Home | History | Annotate | Download | only in Analysis
      1 //==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements uninitialized values analysis for source-level CFGs.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/ASTContext.h"
     15 #include "clang/AST/Attr.h"
     16 #include "clang/AST/Decl.h"
     17 #include "clang/AST/StmtVisitor.h"
     18 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
     19 #include "clang/Analysis/Analyses/UninitializedValues.h"
     20 #include "clang/Analysis/AnalysisContext.h"
     21 #include "clang/Analysis/CFG.h"
     22 #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
     23 #include "llvm/ADT/DenseMap.h"
     24 #include "llvm/ADT/Optional.h"
     25 #include "llvm/ADT/PackedVector.h"
     26 #include "llvm/ADT/SmallBitVector.h"
     27 #include "llvm/ADT/SmallVector.h"
     28 #include "llvm/Support/SaveAndRestore.h"
     29 #include <utility>
     30 
     31 using namespace clang;
     32 
     33 #define DEBUG_LOGGING 0
     34 
     35 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
     36   if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
     37       !vd->isExceptionVariable() &&
     38       vd->getDeclContext() == dc) {
     39     QualType ty = vd->getType();
     40     return ty->isScalarType() || ty->isVectorType();
     41   }
     42   return false;
     43 }
     44 
     45 //------------------------------------------------------------------------====//
     46 // DeclToIndex: a mapping from Decls we track to value indices.
     47 //====------------------------------------------------------------------------//
     48 
     49 namespace {
     50 class DeclToIndex {
     51   llvm::DenseMap<const VarDecl *, unsigned> map;
     52 public:
     53   DeclToIndex() {}
     54 
     55   /// Compute the actual mapping from declarations to bits.
     56   void computeMap(const DeclContext &dc);
     57 
     58   /// Return the number of declarations in the map.
     59   unsigned size() const { return map.size(); }
     60 
     61   /// Returns the bit vector index for a given declaration.
     62   Optional<unsigned> getValueIndex(const VarDecl *d) const;
     63 };
     64 }
     65 
     66 void DeclToIndex::computeMap(const DeclContext &dc) {
     67   unsigned count = 0;
     68   DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
     69                                                E(dc.decls_end());
     70   for ( ; I != E; ++I) {
     71     const VarDecl *vd = *I;
     72     if (isTrackedVar(vd, &dc))
     73       map[vd] = count++;
     74   }
     75 }
     76 
     77 Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
     78   llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
     79   if (I == map.end())
     80     return None;
     81   return I->second;
     82 }
     83 
     84 //------------------------------------------------------------------------====//
     85 // CFGBlockValues: dataflow values for CFG blocks.
     86 //====------------------------------------------------------------------------//
     87 
     88 // These values are defined in such a way that a merge can be done using
     89 // a bitwise OR.
     90 enum Value { Unknown = 0x0,         /* 00 */
     91              Initialized = 0x1,     /* 01 */
     92              Uninitialized = 0x2,   /* 10 */
     93              MayUninitialized = 0x3 /* 11 */ };
     94 
     95 static bool isUninitialized(const Value v) {
     96   return v >= Uninitialized;
     97 }
     98 static bool isAlwaysUninit(const Value v) {
     99   return v == Uninitialized;
    100 }
    101 
    102 namespace {
    103 
    104 typedef llvm::PackedVector<Value, 2, llvm::SmallBitVector> ValueVector;
    105 
    106 class CFGBlockValues {
    107   const CFG &cfg;
    108   SmallVector<ValueVector, 8> vals;
    109   ValueVector scratch;
    110   DeclToIndex declToIndex;
    111 public:
    112   CFGBlockValues(const CFG &cfg);
    113 
    114   unsigned getNumEntries() const { return declToIndex.size(); }
    115 
    116   void computeSetOfDeclarations(const DeclContext &dc);
    117   ValueVector &getValueVector(const CFGBlock *block) {
    118     return vals[block->getBlockID()];
    119   }
    120 
    121   void setAllScratchValues(Value V);
    122   void mergeIntoScratch(ValueVector const &source, bool isFirst);
    123   bool updateValueVectorWithScratch(const CFGBlock *block);
    124 
    125   bool hasNoDeclarations() const {
    126     return declToIndex.size() == 0;
    127   }
    128 
    129   void resetScratch();
    130 
    131   ValueVector::reference operator[](const VarDecl *vd);
    132 
