1 //=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines analysis_warnings::[Policy,Executor]. 11 // Together they are used by Sema to issue warnings based on inexpensive 12 // static analysis algorithms in libAnalysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "clang/Sema/AnalysisBasedWarnings.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/EvaluatedExprVisitor.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/ExprObjC.h" 22 #include "clang/AST/ParentMap.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/AST/StmtVisitor.h" 27 #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h" 28 #include "clang/Analysis/Analyses/ReachableCode.h" 29 #include "clang/Analysis/Analyses/ThreadSafety.h" 30 #include "clang/Analysis/Analyses/UninitializedValues.h" 31 #include "clang/Analysis/AnalysisContext.h" 32 #include "clang/Analysis/CFG.h" 33 #include "clang/Analysis/CFGStmtMap.h" 34 #include "clang/Basic/SourceLocation.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Lex/Lexer.h" 37 #include "clang/Lex/Preprocessor.h" 38 #include "clang/Sema/ScopeInfo.h" 39 #include "clang/Sema/SemaInternal.h" 40 #include "llvm/ADT/ArrayRef.h" 41 #include "llvm/ADT/BitVector.h" 42 #include "llvm/ADT/FoldingSet.h" 43 #include "llvm/ADT/ImmutableMap.h" 44 #include "llvm/ADT/MapVector.h" 45 #include "llvm/ADT/PostOrderIterator.h" 46 #include "llvm/ADT/SmallString.h" 47 #include "llvm/ADT/SmallVector.h" 48 #include "llvm/ADT/StringRef.h" 49 #include "llvm/Support/Casting.h" 50 #include <algorithm> 51 #include <deque> 52 #include <iterator> 53 #include <vector> 54 55 using namespace clang; 56 57 //===----------------------------------------------------------------------===// 58 // Unreachable code analysis. 59 //===----------------------------------------------------------------------===// 60 61 namespace { 62 class UnreachableCodeHandler : public reachable_code::Callback { 63 Sema &S; 64 public: 65 UnreachableCodeHandler(Sema &s) : S(s) {} 66 67 void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) { 68 S.Diag(L, diag::warn_unreachable) << R1 << R2; 69 } 70 }; 71 } 72 73 /// CheckUnreachable - Check for unreachable code. 74 static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) { 75 UnreachableCodeHandler UC(S); 76 reachable_code::FindUnreachableCode(AC, UC); 77 } 78 79 //===----------------------------------------------------------------------===// 80 // Check for missing return value. 81 //===----------------------------------------------------------------------===// 82 83 enum ControlFlowKind { 84 UnknownFallThrough, 85 NeverFallThrough, 86 MaybeFallThrough, 87 AlwaysFallThrough, 88 NeverFallThroughOrReturn 89 }; 90 91 /// CheckFallThrough - Check that we don't fall off the end of a 92 /// Statement that should return a value. 93 /// 94 /// \returns AlwaysFallThrough iff we always fall off the end of the statement, 95 /// MaybeFallThrough iff we might or might not fall off the end, 96 /// NeverFallThroughOrReturn iff we never fall off the end of the statement or 97 /// return. We assume NeverFallThrough iff we never fall off the end of the 98 /// statement but we may return. We assume that functions not marked noreturn 99 /// will return. 100 static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) { 101 CFG *cfg = AC.getCFG(); 102 if (cfg == 0) return UnknownFallThrough; 103 104 // The CFG leaves in dead things, and we don't want the dead code paths to 105 // confuse us, so we mark all live things first. 106 llvm::BitVector live(cfg->getNumBlockIDs()); 107 unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(), 108 live); 109 110 bool AddEHEdges = AC.getAddEHEdges(); 111 if (!AddEHEdges && count != cfg->getNumBlockIDs()) 112 // When there are things remaining dead, and we didn't add EH edges 113 // from CallExprs to the catch clauses, we have to go back and 114 // mark them as live. 115 for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) { 116 CFGBlock &b = **I; 117 if (!live[b.getBlockID()]) { 118 if (b.pred_begin() == b.pred_end()) { 119 if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator())) 120 // When not adding EH edges from calls, catch clauses 121 // can otherwise seem dead. Avoid noting them as dead. 122 count += reachable_code::ScanReachableFromBlock(&b, live); 123 continue; 124 } 125 } 126 } 127 128 // Now we know what is live, we check the live precessors of the exit block 129 // and look for fall through paths, being careful to ignore normal returns, 130 // and exceptional paths. 131 bool HasLiveReturn = false; 132 bool HasFakeEdge = false; 133 bool HasPlainEdge = false; 134 bool HasAbnormalEdge = false; 135 136 // Ignore default cases that aren't likely to be reachable because all 137 // enums in a switch(X) have explicit case statements. 138 CFGBlock::FilterOptions FO; 139 FO.IgnoreDefaultsWithCoveredEnums = 1; 140 141 for (CFGBlock::filtered_pred_iterator 142 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) { 143 const CFGBlock& B = **I; 144 if (!live[B.getBlockID()]) 145 continue; 146 147 // Skip blocks which contain an element marked as no-return. They don't 148 // represent actually viable edges into the exit block, so mark them as 149 // abnormal. 150 if (B.hasNoReturnElement()) { 151 HasAbnormalEdge = true; 152 continue; 153 } 154 155 // Destructors can appear after the 'return' in the CFG. This is 156 // normal. We need to look pass the destructors for the return 157 // statement (if it exists). 158 CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend(); 159 160 for ( ; ri != re ; ++ri) 161 if (ri->getAs<CFGStmt>()) 162 break; 163 164 // No more CFGElements in the block? 165 if (ri == re) { 166 if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) { 167 HasAbnormalEdge = true; 168 continue; 169 } 170 // A labeled empty statement, or the entry block... 171 HasPlainEdge = true; 172 continue; 173 } 174 175 CFGStmt CS = ri->castAs<CFGStmt>(); 176 const Stmt *S = CS.getStmt(); 177 if (isa<ReturnStmt>(S)) { 178 HasLiveReturn = true; 179 continue; 180 } 181 if (isa<ObjCAtThrowStmt>(S)) { 182 HasFakeEdge = true; 183 continue; 184 } 185 if (isa<CXXThrowExpr>(S)) { 186 HasFakeEdge = true; 187 continue; 188 } 189 if (isa<MSAsmStmt>(S)) { 190 // TODO: Verify this is correct. 191 HasFakeEdge = true; 192 HasLiveReturn = true; 193 continue; 194 } 195 if (isa<CXXTryStmt>(S)) { 196 HasAbnormalEdge = true; 197 continue; 198 } 199 if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit()) 200 == B.succ_end()) { 201 HasAbnormalEdge = true; 202 continue; 203 } 204 205 HasPlainEdge = true; 206 } 207 if (!HasPlainEdge) { 208 if (HasLiveReturn) 209 return NeverFallThrough; 210 return NeverFallThroughOrReturn; 211 } 212 if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn) 213 return MaybeFallThrough; 214 // This says AlwaysFallThrough for calls to functions that are not marked 215 // noreturn, that don't return. If people would like this warning to be more 216 // accurate, such functions should be marked as noreturn. 