1 //==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements uninitialized values analysis for source-level CFGs. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/Attr.h" 16 #include "clang/AST/Decl.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 19 #include "clang/Analysis/Analyses/UninitializedValues.h" 20 #include "clang/Analysis/AnalysisContext.h" 21 #include "clang/Analysis/CFG.h" 22 #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/Optional.h" 25 #include "llvm/ADT/PackedVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/Support/SaveAndRestore.h" 29 #include <utility> 30 31 using namespace clang; 32 33 #define DEBUG_LOGGING 0 34 35 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) { 36 if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() && 37 !vd->isExceptionVariable() && 38 vd->getDeclContext() == dc) { 39 QualType ty = vd->getType(); 40 return ty->isScalarType() || ty->isVectorType(); 41 } 42 return false; 43 } 44 45 //------------------------------------------------------------------------====// 46 // DeclToIndex: a mapping from Decls we track to value indices. 47 //====------------------------------------------------------------------------// 48 49 namespace { 50 class DeclToIndex { 51 llvm::DenseMap<const VarDecl *, unsigned> map; 52 public: 53 DeclToIndex() {} 54 55 /// Compute the actual mapping from declarations to bits. 56 void computeMap(const DeclContext &dc); 57 58 /// Return the number of declarations in the map. 59 unsigned size() const { return map.size(); } 60 61 /// Returns the bit vector index for a given declaration. 62 Optional<unsigned> getValueIndex(const VarDecl *d) const; 63 }; 64 } 65 66 void DeclToIndex::computeMap(const DeclContext &dc) { 67 unsigned count = 0; 68 DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()), 69 E(dc.decls_end()); 70 for ( ; I != E; ++I) { 71 const VarDecl *vd = *I; 72 if (isTrackedVar(vd, &dc)) 73 map[vd] = count++; 74 } 75 } 76 77 Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const { 78 llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d); 79 if (I == map.end()) 80 return None; 81 return I->second; 82 } 83 84 //------------------------------------------------------------------------====// 85 // CFGBlockValues: dataflow values for CFG blocks. 86 //====------------------------------------------------------------------------// 87 88 // These values are defined in such a way that a merge can be done using 89 // a bitwise OR. 90 enum Value { Unknown = 0x0, /* 00 */ 91 Initialized = 0x1, /* 01 */ 92 Uninitialized = 0x2, /* 10 */ 93 MayUninitialized = 0x3 /* 11 */ }; 94 95 static bool isUninitialized(const Value v) { 96 return v >= Uninitialized; 97 } 98 static bool isAlwaysUninit(const Value v) { 99 return v == Uninitialized; 100 } 101 102 namespace { 103 104 typedef llvm::PackedVector<Value, 2, llvm::SmallBitVector> ValueVector; 105 106 class CFGBlockValues { 107 const CFG &cfg; 108 SmallVector<ValueVector, 8> vals; 109 ValueVector scratch; 110 DeclToIndex declToIndex; 111 public: 112 CFGBlockValues(const CFG &cfg); 113 114 unsigned getNumEntries() const { return declToIndex.size(); } 115 116 void computeSetOfDeclarations(const DeclContext &dc); 117 ValueVector &getValueVector(const CFGBlock *block) { 118 return vals[block->getBlockID()]; 119 } 120 121 void setAllScratchValues(Value V); 122 void mergeIntoScratch(ValueVector const &source, bool isFirst); 123 bool updateValueVectorWithScratch(const CFGBlock *block); 124 125 bool hasNoDeclarations() const { 126 return declToIndex.size() == 0; 127 } 128 129 void resetScratch(); 130 131 ValueVector::reference operator[](const VarDecl *vd); 132 133 Value getValue(const CFGBlock *block, const CFGBlock *dstBlock, 134 const VarDecl *vd) { 135 const Optional<unsigned> &idx = declToIndex.getValueIndex(vd); 136 assert(idx.hasValue()); 137 return getValueVector(block)[idx.getValue()]; 138 } 139 }; 140 } // end anonymous namespace 141 142 CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {} 143 144 