Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_UTILS_H_
     29 #define V8_UTILS_H_
     30 
     31 #include <stdlib.h>
     32 #include <string.h>
     33 #include <climits>
     34 
     35 #include "globals.h"
     36 #include "checks.h"
     37 #include "allocation.h"
     38 
     39 namespace v8 {
     40 namespace internal {
     41 
     42 // ----------------------------------------------------------------------------
     43 // General helper functions
     44 
     45 #define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0)
     46 
     47 // Returns true iff x is a power of 2 (or zero). Cannot be used with the
     48 // maximally negative value of the type T (the -1 overflows).
     49 template <typename T>
     50 inline bool IsPowerOf2(T x) {
     51   return IS_POWER_OF_TWO(x);
     52 }
     53 
     54 
     55 // X must be a power of 2.  Returns the number of trailing zeros.
     56 inline int WhichPowerOf2(uint32_t x) {
     57   ASSERT(IsPowerOf2(x));
     58   ASSERT(x != 0);
     59   int bits = 0;
     60 #ifdef DEBUG
     61   int original_x = x;
     62 #endif
     63   if (x >= 0x10000) {
     64     bits += 16;
     65     x >>= 16;
     66   }
     67   if (x >= 0x100) {
     68     bits += 8;
     69     x >>= 8;
     70   }
     71   if (x >= 0x10) {
     72     bits += 4;
     73     x >>= 4;
     74   }
     75   switch (x) {
     76     default: UNREACHABLE();
     77     case 8: bits++;  // Fall through.
     78     case 4: bits++;  // Fall through.
     79     case 2: bits++;  // Fall through.
     80     case 1: break;
     81   }
     82   ASSERT_EQ(1 << bits, original_x);
     83   return bits;
     84   return 0;
     85 }
     86 
     87 
     88 // The C++ standard leaves the semantics of '>>' undefined for
     89 // negative signed operands. Most implementations do the right thing,
     90 // though.
     91 inline int ArithmeticShiftRight(int x, int s) {
     92   return x >> s;
     93 }
     94 
     95 
     96 // Compute the 0-relative offset of some absolute value x of type T.
     97 // This allows conversion of Addresses and integral types into
     98 // 0-relative int offsets.
     99 template <typename T>
    100 inline intptr_t OffsetFrom(T x) {
    101   return x - static_cast<T>(0);
    102 }
    103 
    104 
    105 // Compute the absolute value of type T for some 0-relative offset x.
    106 // This allows conversion of 0-relative int offsets into Addresses and
    107 // integral types.
    108 template <typename T>
    109 inline T AddressFrom(intptr_t x) {
    110   return static_cast<T>(static_cast<T>(0) + x);
    111 }
    112 
    113 
    114 // Return the largest multiple of m which is <= x.
    115 template <typename T>
    116 inline T RoundDown(T x, intptr_t m) {
    117   ASSERT(IsPowerOf2(m));
    118   return AddressFrom<T>(OffsetFrom(x) & -m);
    119 }
    120 
    121 
    122 // Return the smallest multiple of m which is >= x.
    123 template <typename T>
    124 inline T RoundUp(T x, intptr_t m) {
    125   return RoundDown<T>(static_cast<T>(x + m - 1), m);
    126 }
    127 
    128 
    129 template <typename T>
    130 int Compare(const T& a, const T& b) {
    131   if (a == b)
    132     return 0;
    133   else if (a < b)
    134     return -1;
    135   else
    136     return 1;
    137 }
    138 
    139 
    140 template <typename T>
    141 int PointerValueCompare(const T* a, const T* b) {
    142   return Compare<T>(*a, *b);
    143 }
    144 
    145 
    146 // Compare function to compare the object pointer value of two
    147 // handlified objects. The handles are passed as pointers to the
    148 // handles.
    149 template<typename T> class Handle;  // Forward declaration.
    150 template <typename T>
    151 int HandleObjectPointerCompare(const Handle<T>* a, const Handle<T>* b) {
    152   return Compare<T*>(*(*a), *(*b));
    153 }
    154 
    155 
    156 // Returns the smallest power of two which is >= x. If you pass in a
    157 // number that is already a power of two, it is returned as is.