    133   Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
    134                  const VarDecl *vd) {
    135     const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
    136     assert(idx.hasValue());
    137     return getValueVector(block)[idx.getValue()];
    138   }
    139 };
    140 } // end anonymous namespace
    141 
    142 CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
    143 
    144 void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
    145   declToIndex.computeMap(dc);
    146   unsigned decls = declToIndex.size();
    147   scratch.resize(decls);
    148   unsigned n = cfg.getNumBlockIDs();
    149   if (!n)
    150     return;
    151   vals.resize(n);
    152   for (unsigned i = 0; i < n; ++i)
    153     vals[i].resize(decls);
    154 }
    155 
    156 #if DEBUG_LOGGING
    157 static void printVector(const CFGBlock *block, ValueVector &bv,
    158                         unsigned num) {
    159   llvm::errs() << block->getBlockID() << " :";
    160   for (unsigned i = 0; i < bv.size(); ++i) {
    161     llvm::errs() << ' ' << bv[i];
    162   }
    163   llvm::errs() << " : " << num << '\n';
    164 }
    165 #endif
    166 
    167 void CFGBlockValues::setAllScratchValues(Value V) {
    168   for (unsigned I = 0, E = scratch.size(); I != E; ++I)
    169     scratch[I] = V;
    170 }
    171 
    172 void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
    173                                       bool isFirst) {
    174   if (isFirst)
    175     scratch = source;
    176   else
    177     scratch |= source;
    178 }
    179 
    180 bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
    181   ValueVector &dst = getValueVector(block);
    182   bool changed = (dst != scratch);
    183   if (changed)
    184     dst = scratch;
    185 #if DEBUG_LOGGING
    186   printVector(block, scratch, 0);
    187 #endif
    188   return changed;
    189 }
    190 
    191 void CFGBlockValues::resetScratch() {
    192   scratch.reset();
    193 }
    194 
    195 ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
    196   const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
    197   assert(idx.hasValue());
    198   return scratch[idx.getValue()];
    199 }
    200 
    201 //------------------------------------------------------------------------====//
    202 // Worklist: worklist for dataflow analysis.
    203 //====------------------------------------------------------------------------//
    204 
    205 namespace {
    206 class DataflowWorklist {
    207   PostOrderCFGView::iterator PO_I, PO_E;
    208   SmallVector<const CFGBlock *, 20> worklist;
    209   llvm::BitVector enqueuedBlocks;
    210 public:
    211   DataflowWorklist(const CFG &cfg, PostOrderCFGView &view)
    212     : PO_I(view.begin()), PO_E(view.end()),
    213       enqueuedBlocks(cfg.getNumBlockIDs(), true) {
    214         // Treat the first block as already analyzed.
    215         if (PO_I != PO_E) {
    216           assert(*PO_I == &cfg.getEntry());
    217           enqueuedBlocks[(*PO_I)->getBlockID()] = false;
    218           ++PO_I;
    219         }
    220       }
    221 
    222   void enqueueSuccessors(const CFGBlock *block);
    223   const CFGBlock *dequeue();
    224 };
    225 }
    226 
    227 void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) {
    228   for (CFGBlock::const_succ_iterator I = block->succ_begin(),
    229        E = block->succ_end(); I != E; ++I) {
    230     const CFGBlock *Successor = *I;
    231     if (!Successor || enqueuedBlocks[Successor->getBlockID()])
    232       continue;
    233     worklist.push_back(Successor);
    234     enqueuedBlocks[Successor->getBlockID()] = true;
    235   }
    236 }
    237 
    238 const CFGBlock *DataflowWorklist::dequeue() {
    239   const CFGBlock *B = 0;
    240 
    241   // First dequeue from the worklist.  This can represent
    242   // updates along backedges that we want propagated as quickly as possible.
    243   if (!worklist.empty()) {
    244     B = worklist.back();
    245     worklist.pop_back();
    246   }
    247   // Next dequeue from the initial reverse post order.  This is the
    248   // theoretical ideal in the presence of no back edges.
    249   else if (PO_I != PO_E) {
    250     B = *PO_I;
    251     ++PO_I;
    252   }
    253   else {
    254     return 0;
    255   }
    256 
    257   assert(enqueuedBlocks[B->getBlockID()] == true);
    258   enqueuedBlocks[B->getBlockID()] = false;
    259   return B;
    260 }
    261 
    262 //------------------------------------------------------------------------====//
    263 // Classification of DeclRefExprs as use or initialization.
