Home | History | Annotate | Download | only in AsmParser
      1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the parser class for .ll files.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "LLParser.h"
     15 #include "llvm/ADT/SmallPtrSet.h"
     16 #include "llvm/AutoUpgrade.h"
     17 #include "llvm/IR/CallingConv.h"
     18 #include "llvm/IR/Constants.h"
     19 #include "llvm/IR/DerivedTypes.h"
     20 #include "llvm/IR/InlineAsm.h"
     21 #include "llvm/IR/Instructions.h"
     22 #include "llvm/IR/Module.h"
     23 #include "llvm/IR/Operator.h"
     24 #include "llvm/IR/ValueSymbolTable.h"
     25 #include "llvm/Support/ErrorHandling.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 using namespace llvm;
     28 
     29 static std::string getTypeString(Type *T) {
     30   std::string Result;
     31   raw_string_ostream Tmp(Result);
     32   Tmp << *T;
     33   return Tmp.str();
     34 }
     35 
     36 /// Run: module ::= toplevelentity*
     37 bool LLParser::Run() {
     38   // Prime the lexer.
     39   Lex.Lex();
     40 
     41   return ParseTopLevelEntities() ||
     42          ValidateEndOfModule();
     43 }
     44 
     45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
     46 /// module.
     47 bool LLParser::ValidateEndOfModule() {
     48   // Handle any instruction metadata forward references.
     49   if (!ForwardRefInstMetadata.empty()) {
     50     for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
     51          I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
     52          I != E; ++I) {
     53       Instruction *Inst = I->first;
     54       const std::vector<MDRef> &MDList = I->second;
     55 
     56       for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
     57         unsigned SlotNo = MDList[i].MDSlot;
     58 
     59         if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
     60           return Error(MDList[i].Loc, "use of undefined metadata '!" +
     61                        Twine(SlotNo) + "'");
     62         Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
     63       }
     64     }
     65     ForwardRefInstMetadata.clear();
     66   }
     67 
     68   // Handle any function attribute group forward references.
     69   for (std::map<Value*, std::vector<unsigned> >::iterator
     70          I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
     71          I != E; ++I) {
     72     Value *V = I->first;
     73     std::vector<unsigned> &Vec = I->second;
     74     AttrBuilder B;
     75 
     76     for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
     77          VI != VE; ++VI)
     78       B.merge(NumberedAttrBuilders[*VI]);
     79 
     80     if (Function *Fn = dyn_cast<Function>(V)) {
     81       AttributeSet AS = Fn->getAttributes();
     82       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
     83       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
     84                                AS.getFnAttributes());
     85 
     86       FnAttrs.merge(B);
     87 
     88       // If the alignment was parsed as an attribute, move to the alignment
     89       // field.
     90       if (FnAttrs.hasAlignmentAttr()) {
     91         Fn->setAlignment(FnAttrs.getAlignment());
     92         FnAttrs.removeAttribute(Attribute::Alignment);
     93       }
     94 
     95       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
     96                             AttributeSet::get(Context,
     97                                               AttributeSet::FunctionIndex,
     98                                               FnAttrs));
     99       Fn->setAttributes(AS);
    100     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
    101       AttributeSet AS = CI->getAttributes();
    102       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
    103       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
    104                                AS.getFnAttributes());
    105       FnAttrs.merge(B);
    106       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
    107                             AttributeSet::get(Context,
    108                                               AttributeSet::FunctionIndex,
    109                                               FnAttrs));
    110       CI->setAttributes(AS);
    111     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
    112       AttributeSet AS = II->getAttributes();
    113       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
    114       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
    115                                AS.getFnAttributes());
    116       FnAttrs.merge(B);
    117       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
    118                             AttributeSet::get(Context,
    119                                               AttributeSet::FunctionIndex,
    120                                               FnAttrs));
    121       II->setAttributes(AS);
    122     } else {
    123       llvm_unreachable("invalid object with forward attribute group reference");
    124     }
    125   }
    126 
    127   // If there are entries in ForwardRefBlockAddresses at this point, they are
    128   // references after the function was defined.  Resolve those now.
    129   while (!ForwardRefBlockAddresses.empty()) {
    130     // Okay, we are referencing an already-parsed function, resolve them now.
    131     Function *TheFn = 0;
    132     const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
    133     if (Fn.Kind == ValID::t_GlobalName)
    134       TheFn = M->getFunction(Fn.StrVal);
    135     else if (Fn.UIntVal < NumberedVals.size())
    136       TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
    137 
    138     if (TheFn == 0)
    139       return Error(Fn.Loc, "unknown function referenced by blockaddress");
    140 
    141     // Resolve all these references.
    142     if (ResolveForwardRefBlockAddresses(TheFn,
    143                                       ForwardRefBlockAddresses.begin()->second,
    144                                         0))
    145       return true;
    146 
    147     ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
    148   }
    149 
    150   for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
    151     if (NumberedTypes[i].second.isValid())
    152       return Error(NumberedTypes[i].second,
    153                    "use of undefined type '%" + Twine(i) + "'");
    154 
    155   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
    156        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
    157     if (I->second.second.isValid())
    158       return Error(I->second.second,
    159                    "use of undefined type named '" + I->getKey() + "'");
    160 
    161   if (!ForwardRefVals.empty())
    162     return Error(ForwardRefVals.begin()->second.second,
    163                  "use of undefined value '@" + ForwardRefVals.begin()->first +
    164                  "'");
    165 
    166   if (!ForwardRefValIDs.empty())
    167     return Error(ForwardRefValIDs.begin()->second.second,
    168                  "use of undefined value '@" +
    169                  Twine(ForwardRefValIDs.begin()->first) + "'");
    170 
    171   if (!ForwardRefMDNodes.empty())
    172     return Error(ForwardRefMDNodes.begin()->second.second,
    173                  "use of undefined metadata '!" +
    174                  Twine(ForwardRefMDNodes.begin()->first) + "'");
    175 
    176 
    177   // Look for intrinsic functions and CallInst that need to be upgraded
    178   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
    179     UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
    180 
    181   return false;
    182 }
    183 
    184 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
    185                              std::vector<std::pair<ValID, GlobalValue*> > &Refs,
    186                                                PerFunctionState *PFS) {
    187   // Loop over all the references, resolving them.
    188   for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
    189     BasicBlock *Res;
    190     if (PFS) {
    191       if (Refs[i].first.Kind == ValID::t_LocalName)
    192         Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
    193       else
    194         Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
    195     } else if (Refs[i].first.Kind == ValID::t_LocalID) {
    196       return Error(Refs[i].first.Loc,
    197        "cannot take address of numeric label after the function is defined");
    198     } else {
    199       Res = dyn_cast_or_null<BasicBlock>(
    200                      TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
    201     }
    202 
    203     if (Res == 0)
    204       return Error(Refs[i].first.Loc,
    205                    "referenced value is not a basic block");
    206 
    207     // Get the BlockAddress for this and update references to use it.
    208     BlockAddress *BA = BlockAddress::get(TheFn, Res);
    209     Refs[i].second->replaceAllUsesWith(BA);
    210     Refs[i].second->eraseFromParent();
    211   }
    212   return false;
    213 }
    214 
    215 
    216 //===----------------------------------------------------------------------===//
    217 // Top-Level Entities
    218 //===----------------------------------------------------------------------===//
    219 
    220 bool LLParser::ParseTopLevelEntities() {
    221   while (1) {
    222     switch (Lex.getKind()) {
    223     default:         return TokError("expected top-level entity");
    224     case lltok::Eof: return false;
    225     case lltok::kw_declare: if (ParseDeclare()) return true; break;
    226     case lltok::kw_define:  if (ParseDefine()) return true; break;
    227     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
    228     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
    229     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
    230     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
    231     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
    232     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
    233     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
    234     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
    235     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
    236 
    237     // The Global variable production with no name can have many different
    238     // optional leading prefixes, the production is:
    239     // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
    240     //               OptionalAddrSpace OptionalUnNammedAddr
    241     //               ('constant'|'global') ...
    242     case lltok::kw_private:             // OptionalLinkage
    243     case lltok::kw_linker_private:      // OptionalLinkage
    244     case lltok::kw_linker_private_weak: // OptionalLinkage
    245     case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat.
    246     case lltok::kw_internal:            // OptionalLinkage
    247     case lltok::kw_weak:                // OptionalLinkage
    248     case lltok::kw_weak_odr:            // OptionalLinkage
    249     case lltok::kw_linkonce:            // OptionalLinkage
    250     case lltok::kw_linkonce_odr:        // OptionalLinkage
    251     case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage
    252     case lltok::kw_appending:           // OptionalLinkage
    253     case lltok::kw_dllexport:           // OptionalLinkage
    254     case lltok::kw_common:              // OptionalLinkage
    255     case lltok::kw_dllimport:           // OptionalLinkage
    256     case lltok::kw_extern_weak:         // OptionalLinkage
    257     case lltok::kw_external: {          // OptionalLinkage
    258       unsigned Linkage, Visibility;
    259       if (ParseOptionalLinkage(Linkage) ||
    260           ParseOptionalVisibility(Visibility) ||
    261           ParseGlobal("", SMLoc(), Linkage, true, Visibility))
    262         return true;
    263       break;
    264     }
    265     case lltok::kw_default:       // OptionalVisibility
    266     case lltok::kw_hidden:        // OptionalVisibility
    267     case lltok::kw_protected: {   // OptionalVisibility
    268       unsigned Visibility;
    269       if (ParseOptionalVisibility(Visibility) ||
    270           ParseGlobal("", SMLoc(), 0, false, Visibility))
    271         return true;
    272       break;
    273     }
    274 
    275     case lltok::kw_thread_local:  // OptionalThreadLocal
    276     case lltok::kw_addrspace:     // OptionalAddrSpace
    277     case lltok::kw_constant:      // GlobalType
    278     case lltok::kw_global:        // GlobalType
    279       if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
    280       break;
    281 
    282     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
    283     }
    284   }
    285 }
    286 
    287 
    288 /// toplevelentity
    289 ///   ::= 'module' 'asm' STRINGCONSTANT
    290 bool LLParser::ParseModuleAsm() {
    291   assert(Lex.getKind() == lltok::kw_module);
    292   Lex.Lex();
    293 
    294   std::string AsmStr;
    295   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
    296       ParseStringConstant(AsmStr)) return true;
    297 
    298   M->appendModuleInlineAsm(AsmStr);
    299   return false;
    300 }
    301 
    302 /// toplevelentity
    303 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
    304 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
    305 bool LLParser::ParseTargetDefinition() {
    306   assert(Lex.getKind() == lltok::kw_target);
    307   std::string Str;
    308   switch (Lex.Lex()) {
    309   default: return TokError("unknown target property");
    310   case lltok::kw_triple:
    311     Lex.Lex();
    312     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
    313         ParseStringConstant(Str))
    314       return true;
    315     M->setTargetTriple(Str);
    316     return false;
    317   case lltok::kw_datalayout:
    318     Lex.Lex();
    319     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
    320         ParseStringConstant(Str))
    321       return true;
    322     M->setDataLayout(Str);
    323     return false;
    324   }
    325 }
    326 
    327 /// toplevelentity
    328 ///   ::= 'deplibs' '=' '[' ']'
    329 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
    330 /// FIXME: Remove in 4.0. Currently parse, but ignore.
    331 bool LLParser::ParseDepLibs() {
    332   assert(Lex.getKind() == lltok::kw_deplibs);
    333   Lex.Lex();
    334   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
    335       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
    336     return true;
    337 
    338   if (EatIfPresent(lltok::rsquare))
    339     return false;
    340 
    341   do {
    342     std::string Str;
    343     if (ParseStringConstant(Str)) return true;
    344   } while (EatIfPresent(lltok::comma));
    345 
    346   return ParseToken(lltok::rsquare, "expected ']' at end of list");
    347 }
    348 
    349 /// ParseUnnamedType:
    350 ///   ::= LocalVarID '=' 'type' type
    351 bool LLParser::ParseUnnamedType() {
    352   LocTy TypeLoc = Lex.getLoc();
    353   unsigned TypeID = Lex.getUIntVal();
    354   Lex.Lex(); // eat LocalVarID;
    355 
    356   if (ParseToken(lltok::equal, "expected '=' after name") ||
    357       ParseToken(lltok::kw_type, "expected 'type' after '='"))
    358     return true;
    359 
    360   if (TypeID >= NumberedTypes.size())
    361     NumberedTypes.resize(TypeID+1);
    362 
    363   Type *Result = 0;
    364   if (ParseStructDefinition(TypeLoc, "",
    365                             NumberedTypes[TypeID], Result)) return true;
    366 
    367   if (!isa<StructType>(Result)) {
    368     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
    369     if (Entry.first)
    370       return Error(TypeLoc, "non-struct types may not be recursive");
    371     Entry.first = Result;
    372     Entry.second = SMLoc();
    373   }
    374 
    375   return false;
    376 }
    377 
    378 
    379 /// toplevelentity
    380 ///   ::= LocalVar '=' 'type' type
    381 bool LLParser::ParseNamedType() {
    382   std::string Name = Lex.getStrVal();
    383   LocTy NameLoc = Lex.getLoc();
    384   Lex.Lex();  // eat LocalVar.
    385 
    386   if (ParseToken(lltok::equal, "expected '=' after name") ||
    387       ParseToken(lltok::kw_type, "expected 'type' after name"))
    388     return true;
    389 
    390   Type *Result = 0;
    391   if (ParseStructDefinition(NameLoc, Name,
    392                             NamedTypes[Name], Result)) return true;
    393 
    394   if (!isa<StructType>(Result)) {
    395     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
    396     if (Entry.first)
    397       return Error(NameLoc, "non-struct types may not be recursive");
    398     Entry.first = Result;
    399     Entry.second = SMLoc();
    400   }
    401 
    402   return false;
    403 }
    404 
    405 
    406 /// toplevelentity
    407 ///   ::= 'declare' FunctionHeader
    408 bool LLParser::ParseDeclare() {
    409   assert(Lex.getKind() == lltok::kw_declare);
    410   Lex.Lex();
    411 
    412   Function *F;
    413   return ParseFunctionHeader(F, false);
    414 }
    415 
    416 /// toplevelentity
    417 ///   ::= 'define' FunctionHeader '{' ...
    418 bool LLParser::ParseDefine() {
    419   assert(Lex.getKind() == lltok::kw_define);
    420   Lex.Lex();
    421 
    422   Function *F;
    423   return ParseFunctionHeader(F, true) ||
    424          ParseFunctionBody(*F);
    425 }
    426 
    427 /// ParseGlobalType
    428 ///   ::= 'constant'
    429 ///   ::= 'global'
    430 bool LLParser::ParseGlobalType(bool &IsConstant) {
    431   if (Lex.getKind() == lltok::kw_constant)
    432     IsConstant = true;
    433   else if (Lex.getKind() == lltok::kw_global)
    434     IsConstant = false;
    435   else {
    436     IsConstant = false;
    437     return TokError("expected 'global' or 'constant'");
    438   }
    439   Lex.Lex();
    440   return false;
    441 }
    442 
    443 /// ParseUnnamedGlobal:
    444 ///   OptionalVisibility ALIAS ...
    445 ///   OptionalLinkage OptionalVisibility ...   -> global variable
    446 ///   GlobalID '=' OptionalVisibility ALIAS ...
    447 ///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
    448 bool LLParser::ParseUnnamedGlobal() {
    449   unsigned VarID = NumberedVals.size();
    450   std::string Name;
    451   LocTy NameLoc = Lex.getLoc();
    452 
    453   // Handle the GlobalID form.
    454   if (Lex.getKind() == lltok::GlobalID) {
    455     if (Lex.getUIntVal() != VarID)
    456       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
    457                    Twine(VarID) + "'");
    458     Lex.Lex(); // eat GlobalID;
    459 
    460     if (ParseToken(lltok::equal, "expected '=' after name"))
    461       return true;
    462   }
    463 
    464   bool HasLinkage;
    465   unsigned Linkage, Visibility;
    466   if (ParseOptionalLinkage(Linkage, HasLinkage) ||
    467       ParseOptionalVisibility(Visibility))
    468     return true;
    469 
    470   if (HasLinkage || Lex.getKind() != lltok::kw_alias)
    471     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
    472   return ParseAlias(Name, NameLoc, Visibility);
    473 }
    474 
    475 /// ParseNamedGlobal:
    476 ///   GlobalVar '=' OptionalVisibility ALIAS ...
    477 ///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
    478 bool LLParser::ParseNamedGlobal() {
    479   assert(Lex.getKind() == lltok::GlobalVar);
    480   LocTy NameLoc = Lex.getLoc();
    481   std::string Name = Lex.getStrVal();
    482   Lex.Lex();
    483 
    484   bool HasLinkage;
    485   unsigned Linkage, Visibility;
    486   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
    487       ParseOptionalLinkage(Linkage, HasLinkage) ||
    488       ParseOptionalVisibility(Visibility))
    489     return true;
    490 
    491   if (HasLinkage || Lex.getKind() != lltok::kw_alias)
    492     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
    493   return ParseAlias(Name, NameLoc, Visibility);
    494 }
    495 
    496 // MDString:
    497 //   ::= '!' STRINGCONSTANT
    498 bool LLParser::ParseMDString(MDString *&Result) {
    499   std::string Str;
    500   if (ParseStringConstant(Str)) return true;
    501   Result = MDString::get(Context, Str);
    502   return false;
    503 }
    504 
    505 // MDNode:
    506 //   ::= '!' MDNodeNumber
    507 //
    508 /// This version of ParseMDNodeID returns the slot number and null in the case
    509 /// of a forward reference.
    510 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
    511   // !{ ..., !42, ... }
    512   if (ParseUInt32(SlotNo)) return true;
    513 
    514   // Check existing MDNode.
    515   if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
    516     Result = NumberedMetadata[SlotNo];
    517   else
    518     Result = 0;
    519   return false;
    520 }
    521 
    522 bool LLParser::ParseMDNodeID(MDNode *&Result) {
    523   // !{ ..., !42, ... }
    524   unsigned MID = 0;
    525   if (ParseMDNodeID(Result, MID)) return true;
    526 
    527   // If not a forward reference, just return it now.
    528   if (Result) return false;
    529 
    530   // Otherwise, create MDNode forward reference.
    531   MDNode *FwdNode = MDNode::getTemporary(Context, None);
    532   ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
    533 
    534   if (NumberedMetadata.size() <= MID)
    535     NumberedMetadata.resize(MID+1);
    536   NumberedMetadata[MID] = FwdNode;
    537   Result = FwdNode;
    538   return false;
    539 }
    540 
    541 /// ParseNamedMetadata:
    542 ///   !foo = !{ !1, !2 }
    543 bool LLParser::ParseNamedMetadata() {
    544   assert(Lex.getKind() == lltok::MetadataVar);
    545   std::string Name = Lex.getStrVal();
    546   Lex.Lex();
    547 
    548   if (ParseToken(lltok::equal, "expected '=' here") ||
    549       ParseToken(lltok::exclaim, "Expected '!' here") ||
    550       ParseToken(lltok::lbrace, "Expected '{' here"))
    551     return true;
    552 
    553   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
    554   if (Lex.getKind() != lltok::rbrace)
    555     do {
    556       if (ParseToken(lltok::exclaim, "Expected '!' here"))
    557         return true;
    558 
    559       MDNode *N = 0;
    560       if (ParseMDNodeID(N)) return true;
    561       NMD->addOperand(N);
    562     } while (EatIfPresent(lltok::comma));
    563 
    564   if (ParseToken(lltok::rbrace, "expected end of metadata node"))
    565     return true;
    566 
    567   return false;
    568 }
    569 
    570 /// ParseStandaloneMetadata:
    571 ///   !42 = !{...}
    572 bool LLParser::ParseStandaloneMetadata() {
    573   assert(Lex.getKind() == lltok::exclaim);
    574   Lex.Lex();
    575   unsigned MetadataID = 0;
    576 
    577   LocTy TyLoc;
    578   Type *Ty = 0;
    579   SmallVector<Value *, 16> Elts;
    580   if (ParseUInt32(MetadataID) ||
    581       ParseToken(lltok::equal, "expected '=' here") ||
    582       ParseType(Ty, TyLoc) ||
    583       ParseToken(lltok::exclaim, "Expected '!' here") ||
    584       ParseToken(lltok::lbrace, "Expected '{' here") ||
    585       ParseMDNodeVector(Elts, NULL) ||
    586       ParseToken(lltok::rbrace, "expected end of metadata node"))
    587     return true;
    588 
    589   MDNode *Init = MDNode::get(Context, Elts);
    590 
    591   // See if this was forward referenced, if so, handle it.
