Home | History | Annotate | Download | only in arduino
      1 /*
      2   wiring.c - Partial implementation of the Wiring API for the ATmega8.
      3   Part of Arduino - http://www.arduino.cc/
      4 
      5   Copyright (c) 2005-2006 David A. Mellis
      6 
      7   This library is free software; you can redistribute it and/or
      8   modify it under the terms of the GNU Lesser General Public
      9   License as published by the Free Software Foundation; either
     10   version 2.1 of the License, or (at your option) any later version.
     11 
     12   This library is distributed in the hope that it will be useful,
     13   but WITHOUT ANY WARRANTY; without even the implied warranty of
     14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     15   Lesser General Public License for more details.
     16 
     17   You should have received a copy of the GNU Lesser General
     18   Public License along with this library; if not, write to the
     19   Free Software Foundation, Inc., 59 Temple Place, Suite 330,
     20   Boston, MA  02111-1307  USA
     21 
     22   $Id$
     23 */
     24 
     25 #include "wiring_private.h"
     26 
     27 // the prescaler is set so that timer0 ticks every 64 clock cycles, and the
     28 // the overflow handler is called every 256 ticks.
     29 #define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
     30 
     31 // the whole number of milliseconds per timer0 overflow
     32 #define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
     33 
     34 // the fractional number of milliseconds per timer0 overflow. we shift right
     35 // by three to fit these numbers into a byte. (for the clock speeds we care
     36 // about - 8 and 16 MHz - this doesn't lose precision.)
     37 #define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
     38 #define FRACT_MAX (1000 >> 3)
     39 
     40 volatile unsigned long timer0_overflow_count = 0;
     41 volatile unsigned long timer0_millis = 0;
     42 static unsigned char timer0_fract = 0;
     43 
     44 SIGNAL(TIMER0_OVF_vect)
     45 {
     46 	// copy these to local variables so they can be stored in registers
     47 	// (volatile variables must be read from memory on every access)
     48 	unsigned long m = timer0_millis;
     49 	unsigned char f = timer0_fract;
     50 
     51 	m += MILLIS_INC;
     52 	f += FRACT_INC;
     53 	if (f >= FRACT_MAX) {
     54 		f -= FRACT_MAX;
     55 		m += 1;
     56 	}
     57 
     58 	timer0_fract = f;
     59 	timer0_millis = m;
     60 	timer0_overflow_count++;
     61 }
     62 
     63 unsigned long millis()
     64 {
     65 	unsigned long m;
     66 	uint8_t oldSREG = SREG;
     67 
     68 	// disable interrupts while we read timer0_millis or we might get an
     69 	// inconsistent value (e.g. in the middle of a write to timer0_millis)
     70 	cli();
     71 	m = timer0_millis;
     72 	SREG = oldSREG;
     73 
     74 	return m;
     75 }
     76 
     77 unsigned long micros() {
     78 	unsigned long m;
     79 	uint8_t oldSREG = SREG, t;
     80 
     81 	cli();
     82 	m = timer0_overflow_count;
     83 #if defined(TCNT0)
     84 	t = TCNT0;
     85 #elif defined(TCNT0L)
     86 	t = TCNT0L;
     87 #else
     88 	#error TIMER 0 not defined
     89 #endif
     90 
     91 
     92 #ifdef TIFR0
     93 	if ((TIFR0 & _BV(TOV0)) && (t < 255))
     94 		m++;
     95 #else
     96 	if ((TIFR & _BV(TOV0)) && (t < 255))
     97 		m++;
     98 #endif
     99 
    100 	SREG = oldSREG;
    101 
    102 	return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
    103 }
    104 
    105 void delay(unsigned long ms)
    106 {
    107 	uint16_t start = (uint16_t)micros();
    108 
    109 	while (ms > 0) {
    110 		if (((uint16_t)micros() - start) >= 1000) {
    111 			ms--;
    112 			start += 1000;
    113 		}
    114 	}
    115 }
    116 
    117 /* Delay for the given number of microseconds.  Assumes a 8 or 16 MHz clock. */
    118 void delayMicroseconds(unsigned int us)
    119 {
    120 	// calling avrlib's delay_us() function with low values (e.g. 1 or
    121 	// 2 microseconds) gives delays longer than desired.
