Home | History | Annotate | Download | only in CppBackend
      1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
     11 // LLVM IR interface. The input module is assumed to be verified.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CPPTargetMachine.h"
     16 #include "llvm/ADT/SmallPtrSet.h"
     17 #include "llvm/ADT/StringExtras.h"
     18 #include "llvm/Config/config.h"
     19 #include "llvm/IR/CallingConv.h"
     20 #include "llvm/IR/Constants.h"
     21 #include "llvm/IR/DerivedTypes.h"
     22 #include "llvm/IR/InlineAsm.h"
     23 #include "llvm/IR/Instruction.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/Module.h"
     26 #include "llvm/MC/MCAsmInfo.h"
     27 #include "llvm/MC/MCInstrInfo.h"
     28 #include "llvm/MC/MCSubtargetInfo.h"
     29 #include "llvm/Pass.h"
     30 #include "llvm/PassManager.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/FormattedStream.h"
     34 #include "llvm/Support/TargetRegistry.h"
     35 #include <algorithm>
     36 #include <cstdio>
     37 #include <map>
     38 #include <set>
     39 using namespace llvm;
     40 
     41 static cl::opt<std::string>
     42 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
     43          cl::value_desc("function name"));
     44 
     45 enum WhatToGenerate {
     46   GenProgram,
     47   GenModule,
     48   GenContents,
     49   GenFunction,
     50   GenFunctions,
     51   GenInline,
     52   GenVariable,
     53   GenType
     54 };
     55 
     56 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
     57   cl::desc("Choose what kind of output to generate"),
     58   cl::init(GenProgram),
     59   cl::values(
     60     clEnumValN(GenProgram,  "program",   "Generate a complete program"),
     61     clEnumValN(GenModule,   "module",    "Generate a module definition"),
     62     clEnumValN(GenContents, "contents",  "Generate contents of a module"),
     63     clEnumValN(GenFunction, "function",  "Generate a function definition"),
     64     clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
     65     clEnumValN(GenInline,   "inline",    "Generate an inline function"),
     66     clEnumValN(GenVariable, "variable",  "Generate a variable definition"),
     67     clEnumValN(GenType,     "type",      "Generate a type definition"),
     68     clEnumValEnd
     69   )
     70 );
     71 
     72 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
     73   cl::desc("Specify the name of the thing to generate"),
     74   cl::init("!bad!"));
     75 
     76 extern "C" void LLVMInitializeCppBackendTarget() {
     77   // Register the target.
     78   RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
     79 }
     80 
     81 namespace {
     82   typedef std::vector<Type*> TypeList;
     83   typedef std::map<Type*,std::string> TypeMap;
     84   typedef std::map<const Value*,std::string> ValueMap;
     85   typedef std::set<std::string> NameSet;
     86   typedef std::set<Type*> TypeSet;
     87   typedef std::set<const Value*> ValueSet;
     88   typedef std::map<const Value*,std::string> ForwardRefMap;
     89 
     90   /// CppWriter - This class is the main chunk of code that converts an LLVM
     91   /// module to a C++ translation unit.
     92   class CppWriter : public ModulePass {
     93     formatted_raw_ostream &Out;
     94     const Module *TheModule;
     95     uint64_t uniqueNum;
     96     TypeMap TypeNames;
     97     ValueMap ValueNames;
     98     NameSet UsedNames;
     99     TypeSet DefinedTypes;
    100     ValueSet DefinedValues;
    101     ForwardRefMap ForwardRefs;
    102     bool is_inline;
    103     unsigned indent_level;
    104 
    105   public:
    106     static char ID;
    107     explicit CppWriter(formatted_raw_ostream &o) :
    108       ModulePass(ID), Out(o), uniqueNum(0), is_inline(false), indent_level(0){}
    109 
    110     virtual const char *getPassName() const { return "C++ backend"; }
    111 
    112     bool runOnModule(Module &M);
    113 
    114     void printProgram(const std::string& fname, const std::string& modName );
    115     void printModule(const std::string& fname, const std::string& modName );
    116     void printContents(const std::string& fname, const std::string& modName );
    117     void printFunction(const std::string& fname, const std::string& funcName );
    118     void printFunctions();
    119     void printInline(const std::string& fname, const std::string& funcName );
    120     void printVariable(const std::string& fname, const std::string& varName );
    121     void printType(const std::string& fname, const std::string& typeName );
    122 
    123     void error(const std::string& msg);
    124 
    125 
    126     formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
    127     inline void in() { indent_level++; }
    128     inline void out() { if (indent_level >0) indent_level--; }
    129 
    130   private:
    131     void printLinkageType(GlobalValue::LinkageTypes LT);
    132     void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
    133     void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM);
    134     void printCallingConv(CallingConv::ID cc);
    135     void printEscapedString(const std::string& str);
    136     void printCFP(const ConstantFP* CFP);
    137 
    138     std::string getCppName(Type* val);
    139     inline void printCppName(Type* val);
    140 
    141     std::string getCppName(const Value* val);
    142     inline void printCppName(const Value* val);
    143 
    144     void printAttributes(const AttributeSet &PAL, const std::string &name);
    145     void printType(Type* Ty);
    146     void printTypes(const Module* M);
    147 
    148     void printConstant(const Constant *CPV);
    149     void printConstants(const Module* M);
    150 
    151     void printVariableUses(const GlobalVariable *GV);
    152     void printVariableHead(const GlobalVariable *GV);
    153     void printVariableBody(const GlobalVariable *GV);
    154 
    155     void printFunctionUses(const Function *F);
    156     void printFunctionHead(const Function *F);
    157     void printFunctionBody(const Function *F);
    158     void printInstruction(const Instruction *I, const std::string& bbname);
    159     std::string getOpName(const Value*);
    160 
    161     void printModuleBody();
    162   };
    163 } // end anonymous namespace.
    164 
    165 formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
    166   Out << '\n';
    167   if (delta >= 0 || indent_level >= unsigned(-delta))
    168     indent_level += delta;
    169   Out.indent(indent_level);
    170   return Out;
    171 }
    172 
    173 static inline void sanitize(std::string &str) {
    174   for (size_t i = 0; i < str.length(); ++i)
    175     if (!isalnum(str[i]) && str[i] != '_')
    176       str[i] = '_';
    177 }
    178 
    179 static std::string getTypePrefix(Type *Ty) {
    180   switch (Ty->getTypeID()) {
    181   case Type::VoidTyID:     return "void_";
    182   case Type::IntegerTyID:
    183     return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
    184   case Type::FloatTyID:    return "float_";
    185   case Type::DoubleTyID:   return "double_";
    186   case Type::LabelTyID:    return "label_";
    187   case Type::FunctionTyID: return "func_";
    188   case Type::StructTyID:   return "struct_";
    189   case Type::ArrayTyID:    return "array_";
    190   case Type::PointerTyID:  return "ptr_";
    191   case Type::VectorTyID:   return "packed_";
    192   default:                 return "other_";
    193   }
    194 }
    195 
    196 void CppWriter::error(const std::string& msg) {
    197   report_fatal_error(msg);
    198 }
    199 
    200 static inline std::string ftostr(const APFloat& V) {
    201   std::string Buf;
    202   if (&V.getSemantics() == &APFloat::IEEEdouble) {
    203     raw_string_ostream(Buf) << V.convertToDouble();
    204     return Buf;
    205   } else if (&V.getSemantics() == &APFloat::IEEEsingle) {
    206     raw_string_ostream(Buf) << (double)V.convertToFloat();
    207     return Buf;
    208   }
    209   return "<unknown format in ftostr>"; // error
    210 }
    211 
    212 // printCFP - Print a floating point constant .. very carefully :)
    213 // This makes sure that conversion to/from floating yields the same binary
    214 // result so that we don't lose precision.
