Home | History | Annotate | Download | only in yaml2obj
      1 //===- yaml2coff - Convert YAML to a COFF object file ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief The COFF component of yaml2obj.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "yaml2obj.h"
     16 #include "llvm/ADT/SmallString.h"
     17 #include "llvm/ADT/StringExtras.h"
     18 #include "llvm/ADT/StringMap.h"
     19 #include "llvm/ADT/StringSwitch.h"
     20 #include "llvm/Object/COFFYAML.h"
     21 #include "llvm/Support/Endian.h"
     22 #include "llvm/Support/MemoryBuffer.h"
     23 #include "llvm/Support/SourceMgr.h"
     24 #include "llvm/Support/raw_ostream.h"
     25 #include <vector>
     26 
     27 using namespace llvm;
     28 
     29 /// This parses a yaml stream that represents a COFF object file.
     30 /// See docs/yaml2obj for the yaml scheema.
     31 struct COFFParser {
     32   COFFParser(COFFYAML::Object &Obj) : Obj(Obj) {
     33     // A COFF string table always starts with a 4 byte size field. Offsets into
     34     // it include this size, so allocate it now.
     35     StringTable.append(4, 0);
     36   }
     37 
     38   bool parseSections() {
     39     for (std::vector<COFFYAML::Section>::iterator i = Obj.Sections.begin(),
     40            e = Obj.Sections.end(); i != e; ++i) {
     41       COFFYAML::Section &Sec = *i;
     42 
     43       // If the name is less than 8 bytes, store it in place, otherwise
     44       // store it in the string table.
     45       StringRef Name = Sec.Name;
     46 
     47       if (Name.size() <= COFF::NameSize) {
     48         std::copy(Name.begin(), Name.end(), Sec.Header.Name);
     49       } else {
     50         // Add string to the string table and format the index for output.
     51         unsigned Index = getStringIndex(Name);
     52         std::string str = utostr(Index);
     53         if (str.size() > 7) {
     54           errs() << "String table got too large";
     55           return false;
     56         }
     57         Sec.Header.Name[0] = '/';
     58         std::copy(str.begin(), str.end(), Sec.Header.Name + 1);
     59       }
     60 
     61       Sec.Header.Characteristics |= (Log2_32(Sec.Alignment) + 1) << 20;
     62     }
     63     return true;
     64   }
     65 
     66   bool parseSymbols() {
     67     for (std::vector<COFFYAML::Symbol>::iterator i = Obj.Symbols.begin(),
     68            e = Obj.Symbols.end(); i != e; ++i) {
     69       COFFYAML::Symbol &Sym = *i;
     70 
     71       // If the name is less than 8 bytes, store it in place, otherwise
     72       // store it in the string table.
     73       StringRef Name = Sym.Name;
     74       if (Name.size() <= COFF::NameSize) {
     75         std::copy(Name.begin(), Name.end(), Sym.Header.Name);
     76       } else {
     77         // Add string to the string table and format the index for output.
     78         unsigned Index = getStringIndex(Name);
     79         *reinterpret_cast<support::aligned_ulittle32_t*>(
     80             Sym.Header.Name + 4) = Index;
     81       }
     82 
     83       Sym.Header.Type = Sym.SimpleType;
     84       Sym.Header.Type |= Sym.ComplexType << COFF::SCT_COMPLEX_TYPE_SHIFT;
     85     }
     86     return true;
     87   }
     88 
     89   bool parse() {
     90     if (!parseSections())
     91       return false;
     92     if (!parseSymbols())
     93       return false;
     94     return true;
     95   }
     96 
     97   unsigned getStringIndex(StringRef Str) {
     98     StringMap<unsigned>::iterator i = StringTableMap.find(Str);
     99     if (i == StringTableMap.end()) {
    100       unsigned Index = StringTable.size();
    101       StringTable.append(Str.begin(), Str.end());
    102       StringTable.push_back(0);
    103       StringTableMap[Str] = Index;
    104       return Index;
    105     }
    106     return i->second;
    107   }
    108 
    109   COFFYAML::Object &Obj;
    110 
    111   StringMap<unsigned> StringTableMap;
    112   std::string StringTable;
    113 };
    114 
    115 // Take a CP and assign addresses and sizes to everything. Returns false if the
    116 // layout is not valid to do.
