1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements instcombine for ExtractElement, InsertElement and 11 // ShuffleVector. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombine.h" 16 #include "llvm/Support/PatternMatch.h" 17 using namespace llvm; 18 using namespace PatternMatch; 19 20 /// CheapToScalarize - Return true if the value is cheaper to scalarize than it 21 /// is to leave as a vector operation. isConstant indicates whether we're 22 /// extracting one known element. If false we're extracting a variable index. 23 static bool CheapToScalarize(Value *V, bool isConstant) { 24 if (Constant *C = dyn_cast<Constant>(V)) { 25 if (isConstant) return true; 26 27 // If all elts are the same, we can extract it and use any of the values. 28 Constant *Op0 = C->getAggregateElement(0U); 29 for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; ++i) 30 if (C->getAggregateElement(i) != Op0) 31 return false; 32 return true; 33 } 34 Instruction *I = dyn_cast<Instruction>(V); 35 if (!I) return false; 36 37 // Insert element gets simplified to the inserted element or is deleted if 38 // this is constant idx extract element and its a constant idx insertelt. 39 if (I->getOpcode() == Instruction::InsertElement && isConstant && 40 isa<ConstantInt>(I->getOperand(2))) 41 return true; 42 if (I->getOpcode() == Instruction::Load && I->hasOneUse()) 43 return true; 44 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) 45 if (BO->hasOneUse() && 46 (CheapToScalarize(BO->getOperand(0), isConstant) || 47 CheapToScalarize(BO->getOperand(1), isConstant))) 48 return true; 49 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 50 if (CI->hasOneUse() && 51 (CheapToScalarize(CI->getOperand(0), isConstant) || 52 CheapToScalarize(CI->getOperand(1), isConstant))) 53 return true; 54 55 return false; 56 } 57 58 /// FindScalarElement - Given a vector and an element number, see if the scalar 59 /// value is already around as a register, for example if it were inserted then 60 /// extracted from the vector. 61 static Value *FindScalarElement(Value *V, unsigned EltNo) { 62 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 63 VectorType *VTy = cast<VectorType>(V->getType()); 64 unsigned Width = VTy->getNumElements(); 65 if (EltNo >= Width) // Out of range access. 66 return UndefValue::get(VTy->getElementType()); 67 68 if (Constant *C = dyn_cast<Constant>(V)) 69 return C->getAggregateElement(EltNo); 70 71 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 72 // If this is an insert to a variable element, we don't know what it is. 73 if (!isa<ConstantInt>(III->getOperand(2))) 74 return 0; 75 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 76 77 // If this is an insert to the element we are looking for, return the 78 // inserted value. 79 if (EltNo == IIElt) 80 return III->getOperand(1); 81 82 // Otherwise, the insertelement doesn't modify the value, recurse on its 83 // vector input. 84 return FindScalarElement(III->getOperand(0), EltNo); 85 } 86 87 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { 88 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements(); 89 int InEl = SVI->getMaskValue(EltNo); 90 if (InEl < 0) 91 return UndefValue::get(VTy->getElementType()); 92 if (InEl < (int)LHSWidth) 93 return FindScalarElement(SVI->getOperand(0), InEl); 94 return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth); 95 } 96 97 // Extract a value from a vector add operation with a constant zero. 98 Value *Val = 0; Constant *Con = 0; 99 if (match(V, m_Add(m_Value(Val), m_Constant(Con)))) { 100 if (Con->getAggregateElement(EltNo)->isNullValue()) 101 return FindScalarElement(Val, EltNo); 102 } 103 104 // Otherwise, we don't know. 105 return 0; 106 } 107 108 // If we have a PHI node with a vector type that has only 2 uses: feed 109 // itself and be an operand of extractelemnt at a constant location, 110 // try to replace the PHI of the vector type with a PHI of a scalar type 111 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { 112 // Verify that the PHI node has exactly 2 uses. Otherwise return NULL. 113 if (!PN->hasNUses(2)) 114 return NULL; 115 116 // If so, it's known at this point that one operand is PHI and the other is 117 // an extractelement node. Find the PHI user that is not the extractelement 118 // node. 119 Value::use_iterator iu = PN->use_begin(); 120 Instruction *PHIUser = dyn_cast<Instruction>(*iu); 121 if (PHIUser == cast<Instruction>(&EI)) 122 PHIUser = cast<Instruction>(*(++iu)); 123 124 // Verify that this PHI user has one use, which is the PHI itself, 125 // and that it is a binary operation which is cheap to scalarize. 