Home | History | Annotate | Download | only in CodeGen
      1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Objective-C code as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGDebugInfo.h"
     15 #include "CGObjCRuntime.h"
     16 #include "CodeGenFunction.h"
     17 #include "CodeGenModule.h"
     18 #include "TargetInfo.h"
     19 #include "clang/AST/ASTContext.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/StmtObjC.h"
     22 #include "clang/Basic/Diagnostic.h"
     23 #include "llvm/ADT/STLExtras.h"
     24 #include "llvm/Support/CallSite.h"
     25 #include "llvm/IR/DataLayout.h"
     26 #include "llvm/IR/InlineAsm.h"
     27 using namespace clang;
     28 using namespace CodeGen;
     29 
     30 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
     31 static TryEmitResult
     32 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
     33 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
     34                                       QualType ET,
     35                                       const ObjCMethodDecl *Method,
     36                                       RValue Result);
     37 
     38 /// Given the address of a variable of pointer type, find the correct
     39 /// null to store into it.
     40 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
     41   llvm::Type *type =
     42     cast<llvm::PointerType>(addr->getType())->getElementType();
     43   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
     44 }
     45 
     46 /// Emits an instance of NSConstantString representing the object.
     47 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
     48 {
     49   llvm::Constant *C =
     50       CGM.getObjCRuntime().GenerateConstantString(E->getString());
     51   // FIXME: This bitcast should just be made an invariant on the Runtime.
     52   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
     53 }
     54 
     55 /// EmitObjCBoxedExpr - This routine generates code to call
     56 /// the appropriate expression boxing method. This will either be
     57 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
     58 ///
     59 llvm::Value *
     60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
     61   // Generate the correct selector for this literal's concrete type.
     62   const Expr *SubExpr = E->getSubExpr();
     63   // Get the method.
     64   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
     65   assert(BoxingMethod && "BoxingMethod is null");
     66   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
     67   Selector Sel = BoxingMethod->getSelector();
     68 
     69   // Generate a reference to the class pointer, which will be the receiver.
     70   // Assumes that the method was introduced in the class that should be
     71   // messaged (avoids pulling it out of the result type).
     72   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
     73   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
     74   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
     75 
     76   const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
     77   QualType ArgQT = argDecl->getType().getUnqualifiedType();
     78   RValue RV = EmitAnyExpr(SubExpr);
     79   CallArgList Args;
     80   Args.add(RV, ArgQT);
     81 
     82   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
     83                                               BoxingMethod->getResultType(), Sel, Receiver, Args,
     84                                               ClassDecl, BoxingMethod);
     85   return Builder.CreateBitCast(result.getScalarVal(),
     86                                ConvertType(E->getType()));
     87 }
     88 
     89 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
     90                                     const ObjCMethodDecl *MethodWithObjects) {
     91   ASTContext &Context = CGM.getContext();
     92   const ObjCDictionaryLiteral *DLE = 0;
     93   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
     94   if (!ALE)
     95     DLE = cast<ObjCDictionaryLiteral>(E);
     96 
     97   // Compute the type of the array we're initializing.
     98   uint64_t NumElements =
     99     ALE ? ALE->getNumElements() : DLE->getNumElements();
    100   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
    101                             NumElements);
    102   QualType ElementType = Context.getObjCIdType().withConst();
    103   QualType ElementArrayType
    104     = Context.getConstantArrayType(ElementType, APNumElements,
    105                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
    106 
    107   // Allocate the temporary array(s).
    108   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
    109   llvm::Value *Keys = 0;
    110   if (DLE)
    111     Keys = CreateMemTemp(ElementArrayType, "keys");
    112 
    113   // In ARC, we may need to do extra work to keep all the keys and
    114   // values alive until after the call.
    115   SmallVector<llvm::Value *, 16> NeededObjects;
    116   bool TrackNeededObjects =
    117     (getLangOpts().ObjCAutoRefCount &&
    118     CGM.getCodeGenOpts().OptimizationLevel != 0);
    119 
    120   // Perform the actual initialialization of the array(s).
    121   for (uint64_t i = 0; i < NumElements; i++) {
    122     if (ALE) {
    123       // Emit the element and store it to the appropriate array slot.
    124       const Expr *Rhs = ALE->getElement(i);
    125       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
    126                                    ElementType,
    127                                    Context.getTypeAlignInChars(Rhs->getType()),
    128                                    Context);
    129 
    130       llvm::Value *value = EmitScalarExpr(Rhs);
    131       EmitStoreThroughLValue(RValue::get(value), LV, true);
    132       if (TrackNeededObjects) {
    133         NeededObjects.push_back(value);
    134       }
    135     } else {
    136       // Emit the key and store it to the appropriate array slot.
    137       const Expr *Key = DLE->getKeyValueElement(i).Key;
    138       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
    139                                       ElementType,
    140                                     Context.getTypeAlignInChars(Key->getType()),
    141                                       Context);
    142       llvm::Value *keyValue = EmitScalarExpr(Key);
    143       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
    144 
    145       // Emit the value and store it to the appropriate array slot.
    146       const Expr *Value = DLE->getKeyValueElement(i).Value;
    147       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
    148                                         ElementType,
    149                                   Context.getTypeAlignInChars(Value->getType()),
    150                                         Context);
    151       llvm::Value *valueValue = EmitScalarExpr(Value);
    152       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
    153       if (TrackNeededObjects) {
    154         NeededObjects.push_back(keyValue);
    155         NeededObjects.push_back(valueValue);
    156       }
    157     }
    158   }
    159 
    160   // Generate the argument list.
    161   CallArgList Args;
    162   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
    163   const ParmVarDecl *argDecl = *PI++;
    164   QualType ArgQT = argDecl->getType().getUnqualifiedType();
    165   Args.add(RValue::get(Objects), ArgQT);
    166   if (DLE) {
    167     argDecl = *PI++;
    168     ArgQT = argDecl->getType().getUnqualifiedType();
    169     Args.add(RValue::get(Keys), ArgQT);
    170   }
    171   argDecl = *PI;
    172   ArgQT = argDecl->getType().getUnqualifiedType();
    173   llvm::Value *Count =
    174     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
    175   Args.add(RValue::get(Count), ArgQT);
    176 
    177   // Generate a reference to the class pointer, which will be the receiver.
    178   Selector Sel = MethodWithObjects->getSelector();
    179   QualType ResultType = E->getType();
    180   const ObjCObjectPointerType *InterfacePointerType
    181     = ResultType->getAsObjCInterfacePointerType();
    182   ObjCInterfaceDecl *Class
    183     = InterfacePointerType->getObjectType()->getInterface();
    184   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
    185   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
    186 
    187   // Generate the message send.
    188   RValue result
    189     = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
    190                                   MethodWithObjects->getResultType(),
    191                                   Sel,
    192                                   Receiver, Args, Class,
    193                                   MethodWithObjects);
    194 
    195   // The above message send needs these objects, but in ARC they are
    196   // passed in a buffer that is essentially __unsafe_unretained.
    197   // Therefore we must prevent the optimizer from releasing them until
    198   // after the call.
    199   if (TrackNeededObjects) {
    200     EmitARCIntrinsicUse(NeededObjects);
    201   }
    202 
    203   return Builder.CreateBitCast(result.getScalarVal(),
    204                                ConvertType(E->getType()));
    205 }
    206 
    207 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
    208   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
    209 }
    210 
    211 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
    212                                             const ObjCDictionaryLiteral *E) {
    213   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
    214 }
    215 
    216 /// Emit a selector.
    217 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
    218   // Untyped selector.
    219   // Note that this implementation allows for non-constant strings to be passed
    220   // as arguments to @selector().  Currently, the only thing preventing this
    221   // behaviour is the type checking in the front end.
    222   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
    223 }
    224 
    225 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
    226   // FIXME: This should pass the Decl not the name.
    227   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
    228 }
    229 
    230 /// \brief Adjust the type of the result of an Objective-C message send
    231 /// expression when the method has a related result type.
    232 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
    233                                       QualType ExpT,
    234                                       const ObjCMethodDecl *Method,
    235                                       RValue Result) {
    236   if (!Method)
    237     return Result;
    238 
    239   if (!Method->hasRelatedResultType() ||
    240       CGF.getContext().hasSameType(ExpT, Method->getResultType()) ||
    241       !Result.isScalar())
    242     return Result;
    243 
    244   // We have applied a related result type. Cast the rvalue appropriately.
    245   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
    246                                                CGF.ConvertType(ExpT)));
    247 }
    248 
    249 /// Decide whether to extend the lifetime of the receiver of a
    250 /// returns-inner-pointer message.
    251 static bool
    252 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
    253   switch (message->getReceiverKind()) {
    254 
    255   // For a normal instance message, we should extend unless the
    256   // receiver is loaded from a variable with precise lifetime.
    257   case ObjCMessageExpr::Instance: {
    258     const Expr *receiver = message->getInstanceReceiver();
    259     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
    260     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
    261     receiver = ice->getSubExpr()->IgnoreParens();
    262 
    263     // Only __strong variables.
    264     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
    265       return true;
    266 
    267     // All ivars and fields have precise lifetime.
    268     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
    269       return false;
    270 
    271     // Otherwise, check for variables.
    272     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
    273     if (!declRef) return true;
    274     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
    275     if (!var) return true;
    276 
    277     // All variables have precise lifetime except local variables with
    278     // automatic storage duration that aren't specially marked.
    279     return (var->hasLocalStorage() &&
    280             !var->hasAttr<ObjCPreciseLifetimeAttr>());
    281   }
    282 
    283   case ObjCMessageExpr::Class:
    284   case ObjCMessageExpr::SuperClass:
    285     // It's never necessary for class objects.
    286     return false;
    287 
    288   case ObjCMessageExpr::SuperInstance:
    289     // We generally assume that 'self' lives throughout a method call.
    290     return false;
    291   }
    292 
    293   llvm_unreachable("invalid receiver kind");
    294 }
    295 
    296 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
    297                                             ReturnValueSlot Return) {
    298   // Only the lookup mechanism and first two arguments of the method
    299   // implementation vary between runtimes.  We can get the receiver and
    300   // arguments in generic code.
    301 
    302   bool isDelegateInit = E->isDelegateInitCall();
    303 
    304   const ObjCMethodDecl *method = E->getMethodDecl();
    305 
    306   // We don't retain the receiver in delegate init calls, and this is
    307   // safe because the receiver value is always loaded from 'self',
    308   // which we zero out.  We don't want to Block_copy block receivers,
    309   // though.
    310   bool retainSelf =
    311     (!isDelegateInit &&
    312      CGM.getLangOpts().ObjCAutoRefCount &&
    313      method &&
    314      method->hasAttr<NSConsumesSelfAttr>());
    315 
    316   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
    317   bool isSuperMessage = false;
    318   bool isClassMessage = false;
    319   ObjCInterfaceDecl *OID = 0;
    320   // Find the receiver
    321   QualType ReceiverType;
    322   llvm::Value *Receiver = 0;
    323   switch (E->getReceiverKind()) {
    324   case ObjCMessageExpr::Instance:
    325     ReceiverType = E->getInstanceReceiver()->getType();
    326     if (retainSelf) {
    327       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
    328                                                    E->getInstanceReceiver());
    329       Receiver = ter.getPointer();
    330       if (ter.getInt()) retainSelf = false;
    331     } else
    332       Receiver = EmitScalarExpr(E->getInstanceReceiver());
    333     break;
    334 
    335   case ObjCMessageExpr::Class: {
    336     ReceiverType = E->getClassReceiver();
    337     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
    338     assert(ObjTy && "Invalid Objective-C class message send");
    339     OID = ObjTy->getInterface();
    340     assert(OID && "Invalid Objective-C class message send");
    341     Receiver = Runtime.GetClass(*this, OID);
    342     isClassMessage = true;
    343     break;
    344   }
    345 
    346   case ObjCMessageExpr::SuperInstance:
    347     ReceiverType = E->getSuperType();
    348     Receiver = LoadObjCSelf();
    349     isSuperMessage = true;
    350     break;
    351 
    352   case ObjCMessageExpr::SuperClass:
    353     ReceiverType = E->getSuperType();
    354     Receiver = LoadObjCSelf();
    355     isSuperMessage = true;
    356     isClassMessage = true;
    357     break;
    358   }
    359 
    360   if (retainSelf)
    361     Receiver = EmitARCRetainNonBlock(Receiver);
    362 
    363   // In ARC, we sometimes want to "extend the lifetime"
    364   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
    365   // messages.
    366   if (getLangOpts().ObjCAutoRefCount && method &&
    367       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
    368       shouldExtendReceiverForInnerPointerMessage(E))
    369     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
    370 
    371   QualType ResultType =
    372     method ? method->getResultType() : E->getType();
    373 
    374   CallArgList Args;
    375   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
    376 
    377   // For delegate init calls in ARC, do an unsafe store of null into
    378   // self.  This represents the call taking direct ownership of that
    379   // value.  We have to do this after emitting the other call
    380   // arguments because they might also reference self, but we don't
    381   // have to worry about any of them modifying self because that would
    382   // be an undefined read and write of an object in unordered
    383   // expressions.
