1 /* 2 wiring.c - Partial implementation of the Wiring API for the ATmega8. 3 Part of Arduino - http://www.arduino.cc/ 4 5 Copyright (c) 2005-2006 David A. Mellis 6 7 This library is free software; you can redistribute it and/or 8 modify it under the terms of the GNU Lesser General Public 9 License as published by the Free Software Foundation; either 10 version 2.1 of the License, or (at your option) any later version. 11 12 This library is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 Lesser General Public License for more details. 16 17 You should have received a copy of the GNU Lesser General 18 Public License along with this library; if not, write to the 19 Free Software Foundation, Inc., 59 Temple Place, Suite 330, 20 Boston, MA 02111-1307 USA 21 22 $Id$ 23 */ 24 25 #include "wiring_private.h" 26 27 // the prescaler is set so that timer0 ticks every 64 clock cycles, and the 28 // the overflow handler is called every 256 ticks. 29 #define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256)) 30 31 // the whole number of milliseconds per timer0 overflow 32 #define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000) 33 34 // the fractional number of milliseconds per timer0 overflow. we shift right 35 // by three to fit these numbers into a byte. (for the clock speeds we care 36 // about - 8 and 16 MHz - this doesn't lose precision.) 37 #define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3) 38 #define FRACT_MAX (1000 >> 3) 39 40 volatile unsigned long timer0_overflow_count = 0; 41 volatile unsigned long timer0_millis = 0; 42 static unsigned char timer0_fract = 0; 43 44 SIGNAL(TIMER0_OVF_vect) 45 { 46 // copy these to local variables so they can be stored in registers 47 // (volatile variables must be read from memory on every access) 48 unsigned long m = timer0_millis; 49 unsigned char f = timer0_fract; 50 51 m += MILLIS_INC; 52 f += FRACT_INC; 53 if (f >= FRACT_MAX) { 54 f -= FRACT_MAX; 55 m += 1; 56 } 57 58 timer0_fract = f; 59 timer0_millis = m; 60 timer0_overflow_count++; 61 } 62 63 unsigned long millis() 64 { 65 unsigned long m; 66 uint8_t oldSREG = SREG; 67 68 // disable interrupts while we read timer0_millis or we might get an 69 // inconsistent value (e.g. in the middle of a write to timer0_millis) 70 cli(); 71 m = timer0_millis; 72 SREG = oldSREG; 73 74 return m; 75 } 76 77 unsigned long micros() { 78 unsigned long m; 79 uint8_t oldSREG = SREG, t; 80 81 cli(); 82 m = timer0_overflow_count; 83 #if defined(TCNT0) 84 t = TCNT0; 85 #elif defined(TCNT0L) 86 t = TCNT0L; 87 #else 88 #error TIMER 0 not defined 89 #endif 90 91 92 #ifdef TIFR0 93 if ((TIFR0 & _BV(TOV0)) && (t < 255)) 94 m++; 95 #else 96 if ((TIFR & _BV(TOV0)) && (t < 255)) 97 m++; 98 #endif 99 100 SREG = oldSREG; 101 102 return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond()); 103 } 104 105 void delay(unsigned long ms) 106 { 107 uint16_t start = (uint16_t)micros(); 108 109 while (ms > 0) { 110 if (((uint16_t)micros() - start) >= 1000) { 111 ms--; 112 start += 1000; 113 } 114 } 115 } 116 117 /* Delay for the given number of microseconds. Assumes a 8 or 16 MHz clock. */ 118 void delayMicroseconds(unsigned int us) 119 { 120 // calling avrlib's delay_us() function with low values (e.g. 1 or 121 // 2 microseconds) gives delays longer than desired. 122 //delay_us(us); 123 124 #if F_CPU >= 16000000L 125 // for the 16 MHz clock on most Arduino boards 126 127 // for a one-microsecond delay, simply return. the overhead 128 // of the function call yields a delay of approximately 1 1/8 us. 129 if (--us == 0) 130 return; 131 132 // the following loop takes a quarter of a microsecond (4 cycles) 133 // per iteration, so execute it four times for each microsecond of 134 // delay requested. 135 us <<= 2; 136 137 // account for the time taken in the preceeding commands. 138 us -= 2; 139 #else 140 // for the 8 MHz internal clock on the ATmega168 141 142 // for a one- or two-microsecond delay, simply return. the overhead of 143 // the function calls takes more than two microseconds. can't just 144 // subtract two, since us is unsigned; we'd overflow. 145 if (--us == 0) 146 return; 147 if (--us == 0) 148 return; 149 150 // the following loop takes half of a microsecond (4 cycles) 151 // per iteration, so execute it twice for each microsecond of 152 // delay requested. 