126 // otherwise return NULL. 127 if (!PHIUser->hasOneUse() || !(PHIUser->use_back() == PN) || 128 !(isa<BinaryOperator>(PHIUser)) || !CheapToScalarize(PHIUser, true)) 129 return NULL; 130 131 // Create a scalar PHI node that will replace the vector PHI node 132 // just before the current PHI node. 133 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 134 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 135 // Scalarize each PHI operand. 136 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 137 Value *PHIInVal = PN->getIncomingValue(i); 138 BasicBlock *inBB = PN->getIncomingBlock(i); 139 Value *Elt = EI.getIndexOperand(); 140 // If the operand is the PHI induction variable: 141 if (PHIInVal == PHIUser) { 142 // Scalarize the binary operation. Its first operand is the 143 // scalar PHI and the second operand is extracted from the other 144 // vector operand. 145 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 146 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 147 Value *Op = InsertNewInstWith( 148 ExtractElementInst::Create(B0->getOperand(opId), Elt, 149 B0->getOperand(opId)->getName() + ".Elt"), 150 *B0); 151 Value *newPHIUser = InsertNewInstWith( 152 BinaryOperator::Create(B0->getOpcode(), scalarPHI, Op), *B0); 153 scalarPHI->addIncoming(newPHIUser, inBB); 154 } else { 155 // Scalarize PHI input: 156 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 157 // Insert the new instruction into the predecessor basic block. 158 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 159 BasicBlock::iterator InsertPos; 160 if (pos && !isa<PHINode>(pos)) { 161 InsertPos = pos; 162 ++InsertPos; 163 } else { 164 InsertPos = inBB->getFirstInsertionPt(); 165 } 166 167 InsertNewInstWith(newEI, *InsertPos); 168 169 scalarPHI->addIncoming(newEI, inBB); 170 } 171 } 172 return ReplaceInstUsesWith(EI, scalarPHI); 173 } 174 175 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { 176 // If vector val is constant with all elements the same, replace EI with 177 // that element. We handle a known element # below. 178 if (Constant *C = dyn_cast<Constant>(EI.getOperand(0))) 179 if (CheapToScalarize(C, false)) 180 return ReplaceInstUsesWith(EI, C->getAggregateElement(0U)); 181 182 // If extracting a specified index from the vector, see if we can recursively 183 // find a previously computed scalar that was inserted into the vector. 184 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) { 185 unsigned IndexVal = IdxC->getZExtValue(); 186 unsigned VectorWidth = EI.getVectorOperandType()->getNumElements(); 187 188 // If this is extracting an invalid index, turn this into undef, to avoid 189 // crashing the code below. 190 if (IndexVal >= VectorWidth) 191 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); 192 193 // This instruction only demands the single element from the input vector. 194 // If the input vector has a single use, simplify it based on this use 195 // property. 196 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) { 197 APInt UndefElts(VectorWidth, 0); 198 APInt DemandedMask(VectorWidth, 0); 199 DemandedMask.setBit(IndexVal); 200 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), 201 DemandedMask, UndefElts)) { 202 EI.setOperand(0, V); 203 return &EI; 204 } 205 } 206 207 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal)) 208 return ReplaceInstUsesWith(EI, Elt); 209 210 // If the this extractelement is directly using a bitcast from a vector of 211 // the same number of elements, see if we can find the source element from 212 // it. In this case, we will end up needing to bitcast the scalars. 213 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) { 214 if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType())) 215 if (VT->getNumElements() == VectorWidth) 216 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal)) 217 return new BitCastInst(Elt, EI.getType()); 218 } 219 220 // If there's a vector PHI feeding a scalar use through this extractelement 221 // instruction, try to scalarize the PHI. 222 if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) { 223 Instruction *scalarPHI = scalarizePHI(EI, PN); 224 if (scalarPHI) 225 return scalarPHI; 226 } 227 } 228 229 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) { 230 // Push extractelement into predecessor operation if legal and 231 // profitable to do so 232 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 233 if (I->hasOneUse() && 234 CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) { 235 Value *newEI0 = 236 Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1), 237 EI.getName()+".lhs"); 238 Value *newEI1 = 239 Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1), 240 EI.getName()+".rhs"); 241 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1); 242 } 243 } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) { 244 // Extracting the inserted element? 