    384   if (isDelegateInit) {
    385     assert(getLangOpts().ObjCAutoRefCount &&
    386            "delegate init calls should only be marked in ARC");
    387 
    388     // Do an unsafe store of null into self.
    389     llvm::Value *selfAddr =
    390       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
    391     assert(selfAddr && "no self entry for a delegate init call?");
    392 
    393     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
    394   }
    395 
    396   RValue result;
    397   if (isSuperMessage) {
    398     // super is only valid in an Objective-C method
    399     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
    400     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
    401     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
    402                                               E->getSelector(),
    403                                               OMD->getClassInterface(),
    404                                               isCategoryImpl,
    405                                               Receiver,
    406                                               isClassMessage,
    407                                               Args,
    408                                               method);
    409   } else {
    410     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
    411                                          E->getSelector(),
    412                                          Receiver, Args, OID,
    413                                          method);
    414   }
    415 
    416   // For delegate init calls in ARC, implicitly store the result of
    417   // the call back into self.  This takes ownership of the value.
    418   if (isDelegateInit) {
    419     llvm::Value *selfAddr =
    420       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
    421     llvm::Value *newSelf = result.getScalarVal();
    422 
    423     // The delegate return type isn't necessarily a matching type; in
    424     // fact, it's quite likely to be 'id'.
    425     llvm::Type *selfTy =
    426       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
    427     newSelf = Builder.CreateBitCast(newSelf, selfTy);
    428 
    429     Builder.CreateStore(newSelf, selfAddr);
    430   }
    431 
    432   return AdjustRelatedResultType(*this, E->getType(), method, result);
    433 }
    434 
    435 namespace {
    436 struct FinishARCDealloc : EHScopeStack::Cleanup {
    437   void Emit(CodeGenFunction &CGF, Flags flags) {
    438     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
    439 
    440     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
    441     const ObjCInterfaceDecl *iface = impl->getClassInterface();
    442     if (!iface->getSuperClass()) return;
    443 
    444     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
    445 
    446     // Call [super dealloc] if we have a superclass.
    447     llvm::Value *self = CGF.LoadObjCSelf();
    448 
    449     CallArgList args;
    450     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
    451                                                       CGF.getContext().VoidTy,
    452                                                       method->getSelector(),
    453                                                       iface,
    454                                                       isCategory,
    455                                                       self,
    456                                                       /*is class msg*/ false,
    457                                                       args,
    458                                                       method);
    459   }
    460 };
    461 }
    462 
    463 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
    464 /// the LLVM function and sets the other context used by
    465 /// CodeGenFunction.
    466 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
    467                                       const ObjCContainerDecl *CD,
    468                                       SourceLocation StartLoc) {
    469   FunctionArgList args;
    470   // Check if we should generate debug info for this method.
    471   if (!OMD->hasAttr<NoDebugAttr>())
    472     maybeInitializeDebugInfo();
    473 
    474   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
    475 
    476   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
    477   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
    478 
    479   args.push_back(OMD->getSelfDecl());
    480   args.push_back(OMD->getCmdDecl());
    481 
    482   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
    483          E = OMD->param_end(); PI != E; ++PI)
    484     args.push_back(*PI);
    485 
    486   CurGD = OMD;
    487 
    488   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
    489 
    490   // In ARC, certain methods get an extra cleanup.
    491   if (CGM.getLangOpts().ObjCAutoRefCount &&
    492       OMD->isInstanceMethod() &&
    493       OMD->getSelector().isUnarySelector()) {
    494     const IdentifierInfo *ident =
    495       OMD->getSelector().getIdentifierInfoForSlot(0);
    496     if (ident->isStr("dealloc"))
    497       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
    498   }
    499 }
    500 
    501 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
    502                                               LValue lvalue, QualType type);
    503 
    504 /// Generate an Objective-C method.  An Objective-C method is a C function with
    505 /// its pointer, name, and types registered in the class struture.
    506 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
    507   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
    508   EmitStmt(OMD->getBody());
    509   FinishFunction(OMD->getBodyRBrace());
    510 }
    511 
    512 /// emitStructGetterCall - Call the runtime function to load a property
    513 /// into the return value slot.
    514 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
    515                                  bool isAtomic, bool hasStrong) {
    516   ASTContext &Context = CGF.getContext();
    517 
    518   llvm::Value *src =
    519     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
    520                           ivar, 0).getAddress();
    521 
    522   // objc_copyStruct (ReturnValue, &structIvar,
    523   //                  sizeof (Type of Ivar), isAtomic, false);
    524   CallArgList args;
    525 
    526   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
    527   args.add(RValue::get(dest), Context.VoidPtrTy);
    528 
    529   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
    530   args.add(RValue::get(src), Context.VoidPtrTy);
    531 
    532   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
    533   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
    534   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
    535   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
    536 
    537   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
    538   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
    539                                                       FunctionType::ExtInfo(),
    540                                                       RequiredArgs::All),
    541                fn, ReturnValueSlot(), args);
    542 }
    543 
    544 /// Determine whether the given architecture supports unaligned atomic
    545 /// accesses.  They don't have to be fast, just faster than a function
    546 /// call and a mutex.
    547 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
    548   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
    549   // currently supported by the backend.)
    550   return 0;
    551 }
    552 
    553 /// Return the maximum size that permits atomic accesses for the given
    554 /// architecture.
    555 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
    556                                         llvm::Triple::ArchType arch) {
    557   // ARM has 8-byte atomic accesses, but it's not clear whether we
    558   // want to rely on them here.
    559 
    560   // In the default case, just assume that any size up to a pointer is
    561   // fine given adequate alignment.
    562   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
    563 }
    564 
    565 namespace {
    566   class PropertyImplStrategy {
    567   public:
    568     enum StrategyKind {
    569       /// The 'native' strategy is to use the architecture's provided
    570       /// reads and writes.
    571       Native,
    572 
    573       /// Use objc_setProperty and objc_getProperty.
    574       GetSetProperty,
    575 
    576       /// Use objc_setProperty for the setter, but use expression
    577       /// evaluation for the getter.
    578       SetPropertyAndExpressionGet,
    579 
    580       /// Use objc_copyStruct.
    581       CopyStruct,
    582 
    583       /// The 'expression' strategy is to emit normal assignment or
    584       /// lvalue-to-rvalue expressions.
    585       Expression
    586     };
    587 
    588     StrategyKind getKind() const { return StrategyKind(Kind); }
    589 
    590     bool hasStrongMember() const { return HasStrong; }
    591     bool isAtomic() const { return IsAtomic; }
    592     bool isCopy() const { return IsCopy; }
    593 
    594     CharUnits getIvarSize() const { return IvarSize; }
    595     CharUnits getIvarAlignment() const { return IvarAlignment; }
    596 
    597     PropertyImplStrategy(CodeGenModule &CGM,
    598                          const ObjCPropertyImplDecl *propImpl);
    599 
    600   private:
    601     unsigned Kind : 8;
    602     unsigned IsAtomic : 1;
    603     unsigned IsCopy : 1;
    604     unsigned HasStrong : 1;
    605 
    606     CharUnits IvarSize;
    607     CharUnits IvarAlignment;
    608   };
    609 }
    610 
    611 /// Pick an implementation strategy for the given property synthesis.
    612 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
    613                                      const ObjCPropertyImplDecl *propImpl) {
    614   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
    615   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
    616 
    617   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
    618   IsAtomic = prop->isAtomic();
    619   HasStrong = false; // doesn't matter here.
    620 
    621   // Evaluate the ivar's size and alignment.
    622   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    623   QualType ivarType = ivar->getType();
    624   llvm::tie(IvarSize, IvarAlignment)
    625     = CGM.getContext().getTypeInfoInChars(ivarType);
    626 
    627   // If we have a copy property, we always have to use getProperty/setProperty.
    628   // TODO: we could actually use setProperty and an expression for non-atomics.
    629   if (IsCopy) {
    630     Kind = GetSetProperty;
    631     return;
    632   }
    633 
    634   // Handle retain.
    635   if (setterKind == ObjCPropertyDecl::Retain) {
    636     // In GC-only, there's nothing special that needs to be done.
    637     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
    638       // fallthrough
    639 
    640     // In ARC, if the property is non-atomic, use expression emission,
    641     // which translates to objc_storeStrong.  This isn't required, but
    642     // it's slightly nicer.
    643     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
    644       // Using standard expression emission for the setter is only
    645       // acceptable if the ivar is __strong, which won't be true if
    646       // the property is annotated with __attribute__((NSObject)).
    647       // TODO: falling all the way back to objc_setProperty here is
    648       // just laziness, though;  we could still use objc_storeStrong
    649       // if we hacked it right.
    650       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
    651         Kind = Expression;
    652       else
    653         Kind = SetPropertyAndExpressionGet;
    654       return;
    655 
    656     // Otherwise, we need to at least use setProperty.  However, if
    657     // the property isn't atomic, we can use normal expression
    658     // emission for the getter.
    659     } else if (!IsAtomic) {
    660       Kind = SetPropertyAndExpressionGet;
    661       return;
    662 
    663     // Otherwise, we have to use both setProperty and getProperty.
    664     } else {
    665       Kind = GetSetProperty;
    666       return;
    667     }
    668   }
    669 
    670   // If we're not atomic, just use expression accesses.
    671   if (!IsAtomic) {
    672     Kind = Expression;
    673     return;
    674   }
    675 
    676   // Properties on bitfield ivars need to be emitted using expression
    677   // accesses even if they're nominally atomic.
    678   if (ivar->isBitField()) {
    679     Kind = Expression;
    680     return;
    681   }
    682 
    683   // GC-qualified or ARC-qualified ivars need to be emitted as
    684   // expressions.  This actually works out to being atomic anyway,
    685   // except for ARC __strong, but that should trigger the above code.
    686   if (ivarType.hasNonTrivialObjCLifetime() ||
    687       (CGM.getLangOpts().getGC() &&
    688        CGM.getContext().getObjCGCAttrKind(ivarType))) {
    689     Kind = Expression;
    690     return;
    691   }
    692 
    693   // Compute whether the ivar has strong members.
    694   if (CGM.getLangOpts().getGC())
    695     if (const RecordType *recordType = ivarType->getAs<RecordType>())
    696       HasStrong = recordType->getDecl()->hasObjectMember();
    697 
    698   // We can never access structs with object members with a native
    699   // access, because we need to use write barriers.  This is what
    700   // objc_copyStruct is for.
    701   if (HasStrong) {
    702     Kind = CopyStruct;
    703     return;
    704   }
    705 
    706   // Otherwise, this is target-dependent and based on the size and
    707   // alignment of the ivar.
    708 
    709   // If the size of the ivar is not a power of two, give up.  We don't
    710   // want to get into the business of doing compare-and-swaps.
    711   if (!IvarSize.isPowerOfTwo()) {
    712     Kind = CopyStruct;
    713     return;
    714   }
    715 
    716   llvm::Triple::ArchType arch =
    717     CGM.getTarget().getTriple().getArch();
    718 
    719   // Most architectures require memory to fit within a single cache
    720   // line, so the alignment has to be at least the size of the access.
    721   // Otherwise we have to grab a lock.
    722   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
    723     Kind = CopyStruct;
    724     return;
    725   }
    726 
    727   // If the ivar's size exceeds the architecture's maximum atomic
    728   // access size, we have to use CopyStruct.
    729   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
    730     Kind = CopyStruct;
    731     return;
    732   }
    733 
    734   // Otherwise, we can use native loads and stores.
    735   Kind = Native;
    736 }
    737 
    738 /// \brief Generate an Objective-C property getter function.
    739 ///
    740 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
    741 /// is illegal within a category.
    742 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
    743                                          const ObjCPropertyImplDecl *PID) {
    744   llvm::Constant *AtomicHelperFn =
    745     GenerateObjCAtomicGetterCopyHelperFunction(PID);
    746   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
    747   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
    748   assert(OMD && "Invalid call to generate getter (empty method)");
    749   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
    750 
    751   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
    752 
    753   FinishFunction();
    754 }
    755 
    756 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
    757   const Expr *getter = propImpl->getGetterCXXConstructor();
    758   if (!getter) return true;
    759 
    760   // Sema only makes only of these when the ivar has a C++ class type,
    761   // so the form is pretty constrained.
    762 
    763   // If the property has a reference type, we might just be binding a
    764   // reference, in which case the result will be a gl-value.  We should
    765   // treat this as a non-trivial operation.
    766   if (getter->isGLValue())
    767     return false;
    768 
    769   // If we selected a trivial copy-constructor, we're okay.
    770   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
    771     return (construct->getConstructor()->isTrivial());
    772 
    773   // The constructor might require cleanups (in which case it's never
    774   // trivial).