void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) { 145 declToIndex.computeMap(dc); 146 unsigned decls = declToIndex.size(); 147 scratch.resize(decls); 148 unsigned n = cfg.getNumBlockIDs(); 149 if (!n) 150 return; 151 vals.resize(n); 152 for (unsigned i = 0; i < n; ++i) 153 vals[i].resize(decls); 154 } 155 156 #if DEBUG_LOGGING 157 static void printVector(const CFGBlock *block, ValueVector &bv, 158 unsigned num) { 159 llvm::errs() << block->getBlockID() << " :"; 160 for (unsigned i = 0; i < bv.size(); ++i) { 161 llvm::errs() << ' ' << bv[i]; 162 } 163 llvm::errs() << " : " << num << '\n'; 164 } 165 #endif 166 167 void CFGBlockValues::setAllScratchValues(Value V) { 168 for (unsigned I = 0, E = scratch.size(); I != E; ++I) 169 scratch[I] = V; 170 } 171 172 void CFGBlockValues::mergeIntoScratch(ValueVector const &source, 173 bool isFirst) { 174 if (isFirst) 175 scratch = source; 176 else 177 scratch |= source; 178 } 179 180 bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) { 181 ValueVector &dst = getValueVector(block); 182 bool changed = (dst != scratch); 183 if (changed) 184 dst = scratch; 185 #if DEBUG_LOGGING 186 printVector(block, scratch, 0); 187 #endif 188 return changed; 189 } 190 191 void CFGBlockValues::resetScratch() { 192 scratch.reset(); 193 } 194 195 ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) { 196 const Optional<unsigned> &idx = declToIndex.getValueIndex(vd); 197 assert(idx.hasValue()); 198 return scratch[idx.getValue()]; 199 } 200 201 //------------------------------------------------------------------------====// 202 // Worklist: worklist for dataflow analysis. 203 //====------------------------------------------------------------------------// 204 205 namespace { 206 class DataflowWorklist { 207 PostOrderCFGView::iterator PO_I, PO_E; 208 SmallVector<const CFGBlock *, 20> worklist; 209 llvm::BitVector enqueuedBlocks; 210 public: 211 DataflowWorklist(const CFG &cfg, PostOrderCFGView &view) 212 : PO_I(view.begin()), PO_E(view.end()), 213 enqueuedBlocks(cfg.getNumBlockIDs(), true) { 214 // Treat the first block as already analyzed. 215 if (PO_I != PO_E) { 216 assert(*PO_I == &cfg.getEntry()); 217 enqueuedBlocks[(*PO_I)->getBlockID()] = false; 218 ++PO_I; 219 } 220 } 221 222 void enqueueSuccessors(const CFGBlock *block); 223 const CFGBlock *dequeue(); 224 }; 225 } 226 227 void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) { 228 for (CFGBlock::const_succ_iterator I = block->succ_begin(), 229 E = block->succ_end(); I != E; ++I) { 230 const CFGBlock *Successor = *I; 231 if (!Successor || enqueuedBlocks[Successor->getBlockID()]) 232 continue; 233 worklist.push_back(Successor); 234 enqueuedBlocks[Successor->getBlockID()] = true; 235 } 236 } 237 238 const CFGBlock *DataflowWorklist::dequeue() { 239 const CFGBlock *B = 0; 240 241 // First dequeue from the worklist. This can represent 242 // updates along backedges that we want propagated as quickly as possible. 243 if (!worklist.empty()) { 244 B = worklist.back(); 245 worklist.pop_back(); 246 } 247 // Next dequeue from the initial reverse post order. This is the 248 // theoretical ideal in the presence of no back edges. 249 else if (PO_I != PO_E) { 250 B = *PO_I; 251 ++PO_I; 252 } 253 else { 254 return 0; 255 } 256 257 assert(enqueuedBlocks[B->getBlockID()] == true); 258 enqueuedBlocks[B->getBlockID()] = false; 259 return B; 260 } 261 262 //------------------------------------------------------------------------====// 263 // Classification of DeclRefExprs as use or initialization. 264 //====------------------------------------------------------------------------// 265 266 namespace { 267 class FindVarResult { 268 const VarDecl *vd; 269 const DeclRefExpr *dr; 270 public: 271 FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {} 272 273 const DeclRefExpr *getDeclRefExpr() const { return dr; } 274 const VarDecl *getDecl() const { return vd; } 275 }; 276 277 static const Expr *stripCasts(ASTContext &C, const Expr *Ex) { 278 while (Ex) { 279 Ex = Ex->IgnoreParenNoopCasts(C); 280 if (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) { 281 if (CE->getCastKind() == CK_LValueBitCast) { 282 Ex = CE->getSubExpr(); 283 continue; 284 } 285 } 286 break; 287 } 288 return Ex; 289 } 290 291 /// If E is an expression comprising a reference to a single variable, find that 292 /// variable. 