    158 // Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
    159 // figure 3-3, page 48, where the function is called clp2.
    160 inline uint32_t RoundUpToPowerOf2(uint32_t x) {
    161   ASSERT(x <= 0x80000000u);
    162   x = x - 1;
    163   x = x | (x >> 1);
    164   x = x | (x >> 2);
    165   x = x | (x >> 4);
    166   x = x | (x >> 8);
    167   x = x | (x >> 16);
    168   return x + 1;
    169 }
    170 
    171 
    172 inline uint32_t RoundDownToPowerOf2(uint32_t x) {
    173   uint32_t rounded_up = RoundUpToPowerOf2(x);
    174   if (rounded_up > x) return rounded_up >> 1;
    175   return rounded_up;
    176 }
    177 
    178 
    179 template <typename T, typename U>
    180 inline bool IsAligned(T value, U alignment) {
    181   return (value & (alignment - 1)) == 0;
    182 }
    183 
    184 
    185 // Returns true if (addr + offset) is aligned.
    186 inline bool IsAddressAligned(Address addr,
    187                              intptr_t alignment,
    188                              int offset = 0) {
    189   intptr_t offs = OffsetFrom(addr + offset);
    190   return IsAligned(offs, alignment);
    191 }
    192 
    193 
    194 // Returns the maximum of the two parameters.
    195 template <typename T>
    196 T Max(T a, T b) {
    197   return a < b ? b : a;
    198 }
    199 
    200 
    201 // Returns the minimum of the two parameters.
    202 template <typename T>
    203 T Min(T a, T b) {
    204   return a < b ? a : b;
    205 }
    206 
    207 
    208 inline int StrLength(const char* string) {
    209   size_t length = strlen(string);
    210   ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
    211   return static_cast<int>(length);
    212 }
    213 
    214 
    215 // ----------------------------------------------------------------------------
    216 // BitField is a help template for encoding and decode bitfield with
    217 // unsigned content.
    218 template<class T, int shift, int size>
    219 class BitField {
    220  public:
    221   // A uint32_t mask of bit field.  To use all bits of a uint32 in a
    222   // bitfield without compiler warnings we have to compute 2^32 without
    223   // using a shift count of 32.
    224   static const uint32_t kMask = ((1U << shift) << size) - (1U << shift);
    225 
    226   // Value for the field with all bits set.
    227   static const T kMax = static_cast<T>((1U << size) - 1);
    228 
    229   // Tells whether the provided value fits into the bit field.
    230   static bool is_valid(T value) {
    231     return (static_cast<uint32_t>(value) & ~static_cast<uint32_t>(kMax)) == 0;
    232   }
    233 
    234   // Returns a uint32_t with the bit field value encoded.
    235   static uint32_t encode(T value) {
    236     ASSERT(is_valid(value));
    237     return static_cast<uint32_t>(value) << shift;
    238   }
    239 
    240   // Returns a uint32_t with the bit field value updated.
    241   static uint32_t update(uint32_t previous, T value) {
    242     return (previous & ~kMask) | encode(value);
    243   }
    244 
    245   // Extracts the bit field from the value.
    246   static T decode(uint32_t value) {
    247     return static_cast<T>((value & kMask) >> shift);
    248   }
    249 };
    250 
    251 
    252 // ----------------------------------------------------------------------------
    253 // Hash function.
    254 
    255 static const uint32_t kZeroHashSeed = 0;
    256 
    257 // Thomas Wang, Integer Hash Functions.