    592   std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
    593     FI = ForwardRefMDNodes.find(MetadataID);
    594   if (FI != ForwardRefMDNodes.end()) {
    595     MDNode *Temp = FI->second.first;
    596     Temp->replaceAllUsesWith(Init);
    597     MDNode::deleteTemporary(Temp);
    598     ForwardRefMDNodes.erase(FI);
    599 
    600     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
    601   } else {
    602     if (MetadataID >= NumberedMetadata.size())
    603       NumberedMetadata.resize(MetadataID+1);
    604 
    605     if (NumberedMetadata[MetadataID] != 0)
    606       return TokError("Metadata id is already used");
    607     NumberedMetadata[MetadataID] = Init;
    608   }
    609 
    610   return false;
    611 }
    612 
    613 /// ParseAlias:
    614 ///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
    615 /// Aliasee
    616 ///   ::= TypeAndValue
    617 ///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
    618 ///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
    619 ///
    620 /// Everything through visibility has already been parsed.
    621 ///
    622 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
    623                           unsigned Visibility) {
    624   assert(Lex.getKind() == lltok::kw_alias);
    625   Lex.Lex();
    626   unsigned Linkage;
    627   LocTy LinkageLoc = Lex.getLoc();
    628   if (ParseOptionalLinkage(Linkage))
    629     return true;
    630 
    631   if (Linkage != GlobalValue::ExternalLinkage &&
    632       Linkage != GlobalValue::WeakAnyLinkage &&
    633       Linkage != GlobalValue::WeakODRLinkage &&
    634       Linkage != GlobalValue::InternalLinkage &&
    635       Linkage != GlobalValue::PrivateLinkage &&
    636       Linkage != GlobalValue::LinkerPrivateLinkage &&
    637       Linkage != GlobalValue::LinkerPrivateWeakLinkage)
    638     return Error(LinkageLoc, "invalid linkage type for alias");
    639 
    640   Constant *Aliasee;
    641   LocTy AliaseeLoc = Lex.getLoc();
    642   if (Lex.getKind() != lltok::kw_bitcast &&
    643       Lex.getKind() != lltok::kw_getelementptr) {
    644     if (ParseGlobalTypeAndValue(Aliasee)) return true;
    645   } else {
    646     // The bitcast dest type is not present, it is implied by the dest type.
    647     ValID ID;
    648     if (ParseValID(ID)) return true;
    649     if (ID.Kind != ValID::t_Constant)
    650       return Error(AliaseeLoc, "invalid aliasee");
    651     Aliasee = ID.ConstantVal;
    652   }
    653 
    654   if (!Aliasee->getType()->isPointerTy())
    655     return Error(AliaseeLoc, "alias must have pointer type");
    656 
    657   // Okay, create the alias but do not insert it into the module yet.
    658   GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
    659                                     (GlobalValue::LinkageTypes)Linkage, Name,
    660                                     Aliasee);
    661   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
    662 
    663   // See if this value already exists in the symbol table.  If so, it is either
    664   // a redefinition or a definition of a forward reference.
    665   if (GlobalValue *Val = M->getNamedValue(Name)) {
    666     // See if this was a redefinition.  If so, there is no entry in
    667     // ForwardRefVals.
    668     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
    669       I = ForwardRefVals.find(Name);
    670     if (I == ForwardRefVals.end())
    671       return Error(NameLoc, "redefinition of global named '@" + Name + "'");
    672 
    673     // Otherwise, this was a definition of forward ref.  Verify that types
    674     // agree.
    675     if (Val->getType() != GA->getType())
    676       return Error(NameLoc,
    677               "forward reference and definition of alias have different types");
    678 
    679     // If they agree, just RAUW the old value with the alias and remove the
    680     // forward ref info.
    681     Val->replaceAllUsesWith(GA);
    682     Val->eraseFromParent();
    683     ForwardRefVals.erase(I);
    684   }
    685 
    686   // Insert into the module, we know its name won't collide now.
    687   M->getAliasList().push_back(GA);
    688   assert(GA->getName() == Name && "Should not be a name conflict!");
    689 
    690   return false;
    691 }
    692 
    693 /// ParseGlobal
    694 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
    695 ///       OptionalAddrSpace OptionalUnNammedAddr
    696 ///       OptionalExternallyInitialized GlobalType Type Const
    697 ///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
    698 ///       OptionalAddrSpace OptionalUnNammedAddr
    699 ///       OptionalExternallyInitialized GlobalType Type Const
    700 ///
    701 /// Everything through visibility has been parsed already.
    702 ///
    703 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
    704                            unsigned Linkage, bool HasLinkage,
    705                            unsigned Visibility) {
    706   unsigned AddrSpace;
    707   bool IsConstant, UnnamedAddr, IsExternallyInitialized;
    708   GlobalVariable::ThreadLocalMode TLM;
    709   LocTy UnnamedAddrLoc;
    710   LocTy IsExternallyInitializedLoc;
    711   LocTy TyLoc;
    712 
    713   Type *Ty = 0;
    714   if (ParseOptionalThreadLocal(TLM) ||
    715       ParseOptionalAddrSpace(AddrSpace) ||
    716       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
    717                          &UnnamedAddrLoc) ||
    718       ParseOptionalToken(lltok::kw_externally_initialized,
    719                          IsExternallyInitialized,
    720                          &IsExternallyInitializedLoc) ||
    721       ParseGlobalType(IsConstant) ||
    722       ParseType(Ty, TyLoc))
    723     return true;
    724 
    725   // If the linkage is specified and is external, then no initializer is
    726   // present.
    727   Constant *Init = 0;
    728   if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
    729                       Linkage != GlobalValue::ExternalWeakLinkage &&
    730                       Linkage != GlobalValue::ExternalLinkage)) {
    731     if (ParseGlobalValue(Ty, Init))
    732       return true;
    733   }
    734 
    735   if (Ty->isFunctionTy() || Ty->isLabelTy())
    736     return Error(TyLoc, "invalid type for global variable");
    737 
    738   GlobalVariable *GV = 0;
    739 
    740   // See if the global was forward referenced, if so, use the global.
    741   if (!Name.empty()) {
    742     if (GlobalValue *GVal = M->getNamedValue(Name)) {
    743       if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
    744         return Error(NameLoc, "redefinition of global '@" + Name + "'");
    745       GV = cast<GlobalVariable>(GVal);
    746     }
    747   } else {
    748     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
    749       I = ForwardRefValIDs.find(NumberedVals.size());
    750     if (I != ForwardRefValIDs.end()) {
    751       GV = cast<GlobalVariable>(I->second.first);
    752       ForwardRefValIDs.erase(I);
    753     }
    754   }
    755 
    756   if (GV == 0) {
    757     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
    758                             Name, 0, GlobalVariable::NotThreadLocal,
    759                             AddrSpace);
    760   } else {
    761     if (GV->getType()->getElementType() != Ty)
    762       return Error(TyLoc,
    763             "forward reference and definition of global have different types");
    764 
    765     // Move the forward-reference to the correct spot in the module.
    766     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
    767   }
    768 
    769   if (Name.empty())
    770     NumberedVals.push_back(GV);
    771 
    772   // Set the parsed properties on the global.
    773   if (Init)
    774     GV->setInitializer(Init);
    775   GV->setConstant(IsConstant);
    776   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
    777   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
    778   GV->setExternallyInitialized(IsExternallyInitialized);
    779   GV->setThreadLocalMode(TLM);
    780   GV->setUnnamedAddr(UnnamedAddr);
    781 
    782   // Parse attributes on the global.
    783   while (Lex.getKind() == lltok::comma) {
    784     Lex.Lex();
    785 
    786     if (Lex.getKind() == lltok::kw_section) {
    787       Lex.Lex();
    788       GV->setSection(Lex.getStrVal());
    789       if (ParseToken(lltok::StringConstant, "expected global section string"))
    790         return true;
    791     } else if (Lex.getKind() == lltok::kw_align) {
    792       unsigned Alignment;
    793       if (ParseOptionalAlignment(Alignment)) return true;
    794       GV->setAlignment(Alignment);
    795     } else {
    796       TokError("unknown global variable property!");
    797     }
    798   }
    799 
    800   return false;
    801 }
    802 
    803 /// ParseUnnamedAttrGrp
    804 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
    805 bool LLParser::ParseUnnamedAttrGrp() {
    806   assert(Lex.getKind() == lltok::kw_attributes);
    807   LocTy AttrGrpLoc = Lex.getLoc();
    808   Lex.Lex();
    809 
    810   assert(Lex.getKind() == lltok::AttrGrpID);
    811   unsigned VarID = Lex.getUIntVal();
    812   std::vector<unsigned> unused;
    813   LocTy BuiltinLoc;
    814   Lex.Lex();
    815 
    816   if (ParseToken(lltok::equal, "expected '=' here") ||
    817       ParseToken(lltok::lbrace, "expected '{' here") ||
    818       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
    819                                  BuiltinLoc) ||
    820       ParseToken(lltok::rbrace, "expected end of attribute group"))
    821     return true;
    822 
    823   if (!NumberedAttrBuilders[VarID].hasAttributes())
    824     return Error(AttrGrpLoc, "attribute group has no attributes");
    825 
    826   return false;
    827 }
    828 
    829 /// ParseFnAttributeValuePairs
    830 ///   ::= <attr> | <attr> '=' <value>
    831 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
    832                                           std::vector<unsigned> &FwdRefAttrGrps,
    833                                           bool inAttrGrp, LocTy &BuiltinLoc) {
    834   bool HaveError = false;
    835 
    836   B.clear();
    837 
    838   while (true) {
    839     lltok::Kind Token = Lex.getKind();
    840     if (Token == lltok::kw_builtin)
    841       BuiltinLoc = Lex.getLoc();
    842     switch (Token) {
    843     default:
    844       if (!inAttrGrp) return HaveError;
    845       return Error(Lex.getLoc(), "unterminated attribute group");
    846     case lltok::rbrace:
    847       // Finished.
    848       return false;
    849 
    850     case lltok::AttrGrpID: {
    851       // Allow a function to reference an attribute group:
    852       //
    853       //   define void @foo() #1 { ... }
    854       if (inAttrGrp)
    855         HaveError |=
    856           Error(Lex.getLoc(),
    857               "cannot have an attribute group reference in an attribute group");
    858 
    859       unsigned AttrGrpNum = Lex.getUIntVal();
    860       if (inAttrGrp) break;
    861 
    862       // Save the reference to the attribute group. We'll fill it in later.
    863       FwdRefAttrGrps.push_back(AttrGrpNum);
    864       break;
    865     }
    866     // Target-dependent attributes:
    867     case lltok::StringConstant: {
    868       std::string Attr = Lex.getStrVal();
    869       Lex.Lex();
    870       std::string Val;
    871       if (EatIfPresent(lltok::equal) &&
    872           ParseStringConstant(Val))
    873         return true;
    874 
    875       B.addAttribute(Attr, Val);
    876       continue;
    877     }
    878 
    879     // Target-independent attributes:
    880     case lltok::kw_align: {
    881       // As a hack, we allow function alignment to be initially parsed as an
    882       // attribute on a function declaration/definition or added to an attribute
    883       // group and later moved to the alignment field.
    884       unsigned Alignment;
    885       if (inAttrGrp) {
    886         Lex.Lex();
    887         if (ParseToken(lltok::equal, "expected '=' here") ||
    888             ParseUInt32(Alignment))
    889           return true;
    890       } else {
    891         if (ParseOptionalAlignment(Alignment))
    892           return true;
    893       }
    894       B.addAlignmentAttr(Alignment);
    895       continue;
    896     }
    897     case lltok::kw_alignstack: {
    898       unsigned Alignment;
    899       if (inAttrGrp) {
    900         Lex.Lex();
    901         if (ParseToken(lltok::equal, "expected '=' here") ||
    902             ParseUInt32(Alignment))
    903           return true;
    904       } else {
    905         if (ParseOptionalStackAlignment(Alignment))
    906           return true;
    907       }
    908       B.addStackAlignmentAttr(Alignment);
    909       continue;
    910     }
    911     case lltok::kw_alwaysinline:      B.addAttribute(Attribute::AlwaysInline); break;
    912     case lltok::kw_builtin:           B.addAttribute(Attribute::Builtin); break;
    913     case lltok::kw_cold:              B.addAttribute(Attribute::Cold); break;
    914     case lltok::kw_inlinehint:        B.addAttribute(Attribute::InlineHint); break;
    915     case lltok::kw_minsize:           B.addAttribute(Attribute::MinSize); break;
    916     case lltok::kw_naked:             B.addAttribute(Attribute::Naked); break;
    917     case lltok::kw_nobuiltin:         B.addAttribute(Attribute::NoBuiltin); break;
    918     case lltok::kw_noduplicate:       B.addAttribute(Attribute::NoDuplicate); break;
    919     case lltok::kw_noimplicitfloat:   B.addAttribute(Attribute::NoImplicitFloat); break;
    920     case lltok::kw_noinline:          B.addAttribute(Attribute::NoInline); break;
    921     case lltok::kw_nonlazybind:       B.addAttribute(Attribute::NonLazyBind); break;
    922     case lltok::kw_noredzone:         B.addAttribute(Attribute::NoRedZone); break;
    923     case lltok::kw_noreturn:          B.addAttribute(Attribute::NoReturn); break;
    924     case lltok::kw_nounwind:          B.addAttribute(Attribute::NoUnwind); break;
    925     case lltok::kw_optsize:           B.addAttribute(Attribute::OptimizeForSize); break;
    926     case lltok::kw_readnone:          B.addAttribute(Attribute::ReadNone); break;
    927     case lltok::kw_readonly:          B.addAttribute(Attribute::ReadOnly); break;
    928     case lltok::kw_returns_twice:     B.addAttribute(Attribute::ReturnsTwice); break;
    929     case lltok::kw_ssp:               B.addAttribute(Attribute::StackProtect); break;
    930     case lltok::kw_sspreq:            B.addAttribute(Attribute::StackProtectReq); break;
    931     case lltok::kw_sspstrong:         B.addAttribute(Attribute::StackProtectStrong); break;
    932     case lltok::kw_sanitize_address:  B.addAttribute(Attribute::SanitizeAddress); break;
    933     case lltok::kw_sanitize_thread:   B.addAttribute(Attribute::SanitizeThread); break;
    934     case lltok::kw_sanitize_memory:   B.addAttribute(Attribute::SanitizeMemory); break;
    935     case lltok::kw_uwtable:           B.addAttribute(Attribute::UWTable); break;
    936 
    937     // Error handling.
    938     case lltok::kw_inreg:
    939     case lltok::kw_signext:
    940     case lltok::kw_zeroext:
    941       HaveError |=
    942         Error(Lex.getLoc(),
    943               "invalid use of attribute on a function");
    944       break;
    945     case lltok::kw_byval:
    946     case lltok::kw_nest:
    947     case lltok::kw_noalias:
    948     case lltok::kw_nocapture:
    949     case lltok::kw_returned:
    950     case lltok::kw_sret:
    951       HaveError |=
    952         Error(Lex.getLoc(),
    953               "invalid use of parameter-only attribute on a function");
    954       break;
    955     }
    956 
    957     Lex.Lex();
    958   }
    959 }
    960 
    961 //===----------------------------------------------------------------------===//
    962 // GlobalValue Reference/Resolution Routines.
    963 //===----------------------------------------------------------------------===//
    964 
    965 /// GetGlobalVal - Get a value with the specified name or ID, creating a
    966 /// forward reference record if needed.  This can return null if the value
    967 /// exists but does not have the right type.
    968 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
    969                                     LocTy Loc) {
    970   PointerType *PTy = dyn_cast<PointerType>(Ty);
    971   if (PTy == 0) {
    972     Error(Loc, "global variable reference must have pointer type");
    973     return 0;
    974   }
    975 
    976   // Look this name up in the normal function symbol table.
    977   GlobalValue *Val =
    978     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
    979 
    980   // If this is a forward reference for the value, see if we already created a
    981   // forward ref record.
    982   if (Val == 0) {
    983     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
    984       I = ForwardRefVals.find(Name);
    985     if (I != ForwardRefVals.end())
    986       Val = I->second.first;
    987   }
    988 
    989   // If we have the value in the symbol table or fwd-ref table, return it.
    990   if (Val) {
    991     if (Val->getType() == Ty) return Val;
    992     Error(Loc, "'@" + Name + "' defined with type '" +
    993           getTypeString(Val->getType()) + "'");
    994     return 0;
    995   }
    996 
    997   // Otherwise, create a new forward reference for this value and remember it.
    998   GlobalValue *FwdVal;
    999   if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
   1000     FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
   1001   else
   1002     FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
   1003                                 GlobalValue::ExternalWeakLinkage, 0, Name,
   1004                                 0, GlobalVariable::NotThreadLocal,
   1005                                 PTy->getAddressSpace());
   1006 
   1007   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
   1008   return FwdVal;
   1009 }
   1010 
   1011 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
   1012   PointerType *PTy = dyn_cast<PointerType>(Ty);
   1013   if (PTy == 0) {
   1014     Error(Loc, "global variable reference must have pointer type");
   1015     return 0;
   1016   }
   1017 
   1018   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
   1019 
   1020   // If this is a forward reference for the value, see if we already created a
   1021   // forward ref record.
   1022   if (Val == 0) {
   1023     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
   1024       I = ForwardRefValIDs.find(ID);
   1025     if (I != ForwardRefValIDs.end())
   1026       Val = I->second.first;
   1027   }
   1028 
   1029   // If we have the value in the symbol table or fwd-ref table, return it.
   1030   if (Val) {
   1031     if (Val->getType() == Ty) return Val;
   1032     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
   1033           getTypeString(Val->getType()) + "'");
   1034     return 0;
   1035   }
   1036 
   1037   // Otherwise, create a new forward reference for this value and remember it.
   1038   GlobalValue *FwdVal;
   1039   if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
   1040     FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
   1041   else
   1042     FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
   1043                                 GlobalValue::ExternalWeakLinkage, 0, "");
   1044 
   1045   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
   1046   return FwdVal;
   1047 }
   1048 
   1049 
   1050 //===----------------------------------------------------------------------===//
   1051 // Helper Routines.
   1052 //===----------------------------------------------------------------------===//
   1053 
   1054 /// ParseToken - If the current token has the specified kind, eat it and return
   1055 /// success.  Otherwise, emit the specified error and return failure.