    264 //====------------------------------------------------------------------------//
    265 
    266 namespace {
    267 class FindVarResult {
    268   const VarDecl *vd;
    269   const DeclRefExpr *dr;
    270 public:
    271   FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
    272 
    273   const DeclRefExpr *getDeclRefExpr() const { return dr; }
    274   const VarDecl *getDecl() const { return vd; }
    275 };
    276 
    277 static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
    278   while (Ex) {
    279     Ex = Ex->IgnoreParenNoopCasts(C);
    280     if (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
    281       if (CE->getCastKind() == CK_LValueBitCast) {
    282         Ex = CE->getSubExpr();
    283         continue;
    284       }
    285     }
    286     break;
    287   }
    288   return Ex;
    289 }
    290 
    291 /// If E is an expression comprising a reference to a single variable, find that
    292 /// variable.
    293 static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
    294   if (const DeclRefExpr *DRE =
    295         dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
    296     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
    297       if (isTrackedVar(VD, DC))
    298         return FindVarResult(VD, DRE);
    299   return FindVarResult(0, 0);
    300 }
    301 
    302 /// \brief Classify each DeclRefExpr as an initialization or a use. Any
    303 /// DeclRefExpr which isn't explicitly classified will be assumed to have
    304 /// escaped the analysis and will be treated as an initialization.
    305 class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
    306 public:
    307   enum Class {
    308     Init,
    309     Use,
    310     SelfInit,
    311     Ignore
    312   };
    313 
    314 private:
    315   const DeclContext *DC;
    316   llvm::DenseMap<const DeclRefExpr*, Class> Classification;
    317 
    318   bool isTrackedVar(const VarDecl *VD) const {
    319     return ::isTrackedVar(VD, DC);
    320   }
    321 
    322   void classify(const Expr *E, Class C);
    323 
    324 public:
    325   ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
    326 
    327   void VisitDeclStmt(DeclStmt *DS);
    328   void VisitUnaryOperator(UnaryOperator *UO);
    329   void VisitBinaryOperator(BinaryOperator *BO);
    330   void VisitCallExpr(CallExpr *CE);
    331   void VisitCastExpr(CastExpr *CE);
    332 
    333   void operator()(Stmt *S) { Visit(S); }
    334 
    335   Class get(const DeclRefExpr *DRE) const {
    336     llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
    337         = Classification.find(DRE);
    338     if (I != Classification.end())
    339       return I->second;
    340 
    341     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
    342     if (!VD || !isTrackedVar(VD))
    343       return Ignore;
    344 
    345     return Init;
    346   }
    347 };
    348 }
    349 
    350 static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
    351   if (Expr *Init = VD->getInit()) {
    352     const DeclRefExpr *DRE
    353       = dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
    354     if (DRE && DRE->getDecl() == VD)
    355       return DRE;
    356   }
    357   return 0;
    358 }
    359 
    360 void ClassifyRefs::classify(const Expr *E, Class C) {
    361   // The result of a ?: could also be an lvalue.
    362   E = E->IgnoreParens();
    363   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
    364     const Expr *TrueExpr = CO->getTrueExpr();
    365     if (!isa<OpaqueValueExpr>(TrueExpr))
    366       classify(TrueExpr, C);
    367     classify(CO->getFalseExpr(), C);
    368     return;
    369   }
    370 
    371   FindVarResult Var = findVar(E, DC);
    372   if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
    373     Classification[DRE] = std::max(Classification[DRE], C);
    374 }
    375 
    376 void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
    377   for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end();
    378        DI != DE; ++DI) {
    379     VarDecl *VD = dyn_cast<VarDecl>(*DI);
    380     if (VD && isTrackedVar(VD))
    381       if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
    382         Classification[DRE] = SelfInit;
    383   }
    384 }
    385 
    386 void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
    387   // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
    388   // is not a compound-assignment, we will treat it as initializing the variable
    389   // when TransferFunctions visits it. A compound-assignment does not affect
    390   // whether a variable is uninitialized, and there's no point counting it as a
    391   // use.
    392   if (BO->isCompoundAssignmentOp())
    393     classify(BO->getLHS(), Use);
    394   else if (BO->getOpcode() == BO_Assign)
    395     classify(BO->getLHS(), Ignore);
    396 }
    397 
    398 void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
    399   // Increment and decrement are uses despite there being no lvalue-to-rvalue
    400   // conversion.