293 static FindVarResult findVar(const Expr *E, const DeclContext *DC) { 294 if (const DeclRefExpr *DRE = 295 dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E))) 296 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 297 if (isTrackedVar(VD, DC)) 298 return FindVarResult(VD, DRE); 299 return FindVarResult(0, 0); 300 } 301 302 /// \brief Classify each DeclRefExpr as an initialization or a use. Any 303 /// DeclRefExpr which isn't explicitly classified will be assumed to have 304 /// escaped the analysis and will be treated as an initialization. 305 class ClassifyRefs : public StmtVisitor<ClassifyRefs> { 306 public: 307 enum Class { 308 Init, 309 Use, 310 SelfInit, 311 Ignore 312 }; 313 314 private: 315 const DeclContext *DC; 316 llvm::DenseMap<const DeclRefExpr*, Class> Classification; 317 318 bool isTrackedVar(const VarDecl *VD) const { 319 return ::isTrackedVar(VD, DC); 320 } 321 322 void classify(const Expr *E, Class C); 323 324 public: 325 ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {} 326 327 void VisitDeclStmt(DeclStmt *DS); 328 void VisitUnaryOperator(UnaryOperator *UO); 329 void VisitBinaryOperator(BinaryOperator *BO); 330 void VisitCallExpr(CallExpr *CE); 331 void VisitCastExpr(CastExpr *CE); 332 333 void operator()(Stmt *S) { Visit(S); } 334 335 Class get(const DeclRefExpr *DRE) const { 336 llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I 337 = Classification.find(DRE); 338 if (I != Classification.end()) 339 return I->second; 340 341 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 342 if (!VD || !isTrackedVar(VD)) 343 return Ignore; 344 345 return Init; 346 } 347 }; 348 } 349 350 static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) { 351 if (Expr *Init = VD->getInit()) { 352 const DeclRefExpr *DRE 353 = dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init)); 354 if (DRE && DRE->getDecl() == VD) 355 return DRE; 356 } 357 return 0; 358 } 359 360 void ClassifyRefs::classify(const Expr *E, Class C) { 361 // The result of a ?: could also be an lvalue. 362 E = E->IgnoreParens(); 363 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 364 const Expr *TrueExpr = CO->getTrueExpr(); 365 if (!isa<OpaqueValueExpr>(TrueExpr)) 366 classify(TrueExpr, C); 367 classify(CO->getFalseExpr(), C); 368 return; 369 } 370 371 FindVarResult Var = findVar(E, DC); 372 if (const DeclRefExpr *DRE = Var.getDeclRefExpr()) 373 Classification[DRE] = std::max(Classification[DRE], C); 374 } 375 376 void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) { 377 for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end(); 378 DI != DE; ++DI) { 379 VarDecl *VD = dyn_cast<VarDecl>(*DI); 380 if (VD && isTrackedVar(VD)) 381 if (const DeclRefExpr *DRE = getSelfInitExpr(VD)) 382 Classification[DRE] = SelfInit; 383 } 384 } 385 386 void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) { 387 // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this 388 // is not a compound-assignment, we will treat it as initializing the variable 389 // when TransferFunctions visits it. A compound-assignment does not affect 390 // whether a variable is uninitialized, and there's no point counting it as a 391 // use. 392 if (BO->isCompoundAssignmentOp()) 393 classify(BO->getLHS(), Use); 394 else if (BO->getOpcode() == BO_Assign) 395 classify(BO->getLHS(), Ignore); 396 } 397 398 void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) { 399 // Increment and decrement are uses despite there being no lvalue-to-rvalue 400 // conversion. 