   1056 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
   1057   if (Lex.getKind() != T)
   1058     return TokError(ErrMsg);
   1059   Lex.Lex();
   1060   return false;
   1061 }
   1062 
   1063 /// ParseStringConstant
   1064 ///   ::= StringConstant
   1065 bool LLParser::ParseStringConstant(std::string &Result) {
   1066   if (Lex.getKind() != lltok::StringConstant)
   1067     return TokError("expected string constant");
   1068   Result = Lex.getStrVal();
   1069   Lex.Lex();
   1070   return false;
   1071 }
   1072 
   1073 /// ParseUInt32
   1074 ///   ::= uint32
   1075 bool LLParser::ParseUInt32(unsigned &Val) {
   1076   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
   1077     return TokError("expected integer");
   1078   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
   1079   if (Val64 != unsigned(Val64))
   1080     return TokError("expected 32-bit integer (too large)");
   1081   Val = Val64;
   1082   Lex.Lex();
   1083   return false;
   1084 }
   1085 
   1086 /// ParseTLSModel
   1087 ///   := 'localdynamic'
   1088 ///   := 'initialexec'
   1089 ///   := 'localexec'
   1090 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
   1091   switch (Lex.getKind()) {
   1092     default:
   1093       return TokError("expected localdynamic, initialexec or localexec");
   1094     case lltok::kw_localdynamic:
   1095       TLM = GlobalVariable::LocalDynamicTLSModel;
   1096       break;
   1097     case lltok::kw_initialexec:
   1098       TLM = GlobalVariable::InitialExecTLSModel;
   1099       break;
   1100     case lltok::kw_localexec:
   1101       TLM = GlobalVariable::LocalExecTLSModel;
   1102       break;
   1103   }
   1104 
   1105   Lex.Lex();
   1106   return false;
   1107 }
   1108 
   1109 /// ParseOptionalThreadLocal
   1110 ///   := /*empty*/
   1111 ///   := 'thread_local'
   1112 ///   := 'thread_local' '(' tlsmodel ')'
   1113 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
   1114   TLM = GlobalVariable::NotThreadLocal;
   1115   if (!EatIfPresent(lltok::kw_thread_local))
   1116     return false;
   1117 
   1118   TLM = GlobalVariable::GeneralDynamicTLSModel;
   1119   if (Lex.getKind() == lltok::lparen) {
   1120     Lex.Lex();
   1121     return ParseTLSModel(TLM) ||
   1122       ParseToken(lltok::rparen, "expected ')' after thread local model");
   1123   }
   1124   return false;
   1125 }
   1126 
   1127 /// ParseOptionalAddrSpace
   1128 ///   := /*empty*/
   1129 ///   := 'addrspace' '(' uint32 ')'
   1130 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
   1131   AddrSpace = 0;
   1132   if (!EatIfPresent(lltok::kw_addrspace))
   1133     return false;
   1134   return ParseToken(lltok::lparen, "expected '(' in address space") ||
   1135          ParseUInt32(AddrSpace) ||
   1136          ParseToken(lltok::rparen, "expected ')' in address space");
   1137 }
   1138 
   1139 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
   1140 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
   1141   bool HaveError = false;
   1142 
   1143   B.clear();
   1144 
   1145   while (1) {
   1146     lltok::Kind Token = Lex.getKind();
   1147     switch (Token) {
   1148     default:  // End of attributes.
   1149       return HaveError;
   1150     case lltok::kw_align: {
   1151       unsigned Alignment;
   1152       if (ParseOptionalAlignment(Alignment))
   1153         return true;
   1154       B.addAlignmentAttr(Alignment);
   1155       continue;
   1156     }
   1157     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
   1158     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
   1159     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
   1160     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
   1161     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
   1162     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
   1163     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
   1164     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
   1165     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
   1166     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
   1167     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
   1168 
   1169     case lltok::kw_alignstack:
   1170     case lltok::kw_alwaysinline:
   1171     case lltok::kw_builtin:
   1172     case lltok::kw_inlinehint:
   1173     case lltok::kw_minsize:
   1174     case lltok::kw_naked:
   1175     case lltok::kw_nobuiltin:
   1176     case lltok::kw_noduplicate:
   1177     case lltok::kw_noimplicitfloat:
   1178     case lltok::kw_noinline:
   1179     case lltok::kw_nonlazybind:
   1180     case lltok::kw_noredzone:
   1181     case lltok::kw_noreturn:
   1182     case lltok::kw_nounwind:
   1183     case lltok::kw_optsize:
   1184     case lltok::kw_returns_twice:
   1185     case lltok::kw_sanitize_address:
   1186     case lltok::kw_sanitize_memory:
   1187     case lltok::kw_sanitize_thread:
   1188     case lltok::kw_ssp:
   1189     case lltok::kw_sspreq:
   1190     case lltok::kw_sspstrong:
   1191     case lltok::kw_uwtable:
   1192       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
   1193       break;
   1194     }
   1195 
   1196     Lex.Lex();
   1197   }
   1198 }
   1199 
   1200 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
   1201 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
   1202   bool HaveError = false;
   1203 
   1204   B.clear();
   1205 
   1206   while (1) {
   1207     lltok::Kind Token = Lex.getKind();
   1208     switch (Token) {
   1209     default:  // End of attributes.
   1210       return HaveError;
   1211     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
   1212     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
   1213     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
   1214     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
   1215 
   1216     // Error handling.
   1217     case lltok::kw_align:
   1218     case lltok::kw_byval:
   1219     case lltok::kw_nest:
   1220     case lltok::kw_nocapture:
   1221     case lltok::kw_returned:
   1222     case lltok::kw_sret:
   1223       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
   1224       break;
   1225 
   1226     case lltok::kw_alignstack:
   1227     case lltok::kw_alwaysinline:
   1228     case lltok::kw_builtin:
   1229     case lltok::kw_cold:
   1230     case lltok::kw_inlinehint:
   1231     case lltok::kw_minsize:
   1232     case lltok::kw_naked:
   1233     case lltok::kw_nobuiltin:
   1234     case lltok::kw_noduplicate:
   1235     case lltok::kw_noimplicitfloat:
   1236     case lltok::kw_noinline:
   1237     case lltok::kw_nonlazybind:
   1238     case lltok::kw_noredzone:
   1239     case lltok::kw_noreturn:
   1240     case lltok::kw_nounwind:
   1241     case lltok::kw_optsize:
   1242     case lltok::kw_returns_twice:
   1243     case lltok::kw_sanitize_address:
   1244     case lltok::kw_sanitize_memory:
   1245     case lltok::kw_sanitize_thread:
   1246     case lltok::kw_ssp:
   1247     case lltok::kw_sspreq:
   1248     case lltok::kw_sspstrong:
   1249     case lltok::kw_uwtable:
   1250       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
   1251       break;
   1252 
   1253     case lltok::kw_readnone:
   1254     case lltok::kw_readonly:
   1255       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
   1256     }
   1257 
   1258     Lex.Lex();
   1259   }
   1260 }
   1261 
   1262 /// ParseOptionalLinkage
   1263 ///   ::= /*empty*/
   1264 ///   ::= 'private'
   1265 ///   ::= 'linker_private'
   1266 ///   ::= 'linker_private_weak'
   1267 ///   ::= 'internal'
   1268 ///   ::= 'weak'
   1269 ///   ::= 'weak_odr'
   1270 ///   ::= 'linkonce'
   1271 ///   ::= 'linkonce_odr'
   1272 ///   ::= 'linkonce_odr_auto_hide'
   1273 ///   ::= 'available_externally'
   1274 ///   ::= 'appending'
   1275 ///   ::= 'dllexport'
   1276 ///   ::= 'common'
   1277 ///   ::= 'dllimport'
   1278 ///   ::= 'extern_weak'
   1279 ///   ::= 'external'
   1280 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
   1281   HasLinkage = false;
   1282   switch (Lex.getKind()) {
   1283   default:                       Res=GlobalValue::ExternalLinkage; return false;
   1284   case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
   1285   case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
   1286   case lltok::kw_linker_private_weak:
   1287     Res = GlobalValue::LinkerPrivateWeakLinkage;
   1288     break;
   1289   case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
   1290   case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
   1291   case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
   1292   case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
   1293   case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
   1294   case lltok::kw_linkonce_odr_auto_hide:
   1295   case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat.
   1296     Res = GlobalValue::LinkOnceODRAutoHideLinkage;
   1297     break;
   1298   case lltok::kw_available_externally:
   1299     Res = GlobalValue::AvailableExternallyLinkage;
   1300     break;
   1301   case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
   1302   case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
   1303   case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
   1304   case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
   1305   case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
   1306   case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
   1307   }
   1308   Lex.Lex();
   1309   HasLinkage = true;
   1310   return false;
   1311 }
   1312 
   1313 /// ParseOptionalVisibility
   1314 ///   ::= /*empty*/
   1315 ///   ::= 'default'
   1316 ///   ::= 'hidden'
   1317 ///   ::= 'protected'
   1318 ///
   1319 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
   1320   switch (Lex.getKind()) {
   1321   default:                  Res = GlobalValue::DefaultVisibility; return false;
   1322   case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
   1323   case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
   1324   case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
   1325   }
   1326   Lex.Lex();
   1327   return false;
   1328 }
   1329 
   1330 /// ParseOptionalCallingConv
   1331 ///   ::= /*empty*/
   1332 ///   ::= 'ccc'
   1333 ///   ::= 'fastcc'
   1334 ///   ::= 'kw_intel_ocl_bicc'
   1335 ///   ::= 'coldcc'
   1336 ///   ::= 'x86_stdcallcc'
   1337 ///   ::= 'x86_fastcallcc'
   1338 ///   ::= 'x86_thiscallcc'
   1339 ///   ::= 'arm_apcscc'
   1340 ///   ::= 'arm_aapcscc'
   1341 ///   ::= 'arm_aapcs_vfpcc'
   1342 ///   ::= 'msp430_intrcc'
   1343 ///   ::= 'ptx_kernel'
   1344 ///   ::= 'ptx_device'
   1345 ///   ::= 'spir_func'
   1346 ///   ::= 'spir_kernel'
   1347 ///   ::= 'x86_64_sysvcc'
   1348 ///   ::= 'x86_64_win64cc'
   1349 ///   ::= 'cc' UINT
   1350 ///
   1351 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
   1352   switch (Lex.getKind()) {
   1353   default:                       CC = CallingConv::C; return false;
   1354   case lltok::kw_ccc:            CC = CallingConv::C; break;
   1355   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
   1356   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
   1357   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
   1358   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
   1359   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
   1360   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
   1361   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
   1362   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
   1363   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
   1364   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
   1365   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
   1366   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
   1367   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
   1368   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
   1369   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
   1370   case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
   1371   case lltok::kw_cc: {
   1372       unsigned ArbitraryCC;
   1373       Lex.Lex();
   1374       if (ParseUInt32(ArbitraryCC))
   1375         return true;
   1376       CC = static_cast<CallingConv::ID>(ArbitraryCC);
   1377       return false;
   1378     }
   1379   }
   1380 
   1381   Lex.Lex();
   1382   return false;
   1383 }
   1384 
   1385 /// ParseInstructionMetadata
   1386 ///   ::= !dbg !42 (',' !dbg !57)*
   1387 bool LLParser::ParseInstructionMetadata(Instruction *Inst,
   1388                                         PerFunctionState *PFS) {
   1389   do {
   1390     if (Lex.getKind() != lltok::MetadataVar)
   1391       return TokError("expected metadata after comma");
   1392 
   1393     std::string Name = Lex.getStrVal();
   1394     unsigned MDK = M->getMDKindID(Name);
   1395     Lex.Lex();
   1396 
   1397     MDNode *Node;
   1398     SMLoc Loc = Lex.getLoc();
   1399 
   1400     if (ParseToken(lltok::exclaim, "expected '!' here"))
   1401       return true;
   1402 
   1403     // This code is similar to that of ParseMetadataValue, however it needs to
   1404     // have special-case code for a forward reference; see the comments on
   1405     // ForwardRefInstMetadata for details. Also, MDStrings are not supported
   1406     // at the top level here.
   1407     if (Lex.getKind() == lltok::lbrace) {
   1408       ValID ID;
   1409       if (ParseMetadataListValue(ID, PFS))
   1410         return true;
   1411       assert(ID.Kind == ValID::t_MDNode);
   1412       Inst->setMetadata(MDK, ID.MDNodeVal);
   1413     } else {
   1414       unsigned NodeID = 0;
   1415       if (ParseMDNodeID(Node, NodeID))
   1416         return true;
   1417       if (Node) {
   1418         // If we got the node, add it to the instruction.
   1419         Inst->setMetadata(MDK, Node);
   1420       } else {
   1421         MDRef R = { Loc, MDK, NodeID };
   1422         // Otherwise, remember that this should be resolved later.
   1423         ForwardRefInstMetadata[Inst].push_back(R);
   1424       }
   1425     }
   1426 
   1427     // If this is the end of the list, we're done.
   1428   } while (EatIfPresent(lltok::comma));
   1429   return false;
   1430 }
   1431 
   1432 /// ParseOptionalAlignment
   1433 ///   ::= /* empty */
   1434 ///   ::= 'align' 4
   1435 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
   1436   Alignment = 0;
   1437   if (!EatIfPresent(lltok::kw_align))
   1438     return false;
   1439   LocTy AlignLoc = Lex.getLoc();
   1440   if (ParseUInt32(Alignment)) return true;
   1441   if (!isPowerOf2_32(Alignment))
   1442     return Error(AlignLoc, "alignment is not a power of two");
   1443   if (Alignment > Value::MaximumAlignment)
   1444     return Error(AlignLoc, "huge alignments are not supported yet");
   1445   return false;
   1446 }
   1447 
   1448 /// ParseOptionalCommaAlign
   1449 ///   ::=
   1450 ///   ::= ',' align 4
   1451 ///
   1452 /// This returns with AteExtraComma set to true if it ate an excess comma at the
   1453 /// end.
   1454 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
   1455                                        bool &AteExtraComma) {
   1456   AteExtraComma = false;
   1457   while (EatIfPresent(lltok::comma)) {
   1458     // Metadata at the end is an early exit.
   1459     if (Lex.getKind() == lltok::MetadataVar) {
   1460       AteExtraComma = true;
   1461       return false;
   1462     }
   1463 
   1464     if (Lex.getKind() != lltok::kw_align)
   1465       return Error(Lex.getLoc(), "expected metadata or 'align'");
   1466 
   1467     if (ParseOptionalAlignment(Alignment)) return true;
   1468   }
   1469 
   1470   return false;
   1471 }
   1472 
   1473 /// ParseScopeAndOrdering
   1474 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
   1475 ///   else: ::=
   1476 ///
   1477 /// This sets Scope and Ordering to the parsed values.
   1478 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
   1479                                      AtomicOrdering &Ordering) {
   1480   if (!isAtomic)
   1481     return false;
   1482 
   1483   Scope = CrossThread;
   1484   if (EatIfPresent(lltok::kw_singlethread))
   1485     Scope = SingleThread;
   1486   switch (Lex.getKind()) {
   1487   default: return TokError("Expected ordering on atomic instruction");
   1488   case lltok::kw_unordered: Ordering = Unordered; break;
   1489   case lltok::kw_monotonic: Ordering = Monotonic; break;
   1490   case lltok::kw_acquire: Ordering = Acquire; break;
   1491   case lltok::kw_release: Ordering = Release; break;
   1492   case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
   1493   case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
   1494   }
   1495   Lex.Lex();
   1496   return false;
   1497 }
   1498 
   1499 /// ParseOptionalStackAlignment
   1500 ///   ::= /* empty */
   1501 ///   ::= 'alignstack' '(' 4 ')'
   1502 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
   1503   Alignment = 0;
   1504   if (!EatIfPresent(lltok::kw_alignstack))
   1505     return false;
   1506   LocTy ParenLoc = Lex.getLoc();
   1507   if (!EatIfPresent(lltok::lparen))
   1508     return Error(ParenLoc, "expected '('");
   1509   LocTy AlignLoc = Lex.getLoc();
   1510   if (ParseUInt32(Alignment)) return true;
   1511   ParenLoc = Lex.getLoc();
   1512   if (!EatIfPresent(lltok::rparen))
   1513     return Error(ParenLoc, "expected ')'");
   1514   if (!isPowerOf2_32(Alignment))
   1515     return Error(AlignLoc, "stack alignment is not a power of two");
   1516   return false;
   1517 }
   1518 
   1519 /// ParseIndexList - This parses the index list for an insert/extractvalue
   1520 /// instruction.  This sets AteExtraComma in the case where we eat an extra
   1521 /// comma at the end of the line and find that it is followed by metadata.
   1522 /// Clients that don't allow metadata can call the version of this function that
   1523 /// only takes one argument.
   1524 ///
   1525 /// ParseIndexList
   1526 ///    ::=  (',' uint32)+
   1527 ///
   1528 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
   1529                               bool &AteExtraComma) {
   1530   AteExtraComma = false;
   1531 
   1532   if (Lex.getKind() != lltok::comma)
   1533     return TokError("expected ',' as start of index list");
   1534 
   1535   while (EatIfPresent(lltok::comma)) {
   1536     if (Lex.getKind() == lltok::MetadataVar) {
   1537       AteExtraComma = true;
   1538       return false;
   1539     }
   1540     unsigned Idx = 0;
   1541     if (ParseUInt32(Idx)) return true;
   1542     Indices.push_back(Idx);
   1543   }
   1544 
   1545   return false;
   1546 }
   1547 
   1548 //===----------------------------------------------------------------------===//
   1549 // Type Parsing.
   1550 //===----------------------------------------------------------------------===//
   1551 
   1552 /// ParseType - Parse a type.
   1553 bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
   1554   SMLoc TypeLoc = Lex.getLoc();
   1555   switch (Lex.getKind()) {
   1556   default:
   1557     return TokError("expected type");
   1558   case lltok::Type:
   1559     // Type ::= 'float' | 'void' (etc)
   1560     Result = Lex.getTyVal();
   1561     Lex.Lex();
   1562     break;
   1563   case lltok::lbrace:
   1564     // Type ::= StructType
   1565     if (ParseAnonStructType(Result, false))
   1566       return true;
   1567     break;
   1568   case lltok::lsquare:
   1569     // Type ::= '[' ... ']'
   1570     Lex.Lex(); // eat the lsquare.
   1571     if (ParseArrayVectorType(Result, false))
   1572       return true;
   1573     break;
   1574   case lltok::less: // Either vector or packed struct.
   1575     // Type ::= '<' ... '>'
   1576     Lex.Lex();
   1577     if (Lex.getKind() == lltok::lbrace) {
   1578       if (ParseAnonStructType(Result, true) ||
   1579           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
   1580         return true;
   1581     } else if (ParseArrayVectorType(Result, true))
   1582       return true;
   1583     break;
   1584   case lltok::LocalVar: {
   1585     // Type ::= %foo
   1586     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
   1587 
   1588     // If the type hasn't been defined yet, create a forward definition and
   1589     // remember where that forward def'n was seen (in case it never is defined).
   1590     if (Entry.first == 0) {
   1591       Entry.first = StructType::create(Context, Lex.getStrVal());
   1592       Entry.second = Lex.getLoc();
   1593     }
   1594     Result = Entry.first;
   1595     Lex.Lex();
   1596     break;
   1597   }
   1598 
   1599   case lltok::LocalVarID: {
   1600     // Type ::= %4
   1601     if (Lex.getUIntVal() >= NumberedTypes.size())
   1602       NumberedTypes.resize(Lex.getUIntVal()+1);
   1603     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
   1604 
   1605     // If the type hasn't been defined yet, create a forward definition and
   1606     // remember where that forward def'n was seen (in case it never is defined).
   1607     if (Entry.first == 0) {
   1608       Entry.first = StructType::create(Context);
   1609       Entry.second = Lex.getLoc();
   1610     }
   1611     Result = Entry.first;
   1612     Lex.Lex();
   1613     break;
   1614   }
   1615   }
   1616 
   1617   // Parse the type suffixes.
   1618   while (1) {
   1619     switch (Lex.getKind()) {
   1620     // End of type.
   1621     default:
   1622       if (!AllowVoid && Result->isVoidTy())
   1623         return Error(TypeLoc, "void type only allowed for function results");
   1624       return false;
   1625 
   1626     // Type ::= Type '*'
   1627     case lltok::star:
   1628       if (Result->isLabelTy())
   1629         return TokError("basic block pointers are invalid");
   1630       if (Result->isVoidTy())
   1631         return TokError("pointers to void are invalid - use i8* instead");
   1632       if (!PointerType::isValidElementType(Result))
   1633         return TokError("pointer to this type is invalid");
   1634       Result = PointerType::getUnqual(Result);
   1635       Lex.Lex();
   1636       break;
   1637 
   1638     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
   1639     case lltok::kw_addrspace: {
   1640       if (Result->isLabelTy())
   1641         return TokError("basic block pointers are invalid");
   1642       if (Result->isVoidTy())
   1643         return TokError("pointers to void are invalid; use i8* instead");
   1644       if (!PointerType::isValidElementType(Result))
   1645         return TokError("pointer to this type is invalid");
   1646       unsigned AddrSpace;
   1647       if (ParseOptionalAddrSpace(AddrSpace) ||
   1648           ParseToken(lltok::star, "expected '*' in address space"))
   1649         return true;
   1650 
   1651       Result = PointerType::get(Result, AddrSpace);
   1652       break;
   1653     }
   1654 
   1655     /// Types '(' ArgTypeListI ')' OptFuncAttrs
   1656     case lltok::lparen:
   1657       if (ParseFunctionType(Result))
   1658         return true;
   1659       break;
   1660     }
   1661   }
   1662 }
   1663 
   1664 /// ParseParameterList
   1665 ///    ::= '(' ')'
   1666 ///    ::= '(' Arg (',' Arg)* ')'
   1667 ///  Arg
   1668 ///    ::= Type OptionalAttributes Value OptionalAttributes
   1669 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
   1670                                   PerFunctionState &PFS) {
   1671   if (ParseToken(lltok::lparen, "expected '(' in call"))
   1672     return true;
   1673 
   1674   unsigned AttrIndex = 1;
   1675   while (Lex.getKind() != lltok::rparen) {
   1676     // If this isn't the first argument, we need a comma.