    215 void CppWriter::printCFP(const ConstantFP *CFP) {
    216   bool ignored;
    217   APFloat APF = APFloat(CFP->getValueAPF());  // copy
    218   if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
    219     APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
    220   Out << "ConstantFP::get(mod->getContext(), ";
    221   Out << "APFloat(";
    222 #if HAVE_PRINTF_A
    223   char Buffer[100];
    224   sprintf(Buffer, "%A", APF.convertToDouble());
    225   if ((!strncmp(Buffer, "0x", 2) ||
    226        !strncmp(Buffer, "-0x", 3) ||
    227        !strncmp(Buffer, "+0x", 3)) &&
    228       APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
    229     if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
    230       Out << "BitsToDouble(" << Buffer << ")";
    231     else
    232       Out << "BitsToFloat((float)" << Buffer << ")";
    233     Out << ")";
    234   } else {
    235 #endif
    236     std::string StrVal = ftostr(CFP->getValueAPF());
    237 
    238     while (StrVal[0] == ' ')
    239       StrVal.erase(StrVal.begin());
    240 
    241     // Check to make sure that the stringized number is not some string like
    242     // "Inf" or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
    243     if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
    244          ((StrVal[0] == '-' || StrVal[0] == '+') &&
    245           (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
    246         (CFP->isExactlyValue(atof(StrVal.c_str())))) {
    247       if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
    248         Out <<  StrVal;
    249       else
    250         Out << StrVal << "f";
    251     } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
    252       Out << "BitsToDouble(0x"
    253           << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
    254           << "ULL) /* " << StrVal << " */";
    255     else
    256       Out << "BitsToFloat(0x"
    257           << utohexstr((uint32_t)CFP->getValueAPF().
    258                                       bitcastToAPInt().getZExtValue())
    259           << "U) /* " << StrVal << " */";
    260     Out << ")";
    261 #if HAVE_PRINTF_A
    262   }
    263 #endif
    264   Out << ")";
    265 }
    266 
    267 void CppWriter::printCallingConv(CallingConv::ID cc){
    268   // Print the calling convention.
    269   switch (cc) {
    270   case CallingConv::C:     Out << "CallingConv::C"; break;
    271   case CallingConv::Fast:  Out << "CallingConv::Fast"; break;
    272   case CallingConv::Cold:  Out << "CallingConv::Cold"; break;
    273   case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
    274   default:                 Out << cc; break;
    275   }
    276 }
    277 
    278 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
    279   switch (LT) {
    280   case GlobalValue::InternalLinkage:
    281     Out << "GlobalValue::InternalLinkage"; break;
    282   case GlobalValue::PrivateLinkage:
    283     Out << "GlobalValue::PrivateLinkage"; break;
    284   case GlobalValue::LinkerPrivateLinkage:
    285     Out << "GlobalValue::LinkerPrivateLinkage"; break;
    286   case GlobalValue::LinkerPrivateWeakLinkage:
    287     Out << "GlobalValue::LinkerPrivateWeakLinkage"; break;
    288   case GlobalValue::AvailableExternallyLinkage:
    289     Out << "GlobalValue::AvailableExternallyLinkage "; break;
    290   case GlobalValue::LinkOnceAnyLinkage:
    291     Out << "GlobalValue::LinkOnceAnyLinkage "; break;
    292   case GlobalValue::LinkOnceODRLinkage:
    293     Out << "GlobalValue::LinkOnceODRLinkage "; break;
    294   case GlobalValue::LinkOnceODRAutoHideLinkage:
    295     Out << "GlobalValue::LinkOnceODRAutoHideLinkage"; break;
    296   case GlobalValue::WeakAnyLinkage:
    297     Out << "GlobalValue::WeakAnyLinkage"; break;
    298   case GlobalValue::WeakODRLinkage:
    299     Out << "GlobalValue::WeakODRLinkage"; break;
    300   case GlobalValue::AppendingLinkage:
    301     Out << "GlobalValue::AppendingLinkage"; break;
    302   case GlobalValue::ExternalLinkage:
    303     Out << "GlobalValue::ExternalLinkage"; break;
    304   case GlobalValue::DLLImportLinkage:
    305     Out << "GlobalValue::DLLImportLinkage"; break;
    306   case GlobalValue::DLLExportLinkage:
    307     Out << "GlobalValue::DLLExportLinkage"; break;
    308   case GlobalValue::ExternalWeakLinkage:
    309     Out << "GlobalValue::ExternalWeakLinkage"; break;
    310   case GlobalValue::CommonLinkage:
    311     Out << "GlobalValue::CommonLinkage"; break;
    312   }
    313 }
    314 
    315 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
    316   switch (VisType) {
    317   case GlobalValue::DefaultVisibility:
    318     Out << "GlobalValue::DefaultVisibility";
    319     break;
    320   case GlobalValue::HiddenVisibility:
    321     Out << "GlobalValue::HiddenVisibility";
    322     break;
    323   case GlobalValue::ProtectedVisibility:
    324     Out << "GlobalValue::ProtectedVisibility";
    325     break;
    326   }
    327 }
    328 
    329 void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) {
    330   switch (TLM) {
    331     case GlobalVariable::NotThreadLocal:
    332       Out << "GlobalVariable::NotThreadLocal";
    333       break;
    334     case GlobalVariable::GeneralDynamicTLSModel:
    335       Out << "GlobalVariable::GeneralDynamicTLSModel";
    336       break;
    337     case GlobalVariable::LocalDynamicTLSModel:
    338       Out << "GlobalVariable::LocalDynamicTLSModel";
    339       break;
    340     case GlobalVariable::InitialExecTLSModel:
    341       Out << "GlobalVariable::InitialExecTLSModel";
    342       break;
    343     case GlobalVariable::LocalExecTLSModel:
    344       Out << "GlobalVariable::LocalExecTLSModel";
    345       break;
    346   }
    347 }
    348 
    349 // printEscapedString - Print each character of the specified string, escaping
    350 // it if it is not printable or if it is an escape char.