401 if (UO->isIncrementDecrementOp()) 402 classify(UO->getSubExpr(), Use); 403 } 404 405 void ClassifyRefs::VisitCallExpr(CallExpr *CE) { 406 // If a value is passed by const reference to a function, we should not assume 407 // that it is initialized by the call, and we conservatively do not assume 408 // that it is used. 409 for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); 410 I != E; ++I) 411 if ((*I)->getType().isConstQualified() && (*I)->isGLValue()) 412 classify(*I, Ignore); 413 } 414 415 void ClassifyRefs::VisitCastExpr(CastExpr *CE) { 416 if (CE->getCastKind() == CK_LValueToRValue) 417 classify(CE->getSubExpr(), Use); 418 else if (CStyleCastExpr *CSE = dyn_cast<CStyleCastExpr>(CE)) { 419 if (CSE->getType()->isVoidType()) { 420 // Squelch any detected load of an uninitialized value if 421 // we cast it to void. 422 // e.g. (void) x; 423 classify(CSE->getSubExpr(), Ignore); 424 } 425 } 426 } 427 428 //------------------------------------------------------------------------====// 429 // Transfer function for uninitialized values analysis. 430 //====------------------------------------------------------------------------// 431 432 namespace { 433 class TransferFunctions : public StmtVisitor<TransferFunctions> { 434 CFGBlockValues &vals; 435 const CFG &cfg; 436 const CFGBlock *block; 437 AnalysisDeclContext ∾ 438 const ClassifyRefs &classification; 439 ObjCNoReturn objCNoRet; 440 UninitVariablesHandler &handler; 441 442 public: 443 TransferFunctions(CFGBlockValues &vals, const CFG &cfg, 444 const CFGBlock *block, AnalysisDeclContext &ac, 445 const ClassifyRefs &classification, 446 UninitVariablesHandler &handler) 447 : vals(vals), cfg(cfg), block(block), ac(ac), 448 classification(classification), objCNoRet(ac.getASTContext()), 449 handler(handler) {} 450 451 void reportUse(const Expr *ex, const VarDecl *vd); 452 453 void VisitBinaryOperator(BinaryOperator *bo); 454 void VisitBlockExpr(BlockExpr *be); 455 void VisitCallExpr(CallExpr *ce); 456 void VisitDeclRefExpr(DeclRefExpr *dr); 457 void VisitDeclStmt(DeclStmt *ds); 458 void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS); 459 void VisitObjCMessageExpr(ObjCMessageExpr *ME); 460 461 bool isTrackedVar(const VarDecl *vd) { 462 return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl())); 463 } 464 465 FindVarResult findVar(const Expr *ex) { 466 return ::findVar(ex, cast<DeclContext>(ac.getDecl())); 467 } 468 469 UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) { 470 UninitUse Use(ex, isAlwaysUninit(v)); 471 472 assert(isUninitialized(v)); 473 if (Use.getKind() == UninitUse::Always) 474 return Use; 475 476 // If an edge which leads unconditionally to this use did not initialize 477 // the variable, we can say something stronger than 'may be uninitialized': 478 // we can say 'either it's used uninitialized or you have dead code'. 479 // 480 // We track the number of successors of a node which have been visited, and 481 // visit a node once we have visited all of its successors. Only edges where 482 // the variable might still be uninitialized are followed. Since a variable 483 // can't transfer from being initialized to being uninitialized, this will 484 // trace out the subgraph which inevitably leads to the use and does not 485 // initialize the variable. We do not want to skip past loops, since their 486 // non-termination might be correlated with the initialization condition. 487 // 488 // For example: 489 // 490 // void f(bool a, bool b) { 491 // block1: int n; 492 // if (a) { 493 // block2: if (b) 494 // block3: n = 1; 495 // block4: } else if (b) { 496 // block5: while (!a) { 497 // block6: do_work(&a); 498 // n = 2; 499 // } 500 // } 501 // block7: if (a) 502 // block8: g(); 503 // block9: return n; 504 // } 505 // 506 // Starting from the maybe-uninitialized use in block 9: 507 // * Block 7 is not visited because we have only visited one of its two 508 // successors. 509 // * Block 8 is visited because we've visited its only successor. 510 // From block 8: 511 // * Block 7 is visited because we've now visited both of its successors. 512 // From block 7: 513 // * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all 514 // of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively). 