Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "media/base/vector_math.h"
      6 #include "media/base/vector_math_testing.h"
      7 
      8 #include <algorithm>
      9 
     10 #include "base/cpu.h"
     11 #include "base/logging.h"
     12 #include "build/build_config.h"
     13 
     14 #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
     15 #include <arm_neon.h>
     16 #endif
     17 
     18 namespace media {
     19 namespace vector_math {
     20 
     21 // If we know the minimum architecture at compile time, avoid CPU detection.
     22 // Force NaCl code to use C routines since (at present) nothing there uses these
     23 // methods and plumbing the -msse built library is non-trivial.
     24 #if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL)
     25 #if defined(__SSE__)
     26 #define FMAC_FUNC FMAC_SSE
     27 #define FMUL_FUNC FMUL_SSE
     28 #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_SSE
     29 void Initialize() {}
     30 #else
     31 // X86 CPU detection required.  Functions will be set by Initialize().
     32 // TODO(dalecurtis): Once Chrome moves to an SSE baseline this can be removed.
     33 #define FMAC_FUNC g_fmac_proc_
     34 #define FMUL_FUNC g_fmul_proc_
     35 #define EWMAAndMaxPower_FUNC g_ewma_power_proc_
     36 
     37 typedef void (*MathProc)(const float src[], float scale, int len, float dest[]);
     38 static MathProc g_fmac_proc_ = NULL;
     39 static MathProc g_fmul_proc_ = NULL;
     40 typedef std::pair<float, float> (*EWMAAndMaxPowerProc)(
     41     float initial_value, const float src[], int len, float smoothing_factor);
     42 static EWMAAndMaxPowerProc g_ewma_power_proc_ = NULL;
     43 
     44 void Initialize() {
     45   CHECK(!g_fmac_proc_);
     46   CHECK(!g_fmul_proc_);
     47   CHECK(!g_ewma_power_proc_);
     48   const bool kUseSSE = base::CPU().has_sse();
     49   g_fmac_proc_ = kUseSSE ? FMAC_SSE : FMAC_C;
     50   g_fmul_proc_ = kUseSSE ? FMUL_SSE : FMUL_C;
     51   g_ewma_power_proc_ = kUseSSE ? EWMAAndMaxPower_SSE : EWMAAndMaxPower_C;
     52 }
     53 #endif
     54 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
     55 #define FMAC_FUNC FMAC_NEON
     56 #define FMUL_FUNC FMUL_NEON
     57 #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_NEON
     58 void Initialize() {}
     59 #else
     60 // Unknown architecture.
     61 #define FMAC_FUNC FMAC_C
     62 #define FMUL_FUNC FMUL_C
     63 #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_C
     64 void Initialize() {}
     65 #endif
     66 
     67 void FMAC(const float src[], float scale, int len, float dest[]) {
     68   // Ensure |src| and |dest| are 16-byte aligned.
     69   DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) & (kRequiredAlignment - 1));
     70   DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(dest) & (kRequiredAlignment - 1));
     71   return FMAC_FUNC(src, scale, len, dest);
     72 }
     73 
     74 void FMAC_C(const float src[], float scale, int len, float dest[]) {
     75   for (int i = 0; i < len; ++i)
     76     dest[i] += src[i] * scale;
     77 }
     78 
     79 void FMUL(const float src[], float scale, int len, float dest[]) {
     80   // Ensure |src| and |dest| are 16-byte aligned.
     81   DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) & (kRequiredAlignment - 1));
     82   DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(dest) & (kRequiredAlignment - 1));
     83   return FMUL_FUNC(src, scale, len, dest);
     84 }
     85 
     86 void FMUL_C(const float src[], float scale, int len, float dest[]) {
     87   for (int i = 0; i < len; ++i)
     88     dest[i] = src[i] * scale;
     89 }
     90 
     91 std::pair<float, float> EWMAAndMaxPower(
     92     float initial_value, const float src[], int len, float smoothing_factor) {
     93   // Ensure |src| is 16-byte aligned.
     94   DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) & (kRequiredAlignment - 1));
     95   return EWMAAndMaxPower_FUNC(initial_value, src, len, smoothing_factor);
     96 }
     97 
     98 std::pair<float, float> EWMAAndMaxPower_C(
     99     float initial_value, const float src[], int len, float smoothing_factor) {
    100   std::pair<float, float> result(initial_value, 0.0f);
    101   const float weight_prev = 1.0f - smoothing_factor;
    102   for (int i = 0; i < len; ++i) {
    103     result.first *= weight_prev;
    104     const float sample = src[i];
    105     const float sample_squared = sample * sample;
    106     result.first += sample_squared * smoothing_factor;
    107     result.second = std::max(result.second, sample_squared);
    108   }
    109   return result;
    110 }
    111 
    112 #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
    113 void FMAC_NEON(const float src[], float scale, int len, float dest[]) {
    114   const int rem = len % 4;
    115   const int last_index = len - rem;
    116   float32x4_t m_scale = vmovq_n_f32(scale);
    117   for (int i = 0; i < last_index; i += 4) {
    118     vst1q_f32(dest + i, vmlaq_f32(
    119         vld1q_f32(dest + i), vld1q_f32(src + i), m_scale));
    120   }
    121 
    122   // Handle any remaining values that wouldn't fit in an NEON pass.