217 return AlwaysFallThrough; 218 } 219 220 namespace { 221 222 struct CheckFallThroughDiagnostics { 223 unsigned diag_MaybeFallThrough_HasNoReturn; 224 unsigned diag_MaybeFallThrough_ReturnsNonVoid; 225 unsigned diag_AlwaysFallThrough_HasNoReturn; 226 unsigned diag_AlwaysFallThrough_ReturnsNonVoid; 227 unsigned diag_NeverFallThroughOrReturn; 228 enum { Function, Block, Lambda } funMode; 229 SourceLocation FuncLoc; 230 231 static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) { 232 CheckFallThroughDiagnostics D; 233 D.FuncLoc = Func->getLocation(); 234 D.diag_MaybeFallThrough_HasNoReturn = 235 diag::warn_falloff_noreturn_function; 236 D.diag_MaybeFallThrough_ReturnsNonVoid = 237 diag::warn_maybe_falloff_nonvoid_function; 238 D.diag_AlwaysFallThrough_HasNoReturn = 239 diag::warn_falloff_noreturn_function; 240 D.diag_AlwaysFallThrough_ReturnsNonVoid = 241 diag::warn_falloff_nonvoid_function; 242 243 // Don't suggest that virtual functions be marked "noreturn", since they 244 // might be overridden by non-noreturn functions. 245 bool isVirtualMethod = false; 246 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func)) 247 isVirtualMethod = Method->isVirtual(); 248 249 // Don't suggest that template instantiations be marked "noreturn" 250 bool isTemplateInstantiation = false; 251 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func)) 252 isTemplateInstantiation = Function->isTemplateInstantiation(); 253 254 if (!isVirtualMethod && !isTemplateInstantiation) 255 D.diag_NeverFallThroughOrReturn = 256 diag::warn_suggest_noreturn_function; 257 else 258 D.diag_NeverFallThroughOrReturn = 0; 259 260 D.funMode = Function; 261 return D; 262 } 263 264 static CheckFallThroughDiagnostics MakeForBlock() { 265 CheckFallThroughDiagnostics D; 266 D.diag_MaybeFallThrough_HasNoReturn = 267 diag::err_noreturn_block_has_return_expr; 268 D.diag_MaybeFallThrough_ReturnsNonVoid = 269 diag::err_maybe_falloff_nonvoid_block; 270 D.diag_AlwaysFallThrough_HasNoReturn = 271 diag::err_noreturn_block_has_return_expr; 272 D.diag_AlwaysFallThrough_ReturnsNonVoid = 273 diag::err_falloff_nonvoid_block; 274 D.diag_NeverFallThroughOrReturn = 275 diag::warn_suggest_noreturn_block; 276 D.funMode = Block; 277 return D; 278 } 279 280 static CheckFallThroughDiagnostics MakeForLambda() { 281 CheckFallThroughDiagnostics D; 282 D.diag_MaybeFallThrough_HasNoReturn = 283 diag::err_noreturn_lambda_has_return_expr; 284 D.diag_MaybeFallThrough_ReturnsNonVoid = 285 diag::warn_maybe_falloff_nonvoid_lambda; 286 D.diag_AlwaysFallThrough_HasNoReturn = 287 diag::err_noreturn_lambda_has_return_expr; 288 D.diag_AlwaysFallThrough_ReturnsNonVoid = 289 diag::warn_falloff_nonvoid_lambda; 290 D.diag_NeverFallThroughOrReturn = 0; 291 D.funMode = Lambda; 292 return D; 293 } 294 295 bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid, 296 bool HasNoReturn) const { 297 if (funMode == Function) { 298 return (ReturnsVoid || 299 D.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function, 300 FuncLoc) == DiagnosticsEngine::Ignored) 301 && (!HasNoReturn || 302 D.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr, 303 FuncLoc) == DiagnosticsEngine::Ignored) 304 && (!ReturnsVoid || 305 D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc) 306 == DiagnosticsEngine::Ignored); 307 } 308 309 // For blocks / lambdas. 310 return ReturnsVoid && !HasNoReturn 311 && ((funMode == Lambda) || 312 D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc) 313 == DiagnosticsEngine::Ignored); 314 } 315 }; 316 317 } 318 319 /// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a 320 /// function that should return a value. Check that we don't fall off the end 321 /// of a noreturn function. We assume that functions and blocks not marked 322 /// noreturn will return. 323 static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body, 324 const BlockExpr *blkExpr, 325 const CheckFallThroughDiagnostics& CD, 326 AnalysisDeclContext &AC) { 327 328 bool ReturnsVoid = false; 329 bool HasNoReturn = false; 330 331 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 332 ReturnsVoid = FD->getResultType()->isVoidType(); 333 HasNoReturn = FD->isNoReturn(); 334 } 335 else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { 336 ReturnsVoid = MD->getResultType()->isVoidType(); 337 HasNoReturn = MD->hasAttr<NoReturnAttr>(); 338 } 339 else if (isa<BlockDecl>(D)) { 340 QualType BlockTy = blkExpr->getType(); 341 if (const FunctionType *FT = 342 BlockTy->getPointeeType()->getAs<FunctionType>()) { 343 if (FT->getResultType()->isVoidType()) 344 ReturnsVoid = true; 345 if (FT->getNoReturnAttr()) 346 HasNoReturn = true; 347 } 348 } 349 350 DiagnosticsEngine &Diags = S.getDiagnostics(); 351 352 // Short circuit for compilation speed. 353 if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn)) 354 return; 355 356 // FIXME: Function try block 357 if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) { 358 switch (CheckFallThrough(AC)) { 359 case UnknownFallThrough: 360 break; 361 362 case MaybeFallThrough: 363 if (HasNoReturn) 364 S.Diag(Compound->getRBracLoc(), 365 CD.diag_MaybeFallThrough_HasNoReturn); 366 else if (!ReturnsVoid) 367 S.Diag(Compound->getRBracLoc(), 368 CD.diag_MaybeFallThrough_ReturnsNonVoid); 369 break; 370 case AlwaysFallThrough: 371 if (HasNoReturn) 372 S.Diag(Compound->getRBracLoc(), 373 CD.diag_AlwaysFallThrough_HasNoReturn); 374 else if (!ReturnsVoid) 375 S.Diag(Compound->getRBracLoc(), 376 CD.diag_AlwaysFallThrough_ReturnsNonVoid); 377 break; 378 case NeverFallThroughOrReturn: 379 if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) { 380 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 381 S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn) 382 << 0 << FD; 383 } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { 384 S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn) 385 << 1 << MD; 386 } else { 387 S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn); 388 } 389 } 390 break; 391 case NeverFallThrough: 392 break; 393 } 394 } 395 } 396 397 //===----------------------------------------------------------------------===// 398 // -Wuninitialized 399 //===----------------------------------------------------------------------===// 400 401 namespace { 402 /// ContainsReference - A visitor class to search for references to 403 /// a particular declaration (the needle) within any evaluated component of an 404 /// expression (recursively). 405 class ContainsReference : public EvaluatedExprVisitor<ContainsReference> { 406 bool FoundReference; 407 const DeclRefExpr *Needle; 408 409 public: 410 ContainsReference(ASTContext &Context, const DeclRefExpr *Needle) 411 : EvaluatedExprVisitor<ContainsReference>(Context), 412 FoundReference(false), Needle(Needle) {} 413 414 void VisitExpr(Expr *E) { 415 // Stop evaluating if we already have a reference. 416 if (FoundReference) 417 return; 418 419 EvaluatedExprVisitor<ContainsReference>::VisitExpr(E); 420 } 421 422 void VisitDeclRefExpr(DeclRefExpr *E) { 423 if (E == Needle) 424 FoundReference = true; 425 else 426 EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E); 427 } 428 429 bool doesContainReference() const { return FoundReference; } 430 }; 431 } 432 433 static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) { 434 QualType VariableTy = VD->getType().getCanonicalType(); 435 if (VariableTy->isBlockPointerType() && 436 !VD->hasAttr<BlocksAttr>()) { 437 S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization) << VD->getDeclName() 438 << FixItHint::CreateInsertion(VD->getLocation(), "__block "); 439 return true; 440 } 441 442 // Don't issue a fixit if there is already an initializer. 