1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "media/base/vector_math.h" 6 #include "media/base/vector_math_testing.h" 7 8 #include <algorithm> 9 10 #include "base/cpu.h" 11 #include "base/logging.h" 12 #include "build/build_config.h" 13 14 #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON) 15 #include <arm_neon.h> 16 #endif 17 18 namespace media { 19 namespace vector_math { 20 21 // If we know the minimum architecture at compile time, avoid CPU detection. 22 // Force NaCl code to use C routines since (at present) nothing there uses these 23 // methods and plumbing the -msse built library is non-trivial. 24 #if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL) 25 #if defined(__SSE__) 26 #define FMAC_FUNC FMAC_SSE 27 #define FMUL_FUNC FMUL_SSE 28 #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_SSE 29 void Initialize() {} 30 #else 31 // X86 CPU detection required. Functions will be set by Initialize(). 32 // TODO(dalecurtis): Once Chrome moves to an SSE baseline this can be removed. 33 #define FMAC_FUNC g_fmac_proc_ 34 #define FMUL_FUNC g_fmul_proc_ 35 #define EWMAAndMaxPower_FUNC g_ewma_power_proc_ 36 37 typedef void (*MathProc)(const float src[], float scale, int len, float dest[]); 38 static MathProc g_fmac_proc_ = NULL; 39 static MathProc g_fmul_proc_ = NULL; 40 typedef std::pair<float, float> (*EWMAAndMaxPowerProc)( 41 float initial_value, const float src[], int len, float smoothing_factor); 42 static EWMAAndMaxPowerProc g_ewma_power_proc_ = NULL; 43 44 void Initialize() { 45 CHECK(!g_fmac_proc_); 46 CHECK(!g_fmul_proc_); 47 CHECK(!g_ewma_power_proc_); 48 const bool kUseSSE = base::CPU().has_sse(); 49 g_fmac_proc_ = kUseSSE ? FMAC_SSE : FMAC_C; 50 g_fmul_proc_ = kUseSSE ? FMUL_SSE : FMUL_C; 51 g_ewma_power_proc_ = kUseSSE ? EWMAAndMaxPower_SSE : EWMAAndMaxPower_C; 52 } 53 #endif 54 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON) 55 #define FMAC_FUNC FMAC_NEON 56 #define FMUL_FUNC FMUL_NEON 57 #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_NEON 58 void Initialize() {} 59 #else 60 // Unknown architecture. 61 #define FMAC_FUNC FMAC_C 62 #define FMUL_FUNC FMUL_C 63 #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_C 64 void Initialize() {} 65 #endif 66 67 void FMAC(const float src[], float scale, int len, float dest[]) { 68 // Ensure |src| and |dest| are 16-byte aligned. 69 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) & (kRequiredAlignment - 1)); 70 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(dest) & (kRequiredAlignment - 1)); 71 return FMAC_FUNC(src, scale, len, dest); 72 } 73 74 void FMAC_C(const float src[], float scale, int len, float dest[]) { 75 for (int i = 0; i < len; ++i) 76 dest[i] += src[i] * scale; 77 } 78 79 void FMUL(const float src[], float scale, int len, float dest[]) { 80 // Ensure |src| and |dest| are 16-byte aligned. 81 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) & (kRequiredAlignment - 1)); 82 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(dest) & (kRequiredAlignment - 1)); 83 return FMUL_FUNC(src, scale, len, dest); 84 } 85 86 void FMUL_C(const float src[], float scale, int len, float dest[]) { 87 for (int i = 0; i < len; ++i) 88 dest[i] = src[i] * scale; 89 } 90 91 std::pair<float, float> EWMAAndMaxPower( 92 float initial_value, const float src[], int len, float smoothing_factor) { 93 // Ensure |src| is 16-byte aligned. 