    258 // http://www.concentric.net/~Ttwang/tech/inthash.htm
    259 inline uint32_t ComputeIntegerHash(uint32_t key, uint32_t seed) {
    260   uint32_t hash = key;
    261   hash = hash ^ seed;
    262   hash = ~hash + (hash << 15);  // hash = (hash << 15) - hash - 1;
    263   hash = hash ^ (hash >> 12);
    264   hash = hash + (hash << 2);
    265   hash = hash ^ (hash >> 4);
    266   hash = hash * 2057;  // hash = (hash + (hash << 3)) + (hash << 11);
    267   hash = hash ^ (hash >> 16);
    268   return hash;
    269 }
    270 
    271 
    272 inline uint32_t ComputeLongHash(uint64_t key) {
    273   uint64_t hash = key;
    274   hash = ~hash + (hash << 18);  // hash = (hash << 18) - hash - 1;
    275   hash = hash ^ (hash >> 31);
    276   hash = hash * 21;  // hash = (hash + (hash << 2)) + (hash << 4);
    277   hash = hash ^ (hash >> 11);
    278   hash = hash + (hash << 6);
    279   hash = hash ^ (hash >> 22);
    280   return (uint32_t) hash;
    281 }
    282 
    283 
    284 inline uint32_t ComputePointerHash(void* ptr) {
    285   return ComputeIntegerHash(
    286       static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr)),
    287       v8::internal::kZeroHashSeed);
    288 }
    289 
    290 
    291 // ----------------------------------------------------------------------------
    292 // Miscellaneous
    293 
    294 // A static resource holds a static instance that can be reserved in
    295 // a local scope using an instance of Access.  Attempts to re-reserve
    296 // the instance will cause an error.
    297 template <typename T>
    298 class StaticResource {
    299  public:
    300   StaticResource() : is_reserved_(false)  {}
    301 
    302  private:
    303   template <typename S> friend class Access;
    304   T instance_;
    305   bool is_reserved_;
    306 };
    307 
    308 
    309 // Locally scoped access to a static resource.
    310 template <typename T>
    311 class Access {
    312  public:
    313   explicit Access(StaticResource<T>* resource)
    314     : resource_(resource)
    315     , instance_(&resource->instance_) {
    316     ASSERT(!resource->is_reserved_);
    317     resource->is_reserved_ = true;
    318   }
    319 
    320   ~Access() {
    321     resource_->is_reserved_ = false;
    322     resource_ = NULL;
    323     instance_ = NULL;
    324   }
    325 
    326   T* value()  { return instance_; }
    327   T* operator -> ()  { return instance_; }
    328 
    329  private:
    330   StaticResource<T>* resource_;
    331   T* instance_;
    332 };
    333 
    334 
    335 template <typename T>
    336 class Vector {
    337  public:
    338   Vector() : start_(NULL), length_(0) {}
    339   Vector(T* data, int length) : start_(data), length_(length) {
    340     ASSERT(length == 0 || (length > 0 && data != NULL));
    341   }
    342 
    343   static Vector<T> New(int length) {
    344     return Vector<T>(NewArray<T>(length), length);
    345   }
    346 
    347   // Returns a vector using the same backing storage as this one,
    348   // spanning from and including 'from', to but not including 'to'.
    349   Vector<T> SubVector(int from, int to) {
    350     ASSERT(to <= length_);
    351     ASSERT(from < to);
    352     ASSERT(0 <= from);
    353     return Vector<T>(start() + from, to - from);
    354   }
    355 
    356   // Returns the length of the vector.
    357   int length() const { return length_; }
    358 
    359   // Returns whether or not the vector is empty.
    360   bool is_empty() const { return length_ == 0; }
    361 
    362   // Returns the pointer to the start of the data in the vector.
    363   T* start() const { return start_; }
    364 
    365   // Access individual vector elements - checks bounds in debug mode.
    366   T& operator[](int index) const {
    367     ASSERT(0 <= index && index < length_);
    368     return start_[index];
    369   }
    370 
    371   const T& at(int index) const { return operator[](index); }
    372 
    373   T& first() { return start_[0]; }
    374 
    375   T& last() { return start_[length_ - 1]; }
    376 
    377   // Returns a clone of this vector with a new backing store.
    378   Vector<T> Clone() const {
    379     T* result = NewArray<T>(length_);
    380     for (int i = 0; i < length_; i++) result[i] = start_[i];
    381     return Vector<T>(result, length_);
    382   }
    383 
    384   void Sort(int (*cmp)(const T*, const T*)) {
    385     typedef int (*RawComparer)(const void*, const void*);
    386     qsort(start(),
    387           length(),
    388           sizeof(T),
    389           reinterpret_cast<RawComparer>(cmp));
    390   }
    391 
    392   void Sort() {
    393     Sort(PointerValueCompare<T>);
    394   }
    395 
    396   void Truncate(int length) {
    397     ASSERT(length <= length_);
    398     length_ = length;
    399   }
    400 
    401   // Releases the array underlying this vector. Once disposed the
    402   // vector is empty.