443 if (VD->getInit()) 444 return false; 445 446 // Suggest possible initialization (if any). 447 std::string Init = S.getFixItZeroInitializerForType(VariableTy); 448 if (Init.empty()) 449 return false; 450 451 // Don't suggest a fixit inside macros. 452 if (VD->getLocEnd().isMacroID()) 453 return false; 454 455 SourceLocation Loc = S.PP.getLocForEndOfToken(VD->getLocEnd()); 456 457 S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName() 458 << FixItHint::CreateInsertion(Loc, Init); 459 return true; 460 } 461 462 /// Create a fixit to remove an if-like statement, on the assumption that its 463 /// condition is CondVal. 464 static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then, 465 const Stmt *Else, bool CondVal, 466 FixItHint &Fixit1, FixItHint &Fixit2) { 467 if (CondVal) { 468 // If condition is always true, remove all but the 'then'. 469 Fixit1 = FixItHint::CreateRemoval( 470 CharSourceRange::getCharRange(If->getLocStart(), 471 Then->getLocStart())); 472 if (Else) { 473 SourceLocation ElseKwLoc = Lexer::getLocForEndOfToken( 474 Then->getLocEnd(), 0, S.getSourceManager(), S.getLangOpts()); 475 Fixit2 = FixItHint::CreateRemoval( 476 SourceRange(ElseKwLoc, Else->getLocEnd())); 477 } 478 } else { 479 // If condition is always false, remove all but the 'else'. 480 if (Else) 481 Fixit1 = FixItHint::CreateRemoval( 482 CharSourceRange::getCharRange(If->getLocStart(), 483 Else->getLocStart())); 484 else 485 Fixit1 = FixItHint::CreateRemoval(If->getSourceRange()); 486 } 487 } 488 489 /// DiagUninitUse -- Helper function to produce a diagnostic for an 490 /// uninitialized use of a variable. 491 static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use, 492 bool IsCapturedByBlock) { 493 bool Diagnosed = false; 494 495 // Diagnose each branch which leads to a sometimes-uninitialized use. 496 for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end(); 497 I != E; ++I) { 498 assert(Use.getKind() == UninitUse::Sometimes); 499 500 const Expr *User = Use.getUser(); 501 const Stmt *Term = I->Terminator; 502 503 // Information used when building the diagnostic. 504 unsigned DiagKind; 505 StringRef Str; 506 SourceRange Range; 507 508 // FixIts to suppress the diagnostic by removing the dead condition. 509 // For all binary terminators, branch 0 is taken if the condition is true, 510 // and branch 1 is taken if the condition is false. 511 int RemoveDiagKind = -1; 512 const char *FixitStr = 513 S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false") 514 : (I->Output ? "1" : "0"); 515 FixItHint Fixit1, Fixit2; 516 517 switch (Term->getStmtClass()) { 518 default: 519 // Don't know how to report this. Just fall back to 'may be used 520 // uninitialized'. This happens for range-based for, which the user 521 // can't explicitly fix. 522 // FIXME: This also happens if the first use of a variable is always 523 // uninitialized, eg "for (int n; n < 10; ++n)". We should report that 524 // with the 'is uninitialized' diagnostic. 525 continue; 526 527 // "condition is true / condition is false". 528 case Stmt::IfStmtClass: { 529 const IfStmt *IS = cast<IfStmt>(Term); 530 DiagKind = 0; 531 Str = "if"; 532 Range = IS->getCond()->getSourceRange(); 533 RemoveDiagKind = 0; 534 CreateIfFixit(S, IS, IS->getThen(), IS->getElse(), 535 I->Output, Fixit1, Fixit2); 536 break; 537 } 538 case Stmt::ConditionalOperatorClass: { 539 const ConditionalOperator *CO = cast<ConditionalOperator>(Term); 540 DiagKind = 0; 541 Str = "?:"; 542 Range = CO->getCond()->getSourceRange(); 543 RemoveDiagKind = 0; 544 CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(), 545 I->Output, Fixit1, Fixit2); 546 break; 547 } 548 case Stmt::BinaryOperatorClass: { 549 const BinaryOperator *BO = cast<BinaryOperator>(Term); 550 if (!BO->isLogicalOp()) 551 continue; 552 DiagKind = 0; 553 Str = BO->getOpcodeStr(); 554 Range = BO->getLHS()->getSourceRange(); 555 RemoveDiagKind = 0; 556 if ((BO->getOpcode() == BO_LAnd && I->Output) || 557 (BO->getOpcode() == BO_LOr && !I->Output)) 558 // true && y -> y, false || y -> y. 559 Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(), 560 BO->getOperatorLoc())); 561 else 562 // false && y -> false, true || y -> true. 563 Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr); 564 break; 565 } 566 567 // "loop is entered / loop is exited". 568 case Stmt::WhileStmtClass: 569 DiagKind = 1; 570 Str = "while"; 571 Range = cast<WhileStmt>(Term)->getCond()->getSourceRange(); 572 RemoveDiagKind = 1; 573 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr); 574 break; 575 case Stmt::ForStmtClass: 576 DiagKind = 1; 577 Str = "for"; 578 Range = cast<ForStmt>(Term)->getCond()->getSourceRange(); 579 RemoveDiagKind = 1; 580 if (I->Output) 581 Fixit1 = FixItHint::CreateRemoval(Range); 582 else 583 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr); 584 break; 585 586 // "condition is true / loop is exited". 587 case Stmt::DoStmtClass: 588 DiagKind = 2; 589 Str = "do"; 590 Range = cast<DoStmt>(Term)->getCond()->getSourceRange(); 591 RemoveDiagKind = 1; 592 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr); 593 break; 594 595 // "switch case is taken". 596 case Stmt::CaseStmtClass: 597 DiagKind = 3; 598 Str = "case"; 599 Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange(); 600 break; 601 case Stmt::DefaultStmtClass: 602 DiagKind = 3; 603 Str = "default"; 604 Range = cast<DefaultStmt>(Term)->getDefaultLoc(); 605 break; 606 } 607 608 S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var) 609 << VD->getDeclName() << IsCapturedByBlock << DiagKind 610 << Str << I->Output << Range; 611 S.Diag(User->getLocStart(), diag::note_uninit_var_use) 612 << IsCapturedByBlock << User->getSourceRange(); 613 if (RemoveDiagKind != -1) 614 S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond) 615 << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2; 616 617 Diagnosed = true; 618 } 619 620 if (!Diagnosed) 621 S.Diag(Use.getUser()->getLocStart(), 622 Use.getKind() == UninitUse::Always ? diag::warn_uninit_var 623 : diag::warn_maybe_uninit_var) 624 << VD->getDeclName() << IsCapturedByBlock 625 << Use.getUser()->getSourceRange(); 626 } 627 628 /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an 629 /// uninitialized variable. This manages the different forms of diagnostic 630 /// emitted for particular types of uses. Returns true if the use was diagnosed 631 /// as a warning. If a particular use is one we omit warnings for, returns 632 /// false. 