typename ElementType, int NumElements> 834 class EmbeddedContainer { 835 public: 836 EmbeddedContainer() : elems_() { } 837 838 int length() { return NumElements; } 839 ElementType& operator[](int i) { 840 ASSERT(i < length()); 841 return elems_[i]; 842 } 843 844 private: 845 ElementType elems_[NumElements]; 846 }; 847 848 849 template<typename ElementType> 850 class EmbeddedContainer<ElementType, 0> { 851 public: 852 int length() { return 0; } 853 ElementType& operator[](int i) { 854 UNREACHABLE(); 855 static ElementType t = 0; 856 return t; 857 } 858 }; 859 860 861 // Helper class for building result strings in a character buffer. The 862 // purpose of the class is to use safe operations that checks the 863 // buffer bounds on all operations in debug mode. 864 // This simple base class does not allow formatted output. 865 class SimpleStringBuilder { 866 public: 867 // Create a string builder with a buffer of the given size. The 868 // buffer is allocated through NewArray<char> and must be 869 // deallocated by the caller of Finalize(). 870 explicit SimpleStringBuilder(int size); 871 872 SimpleStringBuilder(char* buffer, int size) 873 : buffer_(buffer, size), position_(0) { } 874 875 ~SimpleStringBuilder() { if (!is_finalized()) Finalize(); } 876 877 int size() const { return buffer_.length(); } 878 879 // Get the current position in the builder. 880 int position() const { 881 ASSERT(!is_finalized()); 882 return position_; 883 } 884 885 // Reset the position. 886 void Reset() { position_ = 0; } 887 888 // Add a single character to the builder. It is not allowed to add 889 // 0-characters; use the Finalize() method to terminate the string 890 // instead. 891 void AddCharacter(char c) { 892 ASSERT(c != '\0'); 893 ASSERT(!is_finalized() && position_ < buffer_.length()); 894 buffer_[position_++] = c; 895 } 896 897 // Add an entire string to the builder. Uses strlen() internally to 898 // compute the length of the input string. 899 void AddString(const char* s); 900 901 // Add the first 'n' characters of the given string 's' to the 902 // builder. The input string must have enough characters. 903 void AddSubstring(const char* s, int n); 904 905 // Add character padding to the builder. If count is non-positive, 906 // nothing is added to the builder. 907 void AddPadding(char c, int count); 908 909 // Add the decimal representation of the value. 910 void AddDecimalInteger(int value); 911 912 // Finalize the string by 0-terminating it and returning the buffer. 913 char* Finalize(); 914 915 protected: 916 Vector<char> buffer_; 917 int position_; 918 919 bool is_finalized() const { return position_ < 0; } 920 921 private: 922 DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder); 923 }; 924 925 926 // A poor man's version of STL's bitset: A bit set of enums E (without explicit 927 // values), fitting into an integral type T. 928 template <class E, class T = int> 929 class EnumSet { 930 public: 931 explicit EnumSet(T bits = 0) : bits_(bits) {} 932 bool IsEmpty() const { return bits_ == 0; } 933 bool Contains(E element) const { return (bits_ & Mask(element)) != 0; } 934 bool ContainsAnyOf(const EnumSet& set) const { 935 return (bits_ & set.bits_) != 0; 936 } 937 void Add(E element) { bits_ |= Mask(element); } 938 void Add(const EnumSet& set) { bits_ |= set.bits_; } 939 void Remove(E element) { bits_ &= ~Mask(element); } 940 void Remove(const EnumSet& set) { bits_ &= ~set.bits_; } 941 void RemoveAll() { bits_ = 0; } 942 void Intersect(const EnumSet& set) { bits_ &= set.bits_; } 943 T ToIntegral() const { return bits_; } 944 bool operator==(const EnumSet& set) { return bits_ == set.bits_; } 945 946 private: 947 T Mask(E element) const { 948 // The strange typing in ASSERT is necessary to avoid stupid warnings, see: 949 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43680 950 ASSERT(element < static_cast<int>(sizeof(T) * CHAR_BIT)); 951 return 1 << element; 952 } 953 954 T bits_; 955 }; 956 957 } } // namespace v8::internal 958 959 #endif // V8_UTILS_H_ 960