    403   void Dispose() {
    404     DeleteArray(start_);
    405     start_ = NULL;
    406     length_ = 0;
    407   }
    408 
    409   inline Vector<T> operator+(int offset) {
    410     ASSERT(offset < length_);
    411     return Vector<T>(start_ + offset, length_ - offset);
    412   }
    413 
    414   // Factory method for creating empty vectors.
    415   static Vector<T> empty() { return Vector<T>(NULL, 0); }
    416 
    417   template<typename S>
    418   static Vector<T> cast(Vector<S> input) {
    419     return Vector<T>(reinterpret_cast<T*>(input.start()),
    420                      input.length() * sizeof(S) / sizeof(T));
    421   }
    422 
    423  protected:
    424   void set_start(T* start) { start_ = start; }
    425 
    426  private:
    427   T* start_;
    428   int length_;
    429 };
    430 
    431 
    432 // A pointer that can only be set once and doesn't allow NULL values.
    433 template<typename T>
    434 class SetOncePointer {
    435  public:
    436   SetOncePointer() : pointer_(NULL) { }
    437 
    438   bool is_set() const { return pointer_ != NULL; }
    439 
    440   T* get() const {
    441     ASSERT(pointer_ != NULL);
    442     return pointer_;
    443   }
    444 
    445   void set(T* value) {
    446     ASSERT(pointer_ == NULL && value != NULL);
    447     pointer_ = value;
    448   }
    449 
    450  private:
    451   T* pointer_;
    452 };
    453 
    454 
    455 template <typename T, int kSize>
    456 class EmbeddedVector : public Vector<T> {
    457  public:
    458   EmbeddedVector() : Vector<T>(buffer_, kSize) { }
    459 
    460   explicit EmbeddedVector(T initial_value) : Vector<T>(buffer_, kSize) {
    461     for (int i = 0; i < kSize; ++i) {
    462       buffer_[i] = initial_value;
    463     }
    464   }
    465 
    466   // When copying, make underlying Vector to reference our buffer.
    467   EmbeddedVector(const EmbeddedVector& rhs)
    468       : Vector<T>(rhs) {
    469     memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
    470     set_start(buffer_);
    471   }
    472 
    473   EmbeddedVector& operator=(const EmbeddedVector& rhs) {
    474     if (this == &rhs) return *this;
    475     Vector<T>::operator=(rhs);
    476     memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
    477     this->set_start(buffer_);
    478     return *this;
    479   }
    480 
    481  private:
    482   T buffer_[kSize];
    483 };
    484 
    485 
    486 template <typename T>
    487 class ScopedVector : public Vector<T> {
    488  public:
    489   explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
    490   ~ScopedVector() {
    491     DeleteArray(this->start());
    492   }
    493 
    494  private:
    495   DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector);
    496 };
    497 
    498 
    499 inline Vector<const char> CStrVector(const char* data) {
    500   return Vector<const char>(data, StrLength(data));
    501 }
    502 
    503 inline Vector<char> MutableCStrVector(char* data) {
    504   return Vector<char>(data, StrLength(data));
    505 }
    506 
    507 inline Vector<char> MutableCStrVector(char* data, int max) {
    508   int length = StrLength(data);
    509   return Vector<char>(data, (length < max) ? length : max);
    510 }
    511 
    512 
    513 /*
    514  * A class that collects values into a backing store.
    515  * Specialized versions of the class can allow access to the backing store
    516  * in different ways.
    517  * There is no guarantee that the backing store is contiguous (and, as a
    518  * consequence, no guarantees that consecutively added elements are adjacent
    519  * in memory). The collector may move elements unless it has guaranteed not
    520  * to.