    351 void CppWriter::printEscapedString(const std::string &Str) {
    352   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    353     unsigned char C = Str[i];
    354     if (isprint(C) && C != '"' && C != '\\') {
    355       Out << C;
    356     } else {
    357       Out << "\\x"
    358           << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
    359           << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
    360     }
    361   }
    362 }
    363 
    364 std::string CppWriter::getCppName(Type* Ty) {
    365   // First, handle the primitive types .. easy
    366   if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
    367     switch (Ty->getTypeID()) {
    368     case Type::VoidTyID:   return "Type::getVoidTy(mod->getContext())";
    369     case Type::IntegerTyID: {
    370       unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
    371       return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
    372     }
    373     case Type::X86_FP80TyID: return "Type::getX86_FP80Ty(mod->getContext())";
    374     case Type::FloatTyID:    return "Type::getFloatTy(mod->getContext())";
    375     case Type::DoubleTyID:   return "Type::getDoubleTy(mod->getContext())";
    376     case Type::LabelTyID:    return "Type::getLabelTy(mod->getContext())";
    377     case Type::X86_MMXTyID:  return "Type::getX86_MMXTy(mod->getContext())";
    378     default:
    379       error("Invalid primitive type");
    380       break;
    381     }
    382     // shouldn't be returned, but make it sensible
    383     return "Type::getVoidTy(mod->getContext())";
    384   }
    385 
    386   // Now, see if we've seen the type before and return that
    387   TypeMap::iterator I = TypeNames.find(Ty);
    388   if (I != TypeNames.end())
    389     return I->second;
    390 
    391   // Okay, let's build a new name for this type. Start with a prefix
    392   const char* prefix = 0;
    393   switch (Ty->getTypeID()) {
    394   case Type::FunctionTyID:    prefix = "FuncTy_"; break;
    395   case Type::StructTyID:      prefix = "StructTy_"; break;
    396   case Type::ArrayTyID:       prefix = "ArrayTy_"; break;
    397   case Type::PointerTyID:     prefix = "PointerTy_"; break;
    398   case Type::VectorTyID:      prefix = "VectorTy_"; break;
    399   default:                    prefix = "OtherTy_"; break; // prevent breakage
    400   }
    401 
    402   // See if the type has a name in the symboltable and build accordingly
    403   std::string name;
    404   if (StructType *STy = dyn_cast<StructType>(Ty))
    405     if (STy->hasName())
    406       name = STy->getName();
    407 
    408   if (name.empty())
    409     name = utostr(uniqueNum++);
    410 
    411   name = std::string(prefix) + name;
    412   sanitize(name);
    413 
    414   // Save the name
    415   return TypeNames[Ty] = name;
    416 }
    417 
    418 void CppWriter::printCppName(Type* Ty) {
    419   printEscapedString(getCppName(Ty));
    420 }
    421 
    422 std::string CppWriter::getCppName(const Value* val) {
    423   std::string name;
    424   ValueMap::iterator I = ValueNames.find(val);
    425   if (I != ValueNames.end() && I->first == val)
    426     return  I->second;
    427 
    428   if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
    429     name = std::string("gvar_") +
    430       getTypePrefix(GV->getType()->getElementType());
    431   } else if (isa<Function>(val)) {
    432     name = std::string("func_");
    433   } else if (const Constant* C = dyn_cast<Constant>(val)) {
    434     name = std::string("const_") + getTypePrefix(C->getType());
    435   } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
    436     if (is_inline) {
    437       unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
    438                                       Function::const_arg_iterator(Arg)) + 1;
    439       name = std::string("arg_") + utostr(argNum);
    440       NameSet::iterator NI = UsedNames.find(name);
    441       if (NI != UsedNames.end())
    442         name += std::string("_") + utostr(uniqueNum++);
    443       UsedNames.insert(name);
    444       return ValueNames[val] = name;
    445     } else {
    446       name = getTypePrefix(val->getType());
    447     }
    448   } else {
    449     name = getTypePrefix(val->getType());
    450   }
    451   if (val->hasName())
    452     name += val->getName();
    453   else
    454     name += utostr(uniqueNum++);
    455   sanitize(name);
    456   NameSet::iterator NI = UsedNames.find(name);
    457   if (NI != UsedNames.end())
    458     name += std::string("_") + utostr(uniqueNum++);
    459   UsedNames.insert(name);
    460   return ValueNames[val] = name;
    461 }
    462 
    463 void CppWriter::printCppName(const Value* val) {
    464   printEscapedString(getCppName(val));
    465 }
    466 
    467 void CppWriter::printAttributes(const AttributeSet &PAL,
    468                                 const std::string &name) {
    469   Out << "AttributeSet " << name << "_PAL;";
    470   nl(Out);
    471   if (!PAL.isEmpty()) {
    472     Out << '{'; in(); nl(Out);
    473     Out << "SmallVector<AttributeSet, 4> Attrs;"; nl(Out);
    474     Out << "AttributeSet PAS;"; in(); nl(Out);
    475     for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
    476       unsigned index = PAL.getSlotIndex(i);
    477       AttrBuilder attrs(PAL.getSlotAttributes(i), index);
    478       Out << "{"; in(); nl(Out);
    479       Out << "AttrBuilder B;"; nl(Out);
    480 
    481 #define HANDLE_ATTR(X)                                                  \
    482       if (attrs.contains(Attribute::X)) {                               \
    483         Out << "B.addAttribute(Attribute::" #X ");"; nl(Out);           \
    484         attrs.removeAttribute(Attribute::X);                            \
    485       }
    486 
    487       HANDLE_ATTR(SExt);
    488       HANDLE_ATTR(ZExt);
    489       HANDLE_ATTR(NoReturn);
    490       HANDLE_ATTR(InReg);
    491       HANDLE_ATTR(StructRet);
    492       HANDLE_ATTR(NoUnwind);
    493       HANDLE_ATTR(NoAlias);
    494       HANDLE_ATTR(ByVal);
    495       HANDLE_ATTR(Nest);
    496       HANDLE_ATTR(ReadNone);
    497       HANDLE_ATTR(ReadOnly);
    498       HANDLE_ATTR(NoInline);
    499       HANDLE_ATTR(AlwaysInline);
    500       HANDLE_ATTR(OptimizeForSize);
    501       HANDLE_ATTR(StackProtect);
    502       HANDLE_ATTR(StackProtectReq);
    503       HANDLE_ATTR(StackProtectStrong);
    504       HANDLE_ATTR(NoCapture);
    505       HANDLE_ATTR(NoRedZone);
    506       HANDLE_ATTR(NoImplicitFloat);
    507       HANDLE_ATTR(Naked);
    508       HANDLE_ATTR(InlineHint);
    509       HANDLE_ATTR(ReturnsTwice);
    510       HANDLE_ATTR(UWTable);
    511       HANDLE_ATTR(NonLazyBind);
    512       HANDLE_ATTR(MinSize);
    513 #undef HANDLE_ATTR
    514 
    515       if (attrs.contains(Attribute::StackAlignment)) {
    516         Out << "B.addStackAlignmentAttr(" << attrs.getStackAlignment()<<')';
    517         nl(Out);
    518         attrs.removeAttribute(Attribute::StackAlignment);
    519       }
    520 
    521       Out << "PAS = AttributeSet::get(mod->getContext(), ";
    522       if (index == ~0U)
    523         Out << "~0U,";
    524       else
    525         Out << index << "U,";
    526       Out << " B);"; out(); nl(Out);
    527       Out << "}"; out(); nl(Out);
    528       nl(Out);
    529       Out << "Attrs.push_back(PAS);"; nl(Out);
    530     }
    531     Out << name << "_PAL = AttributeSet::get(mod->getContext(), Attrs);";
    532     nl(Out);
    533     out(); nl(Out);
    534     Out << '}'; nl(Out);
    535   }
    536 }
    537 
    538 void CppWriter::printType(Type* Ty) {
    539   // We don't print definitions for primitive types
    540   if (Ty->isPrimitiveType() || Ty->isIntegerTy())
    541     return;
    542 
    543   // If we already defined this type, we don't need to define it again.