    117 static bool layoutCOFF(COFFParser &CP) {
    118   uint32_t SectionTableStart = 0;
    119   uint32_t SectionTableSize  = 0;
    120 
    121   // The section table starts immediately after the header, including the
    122   // optional header.
    123   SectionTableStart = sizeof(COFF::header) + CP.Obj.Header.SizeOfOptionalHeader;
    124   SectionTableSize = sizeof(COFF::section) * CP.Obj.Sections.size();
    125 
    126   uint32_t CurrentSectionDataOffset = SectionTableStart + SectionTableSize;
    127 
    128   // Assign each section data address consecutively.
    129   for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
    130                                                 e = CP.Obj.Sections.end();
    131                                                 i != e; ++i) {
    132     if (i->SectionData.binary_size() > 0) {
    133       i->Header.SizeOfRawData = i->SectionData.binary_size();
    134       i->Header.PointerToRawData = CurrentSectionDataOffset;
    135       CurrentSectionDataOffset += i->Header.SizeOfRawData;
    136       if (!i->Relocations.empty()) {
    137         i->Header.PointerToRelocations = CurrentSectionDataOffset;
    138         i->Header.NumberOfRelocations = i->Relocations.size();
    139         CurrentSectionDataOffset += i->Header.NumberOfRelocations *
    140           COFF::RelocationSize;
    141       }
    142       // TODO: Handle alignment.
    143     } else {
    144       i->Header.SizeOfRawData = 0;
    145       i->Header.PointerToRawData = 0;
    146     }
    147   }
    148 
    149   uint32_t SymbolTableStart = CurrentSectionDataOffset;
    150 
    151   // Calculate number of symbols.
    152   uint32_t NumberOfSymbols = 0;
    153   for (std::vector<COFFYAML::Symbol>::iterator i = CP.Obj.Symbols.begin(),
    154                                                e = CP.Obj.Symbols.end();
    155                                                i != e; ++i) {
    156     unsigned AuxBytes = i->AuxiliaryData.binary_size();
    157     if (AuxBytes % COFF::SymbolSize != 0) {
    158       errs() << "AuxiliaryData size not a multiple of symbol size!\n";
    159       return false;
    160     }
    161     i->Header.NumberOfAuxSymbols = AuxBytes / COFF::SymbolSize;
    162     NumberOfSymbols += 1 + i->Header.NumberOfAuxSymbols;
    163   }
    164 
    165   // Store all the allocated start addresses in the header.
    166   CP.Obj.Header.NumberOfSections = CP.Obj.Sections.size();
    167   CP.Obj.Header.NumberOfSymbols = NumberOfSymbols;
    168   CP.Obj.Header.PointerToSymbolTable = SymbolTableStart;
    169 
    170   *reinterpret_cast<support::ulittle32_t *>(&CP.StringTable[0])
    171     = CP.StringTable.size();
    172 
    173   return true;
    174 }
    175 
    176 template <typename value_type>
    177 struct binary_le_impl {
    178   value_type Value;
    179   binary_le_impl(value_type V) : Value(V) {}
    180 };
    181 
    182 template <typename value_type>
    183 raw_ostream &operator <<( raw_ostream &OS
    184                         , const binary_le_impl<value_type> &BLE) {
    185   char Buffer[sizeof(BLE.Value)];
    186   support::endian::write<value_type, support::little, support::unaligned>(
    187     Buffer, BLE.Value);
    188   OS.write(Buffer, sizeof(BLE.Value));
    189   return OS;
    190 }
    191 
    192 template <typename value_type>
    193 binary_le_impl<value_type> binary_le(value_type V) {
    194   return binary_le_impl<value_type>(V);
    195 }
    196 
    197 bool writeCOFF(COFFParser &CP, raw_ostream &OS) {
    198   OS << binary_le(CP.Obj.Header.Machine)
    199      << binary_le(CP.Obj.Header.NumberOfSections)
    200      << binary_le(CP.Obj.Header.TimeDateStamp)
    201      << binary_le(CP.Obj.Header.PointerToSymbolTable)
    202      << binary_le(CP.Obj.Header.NumberOfSymbols)
    203      << binary_le(CP.Obj.Header.SizeOfOptionalHeader)
    204      << binary_le(CP.Obj.Header.Characteristics);
    205 
    206   // Output section table.