515 // * Block 3 is not visited because it initializes 'n'. 516 // Now the algorithm terminates, having visited blocks 7 and 8, and having 517 // found the frontier is blocks 2, 4, and 5. 518 // 519 // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2 520 // and 4), so we report that any time either of those edges is taken (in 521 // each case when 'b == false'), 'n' is used uninitialized. 522 SmallVector<const CFGBlock*, 32> Queue; 523 SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0); 524 Queue.push_back(block); 525 // Specify that we've already visited all successors of the starting block. 526 // This has the dual purpose of ensuring we never add it to the queue, and 527 // of marking it as not being a candidate element of the frontier. 528 SuccsVisited[block->getBlockID()] = block->succ_size(); 529 while (!Queue.empty()) { 530 const CFGBlock *B = Queue.back(); 531 Queue.pop_back(); 532 for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end(); 533 I != E; ++I) { 534 const CFGBlock *Pred = *I; 535 if (vals.getValue(Pred, B, vd) == Initialized) 536 // This block initializes the variable. 537 continue; 538 539 unsigned &SV = SuccsVisited[Pred->getBlockID()]; 540 if (!SV) { 541 // When visiting the first successor of a block, mark all NULL 542 // successors as having been visited. 543 for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(), 544 SE = Pred->succ_end(); 545 SI != SE; ++SI) 546 if (!*SI) 547 ++SV; 548 } 549 550 if (++SV == Pred->succ_size()) 551 // All paths from this block lead to the use and don't initialize the 552 // variable. 553 Queue.push_back(Pred); 554 } 555 } 556 557 // Scan the frontier, looking for blocks where the variable was 558 // uninitialized. 559 for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) { 560 const CFGBlock *Block = *BI; 561 unsigned BlockID = Block->getBlockID(); 562 const Stmt *Term = Block->getTerminator(); 563 if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() && 564 Term) { 565 // This block inevitably leads to the use. If we have an edge from here 566 // to a post-dominator block, and the variable is uninitialized on that 567 // edge, we have found a bug. 568 for (CFGBlock::const_succ_iterator I = Block->succ_begin(), 569 E = Block->succ_end(); I != E; ++I) { 570 const CFGBlock *Succ = *I; 571 if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() && 572 vals.getValue(Block, Succ, vd) == Uninitialized) { 573 // Switch cases are a special case: report the label to the caller 574 // as the 'terminator', not the switch statement itself. Suppress 575 // situations where no label matched: we can't be sure that's 576 // possible. 577 if (isa<SwitchStmt>(Term)) { 578 const Stmt *Label = Succ->getLabel(); 579 if (!Label || !isa<SwitchCase>(Label)) 580 // Might not be possible. 581 continue; 582 UninitUse::Branch Branch; 583 Branch.Terminator = Label; 584 Branch.Output = 0; // Ignored. 585 Use.addUninitBranch(Branch); 586 } else { 587 UninitUse::Branch Branch; 588 Branch.Terminator = Term; 589 Branch.Output = I - Block->succ_begin(); 590 Use.addUninitBranch(Branch); 591 } 592 } 593 } 594 } 595 } 596 597 return Use; 598 } 599 }; 600 } 601 602 void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) { 603 Value v = vals[vd]; 604 if (isUninitialized(v)) 605 handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v)); 606 } 607 608 void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) { 609 // This represents an initialization of the 'element' value. 