245 if (IE->getOperand(2) == EI.getOperand(1)) 246 return ReplaceInstUsesWith(EI, IE->getOperand(1)); 247 // If the inserted and extracted elements are constants, they must not 248 // be the same value, extract from the pre-inserted value instead. 249 if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) { 250 Worklist.AddValue(EI.getOperand(0)); 251 EI.setOperand(0, IE->getOperand(0)); 252 return &EI; 253 } 254 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) { 255 // If this is extracting an element from a shufflevector, figure out where 256 // it came from and extract from the appropriate input element instead. 257 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) { 258 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); 259 Value *Src; 260 unsigned LHSWidth = 261 SVI->getOperand(0)->getType()->getVectorNumElements(); 262 263 if (SrcIdx < 0) 264 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); 265 if (SrcIdx < (int)LHSWidth) 266 Src = SVI->getOperand(0); 267 else { 268 SrcIdx -= LHSWidth; 269 Src = SVI->getOperand(1); 270 } 271 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 272 return ExtractElementInst::Create(Src, 273 ConstantInt::get(Int32Ty, 274 SrcIdx, false)); 275 } 276 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 277 // Canonicalize extractelement(cast) -> cast(extractelement) 278 // bitcasts can change the number of vector elements and they cost nothing 279 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 280 Value *EE = Builder->CreateExtractElement(CI->getOperand(0), 281 EI.getIndexOperand()); 282 Worklist.AddValue(EE); 283 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 284 } 285 } 286 } 287 return 0; 288 } 289 290 /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns 291 /// elements from either LHS or RHS, return the shuffle mask and true. 292 /// Otherwise, return false. 293 static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 294 SmallVectorImpl<Constant*> &Mask) { 295 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() && 296 "Invalid CollectSingleShuffleElements"); 297 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 298 299 if (isa<UndefValue>(V)) { 300 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 301 return true; 302 } 303 304 if (V == LHS) { 305 for (unsigned i = 0; i != NumElts; ++i) 306 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 307 return true; 308 } 309 310 if (V == RHS) { 311 for (unsigned i = 0; i != NumElts; ++i) 312 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), 313 i+NumElts)); 314 return true; 315 } 316 317 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 318 // If this is an insert of an extract from some other vector, include it. 319 Value *VecOp = IEI->getOperand(0); 320 Value *ScalarOp = IEI->getOperand(1); 321 Value *IdxOp = IEI->getOperand(2); 322 323 if (!isa<ConstantInt>(IdxOp)) 324 return false; 325 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 326 327 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 328 // Okay, we can handle this if the vector we are insertinting into is 329 // transitively ok. 330 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 331 // If so, update the mask to reflect the inserted undef. 332 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); 333 return true; 334 } 335 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 336 if (isa<ConstantInt>(EI->getOperand(1)) && 337 EI->getOperand(0)->getType() == V->getType()) { 338 unsigned ExtractedIdx = 339 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 340 341 // This must be extracting from either LHS or RHS. 342 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 343 // Okay, we can handle this if the vector we are insertinting into is 344 // transitively ok. 345 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 346 // If so, update the mask to reflect the inserted value. 