    401   if (UO->isIncrementDecrementOp())
    402     classify(UO->getSubExpr(), Use);
    403 }
    404 
    405 void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
    406   // If a value is passed by const reference to a function, we should not assume
    407   // that it is initialized by the call, and we conservatively do not assume
    408   // that it is used.
    409   for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
    410        I != E; ++I)
    411     if ((*I)->getType().isConstQualified() && (*I)->isGLValue())
    412       classify(*I, Ignore);
    413 }
    414 
    415 void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
    416   if (CE->getCastKind() == CK_LValueToRValue)
    417     classify(CE->getSubExpr(), Use);
    418   else if (CStyleCastExpr *CSE = dyn_cast<CStyleCastExpr>(CE)) {
    419     if (CSE->getType()->isVoidType()) {
    420       // Squelch any detected load of an uninitialized value if
    421       // we cast it to void.
    422       // e.g. (void) x;
    423       classify(CSE->getSubExpr(), Ignore);
    424     }
    425   }
    426 }
    427 
    428 //------------------------------------------------------------------------====//
    429 // Transfer function for uninitialized values analysis.
    430 //====------------------------------------------------------------------------//
    431 
    432 namespace {
    433 class TransferFunctions : public StmtVisitor<TransferFunctions> {
    434   CFGBlockValues &vals;
    435   const CFG &cfg;
    436   const CFGBlock *block;
    437   AnalysisDeclContext &ac;
    438   const ClassifyRefs &classification;
    439   ObjCNoReturn objCNoRet;
    440   UninitVariablesHandler &handler;
    441 
    442 public:
    443   TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
    444                     const CFGBlock *block, AnalysisDeclContext &ac,
    445                     const ClassifyRefs &classification,
    446                     UninitVariablesHandler &handler)
    447     : vals(vals), cfg(cfg), block(block), ac(ac),
    448       classification(classification), objCNoRet(ac.getASTContext()),
    449       handler(handler) {}
    450 
    451   void reportUse(const Expr *ex, const VarDecl *vd);
    452 
    453   void VisitBinaryOperator(BinaryOperator *bo);
    454   void VisitBlockExpr(BlockExpr *be);
    455   void VisitCallExpr(CallExpr *ce);
    456   void VisitDeclRefExpr(DeclRefExpr *dr);
    457   void VisitDeclStmt(DeclStmt *ds);
    458   void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
    459   void VisitObjCMessageExpr(ObjCMessageExpr *ME);
    460 
    461   bool isTrackedVar(const VarDecl *vd) {
    462     return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
    463   }
    464 
    465   FindVarResult findVar(const Expr *ex) {
    466     return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
    467   }
    468 
    469   UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
    470     UninitUse Use(ex, isAlwaysUninit(v));
    471 
    472     assert(isUninitialized(v));
    473     if (Use.getKind() == UninitUse::Always)
    474       return Use;
    475 
    476     // If an edge which leads unconditionally to this use did not initialize
    477     // the variable, we can say something stronger than 'may be uninitialized':
    478     // we can say 'either it's used uninitialized or you have dead code'.
    479     //
    480     // We track the number of successors of a node which have been visited, and
    481     // visit a node once we have visited all of its successors. Only edges where
    482     // the variable might still be uninitialized are followed. Since a variable
    483     // can't transfer from being initialized to being uninitialized, this will
    484     // trace out the subgraph which inevitably leads to the use and does not
    485     // initialize the variable. We do not want to skip past loops, since their
    486     // non-termination might be correlated with the initialization condition.
    487     //
    488     // For example:
    489     //
    490     //         void f(bool a, bool b) {
    491     // block1:   int n;
    492     //           if (a) {
    493     // block2:     if (b)
    494     // block3:       n = 1;
    495     // block4:   } else if (b) {
    496     // block5:     while (!a) {
    497     // block6:       do_work(&a);
    498     //               n = 2;
    499     //             }
    500     //           }
    501     // block7:   if (a)
    502     // block8:     g();
    503     // block9:   return n;
    504     //         }
    505     //
    506     // Starting from the maybe-uninitialized use in block 9:
    507     //  * Block 7 is not visited because we have only visited one of its two
    508     //    successors.
    509     //  * Block 8 is visited because we've visited its only successor.
    510     // From block 8:
    511     //  * Block 7 is visited because we've now visited both of its successors.