    122 	//delay_us(us);
    123 
    124 #if F_CPU >= 16000000L
    125 	// for the 16 MHz clock on most Arduino boards
    126 
    127 	// for a one-microsecond delay, simply return.  the overhead
    128 	// of the function call yields a delay of approximately 1 1/8 us.
    129 	if (--us == 0)
    130 		return;
    131 
    132 	// the following loop takes a quarter of a microsecond (4 cycles)
    133 	// per iteration, so execute it four times for each microsecond of
    134 	// delay requested.
    135 	us <<= 2;
    136 
    137 	// account for the time taken in the preceeding commands.
    138 	us -= 2;
    139 #else
    140 	// for the 8 MHz internal clock on the ATmega168
    141 
    142 	// for a one- or two-microsecond delay, simply return.  the overhead of
    143 	// the function calls takes more than two microseconds.  can't just
    144 	// subtract two, since us is unsigned; we'd overflow.
    145 	if (--us == 0)
    146 		return;
    147 	if (--us == 0)
    148 		return;
    149 
    150 	// the following loop takes half of a microsecond (4 cycles)
    151 	// per iteration, so execute it twice for each microsecond of
    152 	// delay requested.
    153 	us <<= 1;
    154 
    155 	// partially compensate for the time taken by the preceeding commands.
    156 	// we can't subtract any more than this or we'd overflow w/ small delays.
    157 	us--;
    158 #endif
    159 
    160 	// busy wait
    161 	__asm__ __volatile__ (
    162 		"1: sbiw %0,1" "\n\t" // 2 cycles
    163 		"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
    164 	);
    165 }
    166 
    167 void init()
    168 {
    169 	// this needs to be called before setup() or some functions won't
    170 	// work there
    171 	sei();
    172 
    173 	// on the ATmega168, timer 0 is also used for fast hardware pwm
    174 	// (using phase-correct PWM would mean that timer 0 overflowed half as often
    175 	// resulting in different millis() behavior on the ATmega8 and ATmega168)
    176 #if defined(TCCR0A) && defined(WGM01)
    177 	sbi(TCCR0A, WGM01);
    178 	sbi(TCCR0A, WGM00);
    179 #endif
    180 
    181 	// set timer 0 prescale factor to 64
    182 #if defined(__AVR_ATmega128__)
    183 	// CPU specific: different values for the ATmega128
    184 	sbi(TCCR0, CS02);
    185 #elif defined(TCCR0) && defined(CS01) && defined(CS00)
    186 	// this combination is for the standard atmega8
    187 	sbi(TCCR0, CS01);
    188 	sbi(TCCR0, CS00);
    189 #elif defined(TCCR0B) && defined(CS01) && defined(CS00)
    190 	// this combination is for the standard 168/328/1280/2560
    191 	sbi(TCCR0B, CS01);
    192 	sbi(TCCR0B, CS00);
    193 #elif defined(TCCR0A) && defined(CS01) && defined(CS00)
    194 	// this combination is for the __AVR_ATmega645__ series
    195 	sbi(TCCR0A, CS01);
    196 	sbi(TCCR0A, CS00);
    197 #else
    198 	#error Timer 0 prescale factor 64 not set correctly
    199 #endif
    200 
    201 	// enable timer 0 overflow interrupt
    202 #if defined(TIMSK) && defined(TOIE0)
    203 	sbi(TIMSK, TOIE0);
    204 #elif defined(TIMSK0) && defined(TOIE0)
    205 	sbi(TIMSK0, TOIE0);