    544   if (DefinedTypes.find(Ty) != DefinedTypes.end())
    545     return;
    546 
    547   // Everything below needs the name for the type so get it now.
    548   std::string typeName(getCppName(Ty));
    549 
    550   // Print the type definition
    551   switch (Ty->getTypeID()) {
    552   case Type::FunctionTyID:  {
    553     FunctionType* FT = cast<FunctionType>(Ty);
    554     Out << "std::vector<Type*>" << typeName << "_args;";
    555     nl(Out);
    556     FunctionType::param_iterator PI = FT->param_begin();
    557     FunctionType::param_iterator PE = FT->param_end();
    558     for (; PI != PE; ++PI) {
    559       Type* argTy = static_cast<Type*>(*PI);
    560       printType(argTy);
    561       std::string argName(getCppName(argTy));
    562       Out << typeName << "_args.push_back(" << argName;
    563       Out << ");";
    564       nl(Out);
    565     }
    566     printType(FT->getReturnType());
    567     std::string retTypeName(getCppName(FT->getReturnType()));
    568     Out << "FunctionType* " << typeName << " = FunctionType::get(";
    569     in(); nl(Out) << "/*Result=*/" << retTypeName;
    570     Out << ",";
    571     nl(Out) << "/*Params=*/" << typeName << "_args,";
    572     nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
    573     out();
    574     nl(Out);
    575     break;
    576   }
    577   case Type::StructTyID: {
    578     StructType* ST = cast<StructType>(Ty);
    579     if (!ST->isLiteral()) {
    580       Out << "StructType *" << typeName << " = mod->getTypeByName(\"";
    581       printEscapedString(ST->getName());
    582       Out << "\");";
    583       nl(Out);
    584       Out << "if (!" << typeName << ") {";
    585       nl(Out);
    586       Out << typeName << " = ";
    587       Out << "StructType::create(mod->getContext(), \"";
    588       printEscapedString(ST->getName());
    589       Out << "\");";
    590       nl(Out);
    591       Out << "}";
    592       nl(Out);
    593       // Indicate that this type is now defined.
    594       DefinedTypes.insert(Ty);
    595     }
    596 
    597     Out << "std::vector<Type*>" << typeName << "_fields;";
    598     nl(Out);
    599     StructType::element_iterator EI = ST->element_begin();
    600     StructType::element_iterator EE = ST->element_end();
    601     for (; EI != EE; ++EI) {
    602       Type* fieldTy = static_cast<Type*>(*EI);
    603       printType(fieldTy);
    604       std::string fieldName(getCppName(fieldTy));
    605       Out << typeName << "_fields.push_back(" << fieldName;
    606       Out << ");";
    607       nl(Out);
    608     }
    609 
    610     if (ST->isLiteral()) {
    611       Out << "StructType *" << typeName << " = ";
    612       Out << "StructType::get(" << "mod->getContext(), ";
    613     } else {
    614       Out << "if (" << typeName << "->isOpaque()) {";
    615       nl(Out);
    616       Out << typeName << "->setBody(";
    617     }
    618 
    619     Out << typeName << "_fields, /*isPacked=*/"
    620         << (ST->isPacked() ? "true" : "false") << ");";
    621     nl(Out);
    622     if (!ST->isLiteral()) {
    623       Out << "}";
    624       nl(Out);
    625     }
    626     break;
    627   }
    628   case Type::ArrayTyID: {
    629     ArrayType* AT = cast<ArrayType>(Ty);
    630     Type* ET = AT->getElementType();
    631     printType(ET);
    632     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
    633       std::string elemName(getCppName(ET));
    634       Out << "ArrayType* " << typeName << " = ArrayType::get("
    635           << elemName
    636           << ", " << utostr(AT->getNumElements()) << ");";
    637       nl(Out);
    638     }
    639     break;
    640   }
    641   case Type::PointerTyID: {
    642     PointerType* PT = cast<PointerType>(Ty);
    643     Type* ET = PT->getElementType();
    644     printType(ET);
    645     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
    646       std::string elemName(getCppName(ET));
    647       Out << "PointerType* " << typeName << " = PointerType::get("
    648           << elemName
    649           << ", " << utostr(PT->getAddressSpace()) << ");";
    650       nl(Out);
    651     }
    652     break;
    653   }
    654   case Type::VectorTyID: {
    655     VectorType* PT = cast<VectorType>(Ty);
    656     Type* ET = PT->getElementType();
    657     printType(ET);
    658     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
    659       std::string elemName(getCppName(ET));
    660       Out << "VectorType* " << typeName << " = VectorType::get("
    661           << elemName
    662           << ", " << utostr(PT->getNumElements()) << ");";
    663       nl(Out);
    664     }
    665     break;
    666   }
    667   default:
    668     error("Invalid TypeID");
    669   }
    670 
    671   // Indicate that this type is now defined.
    672   DefinedTypes.insert(Ty);
    673 
    674   // Finally, separate the type definition from other with a newline.
    675   nl(Out);
    676 }
    677 
    678 void CppWriter::printTypes(const Module* M) {
    679   // Add all of the global variables to the value table.
    680   for (Module::const_global_iterator I = TheModule->global_begin(),
    681          E = TheModule->global_end(); I != E; ++I) {
    682     if (I->hasInitializer())
    683       printType(I->getInitializer()->getType());
    684     printType(I->getType());
    685   }
    686 
    687   // Add all the functions to the table
    688   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
    689        FI != FE; ++FI) {
    690     printType(FI->getReturnType());
    691     printType(FI->getFunctionType());
    692     // Add all the function arguments
    693     for (Function::const_arg_iterator AI = FI->arg_begin(),
    694            AE = FI->arg_end(); AI != AE; ++AI) {
    695       printType(AI->getType());
    696     }
    697 
    698     // Add all of the basic blocks and instructions
    699     for (Function::const_iterator BB = FI->begin(),
    700            E = FI->end(); BB != E; ++BB) {
    701       printType(BB->getType());
    702       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
    703            ++I) {
    704         printType(I->getType());
    705         for (unsigned i = 0; i < I->getNumOperands(); ++i)
    706           printType(I->getOperand(i)->getType());
    707       }
    708     }
    709   }
    710 }
    711 
    712 
    713 // printConstant - Print out a constant pool entry...
    714 void CppWriter::printConstant(const Constant *CV) {
    715   // First, if the constant is actually a GlobalValue (variable or function)
    716   // or its already in the constant list then we've printed it already and we
    717   // can just return.