347 if (EI->getOperand(0) == LHS) { 348 Mask[InsertedIdx % NumElts] = 349 ConstantInt::get(Type::getInt32Ty(V->getContext()), 350 ExtractedIdx); 351 } else { 352 assert(EI->getOperand(0) == RHS); 353 Mask[InsertedIdx % NumElts] = 354 ConstantInt::get(Type::getInt32Ty(V->getContext()), 355 ExtractedIdx+NumElts); 356 } 357 return true; 358 } 359 } 360 } 361 } 362 } 363 // TODO: Handle shufflevector here! 364 365 return false; 366 } 367 368 /// CollectShuffleElements - We are building a shuffle of V, using RHS as the 369 /// RHS of the shuffle instruction, if it is not null. Return a shuffle mask 370 /// that computes V and the LHS value of the shuffle. 371 static Value *CollectShuffleElements(Value *V, SmallVectorImpl<Constant*> &Mask, 372 Value *&RHS) { 373 assert(V->getType()->isVectorTy() && 374 (RHS == 0 || V->getType() == RHS->getType()) && 375 "Invalid shuffle!"); 376 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 377 378 if (isa<UndefValue>(V)) { 379 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 380 return V; 381 } 382 383 if (isa<ConstantAggregateZero>(V)) { 384 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); 385 return V; 386 } 387 388 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 389 // If this is an insert of an extract from some other vector, include it. 390 Value *VecOp = IEI->getOperand(0); 391 Value *ScalarOp = IEI->getOperand(1); 392 Value *IdxOp = IEI->getOperand(2); 393 394 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 395 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) && 396 EI->getOperand(0)->getType() == V->getType()) { 397 unsigned ExtractedIdx = 398 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 399 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 400 401 // Either the extracted from or inserted into vector must be RHSVec, 402 // otherwise we'd end up with a shuffle of three inputs. 403 if (EI->getOperand(0) == RHS || RHS == 0) { 404 RHS = EI->getOperand(0); 405 Value *V = CollectShuffleElements(VecOp, Mask, RHS); 406 Mask[InsertedIdx % NumElts] = 407 ConstantInt::get(Type::getInt32Ty(V->getContext()), 408 NumElts+ExtractedIdx); 409 return V; 410 } 411 412 if (VecOp == RHS) { 413 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS); 414 // Update Mask to reflect that `ScalarOp' has been inserted at 415 // position `InsertedIdx' within the vector returned by IEI. 416 Mask[InsertedIdx % NumElts] = Mask[ExtractedIdx]; 417 418 // Everything but the extracted element is replaced with the RHS. 419 for (unsigned i = 0; i != NumElts; ++i) { 420 if (i != InsertedIdx) 421 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), 422 NumElts+i); 423 } 424 return V; 425 } 426 427 // If this insertelement is a chain that comes from exactly these two 428 // vectors, return the vector and the effective shuffle. 429 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask)) 430 return EI->getOperand(0); 431 } 432 } 433 } 434 // TODO: Handle shufflevector here! 435 436 // Otherwise, can't do anything fancy. Return an identity vector. 437 for (unsigned i = 0; i != NumElts; ++i) 438 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 439 return V; 440 } 441 442 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { 443 Value *VecOp = IE.getOperand(0); 444 Value *ScalarOp = IE.getOperand(1); 445 Value *IdxOp = IE.getOperand(2); 446 447 // Inserting an undef or into an undefined place, remove this. 448 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp)) 449 ReplaceInstUsesWith(IE, VecOp); 450 451 // If the inserted element was extracted from some other vector, and if the 452 // indexes are constant, try to turn this into a shufflevector operation. 453 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 454 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) && 455 EI->getOperand(0)->getType() == IE.getType()) { 456 unsigned NumVectorElts = IE.getType()->getNumElements(); 457 unsigned ExtractedIdx = 458 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 459 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 460 461 if (ExtractedIdx >= NumVectorElts) // Out of range extract. 462 return ReplaceInstUsesWith(IE, VecOp); 463 464 if (InsertedIdx >= NumVectorElts) // Out of range insert. 465 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType())); 466 467 // If we are extracting a value from a vector, then inserting it right 468 // back into the same place, just use the input vector. 469 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx) 470 return ReplaceInstUsesWith(IE, VecOp); 471 472 // If this insertelement isn't used by some other insertelement, turn it 473 // (and any insertelements it points to), into one big shuffle. 