    775   assert(isa<ExprWithCleanups>(getter));
    776   return false;
    777 }
    778 
    779 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
    780 /// copy the ivar into the resturn slot.
    781 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
    782                                           llvm::Value *returnAddr,
    783                                           ObjCIvarDecl *ivar,
    784                                           llvm::Constant *AtomicHelperFn) {
    785   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
    786   //                           AtomicHelperFn);
    787   CallArgList args;
    788 
    789   // The 1st argument is the return Slot.
    790   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
    791 
    792   // The 2nd argument is the address of the ivar.
    793   llvm::Value *ivarAddr =
    794   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
    795                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
    796   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
    797   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
    798 
    799   // Third argument is the helper function.
    800   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
    801 
    802   llvm::Value *copyCppAtomicObjectFn =
    803     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
    804   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
    805                                                       args,
    806                                                       FunctionType::ExtInfo(),
    807                                                       RequiredArgs::All),
    808                copyCppAtomicObjectFn, ReturnValueSlot(), args);
    809 }
    810 
    811 void
    812 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
    813                                         const ObjCPropertyImplDecl *propImpl,
    814                                         const ObjCMethodDecl *GetterMethodDecl,
    815                                         llvm::Constant *AtomicHelperFn) {
    816   // If there's a non-trivial 'get' expression, we just have to emit that.
    817   if (!hasTrivialGetExpr(propImpl)) {
    818     if (!AtomicHelperFn) {
    819       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
    820                      /*nrvo*/ 0);
    821       EmitReturnStmt(ret);
    822     }
    823     else {
    824       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    825       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
    826                                     ivar, AtomicHelperFn);
    827     }
    828     return;
    829   }
    830 
    831   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
    832   QualType propType = prop->getType();
    833   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
    834 
    835   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    836 
    837   // Pick an implementation strategy.
    838   PropertyImplStrategy strategy(CGM, propImpl);
    839   switch (strategy.getKind()) {
    840   case PropertyImplStrategy::Native: {
    841     // We don't need to do anything for a zero-size struct.
    842     if (strategy.getIvarSize().isZero())
    843       return;
    844 
    845     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
    846 
    847     // Currently, all atomic accesses have to be through integer
    848     // types, so there's no point in trying to pick a prettier type.
    849     llvm::Type *bitcastType =
    850       llvm::Type::getIntNTy(getLLVMContext(),
    851                             getContext().toBits(strategy.getIvarSize()));
    852     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
    853 
    854     // Perform an atomic load.  This does not impose ordering constraints.
    855     llvm::Value *ivarAddr = LV.getAddress();
    856     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
    857     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
    858     load->setAlignment(strategy.getIvarAlignment().getQuantity());
    859     load->setAtomic(llvm::Unordered);
    860 
    861     // Store that value into the return address.  Doing this with a
    862     // bitcast is likely to produce some pretty ugly IR, but it's not
    863     // the *most* terrible thing in the world.
    864     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
    865 
    866     // Make sure we don't do an autorelease.
    867     AutoreleaseResult = false;
    868     return;
    869   }
    870 
    871   case PropertyImplStrategy::GetSetProperty: {
    872     llvm::Value *getPropertyFn =
    873       CGM.getObjCRuntime().GetPropertyGetFunction();
    874     if (!getPropertyFn) {
    875       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
    876       return;
    877     }
    878 
    879     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
    880     // FIXME: Can't this be simpler? This might even be worse than the
    881     // corresponding gcc code.
    882     llvm::Value *cmd =
    883       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
    884     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
    885     llvm::Value *ivarOffset =
    886       EmitIvarOffset(classImpl->getClassInterface(), ivar);
    887 
    888     CallArgList args;
    889     args.add(RValue::get(self), getContext().getObjCIdType());
    890     args.add(RValue::get(cmd), getContext().getObjCSelType());
    891     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
    892     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
    893              getContext().BoolTy);
    894 
    895     // FIXME: We shouldn't need to get the function info here, the
    896     // runtime already should have computed it to build the function.
    897     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
    898                                                        FunctionType::ExtInfo(),
    899                                                             RequiredArgs::All),
    900                          getPropertyFn, ReturnValueSlot(), args);
    901 
    902     // We need to fix the type here. Ivars with copy & retain are
    903     // always objects so we don't need to worry about complex or
    904     // aggregates.
    905     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
    906            getTypes().ConvertType(getterMethod->getResultType())));
    907 
    908     EmitReturnOfRValue(RV, propType);
    909 
    910     // objc_getProperty does an autorelease, so we should suppress ours.
    911     AutoreleaseResult = false;
    912 
    913     return;
    914   }
    915 
    916   case PropertyImplStrategy::CopyStruct:
    917     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
    918                          strategy.hasStrongMember());
    919     return;
    920 
    921   case PropertyImplStrategy::Expression:
    922   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
    923     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
    924 
    925     QualType ivarType = ivar->getType();
    926     switch (getEvaluationKind(ivarType)) {
    927     case TEK_Complex: {
    928       ComplexPairTy pair = EmitLoadOfComplex(LV);
    929       EmitStoreOfComplex(pair,
    930                          MakeNaturalAlignAddrLValue(ReturnValue, ivarType),
    931                          /*init*/ true);
    932       return;
    933     }
    934     case TEK_Aggregate:
    935       // The return value slot is guaranteed to not be aliased, but
    936       // that's not necessarily the same as "on the stack", so
    937       // we still potentially need objc_memmove_collectable.
    938       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
    939       return;
    940     case TEK_Scalar: {
    941       llvm::Value *value;
    942       if (propType->isReferenceType()) {
    943         value = LV.getAddress();
    944       } else {
    945         // We want to load and autoreleaseReturnValue ARC __weak ivars.
    946         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
    947           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
    948 
    949         // Otherwise we want to do a simple load, suppressing the
    950         // final autorelease.
    951         } else {
    952           value = EmitLoadOfLValue(LV).getScalarVal();
    953           AutoreleaseResult = false;
    954         }
    955 
    956         value = Builder.CreateBitCast(value, ConvertType(propType));
    957         value = Builder.CreateBitCast(value,
    958                   ConvertType(GetterMethodDecl->getResultType()));
    959       }
    960 
    961       EmitReturnOfRValue(RValue::get(value), propType);
    962       return;
    963     }
    964     }
    965     llvm_unreachable("bad evaluation kind");
    966   }
    967 
    968   }
    969   llvm_unreachable("bad @property implementation strategy!");
    970 }
    971 
    972 /// emitStructSetterCall - Call the runtime function to store the value
    973 /// from the first formal parameter into the given ivar.
    974 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
    975                                  ObjCIvarDecl *ivar) {
    976   // objc_copyStruct (&structIvar, &Arg,
    977   //                  sizeof (struct something), true, false);
    978   CallArgList args;
    979 
    980   // The first argument is the address of the ivar.
    981   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
    982                                                 CGF.LoadObjCSelf(), ivar, 0)
    983     .getAddress();
    984   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
    985   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
    986 
    987   // The second argument is the address of the parameter variable.
    988   ParmVarDecl *argVar = *OMD->param_begin();
    989   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
    990                      VK_LValue, SourceLocation());
    991   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
    992   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
    993   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
    994 
    995   // The third argument is the sizeof the type.
    996   llvm::Value *size =
    997     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
    998   args.add(RValue::get(size), CGF.getContext().getSizeType());
    999 
   1000   // The fourth argument is the 'isAtomic' flag.
   1001   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
   1002 
   1003   // The fifth argument is the 'hasStrong' flag.
   1004   // FIXME: should this really always be false?
   1005   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
   1006 
   1007   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
   1008   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
   1009                                                       args,
   1010                                                       FunctionType::ExtInfo(),
   1011                                                       RequiredArgs::All),
   1012                copyStructFn, ReturnValueSlot(), args);
   1013 }
   1014 
   1015 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
   1016 /// the value from the first formal parameter into the given ivar, using
   1017 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
   1018 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
   1019                                           ObjCMethodDecl *OMD,
   1020                                           ObjCIvarDecl *ivar,
   1021                                           llvm::Constant *AtomicHelperFn) {
   1022   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
   1023   //                           AtomicHelperFn);
   1024   CallArgList args;
   1025 
   1026   // The first argument is the address of the ivar.
   1027   llvm::Value *ivarAddr =
   1028     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
   1029                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
   1030   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
   1031   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
   1032 
   1033   // The second argument is the address of the parameter variable.
   1034   ParmVarDecl *argVar = *OMD->param_begin();
   1035   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
   1036                      VK_LValue, SourceLocation());
   1037   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
   1038   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
   1039   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
   1040 
   1041   // Third argument is the helper function.
   1042   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
   1043 
   1044   llvm::Value *copyCppAtomicObjectFn =
   1045     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
   1046   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
   1047                                                       args,
   1048                                                       FunctionType::ExtInfo(),
   1049                                                       RequiredArgs::All),
   1050                copyCppAtomicObjectFn, ReturnValueSlot(), args);
   1051 
   1052 
   1053 }
   1054 
   1055 
   1056 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
   1057   Expr *setter = PID->getSetterCXXAssignment();
   1058   if (!setter) return true;
   1059 
   1060   // Sema only makes only of these when the ivar has a C++ class type,
   1061   // so the form is pretty constrained.
   1062 
   1063   // An operator call is trivial if the function it calls is trivial.
   1064   // This also implies that there's nothing non-trivial going on with
   1065   // the arguments, because operator= can only be trivial if it's a
   1066   // synthesized assignment operator and therefore both parameters are
   1067   // references.
   1068   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
   1069     if (const FunctionDecl *callee
   1070           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
   1071       if (callee->isTrivial())
   1072         return true;
   1073     return false;
   1074   }
   1075 
   1076   assert(isa<ExprWithCleanups>(setter));
   1077   return false;
   1078 }
   1079 
   1080 static bool UseOptimizedSetter(CodeGenModule &CGM) {
   1081   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
   1082     return false;
   1083   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
   1084 }
   1085 
   1086 void
   1087 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
   1088                                         const ObjCPropertyImplDecl *propImpl,
   1089                                         llvm::Constant *AtomicHelperFn) {
   1090   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
   1091   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
   1092   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
   1093 
   1094   // Just use the setter expression if Sema gave us one and it's
   1095   // non-trivial.
   1096   if (!hasTrivialSetExpr(propImpl)) {
   1097     if (!AtomicHelperFn)
   1098       // If non-atomic, assignment is called directly.
   1099       EmitStmt(propImpl->getSetterCXXAssignment());
   1100     else
   1101       // If atomic, assignment is called via a locking api.
   1102       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
   1103                                     AtomicHelperFn);
   1104     return;
   1105   }
   1106 
   1107   PropertyImplStrategy strategy(CGM, propImpl);
   1108   switch (strategy.getKind()) {
   1109   case PropertyImplStrategy::Native: {
   1110     // We don't need to do anything for a zero-size struct.
   1111     if (strategy.getIvarSize().isZero())
   1112       return;
   1113 
   1114     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
   1115 
   1116     LValue ivarLValue =
   1117       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
   1118     llvm::Value *ivarAddr = ivarLValue.getAddress();
   1119 
   1120     // Currently, all atomic accesses have to be through integer
   1121     // types, so there's no point in trying to pick a prettier type.
   1122     llvm::Type *bitcastType =
   1123       llvm::Type::getIntNTy(getLLVMContext(),
   1124                             getContext().toBits(strategy.getIvarSize()));
   1125     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
   1126 
   1127     // Cast both arguments to the chosen operation type.
   1128     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
   1129     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
   1130 
   1131     // This bitcast load is likely to cause some nasty IR.
   1132     llvm::Value *load = Builder.CreateLoad(argAddr);
   1133 
   1134     // Perform an atomic store.  There are no memory ordering requirements.
   1135     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
   1136     store->setAlignment(strategy.getIvarAlignment().getQuantity());
   1137     store->setAtomic(llvm::Unordered);
   1138     return;
   1139   }
   1140 
   1141   case PropertyImplStrategy::GetSetProperty:
   1142   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
   1143 
   1144     llvm::Value *setOptimizedPropertyFn = 0;
   1145     llvm::Value *setPropertyFn = 0;
   1146     if (UseOptimizedSetter(CGM)) {
   1147       // 10.8 and iOS 6.0 code and GC is off
   1148       setOptimizedPropertyFn =
   1149         CGM.getObjCRuntime()
   1150            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
   1151                                             strategy.isCopy());
   1152       if (!setOptimizedPropertyFn) {
   1153         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
   1154         return;
   1155       }
   1156     }
   1157     else {
   1158       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
   1159       if (!setPropertyFn) {
   1160         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
   1161         return;
   1162       }
   1163     }
   1164 
   1165     // Emit objc_setProperty((id) self, _cmd, offset, arg,
   1166     //                       <is-atomic>, <is-copy>).