633 static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD, 634 const UninitUse &Use, 635 bool alwaysReportSelfInit = false) { 636 637 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) { 638 // Inspect the initializer of the variable declaration which is 639 // being referenced prior to its initialization. We emit 640 // specialized diagnostics for self-initialization, and we 641 // specifically avoid warning about self references which take the 642 // form of: 643 // 644 // int x = x; 645 // 646 // This is used to indicate to GCC that 'x' is intentionally left 647 // uninitialized. Proven code paths which access 'x' in 648 // an uninitialized state after this will still warn. 649 if (const Expr *Initializer = VD->getInit()) { 650 if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts()) 651 return false; 652 653 ContainsReference CR(S.Context, DRE); 654 CR.Visit(const_cast<Expr*>(Initializer)); 655 if (CR.doesContainReference()) { 656 S.Diag(DRE->getLocStart(), 657 diag::warn_uninit_self_reference_in_init) 658 << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange(); 659 return true; 660 } 661 } 662 663 DiagUninitUse(S, VD, Use, false); 664 } else { 665 const BlockExpr *BE = cast<BlockExpr>(Use.getUser()); 666 if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>()) 667 S.Diag(BE->getLocStart(), 668 diag::warn_uninit_byref_blockvar_captured_by_block) 669 << VD->getDeclName(); 670 else 671 DiagUninitUse(S, VD, Use, true); 672 } 673 674 // Report where the variable was declared when the use wasn't within 675 // the initializer of that declaration & we didn't already suggest 676 // an initialization fixit. 677 if (!SuggestInitializationFixit(S, VD)) 678 S.Diag(VD->getLocStart(), diag::note_uninit_var_def) 679 << VD->getDeclName(); 680 681 return true; 682 } 683 684 namespace { 685 class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> { 686 public: 687 FallthroughMapper(Sema &S) 688 : FoundSwitchStatements(false), 689 S(S) { 690 } 691 692 bool foundSwitchStatements() const { return FoundSwitchStatements; } 693 694 void markFallthroughVisited(const AttributedStmt *Stmt) { 695 bool Found = FallthroughStmts.erase(Stmt); 696 assert(Found); 697 (void)Found; 698 } 699 700 typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts; 701 702 const AttrStmts &getFallthroughStmts() const { 703 return FallthroughStmts; 704 } 705 706 void fillReachableBlocks(CFG *Cfg) { 707 assert(ReachableBlocks.empty() && "ReachableBlocks already filled"); 708 std::deque<const CFGBlock *> BlockQueue; 709 710 ReachableBlocks.insert(&Cfg->getEntry()); 711 BlockQueue.push_back(&Cfg->getEntry()); 712 // Mark all case blocks reachable to avoid problems with switching on 713 // constants, covered enums, etc. 714 // These blocks can contain fall-through annotations, and we don't want to 715 // issue a warn_fallthrough_attr_unreachable for them. 716 for (CFG::iterator I = Cfg->begin(), E = Cfg->end(); I != E; ++I) { 717 const CFGBlock *B = *I; 718 const Stmt *L = B->getLabel(); 719 if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B)) 720 BlockQueue.push_back(B); 721 } 722 723 while (!BlockQueue.empty()) { 724 const CFGBlock *P = BlockQueue.front(); 725 BlockQueue.pop_front(); 726 for (CFGBlock::const_succ_iterator I = P->succ_begin(), 727 E = P->succ_end(); 728 I != E; ++I) { 729 if (*I && ReachableBlocks.insert(*I)) 730 BlockQueue.push_back(*I); 731 } 732 } 733 } 734 735 bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) { 736 assert(!ReachableBlocks.empty() && "ReachableBlocks empty"); 737 738 int UnannotatedCnt = 0; 739 AnnotatedCnt = 0; 740 741 std::deque<const CFGBlock*> BlockQueue; 742 743 std::copy(B.pred_begin(), B.pred_end(), std::back_inserter(BlockQueue)); 744 745 while (!BlockQueue.empty()) { 746 const CFGBlock *P = BlockQueue.front(); 747 BlockQueue.pop_front(); 748 749 const Stmt *Term = P->getTerminator(); 750 if (Term && isa<SwitchStmt>(Term)) 751 continue; // Switch statement, good. 752 753 const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel()); 754 if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end()) 755 continue; // Previous case label has no statements, good. 756 757 const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel()); 758 if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end()) 759 continue; // Case label is preceded with a normal label, good. 760 761 if (!ReachableBlocks.count(P)) { 762 for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(), 763 ElemEnd = P->rend(); 764 ElemIt != ElemEnd; ++ElemIt) { 765 if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) { 766 if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) { 767 S.Diag(AS->getLocStart(), 768 diag::warn_fallthrough_attr_unreachable); 769 markFallthroughVisited(AS); 770 ++AnnotatedCnt; 771 break; 772 } 773 // Don't care about other unreachable statements. 774 } 775 } 776 // If there are no unreachable statements, this may be a special 777 // case in CFG: 778 // case X: { 779 // A a; // A has a destructor. 780 // break; 781 // } 782 // // <<<< This place is represented by a 'hanging' CFG block. 783 // case Y: 784 continue; 785 } 786 787 const Stmt *LastStmt = getLastStmt(*P); 788 if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) { 789 markFallthroughVisited(AS); 790 ++AnnotatedCnt; 791 continue; // Fallthrough annotation, good. 792 } 793 794 if (!LastStmt) { // This block contains no executable statements. 795 // Traverse its predecessors. 796 std::copy(P->pred_begin(), P->pred_end(), 797 std::back_inserter(BlockQueue)); 798 continue; 799 } 800 801 ++UnannotatedCnt; 802 } 803 return !!UnannotatedCnt; 804 } 805 806 // RecursiveASTVisitor setup. 807 bool shouldWalkTypesOfTypeLocs() const { return false; } 808 809 bool VisitAttributedStmt(AttributedStmt *S) { 810 if (asFallThroughAttr(S)) 811 FallthroughStmts.insert(S); 812 return true; 813 } 814 815 bool VisitSwitchStmt(SwitchStmt *S) { 816 FoundSwitchStatements = true; 817 return true; 818 } 819 820 // We don't want to traverse local type declarations. We analyze their 821 // methods separately. 822 bool TraverseDecl(Decl *D) { return true; } 823 824 private: 825 826 static const AttributedStmt *asFallThroughAttr(const Stmt *S) { 827 if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) { 828 if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs())) 829 return AS; 830 } 831 return 0; 832 } 833 834 static const Stmt *getLastStmt(const CFGBlock &B) { 835 if (const Stmt *Term = B.getTerminator()) 836 return Term; 837 for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(), 838 ElemEnd = B.rend(); 839 ElemIt != ElemEnd; ++ElemIt) { 840 if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) 841 return CS->getStmt(); 842 } 843 // Workaround to detect a statement thrown out by CFGBuilder: 844 // case X: {} case Y: 845 // case X: ; case Y: 846 if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel())) 847 if (!isa<SwitchCase>(SW->getSubStmt())) 848 return SW->getSubStmt(); 849 850 return 0; 851 } 852 853 bool FoundSwitchStatements; 854 AttrStmts FallthroughStmts; 855 Sema &S; 856 llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks; 857 }; 858 } 859 860 static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC, 861 bool PerFunction) { 862 // Only perform this analysis when using C++11. There is no good workflow 863 // for this warning when not using C++11. There is no good way to silence 864 // the warning (no attribute is available) unless we are using C++11's support 865 // for generalized attributes. Once could use pragmas to silence the warning, 866 // but as a general solution that is gross and not in the spirit of this 867 // warning. 868 // 869 // NOTE: This an intermediate solution. There are on-going discussions on 870 // how to properly support this warning outside of C++11 with an annotation. 