474 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) { 475 SmallVector<Constant*, 16> Mask; 476 Value *RHS = 0; 477 Value *LHS = CollectShuffleElements(&IE, Mask, RHS); 478 if (RHS == 0) RHS = UndefValue::get(LHS->getType()); 479 // We now have a shuffle of LHS, RHS, Mask. 480 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask)); 481 } 482 } 483 } 484 485 unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements(); 486 APInt UndefElts(VWidth, 0); 487 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 488 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 489 if (V != &IE) 490 return ReplaceInstUsesWith(IE, V); 491 return &IE; 492 } 493 494 return 0; 495 } 496 497 /// Return true if we can evaluate the specified expression tree if the vector 498 /// elements were shuffled in a different order. 499 static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask, 500 unsigned Depth = 5) { 501 // We can always reorder the elements of a constant. 502 if (isa<Constant>(V)) 503 return true; 504 505 // We won't reorder vector arguments. No IPO here. 506 Instruction *I = dyn_cast<Instruction>(V); 507 if (!I) return false; 508 509 // Two users may expect different orders of the elements. Don't try it. 510 if (!I->hasOneUse()) 511 return false; 512 513 if (Depth == 0) return false; 514 515 switch (I->getOpcode()) { 516 case Instruction::Add: 517 case Instruction::FAdd: 518 case Instruction::Sub: 519 case Instruction::FSub: 520 case Instruction::Mul: 521 case Instruction::FMul: 522 case Instruction::UDiv: 523 case Instruction::SDiv: 524 case Instruction::FDiv: 525 case Instruction::URem: 526 case Instruction::SRem: 527 case Instruction::FRem: 528 case Instruction::Shl: 529 case Instruction::LShr: 530 case Instruction::AShr: 531 case Instruction::And: 532 case Instruction::Or: 533 case Instruction::Xor: 534 case Instruction::ICmp: 535 case Instruction::FCmp: 536 case Instruction::Trunc: 537 case Instruction::ZExt: 538 case Instruction::SExt: 539 case Instruction::FPToUI: 540 case Instruction::FPToSI: 541 case Instruction::UIToFP: 542 case Instruction::SIToFP: 543 case Instruction::FPTrunc: 544 case Instruction::FPExt: 545 case Instruction::GetElementPtr: { 546 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 547 if (!CanEvaluateShuffled(I->getOperand(i), Mask, Depth-1)) 548 return false; 549 } 550 return true; 551 } 552 case Instruction::InsertElement: { 553 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 554 if (!CI) return false; 555 int ElementNumber = CI->getLimitedValue(); 556 557 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 558 // can't put an element into multiple indices. 559 bool SeenOnce = false; 560 for (int i = 0, e = Mask.size(); i != e; ++i) { 561 if (Mask[i] == ElementNumber) { 562 if (SeenOnce) 563 return false; 564 SeenOnce = true; 565 } 566 } 567 return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1); 568 } 569 } 570 return false; 571 } 572 573 /// Rebuild a new instruction just like 'I' but with the new operands given. 574 /// In the event of type mismatch, the type of the operands is correct. 575 static Value *BuildNew(Instruction *I, ArrayRef<Value*> NewOps) { 576 // We don't want to use the IRBuilder here because we want the replacement 577 // instructions to appear next to 'I', not the builder's insertion point. 578 switch (I->getOpcode()) { 579 case Instruction::Add: 580 case Instruction::FAdd: 581 case Instruction::Sub: 582 case Instruction::FSub: 583 case Instruction::Mul: 584 case Instruction::FMul: 585 case Instruction::UDiv: 586 case Instruction::SDiv: 587 case Instruction::FDiv: 588 case Instruction::URem: 589 case Instruction::SRem: 590 case Instruction::FRem: 591 case Instruction::Shl: 592 case Instruction::LShr: 593 case Instruction::AShr: 594 case Instruction::And: 595 case Instruction::Or: 596 case Instruction::Xor: { 597 BinaryOperator *BO = cast<BinaryOperator>(I); 598 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 599 BinaryOperator *New = 600 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 601 NewOps[0], NewOps[1], "", BO); 602 if (isa<OverflowingBinaryOperator>(BO)) { 603 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 604 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 605 } 606 if (isa<PossiblyExactOperator>(BO)) { 607 New->setIsExact(BO->isExact()); 608 } 609 return New; 610 } 611 case Instruction::ICmp: 612 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 