    521  */
    522 template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
    523 class Collector {
    524  public:
    525   explicit Collector(int initial_capacity = kMinCapacity)
    526       : index_(0), size_(0) {
    527     current_chunk_ = Vector<T>::New(initial_capacity);
    528   }
    529 
    530   virtual ~Collector() {
    531     // Free backing store (in reverse allocation order).
    532     current_chunk_.Dispose();
    533     for (int i = chunks_.length() - 1; i >= 0; i--) {
    534       chunks_.at(i).Dispose();
    535     }
    536   }
    537 
    538   // Add a single element.
    539   inline void Add(T value) {
    540     if (index_ >= current_chunk_.length()) {
    541       Grow(1);
    542     }
    543     current_chunk_[index_] = value;
    544     index_++;
    545     size_++;
    546   }
    547 
    548   // Add a block of contiguous elements and return a Vector backed by the
    549   // memory area.
    550   // A basic Collector will keep this vector valid as long as the Collector
    551   // is alive.
    552   inline Vector<T> AddBlock(int size, T initial_value) {
    553     ASSERT(size > 0);
    554     if (size > current_chunk_.length() - index_) {
    555       Grow(size);
    556     }
    557     T* position = current_chunk_.start() + index_;
    558     index_ += size;
    559     size_ += size;
    560     for (int i = 0; i < size; i++) {
    561       position[i] = initial_value;
    562     }
    563     return Vector<T>(position, size);
    564   }
    565 
    566 
    567   // Add a contiguous block of elements and return a vector backed
    568   // by the added block.
    569   // A basic Collector will keep this vector valid as long as the Collector
    570   // is alive.
    571   inline Vector<T> AddBlock(Vector<const T> source) {
    572     if (source.length() > current_chunk_.length() - index_) {
    573       Grow(source.length());
    574     }
    575     T* position = current_chunk_.start() + index_;
    576     index_ += source.length();
    577     size_ += source.length();
    578     for (int i = 0; i < source.length(); i++) {
    579       position[i] = source[i];
    580     }
    581     return Vector<T>(position, source.length());
    582   }
    583 
    584 
    585   // Write the contents of the collector into the provided vector.
    586   void WriteTo(Vector<T> destination) {
    587     ASSERT(size_ <= destination.length());
    588     int position = 0;
    589     for (int i = 0; i < chunks_.length(); i++) {
    590       Vector<T> chunk = chunks_.at(i);
    591       for (int j = 0; j < chunk.length(); j++) {
    592         destination[position] = chunk[j];
    593         position++;
    594       }
    595     }
    596     for (int i = 0; i < index_; i++) {
    597       destination[position] = current_chunk_[i];
    598       position++;
    599     }
    600   }
    601 
    602   // Allocate a single contiguous vector, copy all the collected
    603   // elements to the vector, and return it.
    604   // The caller is responsible for freeing the memory of the returned
    605   // vector (e.g., using Vector::Dispose).
    606   Vector<T> ToVector() {
    607     Vector<T> new_store = Vector<T>::New(size_);
    608     WriteTo(new_store);
    609     return new_store;
    610   }
    611 
    612   // Resets the collector to be empty.
    613   virtual void Reset();
    614 
    615   // Total number of elements added to collector so far.
    616   inline int size() { return size_; }
    617 
    618  protected:
    619   static const int kMinCapacity = 16;
    620   List<Vector<T> > chunks_;
    621   Vector<T> current_chunk_;  // Block of memory currently being written into.
    622   int index_;  // Current index in current chunk.
    623   int size_;  // Total number of elements in collector.
    624 
    625   // Creates a new current chunk, and stores the old chunk in the chunks_ list.
    626   void Grow(int min_capacity) {
    627     ASSERT(growth_factor > 1);
    628     int new_capacity;
    629     int current_length = current_chunk_.length();
    630     if (current_length < kMinCapacity) {
    631       // The collector started out as empty.