   1167     llvm::Value *cmd =
   1168       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
   1169     llvm::Value *self =
   1170       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
   1171     llvm::Value *ivarOffset =
   1172       EmitIvarOffset(classImpl->getClassInterface(), ivar);
   1173     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
   1174     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
   1175 
   1176     CallArgList args;
   1177     args.add(RValue::get(self), getContext().getObjCIdType());
   1178     args.add(RValue::get(cmd), getContext().getObjCSelType());
   1179     if (setOptimizedPropertyFn) {
   1180       args.add(RValue::get(arg), getContext().getObjCIdType());
   1181       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
   1182       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
   1183                                                   FunctionType::ExtInfo(),
   1184                                                   RequiredArgs::All),
   1185                setOptimizedPropertyFn, ReturnValueSlot(), args);
   1186     } else {
   1187       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
   1188       args.add(RValue::get(arg), getContext().getObjCIdType());
   1189       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
   1190                getContext().BoolTy);
   1191       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
   1192                getContext().BoolTy);
   1193       // FIXME: We shouldn't need to get the function info here, the runtime
   1194       // already should have computed it to build the function.
   1195       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
   1196                                                   FunctionType::ExtInfo(),
   1197                                                   RequiredArgs::All),
   1198                setPropertyFn, ReturnValueSlot(), args);
   1199     }
   1200 
   1201     return;
   1202   }
   1203 
   1204   case PropertyImplStrategy::CopyStruct:
   1205     emitStructSetterCall(*this, setterMethod, ivar);
   1206     return;
   1207 
   1208   case PropertyImplStrategy::Expression:
   1209     break;
   1210   }
   1211 
   1212   // Otherwise, fake up some ASTs and emit a normal assignment.
   1213   ValueDecl *selfDecl = setterMethod->getSelfDecl();
   1214   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
   1215                    VK_LValue, SourceLocation());
   1216   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
   1217                             selfDecl->getType(), CK_LValueToRValue, &self,
   1218                             VK_RValue);
   1219   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
   1220                           SourceLocation(), SourceLocation(),
   1221                           &selfLoad, true, true);
   1222 
   1223   ParmVarDecl *argDecl = *setterMethod->param_begin();
   1224   QualType argType = argDecl->getType().getNonReferenceType();
   1225   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
   1226   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
   1227                            argType.getUnqualifiedType(), CK_LValueToRValue,
   1228                            &arg, VK_RValue);
   1229 
   1230   // The property type can differ from the ivar type in some situations with
   1231   // Objective-C pointer types, we can always bit cast the RHS in these cases.
   1232   // The following absurdity is just to ensure well-formed IR.
   1233   CastKind argCK = CK_NoOp;
   1234   if (ivarRef.getType()->isObjCObjectPointerType()) {
   1235     if (argLoad.getType()->isObjCObjectPointerType())
   1236       argCK = CK_BitCast;
   1237     else if (argLoad.getType()->isBlockPointerType())
   1238       argCK = CK_BlockPointerToObjCPointerCast;
   1239     else
   1240       argCK = CK_CPointerToObjCPointerCast;
   1241   } else if (ivarRef.getType()->isBlockPointerType()) {
   1242      if (argLoad.getType()->isBlockPointerType())
   1243       argCK = CK_BitCast;
   1244     else
   1245       argCK = CK_AnyPointerToBlockPointerCast;
   1246   } else if (ivarRef.getType()->isPointerType()) {
   1247     argCK = CK_BitCast;
   1248   }
   1249   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
   1250                            ivarRef.getType(), argCK, &argLoad,
   1251                            VK_RValue);
   1252   Expr *finalArg = &argLoad;
   1253   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
   1254                                            argLoad.getType()))
   1255     finalArg = &argCast;
   1256 
   1257 
   1258   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
   1259                         ivarRef.getType(), VK_RValue, OK_Ordinary,
   1260                         SourceLocation(), false);
   1261   EmitStmt(&assign);
   1262 }
   1263 
   1264 /// \brief Generate an Objective-C property setter function.
   1265 ///
   1266 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
   1267 /// is illegal within a category.
   1268 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
   1269                                          const ObjCPropertyImplDecl *PID) {
   1270   llvm::Constant *AtomicHelperFn =
   1271     GenerateObjCAtomicSetterCopyHelperFunction(PID);
   1272   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   1273   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
   1274   assert(OMD && "Invalid call to generate setter (empty method)");
   1275   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
   1276 
   1277   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
   1278 
   1279   FinishFunction();
   1280 }
   1281 
   1282 namespace {
   1283   struct DestroyIvar : EHScopeStack::Cleanup {
   1284   private:
   1285     llvm::Value *addr;
   1286     const ObjCIvarDecl *ivar;
   1287     CodeGenFunction::Destroyer *destroyer;
   1288     bool useEHCleanupForArray;
   1289   public:
   1290     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
   1291                 CodeGenFunction::Destroyer *destroyer,
   1292                 bool useEHCleanupForArray)
   1293       : addr(addr), ivar(ivar), destroyer(destroyer),
   1294         useEHCleanupForArray(useEHCleanupForArray) {}
   1295 
   1296     void Emit(CodeGenFunction &CGF, Flags flags) {
   1297       LValue lvalue
   1298         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
   1299       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
   1300                       flags.isForNormalCleanup() && useEHCleanupForArray);
   1301     }
   1302   };
   1303 }
   1304 
   1305 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
   1306 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
   1307                                       llvm::Value *addr,
   1308                                       QualType type) {
   1309   llvm::Value *null = getNullForVariable(addr);
   1310   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
   1311 }
   1312 
   1313 static void emitCXXDestructMethod(CodeGenFunction &CGF,
   1314                                   ObjCImplementationDecl *impl) {
   1315   CodeGenFunction::RunCleanupsScope scope(CGF);
   1316 
   1317   llvm::Value *self = CGF.LoadObjCSelf();
   1318 
   1319   const ObjCInterfaceDecl *iface = impl->getClassInterface();
   1320   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
   1321        ivar; ivar = ivar->getNextIvar()) {
   1322     QualType type = ivar->getType();
   1323 
   1324     // Check whether the ivar is a destructible type.
   1325     QualType::DestructionKind dtorKind = type.isDestructedType();
   1326     if (!dtorKind) continue;
   1327 
   1328     CodeGenFunction::Destroyer *destroyer = 0;
   1329 
   1330     // Use a call to objc_storeStrong to destroy strong ivars, for the
   1331     // general benefit of the tools.
   1332     if (dtorKind == QualType::DK_objc_strong_lifetime) {
   1333       destroyer = destroyARCStrongWithStore;
   1334 
   1335     // Otherwise use the default for the destruction kind.
   1336     } else {
   1337       destroyer = CGF.getDestroyer(dtorKind);
   1338     }
   1339 
   1340     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
   1341 
   1342     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
   1343                                          cleanupKind & EHCleanup);
   1344   }
   1345 
   1346   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
   1347 }
   1348 
   1349 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
   1350                                                  ObjCMethodDecl *MD,
   1351                                                  bool ctor) {
   1352   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
   1353   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
   1354 
   1355   // Emit .cxx_construct.
   1356   if (ctor) {
   1357     // Suppress the final autorelease in ARC.
   1358     AutoreleaseResult = false;
   1359 
   1360     SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
   1361     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
   1362            E = IMP->init_end(); B != E; ++B) {
   1363       CXXCtorInitializer *IvarInit = (*B);
   1364       FieldDecl *Field = IvarInit->getAnyMember();
   1365       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
   1366       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
   1367                                     LoadObjCSelf(), Ivar, 0);
   1368       EmitAggExpr(IvarInit->getInit(),
   1369                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
   1370                                           AggValueSlot::DoesNotNeedGCBarriers,
   1371                                           AggValueSlot::IsNotAliased));
   1372     }
   1373     // constructor returns 'self'.
   1374     CodeGenTypes &Types = CGM.getTypes();
   1375     QualType IdTy(CGM.getContext().getObjCIdType());
   1376     llvm::Value *SelfAsId =
   1377       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
   1378     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
   1379 
   1380   // Emit .cxx_destruct.
   1381   } else {
   1382     emitCXXDestructMethod(*this, IMP);
   1383   }
   1384   FinishFunction();
   1385 }
   1386 
   1387 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
   1388   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
   1389   it++; it++;
   1390   const ABIArgInfo &AI = it->info;
   1391   // FIXME. Is this sufficient check?
   1392   return (AI.getKind() == ABIArgInfo::Indirect);
   1393 }
   1394 
   1395 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
   1396   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
   1397     return false;
   1398   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
   1399     return FDTTy->getDecl()->hasObjectMember();
   1400   return false;
   1401 }
   1402 
   1403 llvm::Value *CodeGenFunction::LoadObjCSelf() {
   1404   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
   1405   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
   1406                   Self->getType(), VK_LValue, SourceLocation());
   1407   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE));
   1408 }
   1409 
   1410 QualType CodeGenFunction::TypeOfSelfObject() {
   1411   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
   1412   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
   1413   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
   1414     getContext().getCanonicalType(selfDecl->getType()));
   1415   return PTy->getPointeeType();
   1416 }
   1417 
   1418 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
   1419   llvm::Constant *EnumerationMutationFn =
   1420     CGM.getObjCRuntime().EnumerationMutationFunction();
   1421 
   1422   if (!EnumerationMutationFn) {
   1423     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
   1424     return;
   1425   }
   1426 
   1427   CGDebugInfo *DI = getDebugInfo();
   1428   if (DI)
   1429     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
   1430 
   1431   // The local variable comes into scope immediately.
   1432   AutoVarEmission variable = AutoVarEmission::invalid();
   1433   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
   1434     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
   1435 
   1436   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
   1437 
   1438   // Fast enumeration state.
   1439   QualType StateTy = CGM.getObjCFastEnumerationStateType();
   1440   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
   1441   EmitNullInitialization(StatePtr, StateTy);
   1442 
   1443   // Number of elements in the items array.
   1444   static const unsigned NumItems = 16;
   1445 
   1446   // Fetch the countByEnumeratingWithState:objects:count: selector.
   1447   IdentifierInfo *II[] = {
   1448     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
   1449     &CGM.getContext().Idents.get("objects"),
   1450     &CGM.getContext().Idents.get("count")
   1451   };
   1452   Selector FastEnumSel =
   1453     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
   1454 
   1455   QualType ItemsTy =
   1456     getContext().getConstantArrayType(getContext().getObjCIdType(),
   1457                                       llvm::APInt(32, NumItems),
   1458                                       ArrayType::Normal, 0);
   1459   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
   1460 
   1461   // Emit the collection pointer.  In ARC, we do a retain.
   1462   llvm::Value *Collection;
   1463   if (getLangOpts().ObjCAutoRefCount) {
   1464     Collection = EmitARCRetainScalarExpr(S.getCollection());
   1465 
   1466     // Enter a cleanup to do the release.
   1467     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
   1468   } else {
   1469     Collection = EmitScalarExpr(S.getCollection());
   1470   }
   1471 
   1472   // The 'continue' label needs to appear within the cleanup for the
   1473   // collection object.
   1474   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
   1475 
   1476   // Send it our message:
   1477   CallArgList Args;
   1478 
   1479   // The first argument is a temporary of the enumeration-state type.
   1480   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
   1481 
   1482   // The second argument is a temporary array with space for NumItems
   1483   // pointers.  We'll actually be loading elements from the array
   1484   // pointer written into the control state; this buffer is so that
   1485   // collections that *aren't* backed by arrays can still queue up
   1486   // batches of elements.
   1487   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
   1488 
   1489   // The third argument is the capacity of that temporary array.
   1490   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
   1491   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
   1492   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
   1493 
   1494   // Start the enumeration.
   1495   RValue CountRV =
   1496     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   1497                                              getContext().UnsignedLongTy,
   1498                                              FastEnumSel,
   1499                                              Collection, Args);
   1500 
   1501   // The initial number of objects that were returned in the buffer.
   1502   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
   1503 
   1504   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
   1505   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
   1506 
   1507   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
   1508 
   1509   // If the limit pointer was zero to begin with, the collection is
   1510   // empty; skip all this.
   1511   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
   1512                        EmptyBB, LoopInitBB);
   1513 
   1514   // Otherwise, initialize the loop.
   1515   EmitBlock(LoopInitBB);
   1516 
   1517   // Save the initial mutations value.  This is the value at an
   1518   // address that was written into the state object by
   1519   // countByEnumeratingWithState:objects:count:.
   1520   llvm::Value *StateMutationsPtrPtr =
   1521     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
   1522   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
   1523                                                       "mutationsptr");
   1524 
   1525   llvm::Value *initialMutations =
   1526     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
   1527 
   1528   // Start looping.  This is the point we return to whenever we have a
   1529   // fresh, non-empty batch of objects.
   1530   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
   1531   EmitBlock(LoopBodyBB);
   1532 
   1533   // The current index into the buffer.
   1534   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
   1535   index->addIncoming(zero, LoopInitBB);
   1536 
   1537   // The current buffer size.
   1538   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
   1539   count->addIncoming(initialBufferLimit, LoopInitBB);
   1540 
   1541   // Check whether the mutations value has changed from where it was
   1542   // at start.  StateMutationsPtr should actually be invariant between
   1543   // refreshes.