871 if (!AC.getASTContext().getLangOpts().CPlusPlus11) 872 return; 873 874 FallthroughMapper FM(S); 875 FM.TraverseStmt(AC.getBody()); 876 877 if (!FM.foundSwitchStatements()) 878 return; 879 880 if (PerFunction && FM.getFallthroughStmts().empty()) 881 return; 882 883 CFG *Cfg = AC.getCFG(); 884 885 if (!Cfg) 886 return; 887 888 FM.fillReachableBlocks(Cfg); 889 890 for (CFG::reverse_iterator I = Cfg->rbegin(), E = Cfg->rend(); I != E; ++I) { 891 const CFGBlock *B = *I; 892 const Stmt *Label = B->getLabel(); 893 894 if (!Label || !isa<SwitchCase>(Label)) 895 continue; 896 897 int AnnotatedCnt; 898 899 if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt)) 900 continue; 901 902 S.Diag(Label->getLocStart(), 903 PerFunction ? diag::warn_unannotated_fallthrough_per_function 904 : diag::warn_unannotated_fallthrough); 905 906 if (!AnnotatedCnt) { 907 SourceLocation L = Label->getLocStart(); 908 if (L.isMacroID()) 909 continue; 910 if (S.getLangOpts().CPlusPlus11) { 911 const Stmt *Term = B->getTerminator(); 912 // Skip empty cases. 913 while (B->empty() && !Term && B->succ_size() == 1) { 914 B = *B->succ_begin(); 915 Term = B->getTerminator(); 916 } 917 if (!(B->empty() && Term && isa<BreakStmt>(Term))) { 918 Preprocessor &PP = S.getPreprocessor(); 919 TokenValue Tokens[] = { 920 tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"), 921 tok::coloncolon, PP.getIdentifierInfo("fallthrough"), 922 tok::r_square, tok::r_square 923 }; 924 StringRef AnnotationSpelling = "[[clang::fallthrough]]"; 925 StringRef MacroName = PP.getLastMacroWithSpelling(L, Tokens); 926 if (!MacroName.empty()) 927 AnnotationSpelling = MacroName; 928 SmallString<64> TextToInsert(AnnotationSpelling); 929 TextToInsert += "; "; 930 S.Diag(L, diag::note_insert_fallthrough_fixit) << 931 AnnotationSpelling << 932 FixItHint::CreateInsertion(L, TextToInsert); 933 } 934 } 935 S.Diag(L, diag::note_insert_break_fixit) << 936 FixItHint::CreateInsertion(L, "break; "); 937 } 938 } 939 940 const FallthroughMapper::AttrStmts &Fallthroughs = FM.getFallthroughStmts(); 941 for (FallthroughMapper::AttrStmts::const_iterator I = Fallthroughs.begin(), 942 E = Fallthroughs.end(); 943 I != E; ++I) { 944 S.Diag((*I)->getLocStart(), diag::warn_fallthrough_attr_invalid_placement); 945 } 946 947 } 948 949 namespace { 950 typedef std::pair<const Stmt *, 951 sema::FunctionScopeInfo::WeakObjectUseMap::const_iterator> 952 StmtUsesPair; 953 954 class StmtUseSorter { 955 const SourceManager &SM; 956 957 public: 958 explicit StmtUseSorter(const SourceManager &SM) : SM(SM) { } 959 960 bool operator()(const StmtUsesPair &LHS, const StmtUsesPair &RHS) { 961 return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(), 962 RHS.first->getLocStart()); 963 } 964 }; 965 } 966 967 static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM, 968 const Stmt *S) { 969 assert(S); 970 971 do { 972 switch (S->getStmtClass()) { 973 case Stmt::ForStmtClass: 974 case Stmt::WhileStmtClass: 975 case Stmt::CXXForRangeStmtClass: 976 case Stmt::ObjCForCollectionStmtClass: 977 return true; 978 case Stmt::DoStmtClass: { 979 const Expr *Cond = cast<DoStmt>(S)->getCond(); 980 llvm::APSInt Val; 981 if (!Cond->EvaluateAsInt(Val, Ctx)) 982 return true; 983 return Val.getBoolValue(); 984 } 985 default: 986 break; 987 } 988 } while ((S = PM.getParent(S))); 989 990 return false; 991 } 992 993 994 static void diagnoseRepeatedUseOfWeak(Sema &S, 995 const sema::FunctionScopeInfo *CurFn, 996 const Decl *D, 997 const ParentMap &PM) { 998 typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy; 999 typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap; 1000 typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector; 1001 1002 ASTContext &Ctx = S.getASTContext(); 1003 1004 const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses(); 1005 1006 // Extract all weak objects that are referenced more than once. 1007 SmallVector<StmtUsesPair, 8> UsesByStmt; 1008 for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end(); 1009 I != E; ++I) { 1010 const WeakUseVector &Uses = I->second; 1011 1012 // Find the first read of the weak object. 1013 WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end(); 1014 for ( ; UI != UE; ++UI) { 1015 if (UI->isUnsafe()) 1016 break; 1017 } 1018 1019 // If there were only writes to this object, don't warn. 1020 if (UI == UE) 1021 continue; 1022 1023 // If there was only one read, followed by any number of writes, and the 1024 // read is not within a loop, don't warn. Additionally, don't warn in a 1025 // loop if the base object is a local variable -- local variables are often 1026 // changed in loops. 1027 if (UI == Uses.begin()) { 1028 WeakUseVector::const_iterator UI2 = UI; 1029 for (++UI2; UI2 != UE; ++UI2) 1030 if (UI2->isUnsafe()) 1031 break; 1032 1033 if (UI2 == UE) { 1034 if (!isInLoop(Ctx, PM, UI->getUseExpr())) 1035 continue; 1036 1037 const WeakObjectProfileTy &Profile = I->first; 1038 if (!Profile.isExactProfile()) 1039 continue; 1040 1041 const NamedDecl *Base = Profile.getBase(); 1042 if (!Base) 1043 Base = Profile.getProperty(); 1044 assert(Base && "A profile always has a base or property."); 1045 1046 if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base)) 1047 if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base)) 1048 continue; 1049 } 1050 } 1051 1052 UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I)); 1053 } 1054 1055 if (UsesByStmt.empty()) 1056 return; 1057 1058 // Sort by first use so that we emit the warnings in a deterministic order. 1059 std::sort(UsesByStmt.begin(), UsesByStmt.end(), 1060 StmtUseSorter(S.getSourceManager())); 1061 1062 // Classify the current code body for better warning text. 1063 // This enum should stay in sync with the cases in 1064 // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak. 1065 // FIXME: Should we use a common classification enum and the same set of 1066 // possibilities all throughout Sema? 1067 enum { 1068 Function, 1069 Method, 1070 Block, 1071 Lambda 1072 } FunctionKind; 1073 1074 if (isa<sema::BlockScopeInfo>(CurFn)) 1075 FunctionKind = Block; 1076 else if (isa<sema::LambdaScopeInfo>(CurFn)) 1077 FunctionKind = Lambda; 1078 else if (isa<ObjCMethodDecl>(D)) 1079 FunctionKind = Method; 1080 else 1081 FunctionKind = Function; 1082 1083 // Iterate through the sorted problems and emit warnings for each. 1084 for (SmallVectorImpl<StmtUsesPair>::const_iterator I = UsesByStmt.begin(), 1085 E = UsesByStmt.end(); 1086 I != E; ++I) { 1087 const Stmt *FirstRead = I->first; 1088 const WeakObjectProfileTy &Key = I->second->first; 1089 const WeakUseVector &Uses = I->second->second; 1090 1091 // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy 1092 // may not contain enough information to determine that these are different 1093 // properties. We can only be 100% sure of a repeated use in certain cases, 1094 // and we adjust the diagnostic kind accordingly so that the less certain 1095 // case can be turned off if it is too noisy. 1096 unsigned DiagKind; 1097 if (Key.isExactProfile()) 1098 DiagKind = diag::warn_arc_repeated_use_of_weak; 1099 else 1100 DiagKind = diag::warn_arc_possible_repeated_use_of_weak; 1101 1102 // Classify the weak object being accessed for better warning text. 1103 // This enum should stay in sync with the cases in 1104 // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak. 1105 enum { 1106 Variable, 1107 Property, 1108 ImplicitProperty, 1109 Ivar 1110 } ObjectKind; 1111 1112 const NamedDecl *D = Key.getProperty(); 1113 if (isa<VarDecl>(D)) 1114 ObjectKind = Variable; 1115 else if (isa<ObjCPropertyDecl>(D)) 1116 ObjectKind = Property; 1117 else if (isa<ObjCMethodDecl>(D)) 1118 ObjectKind = ImplicitProperty; 1119 else if (isa<ObjCIvarDecl>(D)) 1120 ObjectKind = Ivar; 1121 else 1122 llvm_unreachable("Unexpected weak object kind!"); 1123 1124 // Show the first time the object was read. 1125 S.Diag(FirstRead->getLocStart(), DiagKind) 1126 << int(ObjectKind) << D << int(FunctionKind) 1127 << FirstRead->getSourceRange(); 1128 1129 // Print all the other accesses as notes. 