    632       new_capacity = min_capacity * growth_factor;
    633       if (new_capacity < kMinCapacity) new_capacity = kMinCapacity;
    634     } else {
    635       int growth = current_length * (growth_factor - 1);
    636       if (growth > max_growth) {
    637         growth = max_growth;
    638       }
    639       new_capacity = current_length + growth;
    640       if (new_capacity < min_capacity) {
    641         new_capacity = min_capacity + growth;
    642       }
    643     }
    644     NewChunk(new_capacity);
    645     ASSERT(index_ + min_capacity <= current_chunk_.length());
    646   }
    647 
    648   // Before replacing the current chunk, give a subclass the option to move
    649   // some of the current data into the new chunk. The function may update
    650   // the current index_ value to represent data no longer in the current chunk.
    651   // Returns the initial index of the new chunk (after copied data).
    652   virtual void NewChunk(int new_capacity)  {
    653     Vector<T> new_chunk = Vector<T>::New(new_capacity);
    654     if (index_ > 0) {
    655       chunks_.Add(current_chunk_.SubVector(0, index_));
    656     } else {
    657       current_chunk_.Dispose();
    658     }
    659     current_chunk_ = new_chunk;
    660     index_ = 0;
    661   }
    662 };
    663 
    664 
    665 /*
    666  * A collector that allows sequences of values to be guaranteed to
    667  * stay consecutive.
    668  * If the backing store grows while a sequence is active, the current
    669  * sequence might be moved, but after the sequence is ended, it will
    670  * not move again.
    671  * NOTICE: Blocks allocated using Collector::AddBlock(int) can move
    672  * as well, if inside an active sequence where another element is added.
    673  */
    674 template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
    675 class SequenceCollector : public Collector<T, growth_factor, max_growth> {
    676  public:
    677   explicit SequenceCollector(int initial_capacity)
    678       : Collector<T, growth_factor, max_growth>(initial_capacity),
    679         sequence_start_(kNoSequence) { }
    680 
    681   virtual ~SequenceCollector() {}
    682 
    683   void StartSequence() {
    684     ASSERT(sequence_start_ == kNoSequence);
    685     sequence_start_ = this->index_;
    686   }
    687 
    688   Vector<T> EndSequence() {
    689     ASSERT(sequence_start_ != kNoSequence);
    690     int sequence_start = sequence_start_;
    691     sequence_start_ = kNoSequence;
    692     if (sequence_start == this->index_) return Vector<T>();
    693     return this->current_chunk_.SubVector(sequence_start, this->index_);
    694   }
    695 
    696   // Drops the currently added sequence, and all collected elements in it.
    697   void DropSequence() {
    698     ASSERT(sequence_start_ != kNoSequence);
    699     int sequence_length = this->index_ - sequence_start_;
    700     this->index_ = sequence_start_;
    701     this->size_ -= sequence_length;
    702     sequence_start_ = kNoSequence;
    703   }
    704 
    705   virtual void Reset() {
    706     sequence_start_ = kNoSequence;
    707     this->Collector<T, growth_factor, max_growth>::Reset();
    708   }
    709 
    710  private:
    711   static const int kNoSequence = -1;
    712   int sequence_start_;
    713 
    714   // Move the currently active sequence to the new chunk.
    715   virtual void NewChunk(int new_capacity) {
    716     if (sequence_start_ == kNoSequence) {
    717       // Fall back on default behavior if no sequence has been started.
    718       this->Collector<T, growth_factor, max_growth>::NewChunk(new_capacity);
    719       return;
    720     }
    721     int sequence_length = this->index_ - sequence_start_;
    722     Vector<T> new_chunk = Vector<T>::New(sequence_length + new_capacity);
    723     ASSERT(sequence_length < new_chunk.length());
    724     for (int i = 0; i < sequence_length; i++) {
    725       new_chunk[i] = this->current_chunk_[sequence_start_ + i];
    726     }
    727     if (sequence_start_ > 0) {
    728       this->chunks_.Add(this->current_chunk_.SubVector(0, sequence_start_));
    729     } else {
    730       this->current_chunk_.Dispose();
    731     }
    732     this->current_chunk_ = new_chunk;
    733     this->index_ = sequence_length;
    734     sequence_start_ = 0;
    735   }
    736 };
    737 
    738 
    739 // Compare ASCII/16bit chars to ASCII/16bit chars.