   1544   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
   1545   llvm::Value *currentMutations
   1546     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
   1547 
   1548   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
   1549   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
   1550 
   1551   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
   1552                        WasNotMutatedBB, WasMutatedBB);
   1553 
   1554   // If so, call the enumeration-mutation function.
   1555   EmitBlock(WasMutatedBB);
   1556   llvm::Value *V =
   1557     Builder.CreateBitCast(Collection,
   1558                           ConvertType(getContext().getObjCIdType()));
   1559   CallArgList Args2;
   1560   Args2.add(RValue::get(V), getContext().getObjCIdType());
   1561   // FIXME: We shouldn't need to get the function info here, the runtime already
   1562   // should have computed it to build the function.
   1563   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
   1564                                                   FunctionType::ExtInfo(),
   1565                                                   RequiredArgs::All),
   1566            EnumerationMutationFn, ReturnValueSlot(), Args2);
   1567 
   1568   // Otherwise, or if the mutation function returns, just continue.
   1569   EmitBlock(WasNotMutatedBB);
   1570 
   1571   // Initialize the element variable.
   1572   RunCleanupsScope elementVariableScope(*this);
   1573   bool elementIsVariable;
   1574   LValue elementLValue;
   1575   QualType elementType;
   1576   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
   1577     // Initialize the variable, in case it's a __block variable or something.
   1578     EmitAutoVarInit(variable);
   1579 
   1580     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
   1581     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
   1582                         VK_LValue, SourceLocation());
   1583     elementLValue = EmitLValue(&tempDRE);
   1584     elementType = D->getType();
   1585     elementIsVariable = true;
   1586 
   1587     if (D->isARCPseudoStrong())
   1588       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
   1589   } else {
   1590     elementLValue = LValue(); // suppress warning
   1591     elementType = cast<Expr>(S.getElement())->getType();
   1592     elementIsVariable = false;
   1593   }
   1594   llvm::Type *convertedElementType = ConvertType(elementType);
   1595 
   1596   // Fetch the buffer out of the enumeration state.
   1597   // TODO: this pointer should actually be invariant between
   1598   // refreshes, which would help us do certain loop optimizations.
   1599   llvm::Value *StateItemsPtr =
   1600     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
   1601   llvm::Value *EnumStateItems =
   1602     Builder.CreateLoad(StateItemsPtr, "stateitems");
   1603 
   1604   // Fetch the value at the current index from the buffer.
   1605   llvm::Value *CurrentItemPtr =
   1606     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
   1607   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
   1608 
   1609   // Cast that value to the right type.
   1610   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
   1611                                       "currentitem");
   1612 
   1613   // Make sure we have an l-value.  Yes, this gets evaluated every
   1614   // time through the loop.
   1615   if (!elementIsVariable) {
   1616     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
   1617     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
   1618   } else {
   1619     EmitScalarInit(CurrentItem, elementLValue);
   1620   }
   1621 
   1622   // If we do have an element variable, this assignment is the end of
   1623   // its initialization.
   1624   if (elementIsVariable)
   1625     EmitAutoVarCleanups(variable);
   1626 
   1627   // Perform the loop body, setting up break and continue labels.
   1628   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
   1629   {
   1630     RunCleanupsScope Scope(*this);
   1631     EmitStmt(S.getBody());
   1632   }
   1633   BreakContinueStack.pop_back();
   1634 
   1635   // Destroy the element variable now.
   1636   elementVariableScope.ForceCleanup();
   1637 
   1638   // Check whether there are more elements.
   1639   EmitBlock(AfterBody.getBlock());
   1640 
   1641   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
   1642 
   1643   // First we check in the local buffer.
   1644   llvm::Value *indexPlusOne
   1645     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
   1646 
   1647   // If we haven't overrun the buffer yet, we can continue.
   1648   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
   1649                        LoopBodyBB, FetchMoreBB);
   1650 
   1651   index->addIncoming(indexPlusOne, AfterBody.getBlock());
   1652   count->addIncoming(count, AfterBody.getBlock());
   1653 
   1654   // Otherwise, we have to fetch more elements.
   1655   EmitBlock(FetchMoreBB);
   1656 
   1657   CountRV =
   1658     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   1659                                              getContext().UnsignedLongTy,
   1660                                              FastEnumSel,
   1661                                              Collection, Args);
   1662 
   1663   // If we got a zero count, we're done.
   1664   llvm::Value *refetchCount = CountRV.getScalarVal();
   1665 
   1666   // (note that the message send might split FetchMoreBB)
   1667   index->addIncoming(zero, Builder.GetInsertBlock());
   1668   count->addIncoming(refetchCount, Builder.GetInsertBlock());
   1669 
   1670   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
   1671                        EmptyBB, LoopBodyBB);
   1672 
   1673   // No more elements.
   1674   EmitBlock(EmptyBB);
   1675 
   1676   if (!elementIsVariable) {
   1677     // If the element was not a declaration, set it to be null.
   1678 
   1679     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
   1680     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
   1681     EmitStoreThroughLValue(RValue::get(null), elementLValue);
   1682   }
   1683 
   1684   if (DI)
   1685     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
   1686 
   1687   // Leave the cleanup we entered in ARC.
   1688   if (getLangOpts().ObjCAutoRefCount)
   1689     PopCleanupBlock();
   1690 
   1691   EmitBlock(LoopEnd.getBlock());
   1692 }
   1693 
   1694 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
   1695   CGM.getObjCRuntime().EmitTryStmt(*this, S);
   1696 }
   1697 
   1698 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
   1699   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
   1700 }
   1701 
   1702 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
   1703                                               const ObjCAtSynchronizedStmt &S) {
   1704   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
   1705 }
   1706 
   1707 /// Produce the code for a CK_ARCProduceObject.  Just does a
   1708 /// primitive retain.
   1709 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
   1710                                                     llvm::Value *value) {
   1711   return EmitARCRetain(type, value);
   1712 }
   1713 
   1714 namespace {
   1715   struct CallObjCRelease : EHScopeStack::Cleanup {
   1716     CallObjCRelease(llvm::Value *object) : object(object) {}
   1717     llvm::Value *object;
   1718 
   1719     void Emit(CodeGenFunction &CGF, Flags flags) {
   1720       // Releases at the end of the full-expression are imprecise.
   1721       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
   1722     }
   1723   };
   1724 }
   1725 
   1726 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
   1727 /// release at the end of the full-expression.
   1728 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
   1729                                                     llvm::Value *object) {
   1730   // If we're in a conditional branch, we need to make the cleanup
   1731   // conditional.
   1732   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
   1733   return object;
   1734 }
   1735 
   1736 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
   1737                                                            llvm::Value *value) {
   1738   return EmitARCRetainAutorelease(type, value);
   1739 }
   1740 
   1741 /// Given a number of pointers, inform the optimizer that they're
   1742 /// being intrinsically used up until this point in the program.
   1743 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
   1744   llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use;
   1745   if (!fn) {
   1746     llvm::FunctionType *fnType =
   1747       llvm::FunctionType::get(CGM.VoidTy, ArrayRef<llvm::Type*>(), true);
   1748     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
   1749   }
   1750 
   1751   // This isn't really a "runtime" function, but as an intrinsic it
   1752   // doesn't really matter as long as we align things up.
   1753   EmitNounwindRuntimeCall(fn, values);
   1754 }
   1755 
   1756 
   1757 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
   1758                                                 llvm::FunctionType *type,
   1759                                                 StringRef fnName) {
   1760   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
   1761 
   1762   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
   1763     // If the target runtime doesn't naturally support ARC, emit weak
   1764     // references to the runtime support library.  We don't really
   1765     // permit this to fail, but we need a particular relocation style.
   1766     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
   1767       f->setLinkage(llvm::Function::ExternalWeakLinkage);
   1768     } else if (fnName == "objc_retain" || fnName  == "objc_release") {
   1769       // If we have Native ARC, set nonlazybind attribute for these APIs for
   1770       // performance.
   1771       f->addFnAttr(llvm::Attribute::NonLazyBind);
   1772     }
   1773   }
   1774 
   1775   return fn;
   1776 }
   1777 
   1778 /// Perform an operation having the signature
   1779 ///   i8* (i8*)
   1780 /// where a null input causes a no-op and returns null.
   1781 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
   1782                                           llvm::Value *value,
   1783                                           llvm::Constant *&fn,
   1784                                           StringRef fnName,
   1785                                           bool isTailCall = false) {
   1786   if (isa<llvm::ConstantPointerNull>(value)) return value;
   1787 
   1788   if (!fn) {
   1789     llvm::FunctionType *fnType =
   1790       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
   1791     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1792   }
   1793 
   1794   // Cast the argument to 'id'.
   1795   llvm::Type *origType = value->getType();
   1796   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
   1797 
   1798   // Call the function.
   1799   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
   1800   if (isTailCall)
   1801     call->setTailCall();
   1802 
   1803   // Cast the result back to the original type.
   1804   return CGF.Builder.CreateBitCast(call, origType);
   1805 }
   1806 
   1807 /// Perform an operation having the following signature:
   1808 ///   i8* (i8**)
   1809 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
   1810                                          llvm::Value *addr,
   1811                                          llvm::Constant *&fn,
   1812                                          StringRef fnName) {
   1813   if (!fn) {
   1814     llvm::FunctionType *fnType =
   1815       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
   1816     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1817   }
   1818 
   1819   // Cast the argument to 'id*'.
   1820   llvm::Type *origType = addr->getType();
   1821   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
   1822 
   1823   // Call the function.
   1824   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr);
   1825 
   1826   // Cast the result back to a dereference of the original type.
   1827   if (origType != CGF.Int8PtrPtrTy)
   1828     result = CGF.Builder.CreateBitCast(result,
   1829                         cast<llvm::PointerType>(origType)->getElementType());
   1830 
   1831   return result;
   1832 }
   1833 
   1834 /// Perform an operation having the following signature:
   1835 ///   i8* (i8**, i8*)
   1836 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
   1837                                           llvm::Value *addr,
   1838                                           llvm::Value *value,
   1839                                           llvm::Constant *&fn,
   1840                                           StringRef fnName,
   1841                                           bool ignored) {
   1842   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
   1843            == value->getType());
   1844 
   1845   if (!fn) {
   1846     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
   1847 
   1848     llvm::FunctionType *fnType
   1849       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
   1850     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1851   }
   1852 
   1853   llvm::Type *origType = value->getType();
   1854 
   1855   llvm::Value *args[] = {
   1856     CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy),
   1857     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
   1858   };
   1859   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
   1860 
   1861   if (ignored) return 0;
   1862 
   1863   return CGF.Builder.CreateBitCast(result, origType);
   1864 }
   1865 
   1866 /// Perform an operation having the following signature:
   1867 ///   void (i8**, i8**)
   1868 static void emitARCCopyOperation(CodeGenFunction &CGF,
   1869                                  llvm::Value *dst,
   1870                                  llvm::Value *src,
   1871                                  llvm::Constant *&fn,
   1872                                  StringRef fnName) {
   1873   assert(dst->getType() == src->getType());
   1874 
   1875   if (!fn) {
   1876     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
   1877 
   1878     llvm::FunctionType *fnType
   1879       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
   1880     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1881   }
   1882 
   1883   llvm::Value *args[] = {
   1884     CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy),
   1885     CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy)
   1886   };
   1887   CGF.EmitNounwindRuntimeCall(fn, args);
   1888 }
   1889 
   1890 /// Produce the code to do a retain.  Based on the type, calls one of:
   1891 ///   call i8* \@objc_retain(i8* %value)
   1892 ///   call i8* \@objc_retainBlock(i8* %value)
   1893 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
   1894   if (type->isBlockPointerType())
   1895     return EmitARCRetainBlock(value, /*mandatory*/ false);
   1896   else
   1897     return EmitARCRetainNonBlock(value);
   1898 }
   1899 
   1900 /// Retain the given object, with normal retain semantics.
   1901 ///   call i8* \@objc_retain(i8* %value)
   1902 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
   1903   return emitARCValueOperation(*this, value,
   1904                                CGM.getARCEntrypoints().objc_retain,
   1905                                "objc_retain");
   1906 }
   1907 
   1908 /// Retain the given block, with _Block_copy semantics.
   1909 ///   call i8* \@objc_retainBlock(i8* %value)
   1910 ///
   1911 /// \param mandatory - If false, emit the call with metadata
   1912 /// indicating that it's okay for the optimizer to eliminate this call
   1913 /// if it can prove that the block never escapes except down the stack.
   1914 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
   1915                                                  bool mandatory) {
   1916   llvm::Value *result
   1917     = emitARCValueOperation(*this, value,
   1918                             CGM.getARCEntrypoints().objc_retainBlock,
   1919                             "objc_retainBlock");
   1920 
   1921   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
   1922   // tell the optimizer that it doesn't need to do this copy if the
   1923   // block doesn't escape, where being passed as an argument doesn't
   1924   // count as escaping.