   1677     if (!ArgList.empty() &&
   1678         ParseToken(lltok::comma, "expected ',' in argument list"))
   1679       return true;
   1680 
   1681     // Parse the argument.
   1682     LocTy ArgLoc;
   1683     Type *ArgTy = 0;
   1684     AttrBuilder ArgAttrs;
   1685     Value *V;
   1686     if (ParseType(ArgTy, ArgLoc))
   1687       return true;
   1688 
   1689     // Otherwise, handle normal operands.
   1690     if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
   1691       return true;
   1692     ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
   1693                                                              AttrIndex++,
   1694                                                              ArgAttrs)));
   1695   }
   1696 
   1697   Lex.Lex();  // Lex the ')'.
   1698   return false;
   1699 }
   1700 
   1701 
   1702 
   1703 /// ParseArgumentList - Parse the argument list for a function type or function
   1704 /// prototype.
   1705 ///   ::= '(' ArgTypeListI ')'
   1706 /// ArgTypeListI
   1707 ///   ::= /*empty*/
   1708 ///   ::= '...'
   1709 ///   ::= ArgTypeList ',' '...'
   1710 ///   ::= ArgType (',' ArgType)*
   1711 ///
   1712 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
   1713                                  bool &isVarArg){
   1714   isVarArg = false;
   1715   assert(Lex.getKind() == lltok::lparen);
   1716   Lex.Lex(); // eat the (.
   1717 
   1718   if (Lex.getKind() == lltok::rparen) {
   1719     // empty
   1720   } else if (Lex.getKind() == lltok::dotdotdot) {
   1721     isVarArg = true;
   1722     Lex.Lex();
   1723   } else {
   1724     LocTy TypeLoc = Lex.getLoc();
   1725     Type *ArgTy = 0;
   1726     AttrBuilder Attrs;
   1727     std::string Name;
   1728 
   1729     if (ParseType(ArgTy) ||
   1730         ParseOptionalParamAttrs(Attrs)) return true;
   1731 
   1732     if (ArgTy->isVoidTy())
   1733       return Error(TypeLoc, "argument can not have void type");
   1734 
   1735     if (Lex.getKind() == lltok::LocalVar) {
   1736       Name = Lex.getStrVal();
   1737       Lex.Lex();
   1738     }
   1739 
   1740     if (!FunctionType::isValidArgumentType(ArgTy))
   1741       return Error(TypeLoc, "invalid type for function argument");
   1742 
   1743     unsigned AttrIndex = 1;
   1744     ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
   1745                               AttributeSet::get(ArgTy->getContext(),
   1746                                                 AttrIndex++, Attrs), Name));
   1747 
   1748     while (EatIfPresent(lltok::comma)) {
   1749       // Handle ... at end of arg list.
   1750       if (EatIfPresent(lltok::dotdotdot)) {
   1751         isVarArg = true;
   1752         break;
   1753       }
   1754 
   1755       // Otherwise must be an argument type.
   1756       TypeLoc = Lex.getLoc();
   1757       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
   1758 
   1759       if (ArgTy->isVoidTy())
   1760         return Error(TypeLoc, "argument can not have void type");
   1761 
   1762       if (Lex.getKind() == lltok::LocalVar) {
   1763         Name = Lex.getStrVal();
   1764         Lex.Lex();
   1765       } else {
   1766         Name = "";
   1767       }
   1768 
   1769       if (!ArgTy->isFirstClassType())
   1770         return Error(TypeLoc, "invalid type for function argument");
   1771 
   1772       ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
   1773                                 AttributeSet::get(ArgTy->getContext(),
   1774                                                   AttrIndex++, Attrs),
   1775                                 Name));
   1776     }
   1777   }
   1778 
   1779   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
   1780 }
   1781 
   1782 /// ParseFunctionType
   1783 ///  ::= Type ArgumentList OptionalAttrs
   1784 bool LLParser::ParseFunctionType(Type *&Result) {
   1785   assert(Lex.getKind() == lltok::lparen);
   1786 
   1787   if (!FunctionType::isValidReturnType(Result))
   1788     return TokError("invalid function return type");
   1789 
   1790   SmallVector<ArgInfo, 8> ArgList;
   1791   bool isVarArg;
   1792   if (ParseArgumentList(ArgList, isVarArg))
   1793     return true;
   1794 
   1795   // Reject names on the arguments lists.
   1796   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   1797     if (!ArgList[i].Name.empty())
   1798       return Error(ArgList[i].Loc, "argument name invalid in function type");
   1799     if (ArgList[i].Attrs.hasAttributes(i + 1))
   1800       return Error(ArgList[i].Loc,
   1801                    "argument attributes invalid in function type");
   1802   }
   1803 
   1804   SmallVector<Type*, 16> ArgListTy;
   1805   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
   1806     ArgListTy.push_back(ArgList[i].Ty);
   1807 
   1808   Result = FunctionType::get(Result, ArgListTy, isVarArg);
   1809   return false;
   1810 }
   1811 
   1812 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
   1813 /// other structs.
   1814 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
   1815   SmallVector<Type*, 8> Elts;
   1816   if (ParseStructBody(Elts)) return true;
   1817 
   1818   Result = StructType::get(Context, Elts, Packed);
   1819   return false;
   1820 }
   1821 
   1822 /// ParseStructDefinition - Parse a struct in a 'type' definition.
   1823 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
   1824                                      std::pair<Type*, LocTy> &Entry,
   1825                                      Type *&ResultTy) {
   1826   // If the type was already defined, diagnose the redefinition.
   1827   if (Entry.first && !Entry.second.isValid())
   1828     return Error(TypeLoc, "redefinition of type");
   1829 
   1830   // If we have opaque, just return without filling in the definition for the
   1831   // struct.  This counts as a definition as far as the .ll file goes.
   1832   if (EatIfPresent(lltok::kw_opaque)) {
   1833     // This type is being defined, so clear the location to indicate this.
   1834     Entry.second = SMLoc();
   1835 
   1836     // If this type number has never been uttered, create it.
   1837     if (Entry.first == 0)
   1838       Entry.first = StructType::create(Context, Name);
   1839     ResultTy = Entry.first;
   1840     return false;
   1841   }
   1842 
   1843   // If the type starts with '<', then it is either a packed struct or a vector.
   1844   bool isPacked = EatIfPresent(lltok::less);
   1845 
   1846   // If we don't have a struct, then we have a random type alias, which we
   1847   // accept for compatibility with old files.  These types are not allowed to be
   1848   // forward referenced and not allowed to be recursive.
   1849   if (Lex.getKind() != lltok::lbrace) {
   1850     if (Entry.first)
   1851       return Error(TypeLoc, "forward references to non-struct type");
   1852 
   1853     ResultTy = 0;
   1854     if (isPacked)
   1855       return ParseArrayVectorType(ResultTy, true);
   1856     return ParseType(ResultTy);
   1857   }
   1858 
   1859   // This type is being defined, so clear the location to indicate this.
   1860   Entry.second = SMLoc();
   1861 
   1862   // If this type number has never been uttered, create it.
   1863   if (Entry.first == 0)
   1864     Entry.first = StructType::create(Context, Name);
   1865 
   1866   StructType *STy = cast<StructType>(Entry.first);
   1867 
   1868   SmallVector<Type*, 8> Body;
   1869   if (ParseStructBody(Body) ||
   1870       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
   1871     return true;
   1872 
   1873   STy->setBody(Body, isPacked);
   1874   ResultTy = STy;
   1875   return false;
   1876 }
   1877 
   1878 
   1879 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
   1880 ///   StructType
   1881 ///     ::= '{' '}'
   1882 ///     ::= '{' Type (',' Type)* '}'
   1883 ///     ::= '<' '{' '}' '>'
   1884 ///     ::= '<' '{' Type (',' Type)* '}' '>'
   1885 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
   1886   assert(Lex.getKind() == lltok::lbrace);
   1887   Lex.Lex(); // Consume the '{'
   1888 
   1889   // Handle the empty struct.
   1890   if (EatIfPresent(lltok::rbrace))
   1891     return false;
   1892 
   1893   LocTy EltTyLoc = Lex.getLoc();
   1894   Type *Ty = 0;
   1895   if (ParseType(Ty)) return true;
   1896   Body.push_back(Ty);
   1897 
   1898   if (!StructType::isValidElementType(Ty))
   1899     return Error(EltTyLoc, "invalid element type for struct");
   1900 
   1901   while (EatIfPresent(lltok::comma)) {
   1902     EltTyLoc = Lex.getLoc();
   1903     if (ParseType(Ty)) return true;
   1904 
   1905     if (!StructType::isValidElementType(Ty))
   1906       return Error(EltTyLoc, "invalid element type for struct");
   1907 
   1908     Body.push_back(Ty);
   1909   }
   1910 
   1911   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
   1912 }
   1913 
   1914 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
   1915 /// token has already been consumed.
   1916 ///   Type
   1917 ///     ::= '[' APSINTVAL 'x' Types ']'
   1918 ///     ::= '<' APSINTVAL 'x' Types '>'
   1919 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
   1920   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
   1921       Lex.getAPSIntVal().getBitWidth() > 64)
   1922     return TokError("expected number in address space");
   1923 
   1924   LocTy SizeLoc = Lex.getLoc();
   1925   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
   1926   Lex.Lex();
   1927 
   1928   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
   1929       return true;
   1930 
   1931   LocTy TypeLoc = Lex.getLoc();
   1932   Type *EltTy = 0;
   1933   if (ParseType(EltTy)) return true;
   1934 
   1935   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
   1936                  "expected end of sequential type"))
   1937     return true;
   1938 
   1939   if (isVector) {
   1940     if (Size == 0)
   1941       return Error(SizeLoc, "zero element vector is illegal");
   1942     if ((unsigned)Size != Size)
   1943       return Error(SizeLoc, "size too large for vector");
   1944     if (!VectorType::isValidElementType(EltTy))
   1945       return Error(TypeLoc, "invalid vector element type");
   1946     Result = VectorType::get(EltTy, unsigned(Size));
   1947   } else {
   1948     if (!ArrayType::isValidElementType(EltTy))
   1949       return Error(TypeLoc, "invalid array element type");
   1950     Result = ArrayType::get(EltTy, Size);
   1951   }
   1952   return false;
   1953 }
   1954 
   1955 //===----------------------------------------------------------------------===//
   1956 // Function Semantic Analysis.
   1957 //===----------------------------------------------------------------------===//
   1958 
   1959 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
   1960                                              int functionNumber)
   1961   : P(p), F(f), FunctionNumber(functionNumber) {
   1962 
   1963   // Insert unnamed arguments into the NumberedVals list.
   1964   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
   1965        AI != E; ++AI)
   1966     if (!AI->hasName())
   1967       NumberedVals.push_back(AI);
   1968 }
   1969 
   1970 LLParser::PerFunctionState::~PerFunctionState() {
   1971   // If there were any forward referenced non-basicblock values, delete them.
   1972   for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
   1973        I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
   1974     if (!isa<BasicBlock>(I->second.first)) {
   1975       I->second.first->replaceAllUsesWith(
   1976                            UndefValue::get(I->second.first->getType()));
   1977       delete I->second.first;
   1978       I->second.first = 0;
   1979     }
   1980 
   1981   for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
   1982        I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
   1983     if (!isa<BasicBlock>(I->second.first)) {
   1984       I->second.first->replaceAllUsesWith(
   1985                            UndefValue::get(I->second.first->getType()));
   1986       delete I->second.first;
   1987       I->second.first = 0;
   1988     }
   1989 }
   1990 
   1991 bool LLParser::PerFunctionState::FinishFunction() {
   1992   // Check to see if someone took the address of labels in this block.
   1993   if (!P.ForwardRefBlockAddresses.empty()) {
   1994     ValID FunctionID;
   1995     if (!F.getName().empty()) {
   1996       FunctionID.Kind = ValID::t_GlobalName;
   1997       FunctionID.StrVal = F.getName();
   1998     } else {
   1999       FunctionID.Kind = ValID::t_GlobalID;
   2000       FunctionID.UIntVal = FunctionNumber;
   2001     }
   2002 
   2003     std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
   2004       FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
   2005     if (FRBAI != P.ForwardRefBlockAddresses.end()) {
   2006       // Resolve all these references.
   2007       if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
   2008         return true;
   2009 
   2010       P.ForwardRefBlockAddresses.erase(FRBAI);
   2011     }
   2012   }
   2013 
   2014   if (!ForwardRefVals.empty())
   2015     return P.Error(ForwardRefVals.begin()->second.second,
   2016                    "use of undefined value '%" + ForwardRefVals.begin()->first +
   2017                    "'");
   2018   if (!ForwardRefValIDs.empty())
   2019     return P.Error(ForwardRefValIDs.begin()->second.second,
   2020                    "use of undefined value '%" +
   2021                    Twine(ForwardRefValIDs.begin()->first) + "'");
   2022   return false;
   2023 }
   2024 
   2025 
   2026 /// GetVal - Get a value with the specified name or ID, creating a
   2027 /// forward reference record if needed.  This can return null if the value
   2028 /// exists but does not have the right type.
   2029 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
   2030                                           Type *Ty, LocTy Loc) {
   2031   // Look this name up in the normal function symbol table.
   2032   Value *Val = F.getValueSymbolTable().lookup(Name);
   2033 
   2034   // If this is a forward reference for the value, see if we already created a
   2035   // forward ref record.
   2036   if (Val == 0) {
   2037     std::map<std::string, std::pair<Value*, LocTy> >::iterator
   2038       I = ForwardRefVals.find(Name);
   2039     if (I != ForwardRefVals.end())
   2040       Val = I->second.first;
   2041   }
   2042 
   2043   // If we have the value in the symbol table or fwd-ref table, return it.
   2044   if (Val) {
   2045     if (Val->getType() == Ty) return Val;
   2046     if (Ty->isLabelTy())
   2047       P.Error(Loc, "'%" + Name + "' is not a basic block");
   2048     else
   2049       P.Error(Loc, "'%" + Name + "' defined with type '" +
   2050               getTypeString(Val->getType()) + "'");
   2051     return 0;
   2052   }
   2053 
   2054   // Don't make placeholders with invalid type.
   2055   if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
   2056     P.Error(Loc, "invalid use of a non-first-class type");
   2057     return 0;
   2058   }
   2059 
   2060   // Otherwise, create a new forward reference for this value and remember it.
   2061   Value *FwdVal;
   2062   if (Ty->isLabelTy())
   2063     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
   2064   else
   2065     FwdVal = new Argument(Ty, Name);
   2066 
   2067   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
   2068   return FwdVal;
   2069 }
   2070 
   2071 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
   2072                                           LocTy Loc) {
   2073   // Look this name up in the normal function symbol table.
   2074   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
   2075 
   2076   // If this is a forward reference for the value, see if we already created a
   2077   // forward ref record.
   2078   if (Val == 0) {
   2079     std::map<unsigned, std::pair<Value*, LocTy> >::iterator
   2080       I = ForwardRefValIDs.find(ID);
   2081     if (I != ForwardRefValIDs.end())
   2082       Val = I->second.first;
   2083   }
   2084 
   2085   // If we have the value in the symbol table or fwd-ref table, return it.
   2086   if (Val) {
   2087     if (Val->getType() == Ty) return Val;
   2088     if (Ty->isLabelTy())
   2089       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
   2090     else
   2091       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
   2092               getTypeString(Val->getType()) + "'");
   2093     return 0;
   2094   }
   2095 
   2096   if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
   2097     P.Error(Loc, "invalid use of a non-first-class type");
   2098     return 0;
   2099   }
   2100 
   2101   // Otherwise, create a new forward reference for this value and remember it.
   2102   Value *FwdVal;
   2103   if (Ty->isLabelTy())
   2104     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
   2105   else
   2106     FwdVal = new Argument(Ty);
   2107 
   2108   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
   2109   return FwdVal;
   2110 }
   2111 
   2112 /// SetInstName - After an instruction is parsed and inserted into its
   2113 /// basic block, this installs its name.
   2114 bool LLParser::PerFunctionState::SetInstName(int NameID,
   2115                                              const std::string &NameStr,
   2116                                              LocTy NameLoc, Instruction *Inst) {
   2117   // If this instruction has void type, it cannot have a name or ID specified.
   2118   if (Inst->getType()->isVoidTy()) {
   2119     if (NameID != -1 || !NameStr.empty())
   2120       return P.Error(NameLoc, "instructions returning void cannot have a name");
   2121     return false;
   2122   }
   2123 
   2124   // If this was a numbered instruction, verify that the instruction is the
   2125   // expected value and resolve any forward references.
   2126   if (NameStr.empty()) {
   2127     // If neither a name nor an ID was specified, just use the next ID.
   2128     if (NameID == -1)
   2129       NameID = NumberedVals.size();
   2130 
   2131     if (unsigned(NameID) != NumberedVals.size())
   2132       return P.Error(NameLoc, "instruction expected to be numbered '%" +
   2133                      Twine(NumberedVals.size()) + "'");
   2134 
   2135     std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
   2136       ForwardRefValIDs.find(NameID);
   2137     if (FI != ForwardRefValIDs.end()) {
   2138       if (FI->second.first->getType() != Inst->getType())
   2139         return P.Error(NameLoc, "instruction forward referenced with type '" +
   2140                        getTypeString(FI->second.first->getType()) + "'");
   2141       FI->second.first->replaceAllUsesWith(Inst);
   2142       delete FI->second.first;
   2143       ForwardRefValIDs.erase(FI);
   2144     }
   2145 
   2146     NumberedVals.push_back(Inst);
   2147     return false;
   2148   }
   2149 
   2150   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
   2151   std::map<std::string, std::pair<Value*, LocTy> >::iterator
   2152     FI = ForwardRefVals.find(NameStr);
   2153   if (FI != ForwardRefVals.end()) {
   2154     if (FI->second.first->getType() != Inst->getType())
   2155       return P.Error(NameLoc, "instruction forward referenced with type '" +
   2156                      getTypeString(FI->second.first->getType()) + "'");
   2157     FI->second.first->replaceAllUsesWith(Inst);
   2158     delete FI->second.first;
   2159     ForwardRefVals.erase(FI);
   2160   }
   2161 
   2162   // Set the name on the instruction.
   2163   Inst->setName(NameStr);
   2164 
   2165   if (Inst->getName() != NameStr)
   2166     return P.Error(NameLoc, "multiple definition of local value named '" +
   2167                    NameStr + "'");
   2168   return false;
   2169 }
   2170 
   2171 /// GetBB - Get a basic block with the specified name or ID, creating a
   2172 /// forward reference record if needed.
   2173 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
   2174                                               LocTy Loc) {
   2175   return cast_or_null<BasicBlock>(GetVal(Name,
   2176                                         Type::getLabelTy(F.getContext()), Loc));
   2177 }
   2178 
   2179 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
   2180   return cast_or_null<BasicBlock>(GetVal(ID,
   2181                                         Type::getLabelTy(F.getContext()), Loc));
   2182 }
   2183 
   2184 /// DefineBB - Define the specified basic block, which is either named or
   2185 /// unnamed.  If there is an error, this returns null otherwise it returns
   2186 /// the block being defined.