1130 for (WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end(); 1131 UI != UE; ++UI) { 1132 if (UI->getUseExpr() == FirstRead) 1133 continue; 1134 S.Diag(UI->getUseExpr()->getLocStart(), 1135 diag::note_arc_weak_also_accessed_here) 1136 << UI->getUseExpr()->getSourceRange(); 1137 } 1138 } 1139 } 1140 1141 1142 namespace { 1143 struct SLocSort { 1144 bool operator()(const UninitUse &a, const UninitUse &b) { 1145 // Prefer a more confident report over a less confident one. 1146 if (a.getKind() != b.getKind()) 1147 return a.getKind() > b.getKind(); 1148 SourceLocation aLoc = a.getUser()->getLocStart(); 1149 SourceLocation bLoc = b.getUser()->getLocStart(); 1150 return aLoc.getRawEncoding() < bLoc.getRawEncoding(); 1151 } 1152 }; 1153 1154 class UninitValsDiagReporter : public UninitVariablesHandler { 1155 Sema &S; 1156 typedef SmallVector<UninitUse, 2> UsesVec; 1157 typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType; 1158 // Prefer using MapVector to DenseMap, so that iteration order will be 1159 // the same as insertion order. This is needed to obtain a deterministic 1160 // order of diagnostics when calling flushDiagnostics(). 1161 typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap; 1162 UsesMap *uses; 1163 1164 public: 1165 UninitValsDiagReporter(Sema &S) : S(S), uses(0) {} 1166 ~UninitValsDiagReporter() { 1167 flushDiagnostics(); 1168 } 1169 1170 MappedType &getUses(const VarDecl *vd) { 1171 if (!uses) 1172 uses = new UsesMap(); 1173 1174 MappedType &V = (*uses)[vd]; 1175 if (!V.getPointer()) 1176 V.setPointer(new UsesVec()); 1177 1178 return V; 1179 } 1180 1181 void handleUseOfUninitVariable(const VarDecl *vd, const UninitUse &use) { 1182 getUses(vd).getPointer()->push_back(use); 1183 } 1184 1185 void handleSelfInit(const VarDecl *vd) { 1186 getUses(vd).setInt(true); 1187 } 1188 1189 void flushDiagnostics() { 1190 if (!uses) 1191 return; 1192 1193 for (UsesMap::iterator i = uses->begin(), e = uses->end(); i != e; ++i) { 1194 const VarDecl *vd = i->first; 1195 const MappedType &V = i->second; 1196 1197 UsesVec *vec = V.getPointer(); 1198 bool hasSelfInit = V.getInt(); 1199 1200 // Specially handle the case where we have uses of an uninitialized 1201 // variable, but the root cause is an idiomatic self-init. We want 1202 // to report the diagnostic at the self-init since that is the root cause. 1203 if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec)) 1204 DiagnoseUninitializedUse(S, vd, 1205 UninitUse(vd->getInit()->IgnoreParenCasts(), 1206 /* isAlwaysUninit */ true), 1207 /* alwaysReportSelfInit */ true); 1208 else { 1209 // Sort the uses by their SourceLocations. While not strictly 1210 // guaranteed to produce them in line/column order, this will provide 1211 // a stable ordering. 1212 std::sort(vec->begin(), vec->end(), SLocSort()); 1213 1214 for (UsesVec::iterator vi = vec->begin(), ve = vec->end(); vi != ve; 1215 ++vi) { 1216 // If we have self-init, downgrade all uses to 'may be uninitialized'. 1217 UninitUse Use = hasSelfInit ? UninitUse(vi->getUser(), false) : *vi; 1218 1219 if (DiagnoseUninitializedUse(S, vd, Use)) 1220 // Skip further diagnostics for this variable. We try to warn only 1221 // on the first point at which a variable is used uninitialized. 1222 break; 1223 } 1224 } 1225 1226 // Release the uses vector. 1227 delete vec; 1228 } 1229 delete uses; 1230 } 1231 1232 private: 1233 static bool hasAlwaysUninitializedUse(const UsesVec* vec) { 1234 for (UsesVec::const_iterator i = vec->begin(), e = vec->end(); i != e; ++i) { 1235 if (i->getKind() == UninitUse::Always) { 1236 return true; 1237 } 1238 } 1239 return false; 1240 } 1241 }; 1242 } 1243 1244 1245 //===----------------------------------------------------------------------===// 1246 // -Wthread-safety 1247 //===----------------------------------------------------------------------===// 1248 namespace clang { 1249 namespace thread_safety { 1250 typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes; 1251 typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag; 1252 typedef std::list<DelayedDiag> DiagList; 1253 1254 struct SortDiagBySourceLocation { 1255 SourceManager &SM; 1256 SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {} 1257 1258 bool operator()(const DelayedDiag &left, const DelayedDiag &right) { 1259 // Although this call will be slow, this is only called when outputting 1260 // multiple warnings. 1261 return SM.isBeforeInTranslationUnit(left.first.first, right.first.first); 1262 } 1263 }; 1264 1265 namespace { 1266 class ThreadSafetyReporter : public clang::thread_safety::ThreadSafetyHandler { 1267 Sema &S; 1268 DiagList Warnings; 1269 SourceLocation FunLocation, FunEndLocation; 1270 1271 // Helper functions 1272 void warnLockMismatch(unsigned DiagID, Name LockName, SourceLocation Loc) { 1273 // Gracefully handle rare cases when the analysis can't get a more 1274 // precise source location. 1275 if (!Loc.isValid()) 1276 Loc = FunLocation; 1277 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << LockName); 1278 Warnings.push_back(DelayedDiag(Warning, OptionalNotes())); 1279 } 1280 1281 public: 1282 ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL) 1283 : S(S), FunLocation(FL), FunEndLocation(FEL) {} 1284 1285 /// \brief Emit all buffered diagnostics in order of sourcelocation. 1286 /// We need to output diagnostics produced while iterating through 1287 /// the lockset in deterministic order, so this function orders diagnostics 1288 /// and outputs them. 1289 void emitDiagnostics() { 1290 Warnings.sort(SortDiagBySourceLocation(S.getSourceManager())); 1291 for (DiagList::iterator I = Warnings.begin(), E = Warnings.end(); 1292 I != E; ++I) { 1293 S.Diag(I->first.first, I->first.second); 1294 const OptionalNotes &Notes = I->second; 1295 for (unsigned NoteI = 0, NoteN = Notes.size(); NoteI != NoteN; ++NoteI) 1296 S.Diag(Notes[NoteI].first, Notes[NoteI].second); 1297 } 1298 } 1299 1300 void handleInvalidLockExp(SourceLocation Loc) { 1301 PartialDiagnosticAt Warning(Loc, 1302 S.PDiag(diag::warn_cannot_resolve_lock) << Loc); 1303 Warnings.push_back(DelayedDiag(Warning, OptionalNotes())); 1304 } 1305 void handleUnmatchedUnlock(Name LockName, SourceLocation Loc) { 1306 warnLockMismatch(diag::warn_unlock_but_no_lock, LockName, Loc); 1307 } 1308 1309 void handleDoubleLock(Name LockName, SourceLocation Loc) { 1310 warnLockMismatch(diag::warn_double_lock, LockName, Loc); 1311 } 1312 1313 void handleMutexHeldEndOfScope(Name LockName, SourceLocation LocLocked, 1314 SourceLocation LocEndOfScope, 1315 LockErrorKind LEK){ 1316 unsigned DiagID = 0; 1317 switch (LEK) { 1318 case LEK_LockedSomePredecessors: 1319 DiagID = diag::warn_lock_some_predecessors; 1320 break; 1321 case LEK_LockedSomeLoopIterations: 1322 DiagID = diag::warn_expecting_lock_held_on_loop; 