    740 template <typename lchar, typename rchar>
    741 inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) {
    742   const lchar* limit = lhs + chars;
    743 #ifdef V8_HOST_CAN_READ_UNALIGNED
    744   if (sizeof(*lhs) == sizeof(*rhs)) {
    745     // Number of characters in a uintptr_t.
    746     static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs);  // NOLINT
    747     while (lhs <= limit - kStepSize) {
    748       if (*reinterpret_cast<const uintptr_t*>(lhs) !=
    749           *reinterpret_cast<const uintptr_t*>(rhs)) {
    750         break;
    751       }
    752       lhs += kStepSize;
    753       rhs += kStepSize;
    754     }
    755   }
    756 #endif
    757   while (lhs < limit) {
    758     int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
    759     if (r != 0) return r;
    760     ++lhs;
    761     ++rhs;
    762   }
    763   return 0;
    764 }
    765 
    766 
    767 // Calculate 10^exponent.
    768 inline int TenToThe(int exponent) {
    769   ASSERT(exponent <= 9);
    770   ASSERT(exponent >= 1);
    771   int answer = 10;
    772   for (int i = 1; i < exponent; i++) answer *= 10;
    773   return answer;
    774 }
    775 
    776 
    777 // The type-based aliasing rule allows the compiler to assume that pointers of
    778 // different types (for some definition of different) never alias each other.
    779 // Thus the following code does not work:
    780 //
    781 // float f = foo();
    782 // int fbits = *(int*)(&f);
    783 //
    784 // The compiler 'knows' that the int pointer can't refer to f since the types
    785 // don't match, so the compiler may cache f in a register, leaving random data
    786 // in fbits.  Using C++ style casts makes no difference, however a pointer to
    787 // char data is assumed to alias any other pointer.  This is the 'memcpy
    788 // exception'.
    789 //
    790 // Bit_cast uses the memcpy exception to move the bits from a variable of one
    791 // type of a variable of another type.  Of course the end result is likely to
    792 // be implementation dependent.  Most compilers (gcc-4.2 and MSVC 2005)
    793 // will completely optimize BitCast away.
    794 //
    795 // There is an additional use for BitCast.
    796 // Recent gccs will warn when they see casts that may result in breakage due to
    797 // the type-based aliasing rule.  If you have checked that there is no breakage
    798 // you can use BitCast to cast one pointer type to another.  This confuses gcc
    799 // enough that it can no longer see that you have cast one pointer type to
    800 // another thus avoiding the warning.
    801 
    802 // We need different implementations of BitCast for pointer and non-pointer
    803 // values. We use partial specialization of auxiliary struct to work around
    804 // issues with template functions overloading.
    805 template <class Dest, class Source>
    806 struct BitCastHelper {
    807   STATIC_ASSERT(sizeof(Dest) == sizeof(Source));
    808 
    809   INLINE(static Dest cast(const Source& source)) {
    810     Dest dest;
    811     memcpy(&dest, &source, sizeof(dest));
    812     return dest;
    813   }
    814 };
    815 
    816 template <class Dest, class Source>
    817 struct BitCastHelper<Dest, Source*> {
    818   INLINE(static Dest cast(Source* source)) {
    819     return BitCastHelper<Dest, uintptr_t>::
    820         cast(reinterpret_cast<uintptr_t>(source));
    821   }
    822 };
    823 
    824 template <class Dest, class Source>
    825 INLINE(Dest BitCast(const Source& source));
    826 
    827 template <class Dest, class Source>
    828 inline Dest BitCast(const Source& source) {
    829   return BitCastHelper<Dest, Source>::cast(source);
    830 }
    831 
    832 
    833 template<typename ElementType, int NumElements>
    834 class EmbeddedContainer {
    835  public:
    836   EmbeddedContainer() : elems_() { }
    837 
    838   int length() { return NumElements; }
    839   ElementType& operator[](int i) {
    840     ASSERT(i < length());
    841     return elems_[i];
    842   }
    843 
    844  private:
    845   ElementType elems_[NumElements];
    846 };
    847 
    848 
    849 template<typename ElementType>
    850 class EmbeddedContainer<ElementType, 0> {
    851  public:
    852   int length() { return 0; }
    853   ElementType& operator[](int i) {
    854     UNREACHABLE();
    855     static ElementType t = 0;
    856     return t;
    857   }
    858 };
    859 
    860 
    861 // Helper class for building result strings in a character buffer. The
    862 // purpose of the class is to use safe operations that checks the
    863 // buffer bounds on all operations in debug mode.