153 us <<= 1; 154 155 // partially compensate for the time taken by the preceeding commands. 156 // we can't subtract any more than this or we'd overflow w/ small delays. 157 us--; 158 #endif 159 160 // busy wait 161 __asm__ __volatile__ ( 162 "1: sbiw %0,1" "\n\t" // 2 cycles 163 "brne 1b" : "=w" (us) : "0" (us) // 2 cycles 164 ); 165 } 166 167 void init() 168 { 169 // this needs to be called before setup() or some functions won't 170 // work there 171 sei(); 172 173 // on the ATmega168, timer 0 is also used for fast hardware pwm 174 // (using phase-correct PWM would mean that timer 0 overflowed half as often 175 // resulting in different millis() behavior on the ATmega8 and ATmega168) 176 #if defined(TCCR0A) && defined(WGM01) 177 sbi(TCCR0A, WGM01); 178 sbi(TCCR0A, WGM00); 179 #endif 180 181 // set timer 0 prescale factor to 64 182 #if defined(__AVR_ATmega128__) 183 // CPU specific: different values for the ATmega128 184 sbi(TCCR0, CS02); 185 #elif defined(TCCR0) && defined(CS01) && defined(CS00) 186 // this combination is for the standard atmega8 187 sbi(TCCR0, CS01); 188 sbi(TCCR0, CS00); 189 #elif defined(TCCR0B) && defined(CS01) && defined(CS00) 190 // this combination is for the standard 168/328/1280/2560 191 sbi(TCCR0B, CS01); 192 sbi(TCCR0B, CS00); 193 #elif defined(TCCR0A) && defined(CS01) && defined(CS00) 194 // this combination is for the __AVR_ATmega645__ series 195 sbi(TCCR0A, CS01); 196 sbi(TCCR0A, CS00); 197 #else 198 #error Timer 0 prescale factor 64 not set correctly 199 #endif 200 201 // enable timer 0 overflow interrupt 202 #if defined(TIMSK) && defined(TOIE0) 203 sbi(TIMSK, TOIE0); 204 #elif defined(TIMSK0) && defined(TOIE0) 205 sbi(TIMSK0, TOIE0); 206 #else 207 #error Timer 0 overflow interrupt not set correctly 208 #endif 209 210 // timers 1 and 2 are used for phase-correct hardware pwm 211 // this is better for motors as it ensures an even waveform 212 // note, however, that fast pwm mode can achieve a frequency of up 213 // 8 MHz (with a 16 MHz clock) at 50% duty cycle 214 215 TCCR1B = 0; 216 217 // set timer 1 prescale factor to 64 218 #if defined(TCCR1B) && defined(CS11) && defined(CS10) 219 sbi(TCCR1B, CS11); 220 sbi(TCCR1B, CS10); 221 #elif defined(TCCR1) && defined(CS11) && defined(CS10) 222 sbi(TCCR1, CS11); 223 sbi(TCCR1, CS10); 224 #endif 225 // put timer 1 in 8-bit phase correct pwm mode 226 #if defined(TCCR1A) && defined(WGM10) 227 sbi(TCCR1A, WGM10); 228 #elif defined(TCCR1) 229 #warning this needs to be finished 230 #endif 231 232 // set timer 2 prescale factor to 64 233 #if defined(TCCR2) && defined(CS22) 234 sbi(TCCR2, CS22); 235 #elif defined(TCCR2B) && defined(CS22) 236 sbi(TCCR2B, CS22); 237 #else 238 #warning Timer 2 not finished (may not be present on this CPU) 239 #endif 240 241 // configure timer 2 for phase correct pwm (8-bit) 242 #if defined(TCCR2) && defined(WGM20) 243 sbi(TCCR2, WGM20); 244 #elif defined(TCCR2A) && defined(WGM20) 245 sbi(TCCR2A, WGM20); 246 #else 247 #warning Timer 2 not finished (may not be present on this CPU) 248 #endif 249 250 #if defined(TCCR3B) && defined(CS31) && defined(WGM30) 251 sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64 252 sbi(TCCR3B, CS30); 253 sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode 254 #endif 255 256 #if defined(TCCR4B) && defined(CS41) && defined(WGM40) 257 sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64 258 sbi(TCCR4B, CS40); 259 sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode 260 #endif 261 262 #if defined(TCCR5B) && defined(CS51) && defined(WGM50) 263 sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64 264 sbi(TCCR5B, CS50); 265 sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode 266 #endif 267 268 #if defined(ADCSRA) 269 // set a2d prescale factor to 128 270 // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range. 271 // XXX: this will not work properly for other clock speeds, and 272 // this code should use F_CPU to determine the prescale factor. 273 sbi(ADCSRA, ADPS2); 274 sbi(ADCSRA, ADPS1); 275 sbi(ADCSRA, ADPS0); 276 277 // enable a2d conversions 278 sbi(ADCSRA, ADEN); 279 #endif 280 281 // the bootloader connects pins 0 and 1 to the USART; disconnect them 282 // here so they can be used as normal digital i/o; they will be 283 // reconnected in Serial.begin() 284 #if defined(UCSRB) 285 UCSRB = 0; 286 #elif defined(UCSR0B) 287 UCSR0B = 0; 288 #endif 289 } 290