   1925   if (!mandatory && isa<llvm::Instruction>(result)) {
   1926     llvm::CallInst *call
   1927       = cast<llvm::CallInst>(result->stripPointerCasts());
   1928     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
   1929 
   1930     SmallVector<llvm::Value*,1> args;
   1931     call->setMetadata("clang.arc.copy_on_escape",
   1932                       llvm::MDNode::get(Builder.getContext(), args));
   1933   }
   1934 
   1935   return result;
   1936 }
   1937 
   1938 /// Retain the given object which is the result of a function call.
   1939 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
   1940 ///
   1941 /// Yes, this function name is one character away from a different
   1942 /// call with completely different semantics.
   1943 llvm::Value *
   1944 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
   1945   // Fetch the void(void) inline asm which marks that we're going to
   1946   // retain the autoreleased return value.
   1947   llvm::InlineAsm *&marker
   1948     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
   1949   if (!marker) {
   1950     StringRef assembly
   1951       = CGM.getTargetCodeGenInfo()
   1952            .getARCRetainAutoreleasedReturnValueMarker();
   1953 
   1954     // If we have an empty assembly string, there's nothing to do.
   1955     if (assembly.empty()) {
   1956 
   1957     // Otherwise, at -O0, build an inline asm that we're going to call
   1958     // in a moment.
   1959     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
   1960       llvm::FunctionType *type =
   1961         llvm::FunctionType::get(VoidTy, /*variadic*/false);
   1962 
   1963       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
   1964 
   1965     // If we're at -O1 and above, we don't want to litter the code
   1966     // with this marker yet, so leave a breadcrumb for the ARC
   1967     // optimizer to pick up.
   1968     } else {
   1969       llvm::NamedMDNode *metadata =
   1970         CGM.getModule().getOrInsertNamedMetadata(
   1971                             "clang.arc.retainAutoreleasedReturnValueMarker");
   1972       assert(metadata->getNumOperands() <= 1);
   1973       if (metadata->getNumOperands() == 0) {
   1974         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
   1975         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
   1976       }
   1977     }
   1978   }
   1979 
   1980   // Call the marker asm if we made one, which we do only at -O0.
   1981   if (marker) Builder.CreateCall(marker);
   1982 
   1983   return emitARCValueOperation(*this, value,
   1984                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
   1985                                "objc_retainAutoreleasedReturnValue");
   1986 }
   1987 
   1988 /// Release the given object.
   1989 ///   call void \@objc_release(i8* %value)
   1990 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
   1991                                      ARCPreciseLifetime_t precise) {
   1992   if (isa<llvm::ConstantPointerNull>(value)) return;
   1993 
   1994   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
   1995   if (!fn) {
   1996     llvm::FunctionType *fnType =
   1997       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
   1998     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
   1999   }
   2000 
   2001   // Cast the argument to 'id'.
   2002   value = Builder.CreateBitCast(value, Int8PtrTy);
   2003 
   2004   // Call objc_release.
   2005   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
   2006 
   2007   if (precise == ARCImpreciseLifetime) {
   2008     SmallVector<llvm::Value*,1> args;
   2009     call->setMetadata("clang.imprecise_release",
   2010                       llvm::MDNode::get(Builder.getContext(), args));
   2011   }
   2012 }
   2013 
   2014 /// Destroy a __strong variable.
   2015 ///
   2016 /// At -O0, emit a call to store 'null' into the address;
   2017 /// instrumenting tools prefer this because the address is exposed,
   2018 /// but it's relatively cumbersome to optimize.
   2019 ///
   2020 /// At -O1 and above, just load and call objc_release.
   2021 ///
   2022 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
   2023 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr,
   2024                                            ARCPreciseLifetime_t precise) {
   2025   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
   2026     llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
   2027     llvm::Value *null = llvm::ConstantPointerNull::get(
   2028                           cast<llvm::PointerType>(addrTy->getElementType()));
   2029     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
   2030     return;
   2031   }
   2032 
   2033   llvm::Value *value = Builder.CreateLoad(addr);
   2034   EmitARCRelease(value, precise);
   2035 }
   2036 
   2037 /// Store into a strong object.  Always calls this:
   2038 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
   2039 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
   2040                                                      llvm::Value *value,
   2041                                                      bool ignored) {
   2042   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
   2043            == value->getType());
   2044 
   2045   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
   2046   if (!fn) {
   2047     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
   2048     llvm::FunctionType *fnType
   2049       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
   2050     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
   2051   }
   2052 
   2053   llvm::Value *args[] = {
   2054     Builder.CreateBitCast(addr, Int8PtrPtrTy),
   2055     Builder.CreateBitCast(value, Int8PtrTy)
   2056   };
   2057   EmitNounwindRuntimeCall(fn, args);
   2058 
   2059   if (ignored) return 0;
   2060   return value;
   2061 }
   2062 
   2063 /// Store into a strong object.  Sometimes calls this:
   2064 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
   2065 /// Other times, breaks it down into components.
   2066 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
   2067                                                  llvm::Value *newValue,
   2068                                                  bool ignored) {
   2069   QualType type = dst.getType();
   2070   bool isBlock = type->isBlockPointerType();
   2071 
   2072   // Use a store barrier at -O0 unless this is a block type or the
   2073   // lvalue is inadequately aligned.
   2074   if (shouldUseFusedARCCalls() &&
   2075       !isBlock &&
   2076       (dst.getAlignment().isZero() ||
   2077        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
   2078     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
   2079   }
   2080 
   2081   // Otherwise, split it out.
   2082 
   2083   // Retain the new value.
   2084   newValue = EmitARCRetain(type, newValue);
   2085 
   2086   // Read the old value.
   2087   llvm::Value *oldValue = EmitLoadOfScalar(dst);
   2088 
   2089   // Store.  We do this before the release so that any deallocs won't
   2090   // see the old value.
   2091   EmitStoreOfScalar(newValue, dst);
   2092 
   2093   // Finally, release the old value.
   2094   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
   2095 
   2096   return newValue;
   2097 }
   2098 
   2099 /// Autorelease the given object.
   2100 ///   call i8* \@objc_autorelease(i8* %value)
   2101 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
   2102   return emitARCValueOperation(*this, value,
   2103                                CGM.getARCEntrypoints().objc_autorelease,
   2104                                "objc_autorelease");
   2105 }
   2106 
   2107 /// Autorelease the given object.
   2108 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
   2109 llvm::Value *
   2110 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
   2111   return emitARCValueOperation(*this, value,
   2112                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
   2113                                "objc_autoreleaseReturnValue",
   2114                                /*isTailCall*/ true);
   2115 }
   2116 
   2117 /// Do a fused retain/autorelease of the given object.
   2118 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
   2119 llvm::Value *
   2120 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
   2121   return emitARCValueOperation(*this, value,
   2122                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
   2123                                "objc_retainAutoreleaseReturnValue",
   2124                                /*isTailCall*/ true);
   2125 }
   2126 
   2127 /// Do a fused retain/autorelease of the given object.
   2128 ///   call i8* \@objc_retainAutorelease(i8* %value)
   2129 /// or
   2130 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
   2131 ///   call i8* \@objc_autorelease(i8* %retain)
   2132 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
   2133                                                        llvm::Value *value) {
   2134   if (!type->isBlockPointerType())
   2135     return EmitARCRetainAutoreleaseNonBlock(value);
   2136 
   2137   if (isa<llvm::ConstantPointerNull>(value)) return value;
   2138 
   2139   llvm::Type *origType = value->getType();
   2140   value = Builder.CreateBitCast(value, Int8PtrTy);
   2141   value = EmitARCRetainBlock(value, /*mandatory*/ true);
   2142   value = EmitARCAutorelease(value);
   2143   return Builder.CreateBitCast(value, origType);
   2144 }
   2145 
   2146 /// Do a fused retain/autorelease of the given object.
   2147 ///   call i8* \@objc_retainAutorelease(i8* %value)
   2148 llvm::Value *
   2149 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
   2150   return emitARCValueOperation(*this, value,
   2151                                CGM.getARCEntrypoints().objc_retainAutorelease,
   2152                                "objc_retainAutorelease");
   2153 }
   2154 
   2155 /// i8* \@objc_loadWeak(i8** %addr)
   2156 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
   2157 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
   2158   return emitARCLoadOperation(*this, addr,
   2159                               CGM.getARCEntrypoints().objc_loadWeak,
   2160                               "objc_loadWeak");
   2161 }
   2162 
   2163 /// i8* \@objc_loadWeakRetained(i8** %addr)
   2164 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
   2165   return emitARCLoadOperation(*this, addr,
   2166                               CGM.getARCEntrypoints().objc_loadWeakRetained,
   2167                               "objc_loadWeakRetained");
   2168 }
   2169 
   2170 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
   2171 /// Returns %value.
   2172 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
   2173                                                llvm::Value *value,
   2174                                                bool ignored) {
   2175   return emitARCStoreOperation(*this, addr, value,
   2176                                CGM.getARCEntrypoints().objc_storeWeak,
   2177                                "objc_storeWeak", ignored);
   2178 }
   2179 
   2180 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
   2181 /// Returns %value.  %addr is known to not have a current weak entry.
   2182 /// Essentially equivalent to:
   2183 ///   *addr = nil; objc_storeWeak(addr, value);
   2184 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
   2185   // If we're initializing to null, just write null to memory; no need
   2186   // to get the runtime involved.  But don't do this if optimization
   2187   // is enabled, because accounting for this would make the optimizer
   2188   // much more complicated.
   2189   if (isa<llvm::ConstantPointerNull>(value) &&
   2190       CGM.getCodeGenOpts().OptimizationLevel == 0) {
   2191     Builder.CreateStore(value, addr);
   2192     return;
   2193   }
   2194 
   2195   emitARCStoreOperation(*this, addr, value,
   2196                         CGM.getARCEntrypoints().objc_initWeak,
   2197                         "objc_initWeak", /*ignored*/ true);
   2198 }
   2199 
   2200 /// void \@objc_destroyWeak(i8** %addr)
   2201 /// Essentially objc_storeWeak(addr, nil).
   2202 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
   2203   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
   2204   if (!fn) {
   2205     llvm::FunctionType *fnType =
   2206       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
   2207     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
   2208   }
   2209 
   2210   // Cast the argument to 'id*'.
   2211   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
   2212 
   2213   EmitNounwindRuntimeCall(fn, addr);
   2214 }
   2215 
   2216 /// void \@objc_moveWeak(i8** %dest, i8** %src)
   2217 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
   2218 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
   2219 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
   2220   emitARCCopyOperation(*this, dst, src,
   2221                        CGM.getARCEntrypoints().objc_moveWeak,
   2222                        "objc_moveWeak");
   2223 }
   2224 
   2225 /// void \@objc_copyWeak(i8** %dest, i8** %src)
   2226 /// Disregards the current value in %dest.  Essentially
   2227 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
   2228 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
   2229   emitARCCopyOperation(*this, dst, src,
   2230                        CGM.getARCEntrypoints().objc_copyWeak,
   2231                        "objc_copyWeak");
   2232 }
   2233 
   2234 /// Produce the code to do a objc_autoreleasepool_push.
   2235 ///   call i8* \@objc_autoreleasePoolPush(void)
   2236 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
   2237   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
   2238   if (!fn) {
   2239     llvm::FunctionType *fnType =
   2240       llvm::FunctionType::get(Int8PtrTy, false);
   2241     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
   2242   }
   2243 
   2244   return EmitNounwindRuntimeCall(fn);
   2245 }
   2246 
   2247 /// Produce the code to do a primitive release.
   2248 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
   2249 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
   2250   assert(value->getType() == Int8PtrTy);
   2251 
   2252   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
   2253   if (!fn) {
   2254     llvm::FunctionType *fnType =
   2255       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
   2256 
   2257     // We don't want to use a weak import here; instead we should not
   2258     // fall into this path.
   2259     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
   2260   }
   2261 
   2262   // objc_autoreleasePoolPop can throw.
   2263   EmitRuntimeCallOrInvoke(fn, value);
   2264 }
   2265 
   2266 /// Produce the code to do an MRR version objc_autoreleasepool_push.
   2267 /// Which is: [[NSAutoreleasePool alloc] init];
   2268 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
   2269 /// init is declared as: - (id) init; in its NSObject super class.
   2270 ///
   2271 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
   2272   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
   2273   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
   2274   // [NSAutoreleasePool alloc]
   2275   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
   2276   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
   2277   CallArgList Args;
   2278   RValue AllocRV =
   2279     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   2280                                 getContext().getObjCIdType(),
   2281                                 AllocSel, Receiver, Args);
   2282 
   2283   // [Receiver init]
   2284   Receiver = AllocRV.getScalarVal();
   2285   II = &CGM.getContext().Idents.get("init");
   2286   Selector InitSel = getContext().Selectors.getSelector(0, &II);
   2287   RValue InitRV =
   2288     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   2289                                 getContext().getObjCIdType(),
   2290                                 InitSel, Receiver, Args);
   2291   return InitRV.getScalarVal();
   2292 }
   2293 
   2294 /// Produce the code to do a primitive release.