94 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) & (kRequiredAlignment - 1)); 95 return EWMAAndMaxPower_FUNC(initial_value, src, len, smoothing_factor); 96 } 97 98 std::pair<float, float> EWMAAndMaxPower_C( 99 float initial_value, const float src[], int len, float smoothing_factor) { 100 std::pair<float, float> result(initial_value, 0.0f); 101 const float weight_prev = 1.0f - smoothing_factor; 102 for (int i = 0; i < len; ++i) { 103 result.first *= weight_prev; 104 const float sample = src[i]; 105 const float sample_squared = sample * sample; 106 result.first += sample_squared * smoothing_factor; 107 result.second = std::max(result.second, sample_squared); 108 } 109 return result; 110 } 111 112 #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON) 113 void FMAC_NEON(const float src[], float scale, int len, float dest[]) { 114 const int rem = len % 4; 115 const int last_index = len - rem; 116 float32x4_t m_scale = vmovq_n_f32(scale); 117 for (int i = 0; i < last_index; i += 4) { 118 vst1q_f32(dest + i, vmlaq_f32( 119 vld1q_f32(dest + i), vld1q_f32(src + i), m_scale)); 120 } 121 122 // Handle any remaining values that wouldn't fit in an NEON pass. 123 for (int i = last_index; i < len; ++i) 124 dest[i] += src[i] * scale; 125 } 126 127 void FMUL_NEON(const float src[], float scale, int len, float dest[]) { 128 const int rem = len % 4; 129 const int last_index = len - rem; 130 float32x4_t m_scale = vmovq_n_f32(scale); 131 for (int i = 0; i < last_index; i += 4) 132 vst1q_f32(dest + i, vmulq_f32(vld1q_f32(src + i), m_scale)); 133 134 // Handle any remaining values that wouldn't fit in an NEON pass. 135 for (int i = last_index; i < len; ++i) 136 dest[i] = src[i] * scale; 137 } 138 139 std::pair<float, float> EWMAAndMaxPower_NEON( 140 float initial_value, const float src[], int len, float smoothing_factor) { 141 // When the recurrence is unrolled, we see that we can split it into 4 142 // separate lanes of evaluation: 143 // 144 // y[n] = a(S[n]^2) + (1-a)(y[n-1]) 145 // = a(S[n]^2) + (1-a)^1(aS[n-1]^2) + (1-a)^2(aS[n-2]^2) + ... 146 // = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3]) 147 // 148 // where z[n] = a(S[n]^2) + (1-a)^4(z[n-4]) + (1-a)^8(z[n-8]) + ... 149 // 150 // Thus, the strategy here is to compute z[n], z[n-1], z[n-2], and z[n-3] in 151 // each of the 4 lanes, and then combine them to give y[n]. 152 153 const int rem = len % 4; 154 const int last_index = len - rem; 155 156 const float32x4_t smoothing_factor_x4 = vdupq_n_f32(smoothing_factor); 157 const float weight_prev = 1.0f - smoothing_factor; 158 const float32x4_t weight_prev_x4 = vdupq_n_f32(weight_prev); 159 const float32x4_t weight_prev_squared_x4 = 160 vmulq_f32(weight_prev_x4, weight_prev_x4); 161 const float32x4_t weight_prev_4th_x4 = 162 vmulq_f32(weight_prev_squared_x4, weight_prev_squared_x4); 163 164 // Compute z[n], z[n-1], z[n-2], and z[n-3] in parallel in lanes 3, 2, 1 and 165 // 0, respectively. 166 float32x4_t max_x4 = vdupq_n_f32(0.0f); 167 float32x4_t ewma_x4 = vsetq_lane_f32(initial_value, vdupq_n_f32(0.0f), 3); 168 int i; 169 for (i = 0; i < last_index; i += 4) { 170 ewma_x4 = vmulq_f32(ewma_x4, weight_prev_4th_x4); 171 const float32x4_t sample_x4 = vld1q_f32(src + i); 172 const float32x4_t sample_squared_x4 = vmulq_f32(sample_x4, sample_x4); 173 max_x4 = vmaxq_f32(max_x4, sample_squared_x4); 174 ewma_x4 = vmlaq_f32(ewma_x4, sample_squared_x4, smoothing_factor_x4); 175 } 176 177 // y[n] = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3]) 178 float ewma = vgetq_lane_f32(ewma_x4, 3); 179 ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4); 180 ewma += vgetq_lane_f32(ewma_x4, 2); 181 ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4); 182 ewma += vgetq_lane_f32(ewma_x4, 1); 183 ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4); 184 ewma += vgetq_lane_f32(ewma_x4, 0); 185 186 // Fold the maximums together to get the overall maximum. 187 float32x2_t max_x2 = vpmax_f32(vget_low_f32(max_x4), vget_high_f32(max_x4)); 188 max_x2 = vpmax_f32(max_x2, max_x2); 189 190 std::pair<float, float> result(ewma, vget_lane_f32(max_x2, 0)); 191 192 // Handle remaining values at the end of |src|. 193 for (; i < len; ++i) { 194 result.first *= weight_prev; 195 const float sample = src[i]; 196 const float sample_squared = sample * sample; 197 result.first += sample_squared * smoothing_factor; 198 result.second = std::max(result.second, sample_squared); 199 } 200 201 return result; 202 } 203 #endif 204 205 } // namespace vector_math 206 } // namespace media 207