    718   if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
    719     return;
    720 
    721   std::string constName(getCppName(CV));
    722   std::string typeName(getCppName(CV->getType()));
    723 
    724   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
    725     std::string constValue = CI->getValue().toString(10, true);
    726     Out << "ConstantInt* " << constName
    727         << " = ConstantInt::get(mod->getContext(), APInt("
    728         << cast<IntegerType>(CI->getType())->getBitWidth()
    729         << ", StringRef(\"" <<  constValue << "\"), 10));";
    730   } else if (isa<ConstantAggregateZero>(CV)) {
    731     Out << "ConstantAggregateZero* " << constName
    732         << " = ConstantAggregateZero::get(" << typeName << ");";
    733   } else if (isa<ConstantPointerNull>(CV)) {
    734     Out << "ConstantPointerNull* " << constName
    735         << " = ConstantPointerNull::get(" << typeName << ");";
    736   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    737     Out << "ConstantFP* " << constName << " = ";
    738     printCFP(CFP);
    739     Out << ";";
    740   } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
    741     Out << "std::vector<Constant*> " << constName << "_elems;";
    742     nl(Out);
    743     unsigned N = CA->getNumOperands();
    744     for (unsigned i = 0; i < N; ++i) {
    745       printConstant(CA->getOperand(i)); // recurse to print operands
    746       Out << constName << "_elems.push_back("
    747           << getCppName(CA->getOperand(i)) << ");";
    748       nl(Out);
    749     }
    750     Out << "Constant* " << constName << " = ConstantArray::get("
    751         << typeName << ", " << constName << "_elems);";
    752   } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
    753     Out << "std::vector<Constant*> " << constName << "_fields;";
    754     nl(Out);
    755     unsigned N = CS->getNumOperands();
    756     for (unsigned i = 0; i < N; i++) {
    757       printConstant(CS->getOperand(i));
    758       Out << constName << "_fields.push_back("
    759           << getCppName(CS->getOperand(i)) << ");";
    760       nl(Out);
    761     }
    762     Out << "Constant* " << constName << " = ConstantStruct::get("
    763         << typeName << ", " << constName << "_fields);";
    764   } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) {
    765     Out << "std::vector<Constant*> " << constName << "_elems;";
    766     nl(Out);
    767     unsigned N = CVec->getNumOperands();
    768     for (unsigned i = 0; i < N; ++i) {
    769       printConstant(CVec->getOperand(i));
    770       Out << constName << "_elems.push_back("
    771           << getCppName(CVec->getOperand(i)) << ");";
    772       nl(Out);
    773     }
    774     Out << "Constant* " << constName << " = ConstantVector::get("
    775         << typeName << ", " << constName << "_elems);";
    776   } else if (isa<UndefValue>(CV)) {
    777     Out << "UndefValue* " << constName << " = UndefValue::get("
    778         << typeName << ");";
    779   } else if (const ConstantDataSequential *CDS =
    780                dyn_cast<ConstantDataSequential>(CV)) {
    781     if (CDS->isString()) {
    782       Out << "Constant *" << constName <<
    783       " = ConstantDataArray::getString(mod->getContext(), \"";
    784       StringRef Str = CDS->getAsString();
    785       bool nullTerminate = false;
    786       if (Str.back() == 0) {
    787         Str = Str.drop_back();
    788         nullTerminate = true;
    789       }
    790       printEscapedString(Str);
    791       // Determine if we want null termination or not.
    792       if (nullTerminate)
    793         Out << "\", true);";
    794       else
    795         Out << "\", false);";// No null terminator
    796     } else {
    797       // TODO: Could generate more efficient code generating CDS calls instead.
    798       Out << "std::vector<Constant*> " << constName << "_elems;";
    799       nl(Out);
    800       for (unsigned i = 0; i != CDS->getNumElements(); ++i) {
    801         Constant *Elt = CDS->getElementAsConstant(i);
    802         printConstant(Elt);
    803         Out << constName << "_elems.push_back(" << getCppName(Elt) << ");";
    804         nl(Out);
    805       }
    806       Out << "Constant* " << constName;
    807 
    808       if (isa<ArrayType>(CDS->getType()))
    809         Out << " = ConstantArray::get(";
    810       else
    811         Out << " = ConstantVector::get(";
    812       Out << typeName << ", " << constName << "_elems);";
    813     }
    814   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
    815     if (CE->getOpcode() == Instruction::GetElementPtr) {
    816       Out << "std::vector<Constant*> " << constName << "_indices;";
    817       nl(Out);
    818       printConstant(CE->getOperand(0));
    819       for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
    820         printConstant(CE->getOperand(i));
    821         Out << constName << "_indices.push_back("
    822             << getCppName(CE->getOperand(i)) << ");";
    823         nl(Out);
    824       }
    825       Out << "Constant* " << constName
    826           << " = ConstantExpr::getGetElementPtr("
    827           << getCppName(CE->getOperand(0)) << ", "
    828           << constName << "_indices);";
    829     } else if (CE->isCast()) {
    830       printConstant(CE->getOperand(0));
    831       Out << "Constant* " << constName << " = ConstantExpr::getCast(";
    832       switch (CE->getOpcode()) {
    833       default: llvm_unreachable("Invalid cast opcode");
    834       case Instruction::Trunc: Out << "Instruction::Trunc"; break;
    835       case Instruction::ZExt:  Out << "Instruction::ZExt"; break;
    836       case Instruction::SExt:  Out << "Instruction::SExt"; break;
    837       case Instruction::FPTrunc:  Out << "Instruction::FPTrunc"; break;
    838       case Instruction::FPExt:  Out << "Instruction::FPExt"; break;
    839       case Instruction::FPToUI:  Out << "Instruction::FPToUI"; break;
    840       case Instruction::FPToSI:  Out << "Instruction::FPToSI"; break;
    841       case Instruction::UIToFP:  Out << "Instruction::UIToFP"; break;
    842       case Instruction::SIToFP:  Out << "Instruction::SIToFP"; break;
    843       case Instruction::PtrToInt:  Out << "Instruction::PtrToInt"; break;
    844       case Instruction::IntToPtr:  Out << "Instruction::IntToPtr"; break;
    845       case Instruction::BitCast:  Out << "Instruction::BitCast"; break;
    846       }
    847       Out << ", " << getCppName(CE->getOperand(0)) << ", "
    848           << getCppName(CE->getType()) << ");";
    849     } else {
    850       unsigned N = CE->getNumOperands();
    851       for (unsigned i = 0; i < N; ++i ) {
    852         printConstant(CE->getOperand(i));
    853       }
    854       Out << "Constant* " << constName << " = ConstantExpr::";
    855       switch (CE->getOpcode()) {
    856       case Instruction::Add:    Out << "getAdd(";  break;
    857       case Instruction::FAdd:   Out << "getFAdd(";  break;
    858       case Instruction::Sub:    Out << "getSub("; break;
    859       case Instruction::FSub:   Out << "getFSub("; break;
    860       case Instruction::Mul:    Out << "getMul("; break;
    861       case Instruction::FMul:   Out << "getFMul("; break;
    862       case Instruction::UDiv:   Out << "getUDiv("; break;
    863       case Instruction::SDiv:   Out << "getSDiv("; break;
    864       case Instruction::FDiv:   Out << "getFDiv("; break;
    865       case Instruction::URem:   Out << "getURem("; break;
    866       case Instruction::SRem:   Out << "getSRem("; break;
    867       case Instruction::FRem:   Out << "getFRem("; break;
    868       case Instruction::And:    Out << "getAnd("; break;
    869       case Instruction::Or:     Out << "getOr("; break;
    870       case Instruction::Xor:    Out << "getXor("; break;
    871       case Instruction::ICmp:
    872         Out << "getICmp(ICmpInst::ICMP_";
    873         switch (CE->getPredicate()) {
    874         case ICmpInst::ICMP_EQ:  Out << "EQ"; break;