613 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 614 NewOps[0], NewOps[1]); 615 case Instruction::FCmp: 616 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 617 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 618 NewOps[0], NewOps[1]); 619 case Instruction::Trunc: 620 case Instruction::ZExt: 621 case Instruction::SExt: 622 case Instruction::FPToUI: 623 case Instruction::FPToSI: 624 case Instruction::UIToFP: 625 case Instruction::SIToFP: 626 case Instruction::FPTrunc: 627 case Instruction::FPExt: { 628 // It's possible that the mask has a different number of elements from 629 // the original cast. We recompute the destination type to match the mask. 630 Type *DestTy = 631 VectorType::get(I->getType()->getScalarType(), 632 NewOps[0]->getType()->getVectorNumElements()); 633 assert(NewOps.size() == 1 && "cast with #ops != 1"); 634 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 635 "", I); 636 } 637 case Instruction::GetElementPtr: { 638 Value *Ptr = NewOps[0]; 639 ArrayRef<Value*> Idx = NewOps.slice(1); 640 GetElementPtrInst *GEP = GetElementPtrInst::Create(Ptr, Idx, "", I); 641 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 642 return GEP; 643 } 644 } 645 llvm_unreachable("failed to rebuild vector instructions"); 646 } 647 648 Value * 649 InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 650 // Mask.size() does not need to be equal to the number of vector elements. 651 652 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 653 if (isa<UndefValue>(V)) { 654 return UndefValue::get(VectorType::get(V->getType()->getScalarType(), 655 Mask.size())); 656 } 657 if (isa<ConstantAggregateZero>(V)) { 658 return ConstantAggregateZero::get( 659 VectorType::get(V->getType()->getScalarType(), 660 Mask.size())); 661 } 662 if (Constant *C = dyn_cast<Constant>(V)) { 663 SmallVector<Constant *, 16> MaskValues; 664 for (int i = 0, e = Mask.size(); i != e; ++i) { 665 if (Mask[i] == -1) 666 MaskValues.push_back(UndefValue::get(Builder->getInt32Ty())); 667 else 668 MaskValues.push_back(Builder->getInt32(Mask[i])); 669 } 670 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 671 ConstantVector::get(MaskValues)); 672 } 673 674 Instruction *I = cast<Instruction>(V); 675 switch (I->getOpcode()) { 676 case Instruction::Add: 677 case Instruction::FAdd: 678 case Instruction::Sub: 679 case Instruction::FSub: 680 case Instruction::Mul: 681 case Instruction::FMul: 682 case Instruction::UDiv: 683 case Instruction::SDiv: 684 case Instruction::FDiv: 685 case Instruction::URem: 686 case Instruction::SRem: 687 case Instruction::FRem: 688 case Instruction::Shl: 689 case Instruction::LShr: 690 case Instruction::AShr: 691 case Instruction::And: 692 case Instruction::Or: 693 case Instruction::Xor: 694 case Instruction::ICmp: 695 case Instruction::FCmp: 696 case Instruction::Trunc: 697 case Instruction::ZExt: 698 case Instruction::SExt: 699 case Instruction::FPToUI: 700 case Instruction::FPToSI: 701 case Instruction::UIToFP: 702 case Instruction::SIToFP: 703 case Instruction::FPTrunc: 704 case Instruction::FPExt: 705 case Instruction::Select: 706 case Instruction::GetElementPtr: { 707 SmallVector<Value*, 8> NewOps; 708 bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements()); 709 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 710 Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask); 711 NewOps.push_back(V); 712 NeedsRebuild |= (V != I->getOperand(i)); 713 } 714 if (NeedsRebuild) { 715 return BuildNew(I, NewOps); 716 } 717 return I; 718 } 719 case Instruction::InsertElement: { 720 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 721 722 // The insertelement was inserting at Element. Figure out which element 723 // that becomes after shuffling. The answer is guaranteed to be unique 724 // by CanEvaluateShuffled. 725 bool Found = false; 726 int Index = 0; 727 for (int e = Mask.size(); Index != e; ++Index) { 728 if (Mask[Index] == Element) { 729 Found = true; 730 break; 731 } 732 } 733 734 if (!Found) 735 return UndefValue::get( 736 VectorType::get(V->getType()->getScalarType(), Mask.size())); 737 738 Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask); 739 return InsertElementInst::Create(V, I->getOperand(1), 740 Builder->getInt32(Index), "", I); 741 } 742 } 743 llvm_unreachable("failed to reorder elements of vector instruction!"); 744 } 745 746 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 747 Value *LHS = SVI.getOperand(0); 748 Value *RHS = SVI.getOperand(1); 749 SmallVector<int, 16> Mask = SVI.getShuffleMask(); 750 751 bool MadeChange = false; 752 753 // Undefined shuffle mask -> undefined value. 