   2187 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
   2188                                                  LocTy Loc) {
   2189   BasicBlock *BB;
   2190   if (Name.empty())
   2191     BB = GetBB(NumberedVals.size(), Loc);
   2192   else
   2193     BB = GetBB(Name, Loc);
   2194   if (BB == 0) return 0; // Already diagnosed error.
   2195 
   2196   // Move the block to the end of the function.  Forward ref'd blocks are
   2197   // inserted wherever they happen to be referenced.
   2198   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
   2199 
   2200   // Remove the block from forward ref sets.
   2201   if (Name.empty()) {
   2202     ForwardRefValIDs.erase(NumberedVals.size());
   2203     NumberedVals.push_back(BB);
   2204   } else {
   2205     // BB forward references are already in the function symbol table.
   2206     ForwardRefVals.erase(Name);
   2207   }
   2208 
   2209   return BB;
   2210 }
   2211 
   2212 //===----------------------------------------------------------------------===//
   2213 // Constants.
   2214 //===----------------------------------------------------------------------===//
   2215 
   2216 /// ParseValID - Parse an abstract value that doesn't necessarily have a
   2217 /// type implied.  For example, if we parse "4" we don't know what integer type
   2218 /// it has.  The value will later be combined with its type and checked for
   2219 /// sanity.  PFS is used to convert function-local operands of metadata (since
   2220 /// metadata operands are not just parsed here but also converted to values).
   2221 /// PFS can be null when we are not parsing metadata values inside a function.
   2222 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
   2223   ID.Loc = Lex.getLoc();
   2224   switch (Lex.getKind()) {
   2225   default: return TokError("expected value token");
   2226   case lltok::GlobalID:  // @42
   2227     ID.UIntVal = Lex.getUIntVal();
   2228     ID.Kind = ValID::t_GlobalID;
   2229     break;
   2230   case lltok::GlobalVar:  // @foo
   2231     ID.StrVal = Lex.getStrVal();
   2232     ID.Kind = ValID::t_GlobalName;
   2233     break;
   2234   case lltok::LocalVarID:  // %42
   2235     ID.UIntVal = Lex.getUIntVal();
   2236     ID.Kind = ValID::t_LocalID;
   2237     break;
   2238   case lltok::LocalVar:  // %foo
   2239     ID.StrVal = Lex.getStrVal();
   2240     ID.Kind = ValID::t_LocalName;
   2241     break;
   2242   case lltok::exclaim:   // !42, !{...}, or !"foo"
   2243     return ParseMetadataValue(ID, PFS);
   2244   case lltok::APSInt:
   2245     ID.APSIntVal = Lex.getAPSIntVal();
   2246     ID.Kind = ValID::t_APSInt;
   2247     break;
   2248   case lltok::APFloat:
   2249     ID.APFloatVal = Lex.getAPFloatVal();
   2250     ID.Kind = ValID::t_APFloat;
   2251     break;
   2252   case lltok::kw_true:
   2253     ID.ConstantVal = ConstantInt::getTrue(Context);
   2254     ID.Kind = ValID::t_Constant;
   2255     break;
   2256   case lltok::kw_false:
   2257     ID.ConstantVal = ConstantInt::getFalse(Context);
   2258     ID.Kind = ValID::t_Constant;
   2259     break;
   2260   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
   2261   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
   2262   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
   2263 
   2264   case lltok::lbrace: {
   2265     // ValID ::= '{' ConstVector '}'
   2266     Lex.Lex();
   2267     SmallVector<Constant*, 16> Elts;
   2268     if (ParseGlobalValueVector(Elts) ||
   2269         ParseToken(lltok::rbrace, "expected end of struct constant"))
   2270       return true;
   2271 
   2272     ID.ConstantStructElts = new Constant*[Elts.size()];
   2273     ID.UIntVal = Elts.size();
   2274     memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
   2275     ID.Kind = ValID::t_ConstantStruct;
   2276     return false;
   2277   }
   2278   case lltok::less: {
   2279     // ValID ::= '<' ConstVector '>'         --> Vector.
   2280     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
   2281     Lex.Lex();
   2282     bool isPackedStruct = EatIfPresent(lltok::lbrace);
   2283 
   2284     SmallVector<Constant*, 16> Elts;
   2285     LocTy FirstEltLoc = Lex.getLoc();
   2286     if (ParseGlobalValueVector(Elts) ||
   2287         (isPackedStruct &&
   2288          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
   2289         ParseToken(lltok::greater, "expected end of constant"))
   2290       return true;
   2291 
   2292     if (isPackedStruct) {
   2293       ID.ConstantStructElts = new Constant*[Elts.size()];
   2294       memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
   2295       ID.UIntVal = Elts.size();
   2296       ID.Kind = ValID::t_PackedConstantStruct;
   2297       return false;
   2298     }
   2299 
   2300     if (Elts.empty())
   2301       return Error(ID.Loc, "constant vector must not be empty");
   2302 
   2303     if (!Elts[0]->getType()->isIntegerTy() &&
   2304         !Elts[0]->getType()->isFloatingPointTy() &&
   2305         !Elts[0]->getType()->isPointerTy())
   2306       return Error(FirstEltLoc,
   2307             "vector elements must have integer, pointer or floating point type");
   2308 
   2309     // Verify that all the vector elements have the same type.
   2310     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
   2311       if (Elts[i]->getType() != Elts[0]->getType())
   2312         return Error(FirstEltLoc,
   2313                      "vector element #" + Twine(i) +
   2314                     " is not of type '" + getTypeString(Elts[0]->getType()));
   2315 
   2316     ID.ConstantVal = ConstantVector::get(Elts);
   2317     ID.Kind = ValID::t_Constant;
   2318     return false;
   2319   }
   2320   case lltok::lsquare: {   // Array Constant
   2321     Lex.Lex();
   2322     SmallVector<Constant*, 16> Elts;
   2323     LocTy FirstEltLoc = Lex.getLoc();
   2324     if (ParseGlobalValueVector(Elts) ||
   2325         ParseToken(lltok::rsquare, "expected end of array constant"))
   2326       return true;
   2327 
   2328     // Handle empty element.
   2329     if (Elts.empty()) {
   2330       // Use undef instead of an array because it's inconvenient to determine
   2331       // the element type at this point, there being no elements to examine.
   2332       ID.Kind = ValID::t_EmptyArray;
   2333       return false;
   2334     }
   2335 
   2336     if (!Elts[0]->getType()->isFirstClassType())
   2337       return Error(FirstEltLoc, "invalid array element type: " +
   2338                    getTypeString(Elts[0]->getType()));
   2339 
   2340     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
   2341 
   2342     // Verify all elements are correct type!
   2343     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
   2344       if (Elts[i]->getType() != Elts[0]->getType())
   2345         return Error(FirstEltLoc,
   2346                      "array element #" + Twine(i) +
   2347                      " is not of type '" + getTypeString(Elts[0]->getType()));
   2348     }
   2349 
   2350     ID.ConstantVal = ConstantArray::get(ATy, Elts);
   2351     ID.Kind = ValID::t_Constant;
   2352     return false;
   2353   }
   2354   case lltok::kw_c:  // c "foo"
   2355     Lex.Lex();
   2356     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
   2357                                                   false);
   2358     if (ParseToken(lltok::StringConstant, "expected string")) return true;
   2359     ID.Kind = ValID::t_Constant;
   2360     return false;
   2361 
   2362   case lltok::kw_asm: {
   2363     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
   2364     //             STRINGCONSTANT
   2365     bool HasSideEffect, AlignStack, AsmDialect;
   2366     Lex.Lex();
   2367     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
   2368         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
   2369         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
   2370         ParseStringConstant(ID.StrVal) ||
   2371         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
   2372         ParseToken(lltok::StringConstant, "expected constraint string"))
   2373       return true;
   2374     ID.StrVal2 = Lex.getStrVal();
   2375     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
   2376       (unsigned(AsmDialect)<<2);
   2377     ID.Kind = ValID::t_InlineAsm;
   2378     return false;
   2379   }
   2380 
   2381   case lltok::kw_blockaddress: {
   2382     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
   2383     Lex.Lex();
   2384 
   2385     ValID Fn, Label;
   2386     LocTy FnLoc, LabelLoc;
   2387 
   2388     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
   2389         ParseValID(Fn) ||
   2390         ParseToken(lltok::comma, "expected comma in block address expression")||
   2391         ParseValID(Label) ||
   2392         ParseToken(lltok::rparen, "expected ')' in block address expression"))
   2393       return true;
   2394 
   2395     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
   2396       return Error(Fn.Loc, "expected function name in blockaddress");
   2397     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
   2398       return Error(Label.Loc, "expected basic block name in blockaddress");
   2399 
   2400     // Make a global variable as a placeholder for this reference.
   2401     GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
   2402                                            false, GlobalValue::InternalLinkage,
   2403                                                 0, "");
   2404     ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
   2405     ID.ConstantVal = FwdRef;
   2406     ID.Kind = ValID::t_Constant;
   2407     return false;
   2408   }
   2409 
   2410   case lltok::kw_trunc:
   2411   case lltok::kw_zext:
   2412   case lltok::kw_sext:
   2413   case lltok::kw_fptrunc:
   2414   case lltok::kw_fpext:
   2415   case lltok::kw_bitcast:
   2416   case lltok::kw_uitofp:
   2417   case lltok::kw_sitofp:
   2418   case lltok::kw_fptoui:
   2419   case lltok::kw_fptosi:
   2420   case lltok::kw_inttoptr:
   2421   case lltok::kw_ptrtoint: {
   2422     unsigned Opc = Lex.getUIntVal();
   2423     Type *DestTy = 0;
   2424     Constant *SrcVal;
   2425     Lex.Lex();
   2426     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
   2427         ParseGlobalTypeAndValue(SrcVal) ||
   2428         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
   2429         ParseType(DestTy) ||
   2430         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
   2431       return true;
   2432     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
   2433       return Error(ID.Loc, "invalid cast opcode for cast from '" +
   2434                    getTypeString(SrcVal->getType()) + "' to '" +
   2435                    getTypeString(DestTy) + "'");
   2436     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
   2437                                                  SrcVal, DestTy);
   2438     ID.Kind = ValID::t_Constant;
   2439     return false;
   2440   }
   2441   case lltok::kw_extractvalue: {
   2442     Lex.Lex();
   2443     Constant *Val;
   2444     SmallVector<unsigned, 4> Indices;
   2445     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
   2446         ParseGlobalTypeAndValue(Val) ||
   2447         ParseIndexList(Indices) ||
   2448         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
   2449       return true;
   2450 
   2451     if (!Val->getType()->isAggregateType())
   2452       return Error(ID.Loc, "extractvalue operand must be aggregate type");
   2453     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
   2454       return Error(ID.Loc, "invalid indices for extractvalue");
   2455     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
   2456     ID.Kind = ValID::t_Constant;
   2457     return false;
   2458   }
   2459   case lltok::kw_insertvalue: {
   2460     Lex.Lex();
   2461     Constant *Val0, *Val1;
   2462     SmallVector<unsigned, 4> Indices;
   2463     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
   2464         ParseGlobalTypeAndValue(Val0) ||
   2465         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
   2466         ParseGlobalTypeAndValue(Val1) ||
   2467         ParseIndexList(Indices) ||
   2468         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
   2469       return true;
   2470     if (!Val0->getType()->isAggregateType())
   2471       return Error(ID.Loc, "insertvalue operand must be aggregate type");
   2472     if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
   2473       return Error(ID.Loc, "invalid indices for insertvalue");
   2474     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
   2475     ID.Kind = ValID::t_Constant;
   2476     return false;
   2477   }
   2478   case lltok::kw_icmp:
   2479   case lltok::kw_fcmp: {
   2480     unsigned PredVal, Opc = Lex.getUIntVal();
   2481     Constant *Val0, *Val1;
   2482     Lex.Lex();
   2483     if (ParseCmpPredicate(PredVal, Opc) ||
   2484         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
   2485         ParseGlobalTypeAndValue(Val0) ||
   2486         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
   2487         ParseGlobalTypeAndValue(Val1) ||
   2488         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
   2489       return true;
   2490 
   2491     if (Val0->getType() != Val1->getType())
   2492       return Error(ID.Loc, "compare operands must have the same type");
   2493 
   2494     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
   2495 
   2496     if (Opc == Instruction::FCmp) {
   2497       if (!Val0->getType()->isFPOrFPVectorTy())
   2498         return Error(ID.Loc, "fcmp requires floating point operands");
   2499       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
   2500     } else {
   2501       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
   2502       if (!Val0->getType()->isIntOrIntVectorTy() &&
   2503           !Val0->getType()->getScalarType()->isPointerTy())
   2504         return Error(ID.Loc, "icmp requires pointer or integer operands");
   2505       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
   2506     }
   2507     ID.Kind = ValID::t_Constant;
   2508     return false;
   2509   }
   2510 
   2511   // Binary Operators.
   2512   case lltok::kw_add:
   2513   case lltok::kw_fadd:
   2514   case lltok::kw_sub:
   2515   case lltok::kw_fsub:
   2516   case lltok::kw_mul:
   2517   case lltok::kw_fmul:
   2518   case lltok::kw_udiv:
   2519   case lltok::kw_sdiv:
   2520   case lltok::kw_fdiv:
   2521   case lltok::kw_urem:
   2522   case lltok::kw_srem:
   2523   case lltok::kw_frem:
   2524   case lltok::kw_shl:
   2525   case lltok::kw_lshr:
   2526   case lltok::kw_ashr: {
   2527     bool NUW = false;
   2528     bool NSW = false;
   2529     bool Exact = false;
   2530     unsigned Opc = Lex.getUIntVal();
   2531     Constant *Val0, *Val1;
   2532     Lex.Lex();
   2533     LocTy ModifierLoc = Lex.getLoc();
   2534     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
   2535         Opc == Instruction::Mul || Opc == Instruction::Shl) {
   2536       if (EatIfPresent(lltok::kw_nuw))
   2537         NUW = true;
   2538       if (EatIfPresent(lltok::kw_nsw)) {
   2539         NSW = true;
   2540         if (EatIfPresent(lltok::kw_nuw))
   2541           NUW = true;
   2542       }
   2543     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
   2544                Opc == Instruction::LShr || Opc == Instruction::AShr) {
   2545       if (EatIfPresent(lltok::kw_exact))
   2546         Exact = true;
   2547     }
   2548     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
   2549         ParseGlobalTypeAndValue(Val0) ||
   2550         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
   2551         ParseGlobalTypeAndValue(Val1) ||
   2552         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
   2553       return true;
   2554     if (Val0->getType() != Val1->getType())
   2555       return Error(ID.Loc, "operands of constexpr must have same type");
   2556     if (!Val0->getType()->isIntOrIntVectorTy()) {
   2557       if (NUW)
   2558         return Error(ModifierLoc, "nuw only applies to integer operations");
   2559       if (NSW)
   2560         return Error(ModifierLoc, "nsw only applies to integer operations");
   2561     }
   2562     // Check that the type is valid for the operator.
   2563     switch (Opc) {
   2564     case Instruction::Add:
   2565     case Instruction::Sub:
   2566     case Instruction::Mul:
   2567     case Instruction::UDiv:
   2568     case Instruction::SDiv:
   2569     case Instruction::URem:
   2570     case Instruction::SRem:
   2571     case Instruction::Shl:
   2572     case Instruction::AShr:
   2573     case Instruction::LShr:
   2574       if (!Val0->getType()->isIntOrIntVectorTy())
   2575         return Error(ID.Loc, "constexpr requires integer operands");
   2576       break;
   2577     case Instruction::FAdd:
   2578     case Instruction::FSub:
   2579     case Instruction::FMul:
   2580     case Instruction::FDiv:
   2581     case Instruction::FRem:
   2582       if (!Val0->getType()->isFPOrFPVectorTy())
   2583         return Error(ID.Loc, "constexpr requires fp operands");
   2584       break;
   2585     default: llvm_unreachable("Unknown binary operator!");
   2586     }
   2587     unsigned Flags = 0;
   2588     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
   2589     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
   2590     if (Exact) Flags |= PossiblyExactOperator::IsExact;
   2591     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
   2592     ID.ConstantVal = C;
   2593     ID.Kind = ValID::t_Constant;
   2594     return false;
   2595   }
   2596 
   2597   // Logical Operations
   2598   case lltok::kw_and:
   2599   case lltok::kw_or:
   2600   case lltok::kw_xor: {
   2601     unsigned Opc = Lex.getUIntVal();
   2602     Constant *Val0, *Val1;
   2603     Lex.Lex();
   2604     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
   2605         ParseGlobalTypeAndValue(Val0) ||
   2606         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
   2607         ParseGlobalTypeAndValue(Val1) ||
   2608         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
   2609       return true;
   2610     if (Val0->getType() != Val1->getType())
   2611       return Error(ID.Loc, "operands of constexpr must have same type");
   2612     if (!Val0->getType()->isIntOrIntVectorTy())
   2613       return Error(ID.Loc,
   2614                    "constexpr requires integer or integer vector operands");
   2615     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
   2616     ID.Kind = ValID::t_Constant;
   2617     return false;
   2618   }
   2619 
   2620   case lltok::kw_getelementptr:
   2621   case lltok::kw_shufflevector:
   2622   case lltok::kw_insertelement:
   2623   case lltok::kw_extractelement:
   2624   case lltok::kw_select: {
   2625     unsigned Opc = Lex.getUIntVal();
   2626     SmallVector<Constant*, 16> Elts;
   2627     bool InBounds = false;
   2628     Lex.Lex();
   2629     if (Opc == Instruction::GetElementPtr)
   2630       InBounds = EatIfPresent(lltok::kw_inbounds);
   2631     if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
   2632         ParseGlobalValueVector(Elts) ||
   2633         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
   2634       return true;
   2635 
   2636     if (Opc == Instruction::GetElementPtr) {
   2637       if (Elts.size() == 0 ||
   2638           !Elts[0]->getType()->getScalarType()->isPointerTy())
   2639         return Error(ID.Loc, "getelementptr requires pointer operand");
   2640 
   2641       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
   2642       if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
   2643         return Error(ID.Loc, "invalid indices for getelementptr");
   2644       ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
   2645                                                       InBounds);
   2646     } else if (Opc == Instruction::Select) {
   2647       if (Elts.size() != 3)
   2648         return Error(ID.Loc, "expected three operands to select");
   2649       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
   2650                                                               Elts[2]))
   2651         return Error(ID.Loc, Reason);
   2652       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
   2653     } else if (Opc == Instruction::ShuffleVector) {
   2654       if (Elts.size() != 3)
   2655         return Error(ID.Loc, "expected three operands to shufflevector");
   2656       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
   2657         return Error(ID.Loc, "invalid operands to shufflevector");
   2658       ID.ConstantVal =
   2659                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
   2660     } else if (Opc == Instruction::ExtractElement) {
   2661       if (Elts.size() != 2)
   2662         return Error(ID.Loc, "expected two operands to extractelement");
   2663       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
   2664         return Error(ID.Loc, "invalid extractelement operands");
   2665       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
   2666     } else {
   2667       assert(Opc == Instruction::InsertElement && "Unknown opcode");
   2668       if (Elts.size() != 3)
   2669       return Error(ID.Loc, "expected three operands to insertelement");
   2670       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
   2671         return Error(ID.Loc, "invalid insertelement operands");
   2672       ID.ConstantVal =
   2673                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
   2674     }
   2675 
   2676     ID.Kind = ValID::t_Constant;
   2677     return false;
   2678   }
   2679   }
   2680 
   2681   Lex.Lex();
   2682   return false;
   2683 }
   2684 
   2685 /// ParseGlobalValue - Parse a global value with the specified type.
   2686 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
   2687   C = 0;
   2688   ValID ID;
   2689   Value *V = NULL;
   2690   bool Parsed = ParseValID(ID) ||
   2691                 ConvertValIDToValue(Ty, ID, V, NULL);
   2692   if (V && !(C = dyn_cast<Constant>(V)))
   2693     return Error(ID.Loc, "global values must be constants");
   2694   return Parsed;
   2695 }
   2696 
   2697 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
   2698   Type *Ty = 0;
   2699   return ParseType(Ty) ||
   2700          ParseGlobalValue(Ty, V);
   2701 }
   2702 
   2703 /// ParseGlobalValueVector
   2704 ///   ::= /*empty*/
   2705 ///   ::= TypeAndValue (',' TypeAndValue)*
   2706 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
   2707   // Empty list.