    875         case ICmpInst::ICMP_NE:  Out << "NE"; break;
    876         case ICmpInst::ICMP_SLT: Out << "SLT"; break;
    877         case ICmpInst::ICMP_ULT: Out << "ULT"; break;
    878         case ICmpInst::ICMP_SGT: Out << "SGT"; break;
    879         case ICmpInst::ICMP_UGT: Out << "UGT"; break;
    880         case ICmpInst::ICMP_SLE: Out << "SLE"; break;
    881         case ICmpInst::ICMP_ULE: Out << "ULE"; break;
    882         case ICmpInst::ICMP_SGE: Out << "SGE"; break;
    883         case ICmpInst::ICMP_UGE: Out << "UGE"; break;
    884         default: error("Invalid ICmp Predicate");
    885         }
    886         break;
    887       case Instruction::FCmp:
    888         Out << "getFCmp(FCmpInst::FCMP_";
    889         switch (CE->getPredicate()) {
    890         case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
    891         case FCmpInst::FCMP_ORD:   Out << "ORD"; break;
    892         case FCmpInst::FCMP_UNO:   Out << "UNO"; break;
    893         case FCmpInst::FCMP_OEQ:   Out << "OEQ"; break;
    894         case FCmpInst::FCMP_UEQ:   Out << "UEQ"; break;
    895         case FCmpInst::FCMP_ONE:   Out << "ONE"; break;
    896         case FCmpInst::FCMP_UNE:   Out << "UNE"; break;
    897         case FCmpInst::FCMP_OLT:   Out << "OLT"; break;
    898         case FCmpInst::FCMP_ULT:   Out << "ULT"; break;
    899         case FCmpInst::FCMP_OGT:   Out << "OGT"; break;
    900         case FCmpInst::FCMP_UGT:   Out << "UGT"; break;
    901         case FCmpInst::FCMP_OLE:   Out << "OLE"; break;
    902         case FCmpInst::FCMP_ULE:   Out << "ULE"; break;
    903         case FCmpInst::FCMP_OGE:   Out << "OGE"; break;
    904         case FCmpInst::FCMP_UGE:   Out << "UGE"; break;
    905         case FCmpInst::FCMP_TRUE:  Out << "TRUE"; break;
    906         default: error("Invalid FCmp Predicate");
    907         }
    908         break;
    909       case Instruction::Shl:     Out << "getShl("; break;
    910       case Instruction::LShr:    Out << "getLShr("; break;
    911       case Instruction::AShr:    Out << "getAShr("; break;
    912       case Instruction::Select:  Out << "getSelect("; break;
    913       case Instruction::ExtractElement: Out << "getExtractElement("; break;
    914       case Instruction::InsertElement:  Out << "getInsertElement("; break;
    915       case Instruction::ShuffleVector:  Out << "getShuffleVector("; break;
    916       default:
    917         error("Invalid constant expression");
    918         break;
    919       }
    920       Out << getCppName(CE->getOperand(0));
    921       for (unsigned i = 1; i < CE->getNumOperands(); ++i)
    922         Out << ", " << getCppName(CE->getOperand(i));
    923       Out << ");";
    924     }
    925   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
    926     Out << "Constant* " << constName << " = ";
    927     Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
    928   } else {
    929     error("Bad Constant");
    930     Out << "Constant* " << constName << " = 0; ";
    931   }
    932   nl(Out);
    933 }
    934 
    935 void CppWriter::printConstants(const Module* M) {
    936   // Traverse all the global variables looking for constant initializers
    937   for (Module::const_global_iterator I = TheModule->global_begin(),
    938          E = TheModule->global_end(); I != E; ++I)
    939     if (I->hasInitializer())
    940       printConstant(I->getInitializer());
    941 
    942   // Traverse the LLVM functions looking for constants
    943   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
    944        FI != FE; ++FI) {
    945     // Add all of the basic blocks and instructions
    946     for (Function::const_iterator BB = FI->begin(),
    947            E = FI->end(); BB != E; ++BB) {
    948       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
    949            ++I) {
    950         for (unsigned i = 0; i < I->getNumOperands(); ++i) {
    951           if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
    952             printConstant(C);
    953           }
    954         }
    955       }
    956     }
    957   }
    958 }
    959 
    960 void CppWriter::printVariableUses(const GlobalVariable *GV) {
    961   nl(Out) << "// Type Definitions";
    962   nl(Out);
    963   printType(GV->getType());
    964   if (GV->hasInitializer()) {
    965     const Constant *Init = GV->getInitializer();
    966     printType(Init->getType());
    967     if (const Function *F = dyn_cast<Function>(Init)) {
    968       nl(Out)<< "/ Function Declarations"; nl(Out);
    969       printFunctionHead(F);
    970     } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
    971       nl(Out) << "// Global Variable Declarations"; nl(Out);
    972       printVariableHead(gv);
    973 
    974       nl(Out) << "// Global Variable Definitions"; nl(Out);
    975       printVariableBody(gv);
    976     } else  {
    977       nl(Out) << "// Constant Definitions"; nl(Out);
    978       printConstant(Init);
    979     }
    980   }
    981 }
    982 
    983 void CppWriter::printVariableHead(const GlobalVariable *GV) {
    984   nl(Out) << "GlobalVariable* " << getCppName(GV);
    985   if (is_inline) {
    986     Out << " = mod->getGlobalVariable(mod->getContext(), ";
    987     printEscapedString(GV->getName());
    988     Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
    989     nl(Out) << "if (!" << getCppName(GV) << ") {";
    990     in(); nl(Out) << getCppName(GV);
    991   }
    992   Out << " = new GlobalVariable(/*Module=*/*mod, ";
    993   nl(Out) << "/*Type=*/";
    994   printCppName(GV->getType()->getElementType());
    995   Out << ",";
    996   nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
    997   Out << ",";
    998   nl(Out) << "/*Linkage=*/";
    999   printLinkageType(GV->getLinkage());
   1000   Out << ",";
   1001   nl(Out) << "/*Initializer=*/0, ";
   1002   if (GV->hasInitializer()) {
   1003     Out << "// has initializer, specified below";
   1004   }
   1005   nl(Out) << "/*Name=*/\"";
   1006   printEscapedString(GV->getName());
   1007   Out << "\");";
   1008   nl(Out);
   1009 
   1010   if (GV->hasSection()) {
   1011     printCppName(GV);
   1012     Out << "->setSection(\"";
   1013     printEscapedString(GV->getSection());
   1014     Out << "\");";
   1015     nl(Out);
   1016   }
   1017   if (GV->getAlignment()) {
   1018     printCppName(GV);
   1019     Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
   1020     nl(Out);
   1021   }
   1022   if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
   1023     printCppName(GV);
   1024     Out << "->setVisibility(";
   1025     printVisibilityType(GV->getVisibility());
   1026     Out << ");";
   1027     nl(Out);
   1028   }
   1029   if (GV->isThreadLocal()) {
   1030     printCppName(GV);
   1031     Out << "->setThreadLocalMode(";
   1032     printThreadLocalMode(GV->getThreadLocalMode());
   1033     Out << ");";
   1034     nl(Out);
   1035   }
   1036   if (is_inline) {
   1037     out(); Out << "}"; nl(Out);
   1038   }
   1039 }
   1040 
   1041 void CppWriter::printVariableBody(const GlobalVariable *GV) {
   1042   if (GV->hasInitializer()) {
   1043     printCppName(GV);
   1044     Out << "->setInitializer(";
   1045     Out << getCppName(GV->getInitializer()) << ");";
   1046     nl(Out);
   1047   }
   1048 }
   1049 
   1050 std::string CppWriter::getOpName(const Value* V) {
   1051   if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
   1052     return getCppName(V);
   1053 
   1054   // See if its alread in the map of forward references, if so just return the
   1055   // name we already set up for it
   1056   ForwardRefMap::const_iterator I = ForwardRefs.find(V);
   1057   if (I != ForwardRefs.end())
   1058     return I->second;
   1059 
   1060   // This is a new forward reference. Generate a unique name for it
   1061   std::string result(std::string("fwdref_") + utostr(uniqueNum++));
   1062 
   1063   // Yes, this is a hack. An Argument is the smallest instantiable value that
   1064   // we can make as a placeholder for the real value. We'll replace these
   1065   // Argument instances later.