    123   for (int i = last_index; i < len; ++i)
    124     dest[i] += src[i] * scale;
    125 }
    126 
    127 void FMUL_NEON(const float src[], float scale, int len, float dest[]) {
    128   const int rem = len % 4;
    129   const int last_index = len - rem;
    130   float32x4_t m_scale = vmovq_n_f32(scale);
    131   for (int i = 0; i < last_index; i += 4)
    132     vst1q_f32(dest + i, vmulq_f32(vld1q_f32(src + i), m_scale));
    133 
    134   // Handle any remaining values that wouldn't fit in an NEON pass.
    135   for (int i = last_index; i < len; ++i)
    136     dest[i] = src[i] * scale;
    137 }
    138 
    139 std::pair<float, float> EWMAAndMaxPower_NEON(
    140     float initial_value, const float src[], int len, float smoothing_factor) {
    141   // When the recurrence is unrolled, we see that we can split it into 4
    142   // separate lanes of evaluation:
    143   //
    144   // y[n] = a(S[n]^2) + (1-a)(y[n-1])
    145   //      = a(S[n]^2) + (1-a)^1(aS[n-1]^2) + (1-a)^2(aS[n-2]^2) + ...
    146   //      = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
    147   //
    148   // where z[n] = a(S[n]^2) + (1-a)^4(z[n-4]) + (1-a)^8(z[n-8]) + ...
    149   //
    150   // Thus, the strategy here is to compute z[n], z[n-1], z[n-2], and z[n-3] in
    151   // each of the 4 lanes, and then combine them to give y[n].
    152 
    153   const int rem = len % 4;
    154   const int last_index = len - rem;
    155 
    156   const float32x4_t smoothing_factor_x4 = vdupq_n_f32(smoothing_factor);
    157   const float weight_prev = 1.0f - smoothing_factor;
    158   const float32x4_t weight_prev_x4 = vdupq_n_f32(weight_prev);
    159   const float32x4_t weight_prev_squared_x4 =
    160       vmulq_f32(weight_prev_x4, weight_prev_x4);
    161   const float32x4_t weight_prev_4th_x4 =
    162       vmulq_f32(weight_prev_squared_x4, weight_prev_squared_x4);
    163 
    164   // Compute z[n], z[n-1], z[n-2], and z[n-3] in parallel in lanes 3, 2, 1 and
    165   // 0, respectively.
    166   float32x4_t max_x4 = vdupq_n_f32(0.0f);
    167   float32x4_t ewma_x4 = vsetq_lane_f32(initial_value, vdupq_n_f32(0.0f), 3);
    168   int i;
    169   for (i = 0; i < last_index; i += 4) {
    170     ewma_x4 = vmulq_f32(ewma_x4, weight_prev_4th_x4);
    171     const float32x4_t sample_x4 = vld1q_f32(src + i);
    172     const float32x4_t sample_squared_x4 = vmulq_f32(sample_x4, sample_x4);
    173     max_x4 = vmaxq_f32(max_x4, sample_squared_x4);
    174     ewma_x4 = vmlaq_f32(ewma_x4, sample_squared_x4, smoothing_factor_x4);
    175   }
    176 
    177   // y[n] = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
    178   float ewma = vgetq_lane_f32(ewma_x4, 3);
    179   ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4);
    180   ewma += vgetq_lane_f32(ewma_x4, 2);
    181   ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4);
    182   ewma += vgetq_lane_f32(ewma_x4, 1);
    183   ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4);
    184   ewma += vgetq_lane_f32(ewma_x4, 0);
    185 
    186   // Fold the maximums together to get the overall maximum.
    187   float32x2_t max_x2 = vpmax_f32(vget_low_f32(max_x4), vget_high_f32(max_x4));
    188   max_x2 = vpmax_f32(max_x2, max_x2);
    189 
    190   std::pair<float, float> result(ewma, vget_lane_f32(max_x2, 0));
    191 
    192   // Handle remaining values at the end of |src|.
    193   for (; i < len; ++i) {
    194     result.first *= weight_prev;
    195     const float sample = src[i];
    196     const float sample_squared = sample * sample;
    197     result.first += sample_squared * smoothing_factor;
    198     result.second = std::max(result.second, sample_squared);
    199   }
    200 
    201   return result;
    202 }
    203 #endif
    204 
    205 }  // namespace vector_math
    206 }  // namespace media
    207