    207   for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
    208                                                 e = CP.Obj.Sections.end();
    209                                                 i != e; ++i) {
    210     OS.write(i->Header.Name, COFF::NameSize);
    211     OS << binary_le(i->Header.VirtualSize)
    212        << binary_le(i->Header.VirtualAddress)
    213        << binary_le(i->Header.SizeOfRawData)
    214        << binary_le(i->Header.PointerToRawData)
    215        << binary_le(i->Header.PointerToRelocations)
    216        << binary_le(i->Header.PointerToLineNumbers)
    217        << binary_le(i->Header.NumberOfRelocations)
    218        << binary_le(i->Header.NumberOfLineNumbers)
    219        << binary_le(i->Header.Characteristics);
    220   }
    221 
    222   unsigned CurSymbol = 0;
    223   StringMap<unsigned> SymbolTableIndexMap;
    224   for (std::vector<COFFYAML::Symbol>::iterator I = CP.Obj.Symbols.begin(),
    225                                                E = CP.Obj.Symbols.end();
    226        I != E; ++I) {
    227     SymbolTableIndexMap[I->Name] = CurSymbol;
    228     CurSymbol += 1 + I->Header.NumberOfAuxSymbols;
    229   }
    230 
    231   // Output section data.
    232   for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
    233                                                 e = CP.Obj.Sections.end();
    234                                                 i != e; ++i) {
    235     i->SectionData.writeAsBinary(OS);
    236     for (unsigned I2 = 0, E2 = i->Relocations.size(); I2 != E2; ++I2) {
    237       const COFFYAML::Relocation &R = i->Relocations[I2];
    238       uint32_t SymbolTableIndex = SymbolTableIndexMap[R.SymbolName];
    239       OS << binary_le(R.VirtualAddress)
    240          << binary_le(SymbolTableIndex)
    241          << binary_le(R.Type);
    242     }
    243   }
    244 
    245   // Output symbol table.
    246 
    247   for (std::vector<COFFYAML::Symbol>::const_iterator i = CP.Obj.Symbols.begin(),
    248                                                      e = CP.Obj.Symbols.end();
    249                                                      i != e; ++i) {
    250     OS.write(i->Header.Name, COFF::NameSize);
    251     OS << binary_le(i->Header.Value)
    252        << binary_le(i->Header.SectionNumber)
    253        << binary_le(i->Header.Type)
    254        << binary_le(i->Header.StorageClass)
    255        << binary_le(i->Header.NumberOfAuxSymbols);
    256     i->AuxiliaryData.writeAsBinary(OS);
    257   }
    258 
    259   // Output string table.
    260   OS.write(&CP.StringTable[0], CP.StringTable.size());
    261   return true;
    262 }
    263 
    264 int yaml2coff(llvm::raw_ostream &Out, llvm::MemoryBuffer *Buf) {
    265   yaml::Input YIn(Buf->getBuffer());
    266   COFFYAML::Object Doc;
    267   YIn >> Doc;
    268   if (YIn.error()) {
    269     errs() << "yaml2obj: Failed to parse YAML file!\n";
    270     return 1;
    271   }
    272 
    273   COFFParser CP(Doc);
    274   if (!CP.parse()) {
    275     errs() << "yaml2obj: Failed to parse YAML file!\n";
    276     return 1;
    277   }
    278 
    279   if (!layoutCOFF(CP)) {
    280     errs() << "yaml2obj: Failed to layout COFF file!\n";
    281     return 1;
    282   }
    283   if (!writeCOFF(CP, Out)) {
    284     errs() << "yaml2obj: Failed to write COFF file!\n";
    285     return 1;
    286   }
    287   return 0;
    288 }
    289