   1066   Out << "Argument* " << result << " = new Argument("
   1067       << getCppName(V->getType()) << ");";
   1068   nl(Out);
   1069   ForwardRefs[V] = result;
   1070   return result;
   1071 }
   1072 
   1073 static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) {
   1074   switch (Ordering) {
   1075     case NotAtomic: return "NotAtomic";
   1076     case Unordered: return "Unordered";
   1077     case Monotonic: return "Monotonic";
   1078     case Acquire: return "Acquire";
   1079     case Release: return "Release";
   1080     case AcquireRelease: return "AcquireRelease";
   1081     case SequentiallyConsistent: return "SequentiallyConsistent";
   1082   }
   1083   llvm_unreachable("Unknown ordering");
   1084 }
   1085 
   1086 static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) {
   1087   switch (SynchScope) {
   1088     case SingleThread: return "SingleThread";
   1089     case CrossThread: return "CrossThread";
   1090   }
   1091   llvm_unreachable("Unknown synch scope");
   1092 }
   1093 
   1094 // printInstruction - This member is called for each Instruction in a function.
   1095 void CppWriter::printInstruction(const Instruction *I,
   1096                                  const std::string& bbname) {
   1097   std::string iName(getCppName(I));
   1098 
   1099   // Before we emit this instruction, we need to take care of generating any
   1100   // forward references. So, we get the names of all the operands in advance
   1101   const unsigned Ops(I->getNumOperands());
   1102   std::string* opNames = new std::string[Ops];
   1103   for (unsigned i = 0; i < Ops; i++)
   1104     opNames[i] = getOpName(I->getOperand(i));
   1105 
   1106   switch (I->getOpcode()) {
   1107   default:
   1108     error("Invalid instruction");
   1109     break;
   1110 
   1111   case Instruction::Ret: {
   1112     const ReturnInst* ret =  cast<ReturnInst>(I);
   1113     Out << "ReturnInst::Create(mod->getContext(), "
   1114         << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
   1115     break;
   1116   }
   1117   case Instruction::Br: {
   1118     const BranchInst* br = cast<BranchInst>(I);
   1119     Out << "BranchInst::Create(" ;
   1120     if (br->getNumOperands() == 3) {
   1121       Out << opNames[2] << ", "
   1122           << opNames[1] << ", "
   1123           << opNames[0] << ", ";
   1124 
   1125     } else if (br->getNumOperands() == 1) {
   1126       Out << opNames[0] << ", ";
   1127     } else {
   1128       error("Branch with 2 operands?");
   1129     }
   1130     Out << bbname << ");";
   1131     break;
   1132   }
   1133   case Instruction::Switch: {
   1134     const SwitchInst *SI = cast<SwitchInst>(I);
   1135     Out << "SwitchInst* " << iName << " = SwitchInst::Create("
   1136         << getOpName(SI->getCondition()) << ", "
   1137         << getOpName(SI->getDefaultDest()) << ", "
   1138         << SI->getNumCases() << ", " << bbname << ");";
   1139     nl(Out);
   1140     for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end();
   1141          i != e; ++i) {
   1142       const IntegersSubset CaseVal = i.getCaseValueEx();
   1143       const BasicBlock *BB = i.getCaseSuccessor();
   1144       Out << iName << "->addCase("
   1145           << getOpName(CaseVal) << ", "
   1146           << getOpName(BB) << ");";
   1147       nl(Out);
   1148     }
   1149     break;
   1150   }
   1151   case Instruction::IndirectBr: {
   1152     const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
   1153     Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
   1154         << opNames[0] << ", " << IBI->getNumDestinations() << ");";
   1155     nl(Out);
   1156     for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
   1157       Out << iName << "->addDestination(" << opNames[i] << ");";
   1158       nl(Out);
   1159     }
   1160     break;
   1161   }
   1162   case Instruction::Resume: {
   1163     Out << "ResumeInst::Create(mod->getContext(), " << opNames[0]
   1164         << ", " << bbname << ");";
   1165     break;
   1166   }
   1167   case Instruction::Invoke: {
   1168     const InvokeInst* inv = cast<InvokeInst>(I);
   1169     Out << "std::vector<Value*> " << iName << "_params;";
   1170     nl(Out);
   1171     for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
   1172       Out << iName << "_params.push_back("
   1173           << getOpName(inv->getArgOperand(i)) << ");";
   1174       nl(Out);
   1175     }
   1176     // FIXME: This shouldn't use magic numbers -3, -2, and -1.