    512     // From block 7:
    513     //  * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
    514     //    of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
    515     //  * Block 3 is not visited because it initializes 'n'.
    516     // Now the algorithm terminates, having visited blocks 7 and 8, and having
    517     // found the frontier is blocks 2, 4, and 5.
    518     //
    519     // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
    520     // and 4), so we report that any time either of those edges is taken (in
    521     // each case when 'b == false'), 'n' is used uninitialized.
    522     SmallVector<const CFGBlock*, 32> Queue;
    523     SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
    524     Queue.push_back(block);
    525     // Specify that we've already visited all successors of the starting block.
    526     // This has the dual purpose of ensuring we never add it to the queue, and
    527     // of marking it as not being a candidate element of the frontier.
    528     SuccsVisited[block->getBlockID()] = block->succ_size();
    529     while (!Queue.empty()) {
    530       const CFGBlock *B = Queue.back();
    531       Queue.pop_back();
    532       for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
    533            I != E; ++I) {
    534         const CFGBlock *Pred = *I;
    535         if (vals.getValue(Pred, B, vd) == Initialized)
    536           // This block initializes the variable.
    537           continue;
    538 
    539         unsigned &SV = SuccsVisited[Pred->getBlockID()];
    540         if (!SV) {
    541           // When visiting the first successor of a block, mark all NULL
    542           // successors as having been visited.
    543           for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
    544                                              SE = Pred->succ_end();
    545                SI != SE; ++SI)
    546             if (!*SI)
    547               ++SV;
    548         }
    549 
    550         if (++SV == Pred->succ_size())
    551           // All paths from this block lead to the use and don't initialize the
    552           // variable.
    553           Queue.push_back(Pred);
    554       }
    555     }
    556 
    557     // Scan the frontier, looking for blocks where the variable was
    558     // uninitialized.
    559     for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
    560       const CFGBlock *Block = *BI;
    561       unsigned BlockID = Block->getBlockID();
    562       const Stmt *Term = Block->getTerminator();
    563       if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
    564           Term) {
    565         // This block inevitably leads to the use. If we have an edge from here
    566         // to a post-dominator block, and the variable is uninitialized on that
    567         // edge, we have found a bug.
    568         for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
    569              E = Block->succ_end(); I != E; ++I) {
    570           const CFGBlock *Succ = *I;
    571           if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
    572               vals.getValue(Block, Succ, vd) == Uninitialized) {
    573             // Switch cases are a special case: report the label to the caller
    574             // as the 'terminator', not the switch statement itself. Suppress
    575             // situations where no label matched: we can't be sure that's
    576             // possible.
    577             if (isa<SwitchStmt>(Term)) {
    578               const Stmt *Label = Succ->getLabel();
    579               if (!Label || !isa<SwitchCase>(Label))
    580                 // Might not be possible.
    581                 continue;
    582               UninitUse::Branch Branch;
    583               Branch.Terminator = Label;
    584               Branch.Output = 0; // Ignored.
    585               Use.addUninitBranch(Branch);
    586             } else {
    587               UninitUse::Branch Branch;
    588               Branch.Terminator = Term;
    589               Branch.Output = I - Block->succ_begin();
    590               Use.addUninitBranch(Branch);
    591             }
    592           }
    593         }
    594       }
    595     }
    596 
    597     return Use;
    598   }
    599 };
    600 }
    601 
    602 void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
    603   Value v = vals[vd];
    604   if (isUninitialized(v))
    605     handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
    606 }
    607 
    608 void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
    609   // This represents an initialization of the 'element' value.
    610   if (DeclStmt *DS = dyn_cast<DeclStmt>(FS->getElement())) {
    611     const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
    612     if (isTrackedVar(VD))
    613       vals[VD] = Initialized;
    614   }
    615 }
    616 
    617 void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
    618   const BlockDecl *bd = be->getBlockDecl();
    619   for (BlockDecl::capture_const_iterator i = bd->capture_begin(),
    620         e = bd->capture_end() ; i != e; ++i) {
    621     const VarDecl *vd = i->getVariable();
    622     if (!isTrackedVar(vd))
    623       continue;
    624     if (i->isByRef()) {
    625       vals[vd] = Initialized;
    626       continue;
    627     }
    628     reportUse(be, vd);
    629   }
    630 }
    631 
    632 void TransferFunctions::VisitCallExpr(CallExpr *ce) {
    633   if (Decl *Callee = ce->getCalleeDecl()) {
    634     if (Callee->hasAttr<ReturnsTwiceAttr>()) {
    635       // After a call to a function like setjmp or vfork, any variable which is
    636       // initialized anywhere within this function may now be initialized. For
    637       // now, just assume such a call initializes all variables.  FIXME: Only
    638       // mark variables as initialized if they have an initializer which is
    639       // reachable from here.