610 if (DeclStmt *DS = dyn_cast<DeclStmt>(FS->getElement())) { 611 const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl()); 612 if (isTrackedVar(VD)) 613 vals[VD] = Initialized; 614 } 615 } 616 617 void TransferFunctions::VisitBlockExpr(BlockExpr *be) { 618 const BlockDecl *bd = be->getBlockDecl(); 619 for (BlockDecl::capture_const_iterator i = bd->capture_begin(), 620 e = bd->capture_end() ; i != e; ++i) { 621 const VarDecl *vd = i->getVariable(); 622 if (!isTrackedVar(vd)) 623 continue; 624 if (i->isByRef()) { 625 vals[vd] = Initialized; 626 continue; 627 } 628 reportUse(be, vd); 629 } 630 } 631 632 void TransferFunctions::VisitCallExpr(CallExpr *ce) { 633 if (Decl *Callee = ce->getCalleeDecl()) { 634 if (Callee->hasAttr<ReturnsTwiceAttr>()) { 635 // After a call to a function like setjmp or vfork, any variable which is 636 // initialized anywhere within this function may now be initialized. For 637 // now, just assume such a call initializes all variables. FIXME: Only 638 // mark variables as initialized if they have an initializer which is 639 // reachable from here. 640 vals.setAllScratchValues(Initialized); 641 } 642 else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) { 643 // Functions labeled like "analyzer_noreturn" are often used to denote 644 // "panic" functions that in special debug situations can still return, 645 // but for the most part should not be treated as returning. This is a 646 // useful annotation borrowed from the static analyzer that is useful for 647 // suppressing branch-specific false positives when we call one of these 648 // functions but keep pretending the path continues (when in reality the 649 // user doesn't care). 650 vals.setAllScratchValues(Unknown); 651 } 652 } 653 } 654 655 void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) { 656 switch (classification.get(dr)) { 657 case ClassifyRefs::Ignore: 658 break; 659 case ClassifyRefs::Use: 660 reportUse(dr, cast<VarDecl>(dr->getDecl())); 661 break; 662 case ClassifyRefs::Init: 663 vals[cast<VarDecl>(dr->getDecl())] = Initialized; 664 break; 665 case ClassifyRefs::SelfInit: 666 handler.handleSelfInit(cast<VarDecl>(dr->getDecl())); 667 break; 668 } 669 } 670 671 void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) { 672 if (BO->getOpcode() == BO_Assign) { 673 FindVarResult Var = findVar(BO->getLHS()); 674 if (const VarDecl *VD = Var.getDecl()) 675 vals[VD] = Initialized; 676 } 677 } 678 679 void TransferFunctions::VisitDeclStmt(DeclStmt *DS) { 680 for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end(); 681 DI != DE; ++DI) { 682 VarDecl *VD = dyn_cast<VarDecl>(*DI); 683 if (VD && isTrackedVar(VD)) { 684 if (getSelfInitExpr(VD)) { 685 // If the initializer consists solely of a reference to itself, we 686 // explicitly mark the variable as uninitialized. This allows code 687 // like the following: 688 // 689 // int x = x; 690 // 691 // to deliberately leave a variable uninitialized. Different analysis 692 // clients can detect this pattern and adjust their reporting 693 // appropriately, but we need to continue to analyze subsequent uses 694 // of the variable. 695 vals[VD] = Uninitialized; 696 } else if (VD->getInit()) { 697 // Treat the new variable as initialized. 698 vals[VD] = Initialized; 699 } else { 700 // No initializer: the variable is now uninitialized. This matters 701 // for cases like: 702 // while (...) { 703 // int n; 704 // use(n); 705 // n = 0; 706 // } 707 // FIXME: Mark the variable as uninitialized whenever its scope is 708 // left, since its scope could be re-entered by a jump over the 709 // declaration. 710 vals[VD] = Uninitialized; 711 } 712 } 713 } 714 } 715 716 void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) { 717 // If the Objective-C message expression is an implicit no-return that 718 // is not modeled in the CFG, set the tracked dataflow values to Unknown. 719 if (objCNoRet.isImplicitNoReturn(ME)) { 720 vals.setAllScratchValues(Unknown); 721 } 722 } 723 724 //------------------------------------------------------------------------====// 725 // High-level "driver" logic for uninitialized values analysis. 726 //====------------------------------------------------------------------------// 727 728 static bool runOnBlock(const CFGBlock *block, const CFG &cfg, 729 AnalysisDeclContext &ac, CFGBlockValues &vals, 730 const ClassifyRefs &classification, 731 llvm::BitVector &wasAnalyzed, 732 UninitVariablesHandler &handler) { 733 wasAnalyzed[block->getBlockID()] = true; 734 vals.resetScratch(); 735 // Merge in values of predecessor blocks. 