   2708   if (Lex.getKind() == lltok::rbrace ||
   2709       Lex.getKind() == lltok::rsquare ||
   2710       Lex.getKind() == lltok::greater ||
   2711       Lex.getKind() == lltok::rparen)
   2712     return false;
   2713 
   2714   Constant *C;
   2715   if (ParseGlobalTypeAndValue(C)) return true;
   2716   Elts.push_back(C);
   2717 
   2718   while (EatIfPresent(lltok::comma)) {
   2719     if (ParseGlobalTypeAndValue(C)) return true;
   2720     Elts.push_back(C);
   2721   }
   2722 
   2723   return false;
   2724 }
   2725 
   2726 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
   2727   assert(Lex.getKind() == lltok::lbrace);
   2728   Lex.Lex();
   2729 
   2730   SmallVector<Value*, 16> Elts;
   2731   if (ParseMDNodeVector(Elts, PFS) ||
   2732       ParseToken(lltok::rbrace, "expected end of metadata node"))
   2733     return true;
   2734 
   2735   ID.MDNodeVal = MDNode::get(Context, Elts);
   2736   ID.Kind = ValID::t_MDNode;
   2737   return false;
   2738 }
   2739 
   2740 /// ParseMetadataValue
   2741 ///  ::= !42
   2742 ///  ::= !{...}
   2743 ///  ::= !"string"
   2744 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
   2745   assert(Lex.getKind() == lltok::exclaim);
   2746   Lex.Lex();
   2747 
   2748   // MDNode:
   2749   // !{ ... }
   2750   if (Lex.getKind() == lltok::lbrace)
   2751     return ParseMetadataListValue(ID, PFS);
   2752 
   2753   // Standalone metadata reference
   2754   // !42
   2755   if (Lex.getKind() == lltok::APSInt) {
   2756     if (ParseMDNodeID(ID.MDNodeVal)) return true;
   2757     ID.Kind = ValID::t_MDNode;
   2758     return false;
   2759   }
   2760 
   2761   // MDString:
   2762   //   ::= '!' STRINGCONSTANT
   2763   if (ParseMDString(ID.MDStringVal)) return true;
   2764   ID.Kind = ValID::t_MDString;
   2765   return false;
   2766 }
   2767 
   2768 
   2769 //===----------------------------------------------------------------------===//
   2770 // Function Parsing.
   2771 //===----------------------------------------------------------------------===//
   2772 
   2773 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
   2774                                    PerFunctionState *PFS) {
   2775   if (Ty->isFunctionTy())
   2776     return Error(ID.Loc, "functions are not values, refer to them as pointers");
   2777 
   2778   switch (ID.Kind) {
   2779   case ValID::t_LocalID:
   2780     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
   2781     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
   2782     return (V == 0);
   2783   case ValID::t_LocalName:
   2784     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
   2785     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
   2786     return (V == 0);
   2787   case ValID::t_InlineAsm: {
   2788     PointerType *PTy = dyn_cast<PointerType>(Ty);
   2789     FunctionType *FTy =
   2790       PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
   2791     if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
   2792       return Error(ID.Loc, "invalid type for inline asm constraint string");
   2793     V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
   2794                        (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
   2795     return false;
   2796   }
   2797   case ValID::t_MDNode:
   2798     if (!Ty->isMetadataTy())
   2799       return Error(ID.Loc, "metadata value must have metadata type");
   2800     V = ID.MDNodeVal;
   2801     return false;
   2802   case ValID::t_MDString:
   2803     if (!Ty->isMetadataTy())
   2804       return Error(ID.Loc, "metadata value must have metadata type");
   2805     V = ID.MDStringVal;
   2806     return false;
   2807   case ValID::t_GlobalName:
   2808     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
   2809     return V == 0;
   2810   case ValID::t_GlobalID:
   2811     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
   2812     return V == 0;
   2813   case ValID::t_APSInt:
   2814     if (!Ty->isIntegerTy())
   2815       return Error(ID.Loc, "integer constant must have integer type");
   2816     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
   2817     V = ConstantInt::get(Context, ID.APSIntVal);
   2818     return false;
   2819   case ValID::t_APFloat:
   2820     if (!Ty->isFloatingPointTy() ||
   2821         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
   2822       return Error(ID.Loc, "floating point constant invalid for type");
   2823 
   2824     // The lexer has no type info, so builds all half, float, and double FP
   2825     // constants as double.  Fix this here.  Long double does not need this.
   2826     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
   2827       bool Ignored;
   2828       if (Ty->isHalfTy())
   2829         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
   2830                               &Ignored);
   2831       else if (Ty->isFloatTy())
   2832         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
   2833                               &Ignored);
   2834     }
   2835     V = ConstantFP::get(Context, ID.APFloatVal);
   2836 
   2837     if (V->getType() != Ty)
   2838       return Error(ID.Loc, "floating point constant does not have type '" +
   2839                    getTypeString(Ty) + "'");
   2840 
   2841     return false;
   2842   case ValID::t_Null:
   2843     if (!Ty->isPointerTy())
   2844       return Error(ID.Loc, "null must be a pointer type");
   2845     V = ConstantPointerNull::get(cast<PointerType>(Ty));
   2846     return false;
   2847   case ValID::t_Undef:
   2848     // FIXME: LabelTy should not be a first-class type.
   2849     if (!Ty->isFirstClassType() || Ty->isLabelTy())
   2850       return Error(ID.Loc, "invalid type for undef constant");
   2851     V = UndefValue::get(Ty);
   2852     return false;
   2853   case ValID::t_EmptyArray:
   2854     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
   2855       return Error(ID.Loc, "invalid empty array initializer");
   2856     V = UndefValue::get(Ty);
   2857     return false;
   2858   case ValID::t_Zero:
   2859     // FIXME: LabelTy should not be a first-class type.
   2860     if (!Ty->isFirstClassType() || Ty->isLabelTy())
   2861       return Error(ID.Loc, "invalid type for null constant");
   2862     V = Constant::getNullValue(Ty);
   2863     return false;
   2864   case ValID::t_Constant:
   2865     if (ID.ConstantVal->getType() != Ty)
   2866       return Error(ID.Loc, "constant expression type mismatch");
   2867 
   2868     V = ID.ConstantVal;
   2869     return false;
   2870   case ValID::t_ConstantStruct:
   2871   case ValID::t_PackedConstantStruct:
   2872     if (StructType *ST = dyn_cast<StructType>(Ty)) {
   2873       if (ST->getNumElements() != ID.UIntVal)
   2874         return Error(ID.Loc,
   2875                      "initializer with struct type has wrong # elements");
   2876       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
   2877         return Error(ID.Loc, "packed'ness of initializer and type don't match");
   2878 
   2879       // Verify that the elements are compatible with the structtype.
   2880       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
   2881         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
   2882           return Error(ID.Loc, "element " + Twine(i) +
   2883                     " of struct initializer doesn't match struct element type");
   2884 
   2885       V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
   2886                                                ID.UIntVal));
   2887     } else
   2888       return Error(ID.Loc, "constant expression type mismatch");
   2889     return false;
   2890   }
   2891   llvm_unreachable("Invalid ValID");
   2892 }
   2893 
   2894 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
   2895   V = 0;
   2896   ValID ID;
   2897   return ParseValID(ID, PFS) ||
   2898          ConvertValIDToValue(Ty, ID, V, PFS);
   2899 }
   2900 
   2901 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
   2902   Type *Ty = 0;
   2903   return ParseType(Ty) ||
   2904          ParseValue(Ty, V, PFS);
   2905 }
   2906 
   2907 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
   2908                                       PerFunctionState &PFS) {
   2909   Value *V;
   2910   Loc = Lex.getLoc();
   2911   if (ParseTypeAndValue(V, PFS)) return true;
   2912   if (!isa<BasicBlock>(V))
   2913     return Error(Loc, "expected a basic block");
   2914   BB = cast<BasicBlock>(V);
   2915   return false;
   2916 }
   2917 
   2918 
   2919 /// FunctionHeader
   2920 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
   2921 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
   2922 ///       OptionalAlign OptGC
   2923 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
   2924   // Parse the linkage.
   2925   LocTy LinkageLoc = Lex.getLoc();
   2926   unsigned Linkage;
   2927 
   2928   unsigned Visibility;
   2929   AttrBuilder RetAttrs;
   2930   CallingConv::ID CC;
   2931   Type *RetType = 0;
   2932   LocTy RetTypeLoc = Lex.getLoc();
   2933   if (ParseOptionalLinkage(Linkage) ||
   2934       ParseOptionalVisibility(Visibility) ||
   2935       ParseOptionalCallingConv(CC) ||
   2936       ParseOptionalReturnAttrs(RetAttrs) ||
   2937       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
   2938     return true;
   2939 
   2940   // Verify that the linkage is ok.
   2941   switch ((GlobalValue::LinkageTypes)Linkage) {
   2942   case GlobalValue::ExternalLinkage:
   2943     break; // always ok.
   2944   case GlobalValue::DLLImportLinkage:
   2945   case GlobalValue::ExternalWeakLinkage:
   2946     if (isDefine)
   2947       return Error(LinkageLoc, "invalid linkage for function definition");
   2948     break;
   2949   case GlobalValue::PrivateLinkage:
   2950   case GlobalValue::LinkerPrivateLinkage:
   2951   case GlobalValue::LinkerPrivateWeakLinkage:
   2952   case GlobalValue::InternalLinkage:
   2953   case GlobalValue::AvailableExternallyLinkage:
   2954   case GlobalValue::LinkOnceAnyLinkage:
   2955   case GlobalValue::LinkOnceODRLinkage:
   2956   case GlobalValue::LinkOnceODRAutoHideLinkage:
   2957   case GlobalValue::WeakAnyLinkage:
   2958   case GlobalValue::WeakODRLinkage:
   2959   case GlobalValue::DLLExportLinkage:
   2960     if (!isDefine)
   2961       return Error(LinkageLoc, "invalid linkage for function declaration");
   2962     break;
   2963   case GlobalValue::AppendingLinkage:
   2964   case GlobalValue::CommonLinkage:
   2965     return Error(LinkageLoc, "invalid function linkage type");
   2966   }
   2967 
   2968   if (!FunctionType::isValidReturnType(RetType))
   2969     return Error(RetTypeLoc, "invalid function return type");
   2970 
   2971   LocTy NameLoc = Lex.getLoc();
   2972 
   2973   std::string FunctionName;
   2974   if (Lex.getKind() == lltok::GlobalVar) {
   2975     FunctionName = Lex.getStrVal();
   2976   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
   2977     unsigned NameID = Lex.getUIntVal();
   2978 
   2979     if (NameID != NumberedVals.size())
   2980       return TokError("function expected to be numbered '%" +
   2981                       Twine(NumberedVals.size()) + "'");
   2982   } else {
   2983     return TokError("expected function name");
   2984   }
   2985 
   2986   Lex.Lex();
   2987 
   2988   if (Lex.getKind() != lltok::lparen)
   2989     return TokError("expected '(' in function argument list");
   2990 
   2991   SmallVector<ArgInfo, 8> ArgList;
   2992   bool isVarArg;
   2993   AttrBuilder FuncAttrs;
   2994   std::vector<unsigned> FwdRefAttrGrps;
   2995   LocTy BuiltinLoc;
   2996   std::string Section;
   2997   unsigned Alignment;
   2998   std::string GC;
   2999   bool UnnamedAddr;
   3000   LocTy UnnamedAddrLoc;
   3001 
   3002   if (ParseArgumentList(ArgList, isVarArg) ||
   3003       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
   3004                          &UnnamedAddrLoc) ||
   3005       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
   3006                                  BuiltinLoc) ||
   3007       (EatIfPresent(lltok::kw_section) &&
   3008        ParseStringConstant(Section)) ||
   3009       ParseOptionalAlignment(Alignment) ||
   3010       (EatIfPresent(lltok::kw_gc) &&
   3011        ParseStringConstant(GC)))
   3012     return true;
   3013 
   3014   if (FuncAttrs.contains(Attribute::Builtin))
   3015     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
   3016 
   3017   // If the alignment was parsed as an attribute, move to the alignment field.
   3018   if (FuncAttrs.hasAlignmentAttr()) {
   3019     Alignment = FuncAttrs.getAlignment();
   3020     FuncAttrs.removeAttribute(Attribute::Alignment);
   3021   }
   3022 
   3023   // Okay, if we got here, the function is syntactically valid.  Convert types
   3024   // and do semantic checks.
   3025   std::vector<Type*> ParamTypeList;
   3026   SmallVector<AttributeSet, 8> Attrs;
   3027 
   3028   if (RetAttrs.hasAttributes())
   3029     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   3030                                       AttributeSet::ReturnIndex,
   3031                                       RetAttrs));
   3032 
   3033   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   3034     ParamTypeList.push_back(ArgList[i].Ty);
   3035     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
   3036       AttrBuilder B(ArgList[i].Attrs, i + 1);
   3037       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
   3038     }
   3039   }
   3040 
   3041   if (FuncAttrs.hasAttributes())
   3042     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   3043                                       AttributeSet::FunctionIndex,
   3044                                       FuncAttrs));
   3045 
   3046   AttributeSet PAL = AttributeSet::get(Context, Attrs);
   3047 
   3048   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
   3049     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
   3050 
   3051   FunctionType *FT =
   3052     FunctionType::get(RetType, ParamTypeList, isVarArg);
   3053   PointerType *PFT = PointerType::getUnqual(FT);
   3054 
   3055   Fn = 0;
   3056   if (!FunctionName.empty()) {
   3057     // If this was a definition of a forward reference, remove the definition
   3058     // from the forward reference table and fill in the forward ref.
   3059     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
   3060       ForwardRefVals.find(FunctionName);
   3061     if (FRVI != ForwardRefVals.end()) {
   3062       Fn = M->getFunction(FunctionName);
   3063       if (!Fn)
   3064         return Error(FRVI->second.second, "invalid forward reference to "
   3065                      "function as global value!");
   3066       if (Fn->getType() != PFT)
   3067         return Error(FRVI->second.second, "invalid forward reference to "
   3068                      "function '" + FunctionName + "' with wrong type!");
   3069 
   3070       ForwardRefVals.erase(FRVI);
   3071     } else if ((Fn = M->getFunction(FunctionName))) {
   3072       // Reject redefinitions.
   3073       return Error(NameLoc, "invalid redefinition of function '" +
   3074                    FunctionName + "'");
   3075     } else if (M->getNamedValue(FunctionName)) {
   3076       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
   3077     }
   3078 
   3079   } else {
   3080     // If this is a definition of a forward referenced function, make sure the
   3081     // types agree.
   3082     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
   3083       = ForwardRefValIDs.find(NumberedVals.size());
   3084     if (I != ForwardRefValIDs.end()) {
   3085       Fn = cast<Function>(I->second.first);
   3086       if (Fn->getType() != PFT)
   3087         return Error(NameLoc, "type of definition and forward reference of '@" +
   3088                      Twine(NumberedVals.size()) + "' disagree");
   3089       ForwardRefValIDs.erase(I);
   3090     }
   3091   }
   3092 
   3093   if (Fn == 0)
   3094     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
   3095   else // Move the forward-reference to the correct spot in the module.
   3096     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
   3097 
   3098   if (FunctionName.empty())
   3099     NumberedVals.push_back(Fn);
   3100 
   3101   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
   3102   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
   3103   Fn->setCallingConv(CC);
   3104   Fn->setAttributes(PAL);
   3105   Fn->setUnnamedAddr(UnnamedAddr);
   3106   Fn->setAlignment(Alignment);
   3107   Fn->setSection(Section);
   3108   if (!GC.empty()) Fn->setGC(GC.c_str());
   3109   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
   3110 
   3111   // Add all of the arguments we parsed to the function.
   3112   Function::arg_iterator ArgIt = Fn->arg_begin();
   3113   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
   3114     // If the argument has a name, insert it into the argument symbol table.
   3115     if (ArgList[i].Name.empty()) continue;
   3116 
   3117     // Set the name, if it conflicted, it will be auto-renamed.
   3118     ArgIt->setName(ArgList[i].Name);
   3119 
   3120     if (ArgIt->getName() != ArgList[i].Name)
   3121       return Error(ArgList[i].Loc, "redefinition of argument '%" +
   3122                    ArgList[i].Name + "'");
   3123   }
   3124 
   3125   return false;
   3126 }
   3127 
   3128 
   3129 /// ParseFunctionBody
   3130 ///   ::= '{' BasicBlock+ '}'
   3131 ///
   3132 bool LLParser::ParseFunctionBody(Function &Fn) {
   3133   if (Lex.getKind() != lltok::lbrace)
   3134     return TokError("expected '{' in function body");
   3135   Lex.Lex();  // eat the {.
   3136 
   3137   int FunctionNumber = -1;
   3138   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
   3139 
   3140   PerFunctionState PFS(*this, Fn, FunctionNumber);
   3141 
   3142   // We need at least one basic block.
   3143   if (Lex.getKind() == lltok::rbrace)
   3144     return TokError("function body requires at least one basic block");
   3145 
   3146   while (Lex.getKind() != lltok::rbrace)
   3147     if (ParseBasicBlock(PFS)) return true;
   3148 
   3149   // Eat the }.
   3150   Lex.Lex();
   3151 
   3152   // Verify function is ok.
   3153   return PFS.FinishFunction();
   3154 }
   3155 
   3156 /// ParseBasicBlock
   3157 ///   ::= LabelStr? Instruction*
   3158 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
   3159   // If this basic block starts out with a name, remember it.
   3160   std::string Name;
   3161   LocTy NameLoc = Lex.getLoc();
   3162   if (Lex.getKind() == lltok::LabelStr) {
   3163     Name = Lex.getStrVal();
   3164     Lex.Lex();
   3165   }
   3166 
   3167   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
   3168   if (BB == 0) return true;
   3169 
   3170   std::string NameStr;
   3171 
   3172   // Parse the instructions in this block until we get a terminator.
   3173   Instruction *Inst;
   3174   SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
   3175   do {
   3176     // This instruction may have three possibilities for a name: a) none
   3177     // specified, b) name specified "%foo =", c) number specified: "%4 =".
   3178     LocTy NameLoc = Lex.getLoc();
   3179     int NameID = -1;
   3180     NameStr = "";
   3181 
   3182     if (Lex.getKind() == lltok::LocalVarID) {
   3183       NameID = Lex.getUIntVal();
   3184       Lex.Lex();
   3185       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
   3186         return true;
   3187     } else if (Lex.getKind() == lltok::LocalVar) {
   3188       NameStr = Lex.getStrVal();
   3189       Lex.Lex();
   3190       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
   3191         return true;
   3192     }
   3193 
   3194     switch (ParseInstruction(Inst, BB, PFS)) {
   3195     default: llvm_unreachable("Unknown ParseInstruction result!");
   3196     case InstError: return true;
   3197     case InstNormal:
   3198       BB->getInstList().push_back(Inst);
   3199 
   3200       // With a normal result, we check to see if the instruction is followed by
   3201       // a comma and metadata.
   3202       if (EatIfPresent(lltok::comma))
   3203         if (ParseInstructionMetadata(Inst, &PFS))
   3204           return true;
   3205       break;
   3206     case InstExtraComma:
   3207       BB->getInstList().push_back(Inst);
   3208 
   3209       // If the instruction parser ate an extra comma at the end of it, it
   3210       // *must* be followed by metadata.
   3211       if (ParseInstructionMetadata(Inst, &PFS))
   3212         return true;
   3213       break;
   3214     }
   3215 
   3216     // Set the name on the instruction.
   3217     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
   3218   } while (!isa<TerminatorInst>(Inst));
   3219 
   3220   return false;
   3221 }
   3222 
   3223 //===----------------------------------------------------------------------===//
   3224 // Instruction Parsing.