   2295 /// [tmp drain];
   2296 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
   2297   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
   2298   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
   2299   CallArgList Args;
   2300   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   2301                               getContext().VoidTy, DrainSel, Arg, Args);
   2302 }
   2303 
   2304 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
   2305                                               llvm::Value *addr,
   2306                                               QualType type) {
   2307   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
   2308 }
   2309 
   2310 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
   2311                                                 llvm::Value *addr,
   2312                                                 QualType type) {
   2313   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
   2314 }
   2315 
   2316 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
   2317                                      llvm::Value *addr,
   2318                                      QualType type) {
   2319   CGF.EmitARCDestroyWeak(addr);
   2320 }
   2321 
   2322 namespace {
   2323   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
   2324     llvm::Value *Token;
   2325 
   2326     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
   2327 
   2328     void Emit(CodeGenFunction &CGF, Flags flags) {
   2329       CGF.EmitObjCAutoreleasePoolPop(Token);
   2330     }
   2331   };
   2332   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
   2333     llvm::Value *Token;
   2334 
   2335     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
   2336 
   2337     void Emit(CodeGenFunction &CGF, Flags flags) {
   2338       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
   2339     }
   2340   };
   2341 }
   2342 
   2343 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
   2344   if (CGM.getLangOpts().ObjCAutoRefCount)
   2345     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
   2346   else
   2347     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
   2348 }
   2349 
   2350 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2351                                                   LValue lvalue,
   2352                                                   QualType type) {
   2353   switch (type.getObjCLifetime()) {
   2354   case Qualifiers::OCL_None:
   2355   case Qualifiers::OCL_ExplicitNone:
   2356   case Qualifiers::OCL_Strong:
   2357   case Qualifiers::OCL_Autoreleasing:
   2358     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
   2359                          false);
   2360 
   2361   case Qualifiers::OCL_Weak:
   2362     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
   2363                          true);
   2364   }
   2365 
   2366   llvm_unreachable("impossible lifetime!");
   2367 }
   2368 
   2369 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2370                                                   const Expr *e) {
   2371   e = e->IgnoreParens();
   2372   QualType type = e->getType();
   2373 
   2374   // If we're loading retained from a __strong xvalue, we can avoid
   2375   // an extra retain/release pair by zeroing out the source of this
   2376   // "move" operation.
   2377   if (e->isXValue() &&
   2378       !type.isConstQualified() &&
   2379       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
   2380     // Emit the lvalue.
   2381     LValue lv = CGF.EmitLValue(e);
   2382 
   2383     // Load the object pointer.
   2384     llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
   2385 
   2386     // Set the source pointer to NULL.
   2387     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
   2388 
   2389     return TryEmitResult(result, true);
   2390   }
   2391 
   2392   // As a very special optimization, in ARC++, if the l-value is the
   2393   // result of a non-volatile assignment, do a simple retain of the
   2394   // result of the call to objc_storeWeak instead of reloading.
   2395   if (CGF.getLangOpts().CPlusPlus &&
   2396       !type.isVolatileQualified() &&
   2397       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
   2398       isa<BinaryOperator>(e) &&
   2399       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
   2400     return TryEmitResult(CGF.EmitScalarExpr(e), false);
   2401 
   2402   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
   2403 }
   2404 
   2405 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
   2406                                            llvm::Value *value);
   2407 
   2408 /// Given that the given expression is some sort of call (which does
   2409 /// not return retained), emit a retain following it.
   2410 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
   2411   llvm::Value *value = CGF.EmitScalarExpr(e);
   2412   return emitARCRetainAfterCall(CGF, value);
   2413 }
   2414 
   2415 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
   2416                                            llvm::Value *value) {
   2417   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
   2418     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
   2419 
   2420     // Place the retain immediately following the call.
   2421     CGF.Builder.SetInsertPoint(call->getParent(),
   2422                                ++llvm::BasicBlock::iterator(call));
   2423     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
   2424 
   2425     CGF.Builder.restoreIP(ip);
   2426     return value;
   2427   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
   2428     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
   2429 
   2430     // Place the retain at the beginning of the normal destination block.
   2431     llvm::BasicBlock *BB = invoke->getNormalDest();
   2432     CGF.Builder.SetInsertPoint(BB, BB->begin());
   2433     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
   2434 
   2435     CGF.Builder.restoreIP(ip);
   2436     return value;
   2437 
   2438   // Bitcasts can arise because of related-result returns.  Rewrite
   2439   // the operand.
   2440   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
   2441     llvm::Value *operand = bitcast->getOperand(0);
   2442     operand = emitARCRetainAfterCall(CGF, operand);
   2443     bitcast->setOperand(0, operand);
   2444     return bitcast;
   2445 
   2446   // Generic fall-back case.
   2447   } else {
   2448     // Retain using the non-block variant: we never need to do a copy
   2449     // of a block that's been returned to us.
   2450     return CGF.EmitARCRetainNonBlock(value);
   2451   }
   2452 }
   2453 
   2454 /// Determine whether it might be important to emit a separate
   2455 /// objc_retain_block on the result of the given expression, or
   2456 /// whether it's okay to just emit it in a +1 context.
   2457 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
   2458   assert(e->getType()->isBlockPointerType());
   2459   e = e->IgnoreParens();
   2460 
   2461   // For future goodness, emit block expressions directly in +1
   2462   // contexts if we can.
   2463   if (isa<BlockExpr>(e))
   2464     return false;
   2465 
   2466   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
   2467     switch (cast->getCastKind()) {
   2468     // Emitting these operations in +1 contexts is goodness.
   2469     case CK_LValueToRValue:
   2470     case CK_ARCReclaimReturnedObject:
   2471     case CK_ARCConsumeObject:
   2472     case CK_ARCProduceObject:
   2473       return false;
   2474 
   2475     // These operations preserve a block type.
   2476     case CK_NoOp:
   2477     case CK_BitCast:
   2478       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
   2479 
   2480     // These operations are known to be bad (or haven't been considered).
   2481     case CK_AnyPointerToBlockPointerCast:
   2482     default:
   2483       return true;
   2484     }
   2485   }
   2486 
   2487   return true;
   2488 }
   2489 
   2490 /// Try to emit a PseudoObjectExpr at +1.
   2491 ///
   2492 /// This massively duplicates emitPseudoObjectRValue.
   2493 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
   2494                                                   const PseudoObjectExpr *E) {
   2495   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
   2496 
   2497   // Find the result expression.
   2498   const Expr *resultExpr = E->getResultExpr();
   2499   assert(resultExpr);
   2500   TryEmitResult result;
   2501 
   2502   for (PseudoObjectExpr::const_semantics_iterator
   2503          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
   2504     const Expr *semantic = *i;
   2505 
   2506     // If this semantic expression is an opaque value, bind it
   2507     // to the result of its source expression.
   2508     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
   2509       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
   2510       OVMA opaqueData;
   2511 
   2512       // If this semantic is the result of the pseudo-object
   2513       // expression, try to evaluate the source as +1.
   2514       if (ov == resultExpr) {
   2515         assert(!OVMA::shouldBindAsLValue(ov));
   2516         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
   2517         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
   2518 
   2519       // Otherwise, just bind it.
   2520       } else {
   2521         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
   2522       }
   2523       opaques.push_back(opaqueData);
   2524 
   2525     // Otherwise, if the expression is the result, evaluate it
   2526     // and remember the result.
   2527     } else if (semantic == resultExpr) {
   2528       result = tryEmitARCRetainScalarExpr(CGF, semantic);
   2529 
   2530     // Otherwise, evaluate the expression in an ignored context.
   2531     } else {
   2532       CGF.EmitIgnoredExpr(semantic);
   2533     }
   2534   }
   2535 
   2536   // Unbind all the opaques now.
   2537   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
   2538     opaques[i].unbind(CGF);
   2539 
   2540   return result;
   2541 }
   2542 
   2543 static TryEmitResult
   2544 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
   2545   // We should *never* see a nested full-expression here, because if
   2546   // we fail to emit at +1, our caller must not retain after we close
   2547   // out the full-expression.
   2548   assert(!isa<ExprWithCleanups>(e));
   2549 
   2550   // The desired result type, if it differs from the type of the
   2551   // ultimate opaque expression.
   2552   llvm::Type *resultType = 0;
   2553 
   2554   while (true) {
   2555     e = e->IgnoreParens();
   2556 
   2557     // There's a break at the end of this if-chain;  anything
   2558     // that wants to keep looping has to explicitly continue.
   2559     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
   2560       switch (ce->getCastKind()) {
   2561       // No-op casts don't change the type, so we just ignore them.
   2562       case CK_NoOp:
   2563         e = ce->getSubExpr();
   2564         continue;
   2565 
   2566       case CK_LValueToRValue: {
   2567         TryEmitResult loadResult
   2568           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
   2569         if (resultType) {
   2570           llvm::Value *value = loadResult.getPointer();
   2571           value = CGF.Builder.CreateBitCast(value, resultType);
   2572           loadResult.setPointer(value);
   2573         }
   2574         return loadResult;
   2575       }
   2576 
   2577       // These casts can change the type, so remember that and
   2578       // soldier on.  We only need to remember the outermost such
   2579       // cast, though.
   2580       case CK_CPointerToObjCPointerCast:
   2581       case CK_BlockPointerToObjCPointerCast:
   2582       case CK_AnyPointerToBlockPointerCast:
   2583       case CK_BitCast:
   2584         if (!resultType)
   2585           resultType = CGF.ConvertType(ce->getType());
   2586         e = ce->getSubExpr();
   2587         assert(e->getType()->hasPointerRepresentation());
   2588         continue;
   2589 
   2590       // For consumptions, just emit the subexpression and thus elide
   2591       // the retain/release pair.
   2592       case CK_ARCConsumeObject: {
   2593         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
   2594         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2595         return TryEmitResult(result, true);
   2596       }
   2597 
   2598       // Block extends are net +0.  Naively, we could just recurse on
   2599       // the subexpression, but actually we need to ensure that the
   2600       // value is copied as a block, so there's a little filter here.
   2601       case CK_ARCExtendBlockObject: {
   2602         llvm::Value *result; // will be a +0 value
   2603 
   2604         // If we can't safely assume the sub-expression will produce a
   2605         // block-copied value, emit the sub-expression at +0.
   2606         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
   2607           result = CGF.EmitScalarExpr(ce->getSubExpr());
   2608 
   2609         // Otherwise, try to emit the sub-expression at +1 recursively.
   2610         } else {
   2611           TryEmitResult subresult
   2612             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
   2613           result = subresult.getPointer();
   2614 
   2615           // If that produced a retained value, just use that,
   2616           // possibly casting down.
   2617           if (subresult.getInt()) {
   2618             if (resultType)
   2619               result = CGF.Builder.CreateBitCast(result, resultType);
   2620             return TryEmitResult(result, true);
   2621           }
   2622 
   2623           // Otherwise it's +0.
   2624         }
   2625 
   2626         // Retain the object as a block, then cast down.
   2627         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
   2628         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2629         return TryEmitResult(result, true);
   2630       }
   2631 
   2632       // For reclaims, emit the subexpression as a retained call and
   2633       // skip the consumption.
   2634       case CK_ARCReclaimReturnedObject: {
   2635         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
   2636         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2637         return TryEmitResult(result, true);
   2638       }
   2639 
   2640       default:
   2641         break;
   2642       }
   2643 
   2644     // Skip __extension__.
   2645     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
   2646       if (op->getOpcode() == UO_Extension) {
   2647         e = op->getSubExpr();
   2648         continue;
   2649       }
   2650 
   2651     // For calls and message sends, use the retained-call logic.
   2652     // Delegate inits are a special case in that they're the only
   2653     // returns-retained expression that *isn't* surrounded by
   2654     // a consume.
   2655     } else if (isa<CallExpr>(e) ||
   2656                (isa<ObjCMessageExpr>(e) &&
   2657                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
   2658       llvm::Value *result = emitARCRetainCall(CGF, e);
   2659       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2660       return TryEmitResult(result, true);
   2661 
   2662     // Look through pseudo-object expressions.
   2663     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
   2664       TryEmitResult result
   2665         = tryEmitARCRetainPseudoObject(CGF, pseudo);
   2666       if (resultType) {
   2667         llvm::Value *value = result.getPointer();
   2668         value = CGF.Builder.CreateBitCast(value, resultType);
   2669         result.setPointer(value);
   2670       }
   2671       return result;
   2672     }
   2673 
   2674     // Conservatively halt the search at any other expression kind.
   2675     break;
   2676   }
   2677 
   2678   // We didn't find an obvious production, so emit what we've got and
   2679   // tell the caller that we didn't manage to retain.