754 if (isa<UndefValue>(SVI.getOperand(2))) 755 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType())); 756 757 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements(); 758 759 APInt UndefElts(VWidth, 0); 760 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 761 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 762 if (V != &SVI) 763 return ReplaceInstUsesWith(SVI, V); 764 LHS = SVI.getOperand(0); 765 RHS = SVI.getOperand(1); 766 MadeChange = true; 767 } 768 769 unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements(); 770 771 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask') 772 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). 773 if (LHS == RHS || isa<UndefValue>(LHS)) { 774 if (isa<UndefValue>(LHS) && LHS == RHS) { 775 // shuffle(undef,undef,mask) -> undef. 776 Value *Result = (VWidth == LHSWidth) 777 ? LHS : UndefValue::get(SVI.getType()); 778 return ReplaceInstUsesWith(SVI, Result); 779 } 780 781 // Remap any references to RHS to use LHS. 782 SmallVector<Constant*, 16> Elts; 783 for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) { 784 if (Mask[i] < 0) { 785 Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext()))); 786 continue; 787 } 788 789 if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) || 790 (Mask[i] < (int)e && isa<UndefValue>(LHS))) { 791 Mask[i] = -1; // Turn into undef. 792 Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext()))); 793 } else { 794 Mask[i] = Mask[i] % e; // Force to LHS. 795 Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()), 796 Mask[i])); 797 } 798 } 799 SVI.setOperand(0, SVI.getOperand(1)); 800 SVI.setOperand(1, UndefValue::get(RHS->getType())); 801 SVI.setOperand(2, ConstantVector::get(Elts)); 802 LHS = SVI.getOperand(0); 803 RHS = SVI.getOperand(1); 804 MadeChange = true; 805 } 806 807 if (VWidth == LHSWidth) { 808 // Analyze the shuffle, are the LHS or RHS and identity shuffles? 809 bool isLHSID = true, isRHSID = true; 810 811 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 812 if (Mask[i] < 0) continue; // Ignore undef values. 813 // Is this an identity shuffle of the LHS value? 814 isLHSID &= (Mask[i] == (int)i); 815 816 // Is this an identity shuffle of the RHS value? 817 isRHSID &= (Mask[i]-e == i); 818 } 819 820 // Eliminate identity shuffles. 821 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS); 822 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS); 823 } 824 825 if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) { 826 Value *V = EvaluateInDifferentElementOrder(LHS, Mask); 827 return ReplaceInstUsesWith(SVI, V); 828 } 829 830 // If the LHS is a shufflevector itself, see if we can combine it with this 831 // one without producing an unusual shuffle. 832 // Cases that might be simplified: 833 // 1. 834 // x1=shuffle(v1,v2,mask1) 835 // x=shuffle(x1,undef,mask) 836 // ==> 837 // x=shuffle(v1,undef,newMask) 838 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 839 // 2. 840 // x1=shuffle(v1,undef,mask1) 841 // x=shuffle(x1,x2,mask) 842 // where v1.size() == mask1.size() 843 // ==> 844 // x=shuffle(v1,x2,newMask) 845 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 846 // 3. 847 // x2=shuffle(v2,undef,mask2) 848 // x=shuffle(x1,x2,mask) 849 // where v2.size() == mask2.size() 850 // ==> 851 // x=shuffle(x1,v2,newMask) 852 // newMask[i] = (mask[i] < x1.size()) 853 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 854 // 4. 855 // x1=shuffle(v1,undef,mask1) 856 // x2=shuffle(v2,undef,mask2) 857 // x=shuffle(x1,x2,mask) 858 // where v1.size() == v2.size() 859 // ==> 860 // x=shuffle(v1,v2,newMask) 861 // newMask[i] = (mask[i] < x1.size()) 862 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 863 // 864 // Here we are really conservative: 865 // we are absolutely afraid of producing a shuffle mask not in the input 866 // program, because the code gen may not be smart enough to turn a merged 867 // shuffle into two specific shuffles: it may produce worse code. As such, 868 // we only merge two shuffles if the result is either a splat or one of the 869 // input shuffle masks. In this case, merging the shuffles just removes 870 // one instruction, which we know is safe. This is good for things like 871 // turning: (splat(splat)) -> splat, or 872 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 873 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 