    640       vals.setAllScratchValues(Initialized);
    641     }
    642     else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
    643       // Functions labeled like "analyzer_noreturn" are often used to denote
    644       // "panic" functions that in special debug situations can still return,
    645       // but for the most part should not be treated as returning.  This is a
    646       // useful annotation borrowed from the static analyzer that is useful for
    647       // suppressing branch-specific false positives when we call one of these
    648       // functions but keep pretending the path continues (when in reality the
    649       // user doesn't care).
    650       vals.setAllScratchValues(Unknown);
    651     }
    652   }
    653 }
    654 
    655 void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
    656   switch (classification.get(dr)) {
    657   case ClassifyRefs::Ignore:
    658     break;
    659   case ClassifyRefs::Use:
    660     reportUse(dr, cast<VarDecl>(dr->getDecl()));
    661     break;
    662   case ClassifyRefs::Init:
    663     vals[cast<VarDecl>(dr->getDecl())] = Initialized;
    664     break;
    665   case ClassifyRefs::SelfInit:
    666       handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
    667     break;
    668   }
    669 }
    670 
    671 void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
    672   if (BO->getOpcode() == BO_Assign) {
    673     FindVarResult Var = findVar(BO->getLHS());
    674     if (const VarDecl *VD = Var.getDecl())
    675       vals[VD] = Initialized;
    676   }
    677 }
    678 
    679 void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
    680   for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end();
    681        DI != DE; ++DI) {
    682     VarDecl *VD = dyn_cast<VarDecl>(*DI);
    683     if (VD && isTrackedVar(VD)) {
    684       if (getSelfInitExpr(VD)) {
    685         // If the initializer consists solely of a reference to itself, we
    686         // explicitly mark the variable as uninitialized. This allows code
    687         // like the following:
    688         //
    689         //   int x = x;
    690         //
    691         // to deliberately leave a variable uninitialized. Different analysis
    692         // clients can detect this pattern and adjust their reporting
    693         // appropriately, but we need to continue to analyze subsequent uses
    694         // of the variable.
    695         vals[VD] = Uninitialized;
    696       } else if (VD->getInit()) {
    697         // Treat the new variable as initialized.
    698         vals[VD] = Initialized;
    699       } else {
    700         // No initializer: the variable is now uninitialized. This matters
    701         // for cases like:
    702         //   while (...) {
    703         //     int n;
    704         //     use(n);
    705         //     n = 0;
    706         //   }
    707         // FIXME: Mark the variable as uninitialized whenever its scope is
    708         // left, since its scope could be re-entered by a jump over the
    709         // declaration.
    710         vals[VD] = Uninitialized;
    711       }
    712     }
    713   }
    714 }
    715 
    716 void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
    717   // If the Objective-C message expression is an implicit no-return that
    718   // is not modeled in the CFG, set the tracked dataflow values to Unknown.
    719   if (objCNoRet.isImplicitNoReturn(ME)) {
    720     vals.setAllScratchValues(Unknown);
    721   }
    722 }
    723 
    724 //------------------------------------------------------------------------====//
    725 // High-level "driver" logic for uninitialized values analysis.
    726 //====------------------------------------------------------------------------//
    727 
    728 static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
    729                        AnalysisDeclContext &ac, CFGBlockValues &vals,
    730                        const ClassifyRefs &classification,
    731                        llvm::BitVector &wasAnalyzed,
    732                        UninitVariablesHandler &handler) {
    733   wasAnalyzed[block->getBlockID()] = true;
    734   vals.resetScratch();
    735   // Merge in values of predecessor blocks.
    736   bool isFirst = true;
    737   for (CFGBlock::const_pred_iterator I = block->pred_begin(),
    738        E = block->pred_end(); I != E; ++I) {
    739     const CFGBlock *pred = *I;
    740     if (wasAnalyzed[pred->getBlockID()]) {
    741       vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
    742       isFirst = false;
    743     }
    744   }
    745   // Apply the transfer function.