1323 break; 1324 case LEK_LockedAtEndOfFunction: 1325 DiagID = diag::warn_no_unlock; 1326 break; 1327 case LEK_NotLockedAtEndOfFunction: 1328 DiagID = diag::warn_expecting_locked; 1329 break; 1330 } 1331 if (LocEndOfScope.isInvalid()) 1332 LocEndOfScope = FunEndLocation; 1333 1334 PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << LockName); 1335 if (LocLocked.isValid()) { 1336 PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here)); 1337 Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note))); 1338 return; 1339 } 1340 Warnings.push_back(DelayedDiag(Warning, OptionalNotes())); 1341 } 1342 1343 1344 void handleExclusiveAndShared(Name LockName, SourceLocation Loc1, 1345 SourceLocation Loc2) { 1346 PartialDiagnosticAt Warning( 1347 Loc1, S.PDiag(diag::warn_lock_exclusive_and_shared) << LockName); 1348 PartialDiagnosticAt Note( 1349 Loc2, S.PDiag(diag::note_lock_exclusive_and_shared) << LockName); 1350 Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note))); 1351 } 1352 1353 void handleNoMutexHeld(const NamedDecl *D, ProtectedOperationKind POK, 1354 AccessKind AK, SourceLocation Loc) { 1355 assert((POK == POK_VarAccess || POK == POK_VarDereference) 1356 && "Only works for variables"); 1357 unsigned DiagID = POK == POK_VarAccess? 1358 diag::warn_variable_requires_any_lock: 1359 diag::warn_var_deref_requires_any_lock; 1360 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) 1361 << D->getNameAsString() << getLockKindFromAccessKind(AK)); 1362 Warnings.push_back(DelayedDiag(Warning, OptionalNotes())); 1363 } 1364 1365 void handleMutexNotHeld(const NamedDecl *D, ProtectedOperationKind POK, 1366 Name LockName, LockKind LK, SourceLocation Loc, 1367 Name *PossibleMatch) { 1368 unsigned DiagID = 0; 1369 if (PossibleMatch) { 1370 switch (POK) { 1371 case POK_VarAccess: 1372 DiagID = diag::warn_variable_requires_lock_precise; 1373 break; 1374 case POK_VarDereference: 1375 DiagID = diag::warn_var_deref_requires_lock_precise; 1376 break; 1377 case POK_FunctionCall: 1378 DiagID = diag::warn_fun_requires_lock_precise; 1379 break; 1380 } 1381 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) 1382 << D->getNameAsString() << LockName << LK); 1383 PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match) 1384 << *PossibleMatch); 1385 Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note))); 1386 } else { 1387 switch (POK) { 1388 case POK_VarAccess: 1389 DiagID = diag::warn_variable_requires_lock; 1390 break; 1391 case POK_VarDereference: 1392 DiagID = diag::warn_var_deref_requires_lock; 1393 break; 1394 case POK_FunctionCall: 1395 DiagID = diag::warn_fun_requires_lock; 1396 break; 1397 } 1398 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) 1399 << D->getNameAsString() << LockName << LK); 1400 Warnings.push_back(DelayedDiag(Warning, OptionalNotes())); 1401 } 1402 } 1403 1404 void handleFunExcludesLock(Name FunName, Name LockName, SourceLocation Loc) { 1405 PartialDiagnosticAt Warning(Loc, 1406 S.PDiag(diag::warn_fun_excludes_mutex) << FunName << LockName); 1407 Warnings.push_back(DelayedDiag(Warning, OptionalNotes())); 1408 } 1409 }; 1410 } 1411 } 1412 } 1413 1414 //===----------------------------------------------------------------------===// 1415 // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based 1416 // warnings on a function, method, or block. 1417 //===----------------------------------------------------------------------===// 1418 1419 clang::sema::AnalysisBasedWarnings::Policy::Policy() { 1420 enableCheckFallThrough = 1; 1421 enableCheckUnreachable = 0; 1422 enableThreadSafetyAnalysis = 0; 1423 } 1424 1425 clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s) 1426 : S(s), 1427 NumFunctionsAnalyzed(0), 1428 NumFunctionsWithBadCFGs(0), 1429 NumCFGBlocks(0), 1430 MaxCFGBlocksPerFunction(0), 1431 NumUninitAnalysisFunctions(0), 1432 NumUninitAnalysisVariables(0), 1433 MaxUninitAnalysisVariablesPerFunction(0), 1434 NumUninitAnalysisBlockVisits(0), 1435 MaxUninitAnalysisBlockVisitsPerFunction(0) { 1436 DiagnosticsEngine &D = S.getDiagnostics(); 1437 DefaultPolicy.enableCheckUnreachable = (unsigned) 1438 (D.getDiagnosticLevel(diag::warn_unreachable, SourceLocation()) != 1439 DiagnosticsEngine::Ignored); 1440 DefaultPolicy.enableThreadSafetyAnalysis = (unsigned) 1441 (D.getDiagnosticLevel(diag::warn_double_lock, SourceLocation()) != 1442 DiagnosticsEngine::Ignored); 1443 1444 } 1445 1446 static void flushDiagnostics(Sema &S, sema::FunctionScopeInfo *fscope) { 1447 for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator 1448 i = fscope->PossiblyUnreachableDiags.begin(), 1449 e = fscope->PossiblyUnreachableDiags.end(); 1450 i != e; ++i) { 1451 const sema::PossiblyUnreachableDiag &D = *i; 1452 S.Diag(D.Loc, D.PD); 1453 } 1454 } 1455 1456 void clang::sema:: 1457 AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P, 1458 sema::FunctionScopeInfo *fscope, 1459 const Decl *D, const BlockExpr *blkExpr) { 1460 1461 // We avoid doing analysis-based warnings when there are errors for 1462 // two reasons: 1463 // (1) The CFGs often can't be constructed (if the body is invalid), so 1464 // don't bother trying. 1465 // (2) The code already has problems; running the analysis just takes more 1466 // time. 1467 DiagnosticsEngine &Diags = S.getDiagnostics(); 1468 1469 // Do not do any analysis for declarations in system headers if we are 1470 // going to just ignore them. 1471 if (Diags.getSuppressSystemWarnings() && 1472 S.SourceMgr.isInSystemHeader(D->getLocation())) 1473 return; 1474 1475 // For code in dependent contexts, we'll do this at instantiation time. 1476 if (cast<DeclContext>(D)->isDependentContext()) 1477 return; 1478 1479 if (Diags.hasUncompilableErrorOccurred() || Diags.hasFatalErrorOccurred()) { 1480 // Flush out any possibly unreachable diagnostics. 1481 flushDiagnostics(S, fscope); 1482 return; 1483 } 1484 1485 const Stmt *Body = D->getBody(); 1486 assert(Body); 1487 1488 AnalysisDeclContext AC(/* AnalysisDeclContextManager */ 0, D); 1489 1490 // Don't generate EH edges for CallExprs as we'd like to avoid the n^2 1491 // explosion for destrutors that can result and the compile time hit. 1492 AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true; 1493 AC.getCFGBuildOptions().AddEHEdges = false; 1494 AC.getCFGBuildOptions().AddInitializers = true; 1495 AC.getCFGBuildOptions().AddImplicitDtors = true; 1496 AC.getCFGBuildOptions().AddTemporaryDtors = true; 1497 1498 // Force that certain expressions appear as CFGElements in the CFG. This 1499 // is used to speed up various analyses. 1500 // FIXME: This isn't the right factoring. This is here for initial 1501 // prototyping, but we need a way for analyses to say what expressions they 1502 // expect to always be CFGElements and then fill in the BuildOptions 1503 // appropriately. This is essentially a layering violation. 1504 if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis) { 1505 // Unreachable code analysis and thread safety require a linearized CFG. 1506 AC.getCFGBuildOptions().setAllAlwaysAdd(); 1507 } 1508 else { 1509 AC.getCFGBuildOptions() 1510 .setAlwaysAdd(Stmt::BinaryOperatorClass) 1511 .setAlwaysAdd(Stmt::CompoundAssignOperatorClass) 1512 .setAlwaysAdd(Stmt::BlockExprClass) 1513 .setAlwaysAdd(Stmt::CStyleCastExprClass) 1514 .setAlwaysAdd(Stmt::DeclRefExprClass) 1515 .setAlwaysAdd(Stmt::ImplicitCastExprClass) 1516 .setAlwaysAdd(Stmt::UnaryOperatorClass) 1517 .setAlwaysAdd(Stmt::AttributedStmtClass); 1518 } 1519 1520 // Construct the analysis context with the specified CFG build options. 