   3225 //===----------------------------------------------------------------------===//
   3226 
   3227 /// ParseInstruction - Parse one of the many different instructions.
   3228 ///
   3229 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
   3230                                PerFunctionState &PFS) {
   3231   lltok::Kind Token = Lex.getKind();
   3232   if (Token == lltok::Eof)
   3233     return TokError("found end of file when expecting more instructions");
   3234   LocTy Loc = Lex.getLoc();
   3235   unsigned KeywordVal = Lex.getUIntVal();
   3236   Lex.Lex();  // Eat the keyword.
   3237 
   3238   switch (Token) {
   3239   default:                    return Error(Loc, "expected instruction opcode");
   3240   // Terminator Instructions.
   3241   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
   3242   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
   3243   case lltok::kw_br:          return ParseBr(Inst, PFS);
   3244   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
   3245   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
   3246   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
   3247   case lltok::kw_resume:      return ParseResume(Inst, PFS);
   3248   // Binary Operators.
   3249   case lltok::kw_add:
   3250   case lltok::kw_sub:
   3251   case lltok::kw_mul:
   3252   case lltok::kw_shl: {
   3253     bool NUW = EatIfPresent(lltok::kw_nuw);
   3254     bool NSW = EatIfPresent(lltok::kw_nsw);
   3255     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
   3256 
   3257     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
   3258 
   3259     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
   3260     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
   3261     return false;
   3262   }
   3263   case lltok::kw_fadd:
   3264   case lltok::kw_fsub:
   3265   case lltok::kw_fmul:
   3266   case lltok::kw_fdiv:
   3267   case lltok::kw_frem: {
   3268     FastMathFlags FMF = EatFastMathFlagsIfPresent();
   3269     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
   3270     if (Res != 0)
   3271       return Res;
   3272     if (FMF.any())
   3273       Inst->setFastMathFlags(FMF);
   3274     return 0;
   3275   }
   3276 
   3277   case lltok::kw_sdiv:
   3278   case lltok::kw_udiv:
   3279   case lltok::kw_lshr:
   3280   case lltok::kw_ashr: {
   3281     bool Exact = EatIfPresent(lltok::kw_exact);
   3282 
   3283     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
   3284     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
   3285     return false;
   3286   }
   3287 
   3288   case lltok::kw_urem:
   3289   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
   3290   case lltok::kw_and:
   3291   case lltok::kw_or:
   3292   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
   3293   case lltok::kw_icmp:
   3294   case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
   3295   // Casts.
   3296   case lltok::kw_trunc:
   3297   case lltok::kw_zext:
   3298   case lltok::kw_sext:
   3299   case lltok::kw_fptrunc:
   3300   case lltok::kw_fpext:
   3301   case lltok::kw_bitcast:
   3302   case lltok::kw_uitofp:
   3303   case lltok::kw_sitofp:
   3304   case lltok::kw_fptoui:
   3305   case lltok::kw_fptosi:
   3306   case lltok::kw_inttoptr:
   3307   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
   3308   // Other.
   3309   case lltok::kw_select:         return ParseSelect(Inst, PFS);
   3310   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
   3311   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
   3312   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
   3313   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
   3314   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
   3315   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
   3316   case lltok::kw_call:           return ParseCall(Inst, PFS, false);
   3317   case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
   3318   // Memory.
   3319   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
   3320   case lltok::kw_load:           return ParseLoad(Inst, PFS);
   3321   case lltok::kw_store:          return ParseStore(Inst, PFS);
   3322   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
   3323   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
   3324   case lltok::kw_fence:          return ParseFence(Inst, PFS);
   3325   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
   3326   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
   3327   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
   3328   }
   3329 }
   3330 
   3331 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
   3332 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
   3333   if (Opc == Instruction::FCmp) {
   3334     switch (Lex.getKind()) {
   3335     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
   3336     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
   3337     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
   3338     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
   3339     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
   3340     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
   3341     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
   3342     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
   3343     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
   3344     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
   3345     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
   3346     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
   3347     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
   3348     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
   3349     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
   3350     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
   3351     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
   3352     }
   3353   } else {
   3354     switch (Lex.getKind()) {
   3355     default: return TokError("expected icmp predicate (e.g. 'eq')");
   3356     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
   3357     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
   3358     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
   3359     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
   3360     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
   3361     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
   3362     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
   3363     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
   3364     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
   3365     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
   3366     }
   3367   }
   3368   Lex.Lex();
   3369   return false;
   3370 }
   3371 
   3372 //===----------------------------------------------------------------------===//
   3373 // Terminator Instructions.
   3374 //===----------------------------------------------------------------------===//
   3375 
   3376 /// ParseRet - Parse a return instruction.
   3377 ///   ::= 'ret' void (',' !dbg, !1)*
   3378 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
   3379 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
   3380                         PerFunctionState &PFS) {
   3381   SMLoc TypeLoc = Lex.getLoc();
   3382   Type *Ty = 0;
   3383   if (ParseType(Ty, true /*void allowed*/)) return true;
   3384 
   3385   Type *ResType = PFS.getFunction().getReturnType();
   3386 
   3387   if (Ty->isVoidTy()) {
   3388     if (!ResType->isVoidTy())
   3389       return Error(TypeLoc, "value doesn't match function result type '" +
   3390                    getTypeString(ResType) + "'");
   3391 
   3392     Inst = ReturnInst::Create(Context);
   3393     return false;
   3394   }
   3395 
   3396   Value *RV;
   3397   if (ParseValue(Ty, RV, PFS)) return true;
   3398 
   3399   if (ResType != RV->getType())
   3400     return Error(TypeLoc, "value doesn't match function result type '" +
   3401                  getTypeString(ResType) + "'");
   3402 
   3403   Inst = ReturnInst::Create(Context, RV);
   3404   return false;
   3405 }
   3406 
   3407 
   3408 /// ParseBr
   3409 ///   ::= 'br' TypeAndValue
   3410 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   3411 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
   3412   LocTy Loc, Loc2;
   3413   Value *Op0;
   3414   BasicBlock *Op1, *Op2;
   3415   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
   3416 
   3417   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
   3418     Inst = BranchInst::Create(BB);
   3419     return false;
   3420   }
   3421 
   3422   if (Op0->getType() != Type::getInt1Ty(Context))
   3423     return Error(Loc, "branch condition must have 'i1' type");
   3424 
   3425   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
   3426       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
   3427       ParseToken(lltok::comma, "expected ',' after true destination") ||
   3428       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
   3429     return true;
   3430 
   3431   Inst = BranchInst::Create(Op1, Op2, Op0);
   3432   return false;
   3433 }
   3434 
   3435 /// ParseSwitch
   3436 ///  Instruction
   3437 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
   3438 ///  JumpTable
   3439 ///    ::= (TypeAndValue ',' TypeAndValue)*
   3440 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
   3441   LocTy CondLoc, BBLoc;
   3442   Value *Cond;
   3443   BasicBlock *DefaultBB;
   3444   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
   3445       ParseToken(lltok::comma, "expected ',' after switch condition") ||
   3446       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
   3447       ParseToken(lltok::lsquare, "expected '[' with switch table"))
   3448     return true;
   3449 
   3450   if (!Cond->getType()->isIntegerTy())
   3451     return Error(CondLoc, "switch condition must have integer type");
   3452 
   3453   // Parse the jump table pairs.
   3454   SmallPtrSet<Value*, 32> SeenCases;
   3455   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
   3456   while (Lex.getKind() != lltok::rsquare) {
   3457     Value *Constant;
   3458     BasicBlock *DestBB;
   3459 
   3460     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
   3461         ParseToken(lltok::comma, "expected ',' after case value") ||
   3462         ParseTypeAndBasicBlock(DestBB, PFS))
   3463       return true;
   3464 
   3465     if (!SeenCases.insert(Constant))
   3466       return Error(CondLoc, "duplicate case value in switch");
   3467     if (!isa<ConstantInt>(Constant))
   3468       return Error(CondLoc, "case value is not a constant integer");
   3469 
   3470     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
   3471   }
   3472 
   3473   Lex.Lex();  // Eat the ']'.
   3474 
   3475   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
   3476   for (unsigned i = 0, e = Table.size(); i != e; ++i)
   3477     SI->addCase(Table[i].first, Table[i].second);
   3478   Inst = SI;
   3479   return false;
   3480 }
   3481 
   3482 /// ParseIndirectBr
   3483 ///  Instruction
   3484 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
   3485 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
   3486   LocTy AddrLoc;
   3487   Value *Address;
   3488   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
   3489       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
   3490       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
   3491     return true;
   3492 
   3493   if (!Address->getType()->isPointerTy())
   3494     return Error(AddrLoc, "indirectbr address must have pointer type");
   3495 
   3496   // Parse the destination list.
   3497   SmallVector<BasicBlock*, 16> DestList;
   3498 
   3499   if (Lex.getKind() != lltok::rsquare) {
   3500     BasicBlock *DestBB;
   3501     if (ParseTypeAndBasicBlock(DestBB, PFS))
   3502       return true;
   3503     DestList.push_back(DestBB);
   3504 
   3505     while (EatIfPresent(lltok::comma)) {
   3506       if (ParseTypeAndBasicBlock(DestBB, PFS))
   3507         return true;
   3508       DestList.push_back(DestBB);
   3509     }
   3510   }
   3511 
   3512   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
   3513     return true;
   3514 
   3515   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
   3516   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
   3517     IBI->addDestination(DestList[i]);
   3518   Inst = IBI;
   3519   return false;
   3520 }
   3521 
   3522 
   3523 /// ParseInvoke
   3524 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
   3525 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
   3526 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
   3527   LocTy CallLoc = Lex.getLoc();
   3528   AttrBuilder RetAttrs, FnAttrs;
   3529   std::vector<unsigned> FwdRefAttrGrps;
   3530   LocTy NoBuiltinLoc;
   3531   CallingConv::ID CC;
   3532   Type *RetType = 0;
   3533   LocTy RetTypeLoc;
   3534   ValID CalleeID;
   3535   SmallVector<ParamInfo, 16> ArgList;
   3536 
   3537   BasicBlock *NormalBB, *UnwindBB;
   3538   if (ParseOptionalCallingConv(CC) ||
   3539       ParseOptionalReturnAttrs(RetAttrs) ||
   3540       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
   3541       ParseValID(CalleeID) ||
   3542       ParseParameterList(ArgList, PFS) ||
   3543       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
   3544                                  NoBuiltinLoc) ||
   3545       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
   3546       ParseTypeAndBasicBlock(NormalBB, PFS) ||
   3547       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
   3548       ParseTypeAndBasicBlock(UnwindBB, PFS))
   3549     return true;
   3550 
   3551   // If RetType is a non-function pointer type, then this is the short syntax
   3552   // for the call, which means that RetType is just the return type.  Infer the
   3553   // rest of the function argument types from the arguments that are present.
   3554   PointerType *PFTy = 0;
   3555   FunctionType *Ty = 0;
   3556   if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
   3557       !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
   3558     // Pull out the types of all of the arguments...
   3559     std::vector<Type*> ParamTypes;
   3560     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
   3561       ParamTypes.push_back(ArgList[i].V->getType());
   3562 
   3563     if (!FunctionType::isValidReturnType(RetType))
   3564       return Error(RetTypeLoc, "Invalid result type for LLVM function");
   3565 
   3566     Ty = FunctionType::get(RetType, ParamTypes, false);
   3567     PFTy = PointerType::getUnqual(Ty);
   3568   }
   3569 
   3570   // Look up the callee.
   3571   Value *Callee;
   3572   if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
   3573 
   3574   // Set up the Attribute for the function.
   3575   SmallVector<AttributeSet, 8> Attrs;
   3576   if (RetAttrs.hasAttributes())
   3577     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   3578                                       AttributeSet::ReturnIndex,
   3579                                       RetAttrs));
   3580 
   3581   SmallVector<Value*, 8> Args;
   3582 
   3583   // Loop through FunctionType's arguments and ensure they are specified
   3584   // correctly.  Also, gather any parameter attributes.
   3585   FunctionType::param_iterator I = Ty->param_begin();
   3586   FunctionType::param_iterator E = Ty->param_end();
   3587   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   3588     Type *ExpectedTy = 0;
   3589     if (I != E) {
   3590       ExpectedTy = *I++;
   3591     } else if (!Ty->isVarArg()) {
   3592       return Error(ArgList[i].Loc, "too many arguments specified");
   3593     }
   3594 
   3595     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
   3596       return Error(ArgList[i].Loc, "argument is not of expected type '" +
   3597                    getTypeString(ExpectedTy) + "'");
   3598     Args.push_back(ArgList[i].V);
   3599     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
   3600       AttrBuilder B(ArgList[i].Attrs, i + 1);
   3601       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
   3602     }
   3603   }
   3604 
   3605   if (I != E)
   3606     return Error(CallLoc, "not enough parameters specified for call");
   3607 
   3608   if (FnAttrs.hasAttributes())
   3609     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   3610                                       AttributeSet::FunctionIndex,
   3611                                       FnAttrs));
   3612 
   3613   // Finish off the Attribute and check them
   3614   AttributeSet PAL = AttributeSet::get(Context, Attrs);
   3615 
   3616   InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
   3617   II->setCallingConv(CC);
   3618   II->setAttributes(PAL);
   3619   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
   3620   Inst = II;
   3621   return false;
   3622 }
   3623 
   3624 /// ParseResume
   3625 ///   ::= 'resume' TypeAndValue
   3626 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
   3627   Value *Exn; LocTy ExnLoc;
   3628   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
   3629     return true;
   3630 
   3631   ResumeInst *RI = ResumeInst::Create(Exn);
   3632   Inst = RI;
   3633   return false;
   3634 }
   3635 
   3636 //===----------------------------------------------------------------------===//
   3637 // Binary Operators.
   3638 //===----------------------------------------------------------------------===//
   3639 
   3640 /// ParseArithmetic
   3641 ///  ::= ArithmeticOps TypeAndValue ',' Value
   3642 ///
   3643 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
   3644 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
   3645 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
   3646                                unsigned Opc, unsigned OperandType) {
   3647   LocTy Loc; Value *LHS, *RHS;
   3648   if (ParseTypeAndValue(LHS, Loc, PFS) ||
   3649       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
   3650       ParseValue(LHS->getType(), RHS, PFS))
   3651     return true;
   3652 
   3653   bool Valid;
   3654   switch (OperandType) {
   3655   default: llvm_unreachable("Unknown operand type!");
   3656   case 0: // int or FP.
   3657     Valid = LHS->getType()->isIntOrIntVectorTy() ||
   3658             LHS->getType()->isFPOrFPVectorTy();
   3659     break;
   3660   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
   3661   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
   3662   }
   3663 
   3664   if (!Valid)
   3665     return Error(Loc, "invalid operand type for instruction");
   3666 
   3667   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   3668   return false;
   3669 }
   3670 
   3671 /// ParseLogical
   3672 ///  ::= ArithmeticOps TypeAndValue ',' Value {
   3673 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
   3674                             unsigned Opc) {
   3675   LocTy Loc; Value *LHS, *RHS;
   3676   if (ParseTypeAndValue(LHS, Loc, PFS) ||
   3677       ParseToken(lltok::comma, "expected ',' in logical operation") ||
   3678       ParseValue(LHS->getType(), RHS, PFS))
   3679     return true;
   3680 
   3681   if (!LHS->getType()->isIntOrIntVectorTy())
   3682     return Error(Loc,"instruction requires integer or integer vector operands");
   3683 
   3684   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   3685   return false;
   3686 }
   3687 
   3688 
   3689 /// ParseCompare
   3690 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
   3691 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
   3692 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
   3693                             unsigned Opc) {
   3694   // Parse the integer/fp comparison predicate.
   3695   LocTy Loc;
   3696   unsigned Pred;
   3697   Value *LHS, *RHS;
   3698   if (ParseCmpPredicate(Pred, Opc) ||
   3699       ParseTypeAndValue(LHS, Loc, PFS) ||
   3700       ParseToken(lltok::comma, "expected ',' after compare value") ||
   3701       ParseValue(LHS->getType(), RHS, PFS))
   3702     return true;
   3703 
   3704   if (Opc == Instruction::FCmp) {
   3705     if (!LHS->getType()->isFPOrFPVectorTy())
   3706       return Error(Loc, "fcmp requires floating point operands");
   3707     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
   3708   } else {
   3709     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
   3710     if (!LHS->getType()->isIntOrIntVectorTy() &&
   3711         !LHS->getType()->getScalarType()->isPointerTy())
   3712       return Error(Loc, "icmp requires integer operands");
   3713     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
   3714   }
   3715   return false;
   3716 }
   3717 
   3718 //===----------------------------------------------------------------------===//
   3719 // Other Instructions.
   3720 //===----------------------------------------------------------------------===//
   3721 
   3722 
   3723 /// ParseCast
   3724 ///   ::= CastOpc TypeAndValue 'to' Type
   3725 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
   3726                          unsigned Opc) {
   3727   LocTy Loc;
   3728   Value *Op;
   3729   Type *DestTy = 0;
   3730   if (ParseTypeAndValue(Op, Loc, PFS) ||
   3731       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
   3732       ParseType(DestTy))
   3733     return true;
   3734 
   3735   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
   3736     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
   3737     return Error(Loc, "invalid cast opcode for cast from '" +
   3738                  getTypeString(Op->getType()) + "' to '" +
   3739                  getTypeString(DestTy) + "'");
   3740   }
   3741   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
   3742   return false;
   3743 }
   3744 
   3745 /// ParseSelect
   3746 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   3747 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
   3748   LocTy Loc;
   3749   Value *Op0, *Op1, *Op2;
   3750   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   3751       ParseToken(lltok::comma, "expected ',' after select condition") ||
   3752       ParseTypeAndValue(Op1, PFS) ||
   3753       ParseToken(lltok::comma, "expected ',' after select value") ||
   3754       ParseTypeAndValue(Op2, PFS))
   3755     return true;
   3756 
   3757   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
   3758     return Error(Loc, Reason);
   3759 
   3760   Inst = SelectInst::Create(Op0, Op1, Op2);
   3761   return false;
   3762 }
   3763 
   3764 /// ParseVA_Arg
   3765 ///   ::= 'va_arg' TypeAndValue ',' Type
   3766 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
   3767   Value *Op;
   3768   Type *EltTy = 0;
   3769   LocTy TypeLoc;
   3770   if (ParseTypeAndValue(Op, PFS) ||
   3771       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
   3772       ParseType(EltTy, TypeLoc))
   3773     return true;
   3774 
   3775   if (!EltTy->isFirstClassType())
   3776     return Error(TypeLoc, "va_arg requires operand with first class type");
   3777 
   3778   Inst = new VAArgInst(Op, EltTy);
   3779   return false;
   3780 }
   3781 
   3782 /// ParseExtractElement
   3783 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
   3784 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
   3785   LocTy Loc;
   3786   Value *Op0, *Op1;
   3787   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   3788       ParseToken(lltok::comma, "expected ',' after extract value") ||
   3789       ParseTypeAndValue(Op1, PFS))
   3790     return true;
   3791 
   3792   if (!ExtractElementInst::isValidOperands(Op0, Op1))
   3793     return Error(Loc, "invalid extractelement operands");
   3794 
   3795   Inst = ExtractElementInst::Create(Op0, Op1);
   3796   return false;
   3797 }
   3798 
   3799 /// ParseInsertElement
   3800 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   3801 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
   3802   LocTy Loc;
   3803   Value *Op0, *Op1, *Op2;
   3804   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   3805       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   3806       ParseTypeAndValue(Op1, PFS) ||
   3807       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   3808       ParseTypeAndValue(Op2, PFS))
   3809     return true;
   3810 
   3811   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
   3812     return Error(Loc, "invalid insertelement operands");
   3813 
   3814   Inst = InsertElementInst::Create(Op0, Op1, Op2);
   3815   return false;
   3816 }
   3817 
   3818 /// ParseShuffleVector
   3819 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   3820 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
   3821   LocTy Loc;
   3822   Value *Op0, *Op1, *Op2;
   3823   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   3824       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
   3825       ParseTypeAndValue(Op1, PFS) ||
   3826       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
   3827       ParseTypeAndValue(Op2, PFS))
   3828     return true;
   3829 
   3830   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
   3831     return Error(Loc, "invalid shufflevector operands");
   3832 
   3833   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
   3834   return false;
   3835 }
   3836 
   3837 /// ParsePHI
   3838 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
   3839 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
   3840   Type *Ty = 0;  LocTy TypeLoc;
   3841   Value *Op0, *Op1;
   3842 
   3843   if (ParseType(Ty, TypeLoc) ||
   3844       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
   3845       ParseValue(Ty, Op0, PFS) ||
   3846       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   3847       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
   3848       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
   3849     return true;
   3850 
   3851   bool AteExtraComma = false;
   3852   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
   3853   while (1) {
   3854     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
   3855 
   3856     if (!EatIfPresent(lltok::comma))
   3857       break;
   3858 
   3859     if (Lex.getKind() == lltok::MetadataVar) {
   3860       AteExtraComma = true;
   3861       break;
   3862     }
   3863 
   3864     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
   3865         ParseValue(Ty, Op0, PFS) ||
   3866         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   3867         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
   3868         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
   3869       return true;
   3870   }
   3871 
   3872   if (!Ty->isFirstClassType())
   3873     return Error(TypeLoc, "phi node must have first class type");
   3874 
   3875   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
   3876   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
   3877     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
   3878   Inst = PN;
   3879   return AteExtraComma ? InstExtraComma : InstNormal;
   3880 }
   3881 
   3882 /// ParseLandingPad
   3883 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
   3884 /// Clause
   3885 ///   ::= 'catch' TypeAndValue
   3886 ///   ::= 'filter'
   3887 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
   3888 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
   3889   Type *Ty = 0; LocTy TyLoc;
   3890   Value *PersFn; LocTy PersFnLoc;
   3891 
   3892   if (ParseType(Ty, TyLoc) ||
   3893       ParseToken(lltok::kw_personality, "expected 'personality'") ||
   3894       ParseTypeAndValue(PersFn, PersFnLoc, PFS))
   3895     return true;
   3896 
   3897   LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
   3898   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
   3899 
   3900   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
   3901     LandingPadInst::ClauseType CT;
   3902     if (EatIfPresent(lltok::kw_catch))
   3903       CT = LandingPadInst::Catch;
   3904     else if (EatIfPresent(lltok::kw_filter))
   3905       CT = LandingPadInst::Filter;
   3906     else
   3907       return TokError("expected 'catch' or 'filter' clause type");
   3908 
   3909     Value *V; LocTy VLoc;
   3910     if (ParseTypeAndValue(V, VLoc, PFS)) {
   3911       delete LP;
   3912       return true;
   3913     }
   3914 
   3915     // A 'catch' type expects a non-array constant. A filter clause expects an
   3916     // array constant.