736 bool isFirst = true; 737 for (CFGBlock::const_pred_iterator I = block->pred_begin(), 738 E = block->pred_end(); I != E; ++I) { 739 const CFGBlock *pred = *I; 740 if (wasAnalyzed[pred->getBlockID()]) { 741 vals.mergeIntoScratch(vals.getValueVector(pred), isFirst); 742 isFirst = false; 743 } 744 } 745 // Apply the transfer function. 746 TransferFunctions tf(vals, cfg, block, ac, classification, handler); 747 for (CFGBlock::const_iterator I = block->begin(), E = block->end(); 748 I != E; ++I) { 749 if (Optional<CFGStmt> cs = I->getAs<CFGStmt>()) 750 tf.Visit(const_cast<Stmt*>(cs->getStmt())); 751 } 752 return vals.updateValueVectorWithScratch(block); 753 } 754 755 /// PruneBlocksHandler is a special UninitVariablesHandler that is used 756 /// to detect when a CFGBlock has any *potential* use of an uninitialized 757 /// variable. It is mainly used to prune out work during the final 758 /// reporting pass. 759 namespace { 760 struct PruneBlocksHandler : public UninitVariablesHandler { 761 PruneBlocksHandler(unsigned numBlocks) 762 : hadUse(numBlocks, false), hadAnyUse(false), 763 currentBlock(0) {} 764 765 virtual ~PruneBlocksHandler() {} 766 767 /// Records if a CFGBlock had a potential use of an uninitialized variable. 768 llvm::BitVector hadUse; 769 770 /// Records if any CFGBlock had a potential use of an uninitialized variable. 771 bool hadAnyUse; 772 773 /// The current block to scribble use information. 774 unsigned currentBlock; 775 776 virtual void handleUseOfUninitVariable(const VarDecl *vd, 777 const UninitUse &use) { 778 hadUse[currentBlock] = true; 779 hadAnyUse = true; 780 } 781 782 /// Called when the uninitialized variable analysis detects the 783 /// idiom 'int x = x'. All other uses of 'x' within the initializer 784 /// are handled by handleUseOfUninitVariable. 785 virtual void handleSelfInit(const VarDecl *vd) { 786 hadUse[currentBlock] = true; 787 hadAnyUse = true; 788 } 789 }; 790 } 791 792 void clang::runUninitializedVariablesAnalysis( 793 const DeclContext &dc, 794 const CFG &cfg, 795 AnalysisDeclContext &ac, 796 UninitVariablesHandler &handler, 797 UninitVariablesAnalysisStats &stats) { 798 CFGBlockValues vals(cfg); 799 vals.computeSetOfDeclarations(dc); 800 if (vals.hasNoDeclarations()) 801 return; 802 803 stats.NumVariablesAnalyzed = vals.getNumEntries(); 804 805 // Precompute which expressions are uses and which are initializations. 806 ClassifyRefs classification(ac); 807 cfg.VisitBlockStmts(classification); 808 809 // Mark all variables uninitialized at the entry. 810 const CFGBlock &entry = cfg.getEntry(); 811 ValueVector &vec = vals.getValueVector(&entry); 812 const unsigned n = vals.getNumEntries(); 813 for (unsigned j = 0; j < n ; ++j) { 814 vec[j] = Uninitialized; 815 } 816 817 // Proceed with the workist. 818 DataflowWorklist worklist(cfg, *ac.getAnalysis<PostOrderCFGView>()); 819 llvm::BitVector previouslyVisited(cfg.getNumBlockIDs()); 820 worklist.enqueueSuccessors(&cfg.getEntry()); 821 llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false); 822 wasAnalyzed[cfg.getEntry().getBlockID()] = true; 823 PruneBlocksHandler PBH(cfg.getNumBlockIDs()); 824 825 while (const CFGBlock *block = worklist.dequeue()) { 826 PBH.currentBlock = block->getBlockID(); 827 828 // Did the block change? 829 bool changed = runOnBlock(block, cfg, ac, vals, 830 classification, wasAnalyzed, PBH); 831 ++stats.NumBlockVisits; 832 if (changed || !previouslyVisited[block->getBlockID()]) 833 worklist.enqueueSuccessors(block); 834 previouslyVisited[block->getBlockID()] = true; 835 } 836 837 if (!PBH.hadAnyUse) 838 return; 839 840 // Run through the blocks one more time, and report uninitialized variables. 841 for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) { 842 const CFGBlock *block = *BI; 843 if (PBH.hadUse[block->getBlockID()]) { 844 runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler); 845 ++stats.NumBlockVisits; 846 } 847 } 848 } 849 850 UninitVariablesHandler::~UninitVariablesHandler() {} 851