    746   TransferFunctions tf(vals, cfg, block, ac, classification, handler);
    747   for (CFGBlock::const_iterator I = block->begin(), E = block->end();
    748        I != E; ++I) {
    749     if (Optional<CFGStmt> cs = I->getAs<CFGStmt>())
    750       tf.Visit(const_cast<Stmt*>(cs->getStmt()));
    751   }
    752   return vals.updateValueVectorWithScratch(block);
    753 }
    754 
    755 /// PruneBlocksHandler is a special UninitVariablesHandler that is used
    756 /// to detect when a CFGBlock has any *potential* use of an uninitialized
    757 /// variable.  It is mainly used to prune out work during the final
    758 /// reporting pass.
    759 namespace {
    760 struct PruneBlocksHandler : public UninitVariablesHandler {
    761   PruneBlocksHandler(unsigned numBlocks)
    762     : hadUse(numBlocks, false), hadAnyUse(false),
    763       currentBlock(0) {}
    764 
    765   virtual ~PruneBlocksHandler() {}
    766 
    767   /// Records if a CFGBlock had a potential use of an uninitialized variable.
    768   llvm::BitVector hadUse;
    769 
    770   /// Records if any CFGBlock had a potential use of an uninitialized variable.
    771   bool hadAnyUse;
    772 
    773   /// The current block to scribble use information.
    774   unsigned currentBlock;
    775 
    776   virtual void handleUseOfUninitVariable(const VarDecl *vd,
    777                                          const UninitUse &use) {
    778     hadUse[currentBlock] = true;
    779     hadAnyUse = true;
    780   }
    781 
    782   /// Called when the uninitialized variable analysis detects the
    783   /// idiom 'int x = x'.  All other uses of 'x' within the initializer
    784   /// are handled by handleUseOfUninitVariable.
    785   virtual void handleSelfInit(const VarDecl *vd) {
    786     hadUse[currentBlock] = true;
    787     hadAnyUse = true;
    788   }
    789 };
    790 }
    791 
    792 void clang::runUninitializedVariablesAnalysis(
    793     const DeclContext &dc,
    794     const CFG &cfg,
    795     AnalysisDeclContext &ac,
    796     UninitVariablesHandler &handler,
    797     UninitVariablesAnalysisStats &stats) {
    798   CFGBlockValues vals(cfg);
    799   vals.computeSetOfDeclarations(dc);
    800   if (vals.hasNoDeclarations())
    801     return;
    802 
    803   stats.NumVariablesAnalyzed = vals.getNumEntries();
    804 
    805   // Precompute which expressions are uses and which are initializations.
    806   ClassifyRefs classification(ac);
    807   cfg.VisitBlockStmts(classification);
    808 
    809   // Mark all variables uninitialized at the entry.
    810   const CFGBlock &entry = cfg.getEntry();
    811   ValueVector &vec = vals.getValueVector(&entry);
    812   const unsigned n = vals.getNumEntries();
    813   for (unsigned j = 0; j < n ; ++j) {
    814     vec[j] = Uninitialized;
    815   }
    816 
    817   // Proceed with the workist.
    818   DataflowWorklist worklist(cfg, *ac.getAnalysis<PostOrderCFGView>());
    819   llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
    820   worklist.enqueueSuccessors(&cfg.getEntry());
    821   llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
    822   wasAnalyzed[cfg.getEntry().getBlockID()] = true;
    823   PruneBlocksHandler PBH(cfg.getNumBlockIDs());
    824 
    825   while (const CFGBlock *block = worklist.dequeue()) {
    826     PBH.currentBlock = block->getBlockID();
    827 
    828     // Did the block change?
    829     bool changed = runOnBlock(block, cfg, ac, vals,
    830                               classification, wasAnalyzed, PBH);
    831     ++stats.NumBlockVisits;
    832     if (changed || !previouslyVisited[block->getBlockID()])
    833       worklist.enqueueSuccessors(block);
    834     previouslyVisited[block->getBlockID()] = true;
    835   }
    836 
    837   if (!PBH.hadAnyUse)
    838     return;
    839 
    840   // Run through the blocks one more time, and report uninitialized variables.
    841   for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
    842     const CFGBlock *block = *BI;
    843     if (PBH.hadUse[block->getBlockID()]) {
    844       runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
    845       ++stats.NumBlockVisits;
    846     }
    847   }
    848 }
    849 
    850 UninitVariablesHandler::~UninitVariablesHandler() {}
    851