   3917     if (CT == LandingPadInst::Catch) {
   3918       if (isa<ArrayType>(V->getType()))
   3919         Error(VLoc, "'catch' clause has an invalid type");
   3920     } else {
   3921       if (!isa<ArrayType>(V->getType()))
   3922         Error(VLoc, "'filter' clause has an invalid type");
   3923     }
   3924 
   3925     LP->addClause(V);
   3926   }
   3927 
   3928   Inst = LP;
   3929   return false;
   3930 }
   3931 
   3932 /// ParseCall
   3933 ///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
   3934 ///       ParameterList OptionalAttrs
   3935 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
   3936                          bool isTail) {
   3937   AttrBuilder RetAttrs, FnAttrs;
   3938   std::vector<unsigned> FwdRefAttrGrps;
   3939   LocTy BuiltinLoc;
   3940   CallingConv::ID CC;
   3941   Type *RetType = 0;
   3942   LocTy RetTypeLoc;
   3943   ValID CalleeID;
   3944   SmallVector<ParamInfo, 16> ArgList;
   3945   LocTy CallLoc = Lex.getLoc();
   3946 
   3947   if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
   3948       ParseOptionalCallingConv(CC) ||
   3949       ParseOptionalReturnAttrs(RetAttrs) ||
   3950       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
   3951       ParseValID(CalleeID) ||
   3952       ParseParameterList(ArgList, PFS) ||
   3953       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
   3954                                  BuiltinLoc))
   3955     return true;
   3956 
   3957   // If RetType is a non-function pointer type, then this is the short syntax
   3958   // for the call, which means that RetType is just the return type.  Infer the
   3959   // rest of the function argument types from the arguments that are present.
   3960   PointerType *PFTy = 0;
   3961   FunctionType *Ty = 0;
   3962   if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
   3963       !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
   3964     // Pull out the types of all of the arguments...
   3965     std::vector<Type*> ParamTypes;
   3966     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
   3967       ParamTypes.push_back(ArgList[i].V->getType());
   3968 
   3969     if (!FunctionType::isValidReturnType(RetType))
   3970       return Error(RetTypeLoc, "Invalid result type for LLVM function");
   3971 
   3972     Ty = FunctionType::get(RetType, ParamTypes, false);
   3973     PFTy = PointerType::getUnqual(Ty);
   3974   }
   3975 
   3976   // Look up the callee.
   3977   Value *Callee;
   3978   if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
   3979 
   3980   // Set up the Attribute for the function.
   3981   SmallVector<AttributeSet, 8> Attrs;
   3982   if (RetAttrs.hasAttributes())
   3983     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   3984                                       AttributeSet::ReturnIndex,
   3985                                       RetAttrs));
   3986 
   3987   SmallVector<Value*, 8> Args;
   3988 
   3989   // Loop through FunctionType's arguments and ensure they are specified
   3990   // correctly.  Also, gather any parameter attributes.
   3991   FunctionType::param_iterator I = Ty->param_begin();
   3992   FunctionType::param_iterator E = Ty->param_end();
   3993   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   3994     Type *ExpectedTy = 0;
   3995     if (I != E) {
   3996       ExpectedTy = *I++;
   3997     } else if (!Ty->isVarArg()) {
   3998       return Error(ArgList[i].Loc, "too many arguments specified");
   3999     }
   4000 
   4001     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
   4002       return Error(ArgList[i].Loc, "argument is not of expected type '" +
   4003                    getTypeString(ExpectedTy) + "'");
   4004     Args.push_back(ArgList[i].V);
   4005     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
   4006       AttrBuilder B(ArgList[i].Attrs, i + 1);
   4007       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
   4008     }
   4009   }
   4010 
   4011   if (I != E)
   4012     return Error(CallLoc, "not enough parameters specified for call");
   4013 
   4014   if (FnAttrs.hasAttributes())
   4015     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   4016                                       AttributeSet::FunctionIndex,
   4017                                       FnAttrs));
   4018 
   4019   // Finish off the Attribute and check them
   4020   AttributeSet PAL = AttributeSet::get(Context, Attrs);
   4021 
   4022   CallInst *CI = CallInst::Create(Callee, Args);
   4023   CI->setTailCall(isTail);
   4024   CI->setCallingConv(CC);
   4025   CI->setAttributes(PAL);
   4026   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
   4027   Inst = CI;
   4028   return false;
   4029 }
   4030 
   4031 //===----------------------------------------------------------------------===//
   4032 // Memory Instructions.
   4033 //===----------------------------------------------------------------------===//
   4034 
   4035 /// ParseAlloc
   4036 ///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
   4037 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
   4038   Value *Size = 0;
   4039   LocTy SizeLoc;
   4040   unsigned Alignment = 0;
   4041   Type *Ty = 0;
   4042   if (ParseType(Ty)) return true;
   4043 
   4044   bool AteExtraComma = false;
   4045   if (EatIfPresent(lltok::comma)) {
   4046     if (Lex.getKind() == lltok::kw_align) {
   4047       if (ParseOptionalAlignment(Alignment)) return true;
   4048     } else if (Lex.getKind() == lltok::MetadataVar) {
   4049       AteExtraComma = true;
   4050     } else {
   4051       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
   4052           ParseOptionalCommaAlign(Alignment, AteExtraComma))
   4053         return true;
   4054     }
   4055   }
   4056 
   4057   if (Size && !Size->getType()->isIntegerTy())
   4058     return Error(SizeLoc, "element count must have integer type");
   4059 
   4060   Inst = new AllocaInst(Ty, Size, Alignment);
   4061   return AteExtraComma ? InstExtraComma : InstNormal;
   4062 }
   4063 
   4064 /// ParseLoad
   4065 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
   4066 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
   4067 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
   4068 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
   4069   Value *Val; LocTy Loc;
   4070   unsigned Alignment = 0;
   4071   bool AteExtraComma = false;
   4072   bool isAtomic = false;
   4073   AtomicOrdering Ordering = NotAtomic;
   4074   SynchronizationScope Scope = CrossThread;
   4075 
   4076   if (Lex.getKind() == lltok::kw_atomic) {
   4077     isAtomic = true;
   4078     Lex.Lex();
   4079   }
   4080 
   4081   bool isVolatile = false;
   4082   if (Lex.getKind() == lltok::kw_volatile) {
   4083     isVolatile = true;
   4084     Lex.Lex();
   4085   }
   4086 
   4087   if (ParseTypeAndValue(Val, Loc, PFS) ||
   4088       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
   4089       ParseOptionalCommaAlign(Alignment, AteExtraComma))
   4090     return true;
   4091 
   4092   if (!Val->getType()->isPointerTy() ||
   4093       !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
   4094     return Error(Loc, "load operand must be a pointer to a first class type");
   4095   if (isAtomic && !Alignment)
   4096     return Error(Loc, "atomic load must have explicit non-zero alignment");
   4097   if (Ordering == Release || Ordering == AcquireRelease)
   4098     return Error(Loc, "atomic load cannot use Release ordering");
   4099 
   4100   Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
   4101   return AteExtraComma ? InstExtraComma : InstNormal;
   4102 }
   4103 
   4104 /// ParseStore
   4105 
   4106 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
   4107 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
   4108 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
   4109 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
   4110   Value *Val, *Ptr; LocTy Loc, PtrLoc;
   4111   unsigned Alignment = 0;
   4112   bool AteExtraComma = false;
   4113   bool isAtomic = false;
   4114   AtomicOrdering Ordering = NotAtomic;
   4115   SynchronizationScope Scope = CrossThread;
   4116 
   4117   if (Lex.getKind() == lltok::kw_atomic) {
   4118     isAtomic = true;
   4119     Lex.Lex();
   4120   }
   4121 
   4122   bool isVolatile = false;
   4123   if (Lex.getKind() == lltok::kw_volatile) {
   4124     isVolatile = true;
   4125     Lex.Lex();
   4126   }
   4127 
   4128   if (ParseTypeAndValue(Val, Loc, PFS) ||
   4129       ParseToken(lltok::comma, "expected ',' after store operand") ||
   4130       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
   4131       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
   4132       ParseOptionalCommaAlign(Alignment, AteExtraComma))
   4133     return true;
   4134 
   4135   if (!Ptr->getType()->isPointerTy())
   4136     return Error(PtrLoc, "store operand must be a pointer");
   4137   if (!Val->getType()->isFirstClassType())
   4138     return Error(Loc, "store operand must be a first class value");
   4139   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
   4140     return Error(Loc, "stored value and pointer type do not match");
   4141   if (isAtomic && !Alignment)
   4142     return Error(Loc, "atomic store must have explicit non-zero alignment");
   4143   if (Ordering == Acquire || Ordering == AcquireRelease)
   4144     return Error(Loc, "atomic store cannot use Acquire ordering");
   4145 
   4146   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
   4147   return AteExtraComma ? InstExtraComma : InstNormal;
   4148 }
   4149 
   4150 /// ParseCmpXchg
   4151 ///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
   4152 ///       'singlethread'? AtomicOrdering
   4153 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
   4154   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
   4155   bool AteExtraComma = false;
   4156   AtomicOrdering Ordering = NotAtomic;
   4157   SynchronizationScope Scope = CrossThread;
   4158   bool isVolatile = false;
   4159 
   4160   if (EatIfPresent(lltok::kw_volatile))
   4161     isVolatile = true;
   4162 
   4163   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
   4164       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
   4165       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
   4166       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
   4167       ParseTypeAndValue(New, NewLoc, PFS) ||
   4168       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
   4169     return true;
   4170 
   4171   if (Ordering == Unordered)
   4172     return TokError("cmpxchg cannot be unordered");
   4173   if (!Ptr->getType()->isPointerTy())
   4174     return Error(PtrLoc, "cmpxchg operand must be a pointer");
   4175   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
   4176     return Error(CmpLoc, "compare value and pointer type do not match");
   4177   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
   4178     return Error(NewLoc, "new value and pointer type do not match");
   4179   if (!New->getType()->isIntegerTy())
   4180     return Error(NewLoc, "cmpxchg operand must be an integer");
   4181   unsigned Size = New->getType()->getPrimitiveSizeInBits();
   4182   if (Size < 8 || (Size & (Size - 1)))
   4183     return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
   4184                          " integer");
   4185 
   4186   AtomicCmpXchgInst *CXI =
   4187     new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
   4188   CXI->setVolatile(isVolatile);
   4189   Inst = CXI;
   4190   return AteExtraComma ? InstExtraComma : InstNormal;
   4191 }
   4192 
   4193 /// ParseAtomicRMW
   4194 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
   4195 ///       'singlethread'? AtomicOrdering
   4196 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
   4197   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
   4198   bool AteExtraComma = false;
   4199   AtomicOrdering Ordering = NotAtomic;
   4200   SynchronizationScope Scope = CrossThread;
   4201   bool isVolatile = false;
   4202   AtomicRMWInst::BinOp Operation;
   4203 
   4204   if (EatIfPresent(lltok::kw_volatile))
   4205     isVolatile = true;
   4206 
   4207   switch (Lex.getKind()) {
   4208   default: return TokError("expected binary operation in atomicrmw");
   4209   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
   4210   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
   4211   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
   4212   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
   4213   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
   4214   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
   4215   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
   4216   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
   4217   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
   4218   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
   4219   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
   4220   }
   4221   Lex.Lex();  // Eat the operation.
   4222 
   4223   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
   4224       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
   4225       ParseTypeAndValue(Val, ValLoc, PFS) ||
   4226       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
   4227     return true;
   4228 
   4229   if (Ordering == Unordered)
   4230     return TokError("atomicrmw cannot be unordered");
   4231   if (!Ptr->getType()->isPointerTy())
   4232     return Error(PtrLoc, "atomicrmw operand must be a pointer");
   4233   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
   4234     return Error(ValLoc, "atomicrmw value and pointer type do not match");
   4235   if (!Val->getType()->isIntegerTy())
   4236     return Error(ValLoc, "atomicrmw operand must be an integer");
   4237   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
   4238   if (Size < 8 || (Size & (Size - 1)))
   4239     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
   4240                          " integer");
   4241 
   4242   AtomicRMWInst *RMWI =
   4243     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
   4244   RMWI->setVolatile(isVolatile);
   4245   Inst = RMWI;
   4246   return AteExtraComma ? InstExtraComma : InstNormal;
   4247 }
   4248 
   4249 /// ParseFence
   4250 ///   ::= 'fence' 'singlethread'? AtomicOrdering
   4251 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
   4252   AtomicOrdering Ordering = NotAtomic;
   4253   SynchronizationScope Scope = CrossThread;
   4254   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
   4255     return true;
   4256 
   4257   if (Ordering == Unordered)
   4258     return TokError("fence cannot be unordered");
   4259   if (Ordering == Monotonic)
   4260     return TokError("fence cannot be monotonic");
   4261 
   4262   Inst = new FenceInst(Context, Ordering, Scope);
   4263   return InstNormal;
   4264 }
   4265 
   4266 /// ParseGetElementPtr
   4267 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
   4268 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
   4269   Value *Ptr = 0;
   4270   Value *Val = 0;
   4271   LocTy Loc, EltLoc;
   4272 
   4273   bool InBounds = EatIfPresent(lltok::kw_inbounds);
   4274 
   4275   if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
   4276 
   4277   Type *BaseType = Ptr->getType();
   4278   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
   4279   if (!BasePointerType)
   4280     return Error(Loc, "base of getelementptr must be a pointer");
   4281 
   4282   SmallVector<Value*, 16> Indices;
   4283   bool AteExtraComma = false;
   4284   while (EatIfPresent(lltok::comma)) {
   4285     if (Lex.getKind() == lltok::MetadataVar) {
   4286       AteExtraComma = true;
   4287       break;
   4288     }
   4289     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
   4290     if (!Val->getType()->getScalarType()->isIntegerTy())
   4291       return Error(EltLoc, "getelementptr index must be an integer");
   4292     if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
   4293       return Error(EltLoc, "getelementptr index type missmatch");
   4294     if (Val->getType()->isVectorTy()) {
   4295       unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
   4296       unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
   4297       if (ValNumEl != PtrNumEl)
   4298         return Error(EltLoc,
   4299           "getelementptr vector index has a wrong number of elements");
   4300     }
   4301     Indices.push_back(Val);
   4302   }
   4303 
   4304   if (!Indices.empty() && !BasePointerType->getElementType()->isSized())
   4305     return Error(Loc, "base element of getelementptr must be sized");
   4306 
   4307   if (!GetElementPtrInst::getIndexedType(BaseType, Indices))
   4308     return Error(Loc, "invalid getelementptr indices");
   4309   Inst = GetElementPtrInst::Create(Ptr, Indices);
   4310   if (InBounds)
   4311     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
   4312   return AteExtraComma ? InstExtraComma : InstNormal;
   4313 }
   4314 
   4315 /// ParseExtractValue
   4316 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
   4317 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
   4318   Value *Val; LocTy Loc;
   4319   SmallVector<unsigned, 4> Indices;
   4320   bool AteExtraComma;
   4321   if (ParseTypeAndValue(Val, Loc, PFS) ||
   4322       ParseIndexList(Indices, AteExtraComma))
   4323     return true;
   4324 
   4325   if (!Val->getType()->isAggregateType())
   4326     return Error(Loc, "extractvalue operand must be aggregate type");
   4327 
   4328   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
   4329     return Error(Loc, "invalid indices for extractvalue");
   4330   Inst = ExtractValueInst::Create(Val, Indices);
   4331   return AteExtraComma ? InstExtraComma : InstNormal;
   4332 }
   4333 
   4334 /// ParseInsertValue
   4335 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
   4336 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
   4337   Value *Val0, *Val1; LocTy Loc0, Loc1;
   4338   SmallVector<unsigned, 4> Indices;
   4339   bool AteExtraComma;
   4340   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
   4341       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
   4342       ParseTypeAndValue(Val1, Loc1, PFS) ||
   4343       ParseIndexList(Indices, AteExtraComma))
   4344     return true;
   4345 
   4346   if (!Val0->getType()->isAggregateType())
   4347     return Error(Loc0, "insertvalue operand must be aggregate type");
   4348 
   4349   if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
   4350     return Error(Loc0, "invalid indices for insertvalue");
   4351   Inst = InsertValueInst::Create(Val0, Val1, Indices);
   4352   return AteExtraComma ? InstExtraComma : InstNormal;
   4353 }
   4354 
   4355 //===----------------------------------------------------------------------===//
   4356 // Embedded metadata.
   4357 //===----------------------------------------------------------------------===//
   4358 
   4359 /// ParseMDNodeVector
   4360 ///   ::= Element (',' Element)*
   4361 /// Element
   4362 ///   ::= 'null' | TypeAndValue
   4363 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
   4364                                  PerFunctionState *PFS) {
   4365   // Check for an empty list.
   4366   if (Lex.getKind() == lltok::rbrace)
   4367     return false;
   4368 
   4369   do {
   4370     // Null is a special case since it is typeless.
   4371     if (EatIfPresent(lltok::kw_null)) {
   4372       Elts.push_back(0);
   4373       continue;
   4374     }
   4375 
   4376     Value *V = 0;
   4377     if (ParseTypeAndValue(V, PFS)) return true;
   4378     Elts.push_back(V);
   4379   } while (EatIfPresent(lltok::comma));
   4380 
   4381   return false;
   4382 }
   4383