   2680   llvm::Value *result = CGF.EmitScalarExpr(e);
   2681   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2682   return TryEmitResult(result, false);
   2683 }
   2684 
   2685 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2686                                                 LValue lvalue,
   2687                                                 QualType type) {
   2688   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
   2689   llvm::Value *value = result.getPointer();
   2690   if (!result.getInt())
   2691     value = CGF.EmitARCRetain(type, value);
   2692   return value;
   2693 }
   2694 
   2695 /// EmitARCRetainScalarExpr - Semantically equivalent to
   2696 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
   2697 /// best-effort attempt to peephole expressions that naturally produce
   2698 /// retained objects.
   2699 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
   2700   // The retain needs to happen within the full-expression.
   2701   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
   2702     enterFullExpression(cleanups);
   2703     RunCleanupsScope scope(*this);
   2704     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
   2705   }
   2706 
   2707   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
   2708   llvm::Value *value = result.getPointer();
   2709   if (!result.getInt())
   2710     value = EmitARCRetain(e->getType(), value);
   2711   return value;
   2712 }
   2713 
   2714 llvm::Value *
   2715 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
   2716   // The retain needs to happen within the full-expression.
   2717   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
   2718     enterFullExpression(cleanups);
   2719     RunCleanupsScope scope(*this);
   2720     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
   2721   }
   2722 
   2723   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
   2724   llvm::Value *value = result.getPointer();
   2725   if (result.getInt())
   2726     value = EmitARCAutorelease(value);
   2727   else
   2728     value = EmitARCRetainAutorelease(e->getType(), value);
   2729   return value;
   2730 }
   2731 
   2732 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
   2733   llvm::Value *result;
   2734   bool doRetain;
   2735 
   2736   if (shouldEmitSeparateBlockRetain(e)) {
   2737     result = EmitScalarExpr(e);
   2738     doRetain = true;
   2739   } else {
   2740     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
   2741     result = subresult.getPointer();
   2742     doRetain = !subresult.getInt();
   2743   }
   2744 
   2745   if (doRetain)
   2746     result = EmitARCRetainBlock(result, /*mandatory*/ true);
   2747   return EmitObjCConsumeObject(e->getType(), result);
   2748 }
   2749 
   2750 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
   2751   // In ARC, retain and autorelease the expression.
   2752   if (getLangOpts().ObjCAutoRefCount) {
   2753     // Do so before running any cleanups for the full-expression.
   2754     // EmitARCRetainAutoreleaseScalarExpr does this for us.
   2755     return EmitARCRetainAutoreleaseScalarExpr(expr);
   2756   }
   2757 
   2758   // Otherwise, use the normal scalar-expression emission.  The
   2759   // exception machinery doesn't do anything special with the
   2760   // exception like retaining it, so there's no safety associated with
   2761   // only running cleanups after the throw has started, and when it
   2762   // matters it tends to be substantially inferior code.
   2763   return EmitScalarExpr(expr);
   2764 }
   2765 
   2766 std::pair<LValue,llvm::Value*>
   2767 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
   2768                                     bool ignored) {
   2769   // Evaluate the RHS first.
   2770   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
   2771   llvm::Value *value = result.getPointer();
   2772 
   2773   bool hasImmediateRetain = result.getInt();
   2774 
   2775   // If we didn't emit a retained object, and the l-value is of block
   2776   // type, then we need to emit the block-retain immediately in case
   2777   // it invalidates the l-value.
   2778   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
   2779     value = EmitARCRetainBlock(value, /*mandatory*/ false);
   2780     hasImmediateRetain = true;
   2781   }
   2782 
   2783   LValue lvalue = EmitLValue(e->getLHS());
   2784 
   2785   // If the RHS was emitted retained, expand this.
   2786   if (hasImmediateRetain) {
   2787     llvm::Value *oldValue =
   2788       EmitLoadOfScalar(lvalue);
   2789     EmitStoreOfScalar(value, lvalue);
   2790     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
   2791   } else {
   2792     value = EmitARCStoreStrong(lvalue, value, ignored);
   2793   }
   2794 
   2795   return std::pair<LValue,llvm::Value*>(lvalue, value);
   2796 }
   2797 
   2798 std::pair<LValue,llvm::Value*>
   2799 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
   2800   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
   2801   LValue lvalue = EmitLValue(e->getLHS());
   2802 
   2803   EmitStoreOfScalar(value, lvalue);
   2804 
   2805   return std::pair<LValue,llvm::Value*>(lvalue, value);
   2806 }
   2807 
   2808 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
   2809                                           const ObjCAutoreleasePoolStmt &ARPS) {
   2810   const Stmt *subStmt = ARPS.getSubStmt();
   2811   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
   2812 
   2813   CGDebugInfo *DI = getDebugInfo();
   2814   if (DI)
   2815     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
   2816 
   2817   // Keep track of the current cleanup stack depth.
   2818   RunCleanupsScope Scope(*this);
   2819   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
   2820     llvm::Value *token = EmitObjCAutoreleasePoolPush();
   2821     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
   2822   } else {
   2823     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
   2824     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
   2825   }
   2826 
   2827   for (CompoundStmt::const_body_iterator I = S.body_begin(),
   2828        E = S.body_end(); I != E; ++I)
   2829     EmitStmt(*I);
   2830 
   2831   if (DI)
   2832     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
   2833 }
   2834 
   2835 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
   2836 /// make sure it survives garbage collection until this point.
   2837 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
   2838   // We just use an inline assembly.
   2839   llvm::FunctionType *extenderType
   2840     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
   2841   llvm::Value *extender
   2842     = llvm::InlineAsm::get(extenderType,
   2843                            /* assembly */ "",
   2844                            /* constraints */ "r",
   2845                            /* side effects */ true);
   2846 
   2847   object = Builder.CreateBitCast(object, VoidPtrTy);
   2848   EmitNounwindRuntimeCall(extender, object);
   2849 }
   2850 
   2851 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
   2852 /// non-trivial copy assignment function, produce following helper function.
   2853 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
   2854 ///
   2855 llvm::Constant *
   2856 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
   2857                                         const ObjCPropertyImplDecl *PID) {
   2858   if (!getLangOpts().CPlusPlus ||
   2859       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
   2860     return 0;
   2861   QualType Ty = PID->getPropertyIvarDecl()->getType();
   2862   if (!Ty->isRecordType())
   2863     return 0;
   2864   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   2865   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
   2866     return 0;
   2867   llvm::Constant * HelperFn = 0;
   2868   if (hasTrivialSetExpr(PID))
   2869     return 0;
   2870   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
   2871   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
   2872     return HelperFn;
   2873 
   2874   ASTContext &C = getContext();
   2875   IdentifierInfo *II
   2876     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
   2877   FunctionDecl *FD = FunctionDecl::Create(C,
   2878                                           C.getTranslationUnitDecl(),
   2879                                           SourceLocation(),
   2880                                           SourceLocation(), II, C.VoidTy, 0,
   2881                                           SC_Static,
   2882                                           false,
   2883                                           false);
   2884 
   2885   QualType DestTy = C.getPointerType(Ty);
   2886   QualType SrcTy = Ty;
   2887   SrcTy.addConst();
   2888   SrcTy = C.getPointerType(SrcTy);
   2889 
   2890   FunctionArgList args;
   2891   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
   2892   args.push_back(&dstDecl);
   2893   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
   2894   args.push_back(&srcDecl);
   2895 
   2896   const CGFunctionInfo &FI =
   2897     CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
   2898                                               FunctionType::ExtInfo(),
   2899                                               RequiredArgs::All);
   2900 
   2901   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
   2902 
   2903   llvm::Function *Fn =
   2904     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
   2905                            "__assign_helper_atomic_property_",
   2906                            &CGM.getModule());
   2907 
   2908   // Initialize debug info if needed.
   2909   maybeInitializeDebugInfo();
   2910 
   2911   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
   2912 
   2913   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
   2914                       VK_RValue, SourceLocation());
   2915   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
   2916                     VK_LValue, OK_Ordinary, SourceLocation());
   2917 
   2918   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
   2919                       VK_RValue, SourceLocation());
   2920   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
   2921                     VK_LValue, OK_Ordinary, SourceLocation());
   2922 
   2923   Expr *Args[2] = { &DST, &SRC };
   2924   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
   2925   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
   2926                               Args, DestTy->getPointeeType(),
   2927                               VK_LValue, SourceLocation(), false);
   2928 
   2929   EmitStmt(&TheCall);
   2930 
   2931   FinishFunction();
   2932   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
   2933   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
   2934   return HelperFn;
   2935 }
   2936 
   2937 llvm::Constant *
   2938 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
   2939                                             const ObjCPropertyImplDecl *PID) {
   2940   if (!getLangOpts().CPlusPlus ||
   2941       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
   2942     return 0;
   2943   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   2944   QualType Ty = PD->getType();
   2945   if (!Ty->isRecordType())
   2946     return 0;
   2947   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
   2948     return 0;
   2949   llvm::Constant * HelperFn = 0;
   2950 
   2951   if (hasTrivialGetExpr(PID))
   2952     return 0;
   2953   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
   2954   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
   2955     return HelperFn;
   2956 
   2957 
   2958   ASTContext &C = getContext();
   2959   IdentifierInfo *II
   2960   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
   2961   FunctionDecl *FD = FunctionDecl::Create(C,
   2962                                           C.getTranslationUnitDecl(),
   2963                                           SourceLocation(),
   2964                                           SourceLocation(), II, C.VoidTy, 0,
   2965                                           SC_Static,
   2966                                           false,
   2967                                           false);
   2968 
   2969   QualType DestTy = C.getPointerType(Ty);
   2970   QualType SrcTy = Ty;
   2971   SrcTy.addConst();
   2972   SrcTy = C.getPointerType(SrcTy);
   2973 
   2974   FunctionArgList args;
   2975   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
   2976   args.push_back(&dstDecl);
   2977   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
   2978   args.push_back(&srcDecl);
   2979 
   2980   const CGFunctionInfo &FI =
   2981   CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
   2982                                             FunctionType::ExtInfo(),
   2983                                             RequiredArgs::All);
   2984 
   2985   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
   2986 
   2987   llvm::Function *Fn =
   2988   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
   2989                          "__copy_helper_atomic_property_", &CGM.getModule());
   2990 
   2991   // Initialize debug info if needed.
   2992   maybeInitializeDebugInfo();
   2993 
   2994   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
   2995 
   2996   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
   2997                       VK_RValue, SourceLocation());
   2998 
   2999   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
   3000                     VK_LValue, OK_Ordinary, SourceLocation());
   3001 
   3002   CXXConstructExpr *CXXConstExpr =
   3003     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
   3004 
   3005   SmallVector<Expr*, 4> ConstructorArgs;
   3006   ConstructorArgs.push_back(&SRC);
   3007   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
   3008   ++A;
   3009 
   3010   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
   3011        A != AEnd; ++A)
   3012     ConstructorArgs.push_back(*A);
   3013 
   3014   CXXConstructExpr *TheCXXConstructExpr =
   3015     CXXConstructExpr::Create(C, Ty, SourceLocation(),
   3016                              CXXConstExpr->getConstructor(),
   3017                              CXXConstExpr->isElidable(),
   3018                              ConstructorArgs,
   3019                              CXXConstExpr->hadMultipleCandidates(),
   3020                              CXXConstExpr->isListInitialization(),
   3021                              CXXConstExpr->requiresZeroInitialization(),
   3022                              CXXConstExpr->getConstructionKind(),
   3023                              SourceRange());
   3024 
   3025   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
   3026                       VK_RValue, SourceLocation());
   3027 
   3028   RValue DV = EmitAnyExpr(&DstExpr);
   3029   CharUnits Alignment
   3030     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
   3031   EmitAggExpr(TheCXXConstructExpr,
   3032               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
   3033                                     AggValueSlot::IsDestructed,
   3034                                     AggValueSlot::DoesNotNeedGCBarriers,
   3035                                     AggValueSlot::IsNotAliased));
   3036 
   3037   FinishFunction();
   3038   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
   3039   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
   3040   return HelperFn;
   3041 }
   3042 
   3043 llvm::Value *
   3044 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
   3045   // Get selectors for retain/autorelease.
   3046   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
   3047   Selector CopySelector =
   3048       getContext().Selectors.getNullarySelector(CopyID);
   3049   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
   3050   Selector AutoreleaseSelector =
   3051       getContext().Selectors.getNullarySelector(AutoreleaseID);
   3052 
   3053   // Emit calls to retain/autorelease.
   3054   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
   3055   llvm::Value *Val = Block;
   3056   RValue Result;
   3057   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   3058                                        Ty, CopySelector,
   3059                                        Val, CallArgList(), 0, 0);
   3060   Val = Result.getScalarVal();
   3061   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   3062                                        Ty, AutoreleaseSelector,
   3063                                        Val, CallArgList(), 0, 0);
   3064   Val = Result.getScalarVal();
   3065   return Val;
   3066 }
   3067 
   3068 
   3069 CGObjCRuntime::~CGObjCRuntime() {}
   3070