1521 1522 // Emit delayed diagnostics. 1523 if (!fscope->PossiblyUnreachableDiags.empty()) { 1524 bool analyzed = false; 1525 1526 // Register the expressions with the CFGBuilder. 1527 for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator 1528 i = fscope->PossiblyUnreachableDiags.begin(), 1529 e = fscope->PossiblyUnreachableDiags.end(); 1530 i != e; ++i) { 1531 if (const Stmt *stmt = i->stmt) 1532 AC.registerForcedBlockExpression(stmt); 1533 } 1534 1535 if (AC.getCFG()) { 1536 analyzed = true; 1537 for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator 1538 i = fscope->PossiblyUnreachableDiags.begin(), 1539 e = fscope->PossiblyUnreachableDiags.end(); 1540 i != e; ++i) 1541 { 1542 const sema::PossiblyUnreachableDiag &D = *i; 1543 bool processed = false; 1544 if (const Stmt *stmt = i->stmt) { 1545 const CFGBlock *block = AC.getBlockForRegisteredExpression(stmt); 1546 CFGReverseBlockReachabilityAnalysis *cra = 1547 AC.getCFGReachablityAnalysis(); 1548 // FIXME: We should be able to assert that block is non-null, but 1549 // the CFG analysis can skip potentially-evaluated expressions in 1550 // edge cases; see test/Sema/vla-2.c. 1551 if (block && cra) { 1552 // Can this block be reached from the entrance? 1553 if (cra->isReachable(&AC.getCFG()->getEntry(), block)) 1554 S.Diag(D.Loc, D.PD); 1555 processed = true; 1556 } 1557 } 1558 if (!processed) { 1559 // Emit the warning anyway if we cannot map to a basic block. 1560 S.Diag(D.Loc, D.PD); 1561 } 1562 } 1563 } 1564 1565 if (!analyzed) 1566 flushDiagnostics(S, fscope); 1567 } 1568 1569 1570 // Warning: check missing 'return' 1571 if (P.enableCheckFallThrough) { 1572 const CheckFallThroughDiagnostics &CD = 1573 (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock() 1574 : (isa<CXXMethodDecl>(D) && 1575 cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call && 1576 cast<CXXMethodDecl>(D)->getParent()->isLambda()) 1577 ? CheckFallThroughDiagnostics::MakeForLambda() 1578 : CheckFallThroughDiagnostics::MakeForFunction(D)); 1579 CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC); 1580 } 1581 1582 // Warning: check for unreachable code 1583 if (P.enableCheckUnreachable) { 1584 // Only check for unreachable code on non-template instantiations. 1585 // Different template instantiations can effectively change the control-flow 1586 // and it is very difficult to prove that a snippet of code in a template 1587 // is unreachable for all instantiations. 1588 bool isTemplateInstantiation = false; 1589 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 1590 isTemplateInstantiation = Function->isTemplateInstantiation(); 1591 if (!isTemplateInstantiation) 1592 CheckUnreachable(S, AC); 1593 } 1594 1595 // Check for thread safety violations 1596 if (P.enableThreadSafetyAnalysis) { 1597 SourceLocation FL = AC.getDecl()->getLocation(); 1598 SourceLocation FEL = AC.getDecl()->getLocEnd(); 1599 thread_safety::ThreadSafetyReporter Reporter(S, FL, FEL); 1600 if (Diags.getDiagnosticLevel(diag::warn_thread_safety_beta,D->getLocStart()) 1601 != DiagnosticsEngine::Ignored) 1602 Reporter.setIssueBetaWarnings(true); 1603 1604 thread_safety::runThreadSafetyAnalysis(AC, Reporter); 1605 Reporter.emitDiagnostics(); 1606 } 1607 1608 if (Diags.getDiagnosticLevel(diag::warn_uninit_var, D->getLocStart()) 1609 != DiagnosticsEngine::Ignored || 1610 Diags.getDiagnosticLevel(diag::warn_sometimes_uninit_var,D->getLocStart()) 1611 != DiagnosticsEngine::Ignored || 1612 Diags.getDiagnosticLevel(diag::warn_maybe_uninit_var, D->getLocStart()) 1613 != DiagnosticsEngine::Ignored) { 1614 if (CFG *cfg = AC.getCFG()) { 1615 UninitValsDiagReporter reporter(S); 1616 UninitVariablesAnalysisStats stats; 1617 std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats)); 1618 runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC, 1619 reporter, stats); 1620 1621 if (S.CollectStats && stats.NumVariablesAnalyzed > 0) { 1622 ++NumUninitAnalysisFunctions; 1623 NumUninitAnalysisVariables += stats.NumVariablesAnalyzed; 1624 NumUninitAnalysisBlockVisits += stats.NumBlockVisits; 1625 MaxUninitAnalysisVariablesPerFunction = 1626 std::max(MaxUninitAnalysisVariablesPerFunction, 1627 stats.NumVariablesAnalyzed); 1628 MaxUninitAnalysisBlockVisitsPerFunction = 1629 std::max(MaxUninitAnalysisBlockVisitsPerFunction, 1630 stats.NumBlockVisits); 1631 } 1632 } 1633 } 1634 1635 bool FallThroughDiagFull = 1636 Diags.getDiagnosticLevel(diag::warn_unannotated_fallthrough, 1637 D->getLocStart()) != DiagnosticsEngine::Ignored; 1638 bool FallThroughDiagPerFunction = 1639 Diags.getDiagnosticLevel(diag::warn_unannotated_fallthrough_per_function, 1640 D->getLocStart()) != DiagnosticsEngine::Ignored; 1641 if (FallThroughDiagFull || FallThroughDiagPerFunction) { 1642 DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull); 1643 } 1644 1645 if (S.getLangOpts().ObjCARCWeak && 1646 Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, 1647 D->getLocStart()) != DiagnosticsEngine::Ignored) 1648 diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap()); 1649 1650 // Collect statistics about the CFG if it was built. 1651 if (S.CollectStats && AC.isCFGBuilt()) { 1652 ++NumFunctionsAnalyzed; 1653 if (CFG *cfg = AC.getCFG()) { 1654 // If we successfully built a CFG for this context, record some more 1655 // detail information about it. 1656 NumCFGBlocks += cfg->getNumBlockIDs(); 1657 MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction, 1658 cfg->getNumBlockIDs()); 1659 } else { 1660 ++NumFunctionsWithBadCFGs; 1661 } 1662 } 1663 } 1664 1665 void clang::sema::AnalysisBasedWarnings::PrintStats() const { 1666 llvm::errs() << "\n*** Analysis Based Warnings Stats:\n"; 1667 1668 unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs; 1669 unsigned AvgCFGBlocksPerFunction = 1670 !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt; 1671 llvm::errs() << NumFunctionsAnalyzed << " functions analyzed (" 1672 << NumFunctionsWithBadCFGs << " w/o CFGs).\n" 1673 << " " << NumCFGBlocks << " CFG blocks built.\n" 1674 << " " << AvgCFGBlocksPerFunction 1675 << " average CFG blocks per function.\n" 1676 << " " << MaxCFGBlocksPerFunction 1677 << " max CFG blocks per function.\n"; 1678 1679 unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0 1680 : NumUninitAnalysisVariables/NumUninitAnalysisFunctions; 1681 unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0 1682 : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions; 1683 llvm::errs() << NumUninitAnalysisFunctions 1684 << " functions analyzed for uninitialiazed variables\n" 1685 << " " << NumUninitAnalysisVariables << " variables analyzed.\n" 1686 << " " << AvgUninitVariablesPerFunction 1687 << " average variables per function.\n" 1688 << " " << MaxUninitAnalysisVariablesPerFunction 1689 << " max variables per function.\n" 1690 << " " << NumUninitAnalysisBlockVisits << " block visits.\n" 1691 << " " << AvgUninitBlockVisitsPerFunction 1692 << " average block visits per function.\n" 1693 << " " << MaxUninitAnalysisBlockVisitsPerFunction 1694 << " max block visits per function.\n"; 1695 } 1696