    864 // This simple base class does not allow formatted output.
    865 class SimpleStringBuilder {
    866  public:
    867   // Create a string builder with a buffer of the given size. The
    868   // buffer is allocated through NewArray<char> and must be
    869   // deallocated by the caller of Finalize().
    870   explicit SimpleStringBuilder(int size);
    871 
    872   SimpleStringBuilder(char* buffer, int size)
    873       : buffer_(buffer, size), position_(0) { }
    874 
    875   ~SimpleStringBuilder() { if (!is_finalized()) Finalize(); }
    876 
    877   int size() const { return buffer_.length(); }
    878 
    879   // Get the current position in the builder.
    880   int position() const {
    881     ASSERT(!is_finalized());
    882     return position_;
    883   }
    884 
    885   // Reset the position.
    886   void Reset() { position_ = 0; }
    887 
    888   // Add a single character to the builder. It is not allowed to add
    889   // 0-characters; use the Finalize() method to terminate the string
    890   // instead.
    891   void AddCharacter(char c) {
    892     ASSERT(c != '\0');
    893     ASSERT(!is_finalized() && position_ < buffer_.length());
    894     buffer_[position_++] = c;
    895   }
    896 
    897   // Add an entire string to the builder. Uses strlen() internally to
    898   // compute the length of the input string.
    899   void AddString(const char* s);
    900 
    901   // Add the first 'n' characters of the given string 's' to the
    902   // builder. The input string must have enough characters.
    903   void AddSubstring(const char* s, int n);
    904 
    905   // Add character padding to the builder. If count is non-positive,
    906   // nothing is added to the builder.
    907   void AddPadding(char c, int count);
    908 
    909   // Add the decimal representation of the value.
    910   void AddDecimalInteger(int value);
    911 
    912   // Finalize the string by 0-terminating it and returning the buffer.
    913   char* Finalize();
    914 
    915  protected:
    916   Vector<char> buffer_;
    917   int position_;
    918 
    919   bool is_finalized() const { return position_ < 0; }
    920 
    921  private:
    922   DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder);
    923 };
    924 
    925 
    926 // A poor man's version of STL's bitset: A bit set of enums E (without explicit
    927 // values), fitting into an integral type T.
    928 template <class E, class T = int>
    929 class EnumSet {
    930  public:
    931   explicit EnumSet(T bits = 0) : bits_(bits) {}
    932   bool IsEmpty() const { return bits_ == 0; }
    933   bool Contains(E element) const { return (bits_ & Mask(element)) != 0; }
    934   bool ContainsAnyOf(const EnumSet& set) const {
    935     return (bits_ & set.bits_) != 0;
    936   }
    937   void Add(E element) { bits_ |= Mask(element); }
    938   void Add(const EnumSet& set) { bits_ |= set.bits_; }
    939   void Remove(E element) { bits_ &= ~Mask(element); }
    940   void Remove(const EnumSet& set) { bits_ &= ~set.bits_; }
    941   void RemoveAll() { bits_ = 0; }
    942   void Intersect(const EnumSet& set) { bits_ &= set.bits_; }
    943   T ToIntegral() const { return bits_; }
    944   bool operator==(const EnumSet& set) { return bits_ == set.bits_; }
    945 
    946  private:
    947   T Mask(E element) const {
    948     // The strange typing in ASSERT is necessary to avoid stupid warnings, see:
    949     // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43680
    950     ASSERT(element < static_cast<int>(sizeof(T) * CHAR_BIT));
    951     return 1 << element;
    952   }
    953 
    954   T bits_;
    955 };
    956 
    957 } }  // namespace v8::internal
    958 
    959 #endif  // V8_UTILS_H_
    960