874 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 875 if (LHSShuffle) 876 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 877 LHSShuffle = NULL; 878 if (RHSShuffle) 879 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 880 RHSShuffle = NULL; 881 if (!LHSShuffle && !RHSShuffle) 882 return MadeChange ? &SVI : 0; 883 884 Value* LHSOp0 = NULL; 885 Value* LHSOp1 = NULL; 886 Value* RHSOp0 = NULL; 887 unsigned LHSOp0Width = 0; 888 unsigned RHSOp0Width = 0; 889 if (LHSShuffle) { 890 LHSOp0 = LHSShuffle->getOperand(0); 891 LHSOp1 = LHSShuffle->getOperand(1); 892 LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements(); 893 } 894 if (RHSShuffle) { 895 RHSOp0 = RHSShuffle->getOperand(0); 896 RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements(); 897 } 898 Value* newLHS = LHS; 899 Value* newRHS = RHS; 900 if (LHSShuffle) { 901 // case 1 902 if (isa<UndefValue>(RHS)) { 903 newLHS = LHSOp0; 904 newRHS = LHSOp1; 905 } 906 // case 2 or 4 907 else if (LHSOp0Width == LHSWidth) { 908 newLHS = LHSOp0; 909 } 910 } 911 // case 3 or 4 912 if (RHSShuffle && RHSOp0Width == LHSWidth) { 913 newRHS = RHSOp0; 914 } 915 // case 4 916 if (LHSOp0 == RHSOp0) { 917 newLHS = LHSOp0; 918 newRHS = NULL; 919 } 920 921 if (newLHS == LHS && newRHS == RHS) 922 return MadeChange ? &SVI : 0; 923 924 SmallVector<int, 16> LHSMask; 925 SmallVector<int, 16> RHSMask; 926 if (newLHS != LHS) 927 LHSMask = LHSShuffle->getShuffleMask(); 928 if (RHSShuffle && newRHS != RHS) 929 RHSMask = RHSShuffle->getShuffleMask(); 930 931 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 932 SmallVector<int, 16> newMask; 933 bool isSplat = true; 934 int SplatElt = -1; 935 // Create a new mask for the new ShuffleVectorInst so that the new 936 // ShuffleVectorInst is equivalent to the original one. 937 for (unsigned i = 0; i < VWidth; ++i) { 938 int eltMask; 939 if (Mask[i] < 0) { 940 // This element is an undef value. 941 eltMask = -1; 942 } else if (Mask[i] < (int)LHSWidth) { 943 // This element is from left hand side vector operand. 944 // 945 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 946 // new mask value for the element. 947 if (newLHS != LHS) { 948 eltMask = LHSMask[Mask[i]]; 949 // If the value selected is an undef value, explicitly specify it 950 // with a -1 mask value. 951 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 952 eltMask = -1; 953 } else 954 eltMask = Mask[i]; 955 } else { 956 // This element is from right hand side vector operand 957 // 958 // If the value selected is an undef value, explicitly specify it 959 // with a -1 mask value. (case 1) 960 if (isa<UndefValue>(RHS)) 961 eltMask = -1; 962 // If RHS is going to be replaced (case 3 or 4), calculate the 963 // new mask value for the element. 964 else if (newRHS != RHS) { 965 eltMask = RHSMask[Mask[i]-LHSWidth]; 966 // If the value selected is an undef value, explicitly specify it 967 // with a -1 mask value. 968 if (eltMask >= (int)RHSOp0Width) { 969 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 970 && "should have been check above"); 971 eltMask = -1; 972 } 973 } else 974 eltMask = Mask[i]-LHSWidth; 975 976 // If LHS's width is changed, shift the mask value accordingly. 977 // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any 978 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 979 // If newRHS == newLHS, we want to remap any references from newRHS to 980 // newLHS so that we can properly identify splats that may occur due to 981 // obfuscation accross the two vectors. 982 if (eltMask >= 0 && newRHS != NULL && newLHS != newRHS) 983 eltMask += newLHSWidth; 984 } 985 986 // Check if this could still be a splat. 987 if (eltMask >= 0) { 988 if (SplatElt >= 0 && SplatElt != eltMask) 989 isSplat = false; 990 SplatElt = eltMask; 991 } 992 993 newMask.push_back(eltMask); 994 } 995 996 // If the result mask is equal to one of the original shuffle masks, 997 // or is a splat, do the replacement. 998 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 999 SmallVector<Constant*, 16> Elts; 1000 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 1001 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 1002 if (newMask[i] < 0) { 1003 Elts.push_back(UndefValue::get(Int32Ty)); 1004 } else { 1005 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 1006 } 1007 } 1008 if (newRHS == NULL) 1009 newRHS = UndefValue::get(newLHS->getType()); 1010 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 1011 } 1012 1013 return MadeChange ? &SVI : 0; 1014 } 1015