    206 #else
    207 	#error	Timer 0 overflow interrupt not set correctly
    208 #endif
    209 
    210 	// timers 1 and 2 are used for phase-correct hardware pwm
    211 	// this is better for motors as it ensures an even waveform
    212 	// note, however, that fast pwm mode can achieve a frequency of up
    213 	// 8 MHz (with a 16 MHz clock) at 50% duty cycle
    214 
    215 	TCCR1B = 0;
    216 
    217 	// set timer 1 prescale factor to 64
    218 #if defined(TCCR1B) && defined(CS11) && defined(CS10)
    219 	sbi(TCCR1B, CS11);
    220 	sbi(TCCR1B, CS10);
    221 #elif defined(TCCR1) && defined(CS11) && defined(CS10)
    222 	sbi(TCCR1, CS11);
    223 	sbi(TCCR1, CS10);
    224 #endif
    225 	// put timer 1 in 8-bit phase correct pwm mode
    226 #if defined(TCCR1A) && defined(WGM10)
    227 	sbi(TCCR1A, WGM10);
    228 #elif defined(TCCR1)
    229 	#warning this needs to be finished
    230 #endif
    231 
    232 	// set timer 2 prescale factor to 64
    233 #if defined(TCCR2) && defined(CS22)
    234 	sbi(TCCR2, CS22);
    235 #elif defined(TCCR2B) && defined(CS22)
    236 	sbi(TCCR2B, CS22);
    237 #else
    238 	#warning Timer 2 not finished (may not be present on this CPU)
    239 #endif
    240 
    241 	// configure timer 2 for phase correct pwm (8-bit)
    242 #if defined(TCCR2) && defined(WGM20)
    243 	sbi(TCCR2, WGM20);
    244 #elif defined(TCCR2A) && defined(WGM20)
    245 	sbi(TCCR2A, WGM20);
    246 #else
    247 	#warning Timer 2 not finished (may not be present on this CPU)
    248 #endif
    249 
    250 #if defined(TCCR3B) && defined(CS31) && defined(WGM30)
    251 	sbi(TCCR3B, CS31);		// set timer 3 prescale factor to 64
    252 	sbi(TCCR3B, CS30);
    253 	sbi(TCCR3A, WGM30);		// put timer 3 in 8-bit phase correct pwm mode
    254 #endif
    255 
    256 #if defined(TCCR4B) && defined(CS41) && defined(WGM40)
    257 	sbi(TCCR4B, CS41);		// set timer 4 prescale factor to 64
    258 	sbi(TCCR4B, CS40);
    259 	sbi(TCCR4A, WGM40);		// put timer 4 in 8-bit phase correct pwm mode
    260 #endif
    261 
    262 #if defined(TCCR5B) && defined(CS51) && defined(WGM50)
    263 	sbi(TCCR5B, CS51);		// set timer 5 prescale factor to 64
    264 	sbi(TCCR5B, CS50);
    265 	sbi(TCCR5A, WGM50);		// put timer 5 in 8-bit phase correct pwm mode
    266 #endif
    267 
    268 #if defined(ADCSRA)
    269 	// set a2d prescale factor to 128
    270 	// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
    271 	// XXX: this will not work properly for other clock speeds, and
    272 	// this code should use F_CPU to determine the prescale factor.
    273 	sbi(ADCSRA, ADPS2);
    274 	sbi(ADCSRA, ADPS1);
    275 	sbi(ADCSRA, ADPS0);
    276 
    277 	// enable a2d conversions
    278 	sbi(ADCSRA, ADEN);
    279 #endif
    280 
    281 	// the bootloader connects pins 0 and 1 to the USART; disconnect them
    282 	// here so they can be used as normal digital i/o; they will be
    283 	// reconnected in Serial.begin()
    284 #if defined(UCSRB)
    285 	UCSRB = 0;
    286 #elif defined(UCSR0B)
    287 	UCSR0B = 0;
    288 #endif
    289 }
    290