   1177     Out << "InvokeInst *" << iName << " = InvokeInst::Create("
   1178         << getOpName(inv->getCalledFunction()) << ", "
   1179         << getOpName(inv->getNormalDest()) << ", "
   1180         << getOpName(inv->getUnwindDest()) << ", "
   1181         << iName << "_params, \"";
   1182     printEscapedString(inv->getName());
   1183     Out << "\", " << bbname << ");";
   1184     nl(Out) << iName << "->setCallingConv(";
   1185     printCallingConv(inv->getCallingConv());
   1186     Out << ");";
   1187     printAttributes(inv->getAttributes(), iName);
   1188     Out << iName << "->setAttributes(" << iName << "_PAL);";
   1189     nl(Out);
   1190     break;
   1191   }
   1192   case Instruction::Unreachable: {
   1193     Out << "new UnreachableInst("
   1194         << "mod->getContext(), "
   1195         << bbname << ");";
   1196     break;
   1197   }
   1198   case Instruction::Add:
   1199   case Instruction::FAdd:
   1200   case Instruction::Sub:
   1201   case Instruction::FSub:
   1202   case Instruction::Mul:
   1203   case Instruction::FMul:
   1204   case Instruction::UDiv:
   1205   case Instruction::SDiv:
   1206   case Instruction::FDiv:
   1207   case Instruction::URem:
   1208   case Instruction::SRem:
   1209   case Instruction::FRem:
   1210   case Instruction::And:
   1211   case Instruction::Or:
   1212   case Instruction::Xor:
   1213   case Instruction::Shl:
   1214   case Instruction::LShr:
   1215   case Instruction::AShr:{
   1216     Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
   1217     switch (I->getOpcode()) {
   1218     case Instruction::Add: Out << "Instruction::Add"; break;
   1219     case Instruction::FAdd: Out << "Instruction::FAdd"; break;
   1220     case Instruction::Sub: Out << "Instruction::Sub"; break;
   1221     case Instruction::FSub: Out << "Instruction::FSub"; break;
   1222     case Instruction::Mul: Out << "Instruction::Mul"; break;
   1223     case Instruction::FMul: Out << "Instruction::FMul"; break;
   1224     case Instruction::UDiv:Out << "Instruction::UDiv"; break;
   1225     case Instruction::SDiv:Out << "Instruction::SDiv"; break;
   1226     case Instruction::FDiv:Out << "Instruction::FDiv"; break;
   1227     case Instruction::URem:Out << "Instruction::URem"; break;
   1228     case Instruction::SRem:Out << "Instruction::SRem"; break;
   1229     case Instruction::FRem:Out << "Instruction::FRem"; break;
   1230     case Instruction::And: Out << "Instruction::And"; break;
   1231     case Instruction::Or:  Out << "Instruction::Or";  break;
   1232     case Instruction::Xor: Out << "Instruction::Xor"; break;
   1233     case Instruction::Shl: Out << "Instruction::Shl"; break;
   1234     case Instruction::LShr:Out << "Instruction::LShr"; break;
   1235     case Instruction::AShr:Out << "Instruction::AShr"; break;
   1236     default: Out << "Instruction::BadOpCode"; break;
   1237     }
   1238     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
   1239     printEscapedString(I->getName());
   1240     Out << "\", " << bbname << ");";
   1241     break;
   1242   }
   1243   case Instruction::FCmp: {
   1244     Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
   1245     switch (cast<FCmpInst>(I)->getPredicate()) {
   1246     case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
   1247     case FCmpInst::FCMP_OEQ  : Out << "FCmpInst::FCMP_OEQ"; break;
   1248     case FCmpInst::FCMP_OGT  : Out << "FCmpInst::FCMP_OGT"; break;
   1249     case FCmpInst::FCMP_OGE  : Out << "FCmpInst::FCMP_OGE"; break;
   1250     case FCmpInst::FCMP_OLT  : Out << "FCmpInst::FCMP_OLT"; break;
   1251     case FCmpInst::FCMP_OLE  : Out << "FCmpInst::FCMP_OLE"; break;
   1252     case FCmpInst::FCMP_ONE  : Out << "FCmpInst::FCMP_ONE"; break;
   1253     case FCmpInst::FCMP_ORD  : Out << "FCmpInst::FCMP_ORD"; break;
   1254     case FCmpInst::FCMP_UNO  : Out << "FCmpInst::FCMP_UNO"; break;
   1255     case FCmpInst::FCMP_UEQ  : Out << "FCmpInst::FCMP_UEQ"; break;
   1256     case FCmpInst::FCMP_UGT  : Out << "FCmpInst::FCMP_UGT"; break;
   1257     case FCmpInst::FCMP_UGE  : Out << "FCmpInst::FCMP_UGE"; break;
   1258     case FCmpInst::FCMP_ULT  : Out << "FCmpInst::FCMP_ULT"; break;
   1259     case FCmpInst::FCMP_ULE  : Out << "FCmpInst::FCMP_ULE"; break;
   1260     case FCmpInst::FCMP_UNE  : Out << "FCmpInst::FCMP_UNE"; break;
   1261     case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
   1262     default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
   1263     }
   1264     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
   1265     printEscapedString(I->getName());
   1266     Out << "\");";
   1267     break;
   1268   }
   1269   case Instruction::ICmp: {
   1270     Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
   1271     switch (cast<ICmpInst>(I)->getPredicate()) {
   1272     case ICmpInst::ICMP_EQ:  Out << "ICmpInst::ICMP_EQ";  break;
   1273     case ICmpInst::ICMP_NE:  Out << "ICmpInst::ICMP_NE";  break;
   1274     case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
   1275     case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
   1276     case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
   1277     case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
   1278     case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
   1279     case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
   1280     case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
   1281     case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
   1282     default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
   1283     }
   1284     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
   1285     printEscapedString(I->getName());
   1286     Out << "\");";
   1287     break;
   1288   }
   1289   case Instruction::Alloca: {
   1290     const AllocaInst* allocaI = cast<AllocaInst>(I);
   1291     Out << "AllocaInst* " << iName << " = new AllocaInst("
   1292         << getCppName(allocaI->getAllocatedType()) << ", ";
   1293     if (allocaI->isArrayAllocation())
   1294       Out << opNames[0] << ", ";
   1295     Out << "\"";
   1296     printEscapedString(allocaI->getName());
   1297     Out << "\", " << bbname << ");";
   1298     if (allocaI->getAlignment())
   1299       nl(Out) << iName << "->setAlignment("
   1300           << allocaI->getAlignment() << ");";
   1301     break;
   1302   }
   1303   case Instruction::Load: {
   1304     const LoadInst* load = cast<LoadInst>(I);
   1305     Out << "LoadInst* " << iName << " = new LoadInst("
   1306         << opNames[0] << ", \"";
   1307     printEscapedString(load->getName());
   1308     Out << "\", " << (load->isVolatile() ? "true" : "false" )
   1309         << ", " << bbname << ");";
   1310     if (load->getAlignment())
   1311       nl(Out) << iName << "->setAlignment("
   1312               << load->getAlignment() << ");";
   1313     if (load->isAtomic()) {
   1314       StringRef Ordering = ConvertAtomicOrdering(load->getOrdering());
   1315       StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope());
   1316       nl(Out) << iName << "->setAtomic("
   1317               << Ordering << ", " << CrossThread << ");";
   1318     }
   1319     break;
   1320   }
   1321   case Instruction::Store: {
   1322     const StoreInst* store = cast<StoreInst>(I);
   1323     Out << "StoreInst* " << iName << " = new StoreInst("
   1324         << opNames[0] << ", "
   1325         << opNames[1] << ", "
   1326         << (store->isVolatile() ? "true" : "false")
   1327         << ", " << bbname << ");";
   1328     if (store->getAlignment())
   1329       nl(Out) << iName << "->setAlignment("
   1330               << store->getAlignment() << ");";
   1331     if (store->isAtomic()) {
   1332       StringRef Ordering = ConvertAtomicOrdering(store->getOrdering());
   1333       StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope());
   1334       nl(Out) << iName << "->setAtomic("
   1335               << Ordering << ", " << CrossThread << ");";
   1336     }
   1337     break;
   1338   }
   1339   case Instruction::GetElementPtr: {
   1340     const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
   1341     if (gep->getNumOperands() <= 2) {
   1342       Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
   1343           << opNames[0];
   1344       if (gep->getNumOperands() == 2)
   1345         Out << ", " << opNames[1];
   1346     } else {
   1347       Out << "std::vector<Value*> " << iName << "_indices;";
   1348       nl(Out);
   1349       for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
   1350         Out << iName << "_indices.push_back("
   1351             << opNames[i] << ");";
   1352         nl(Out);
   1353       }
   1354       Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
   1355           << opNames[0] << ", " << iName << "_indices";
   1356     }
   1357     Out << ", \"";
   1358     printEscapedString(gep->getName());
   1359     Out << "\", " << bbname << ");";
   1360     break;
   1361   }
   1362   case Instruction::PHI: {
   1363     const PHINode* phi = cast<PHINode>(I);
   1364 
   1365     Out << "PHINode* " << iName << " = PHINode::Create("
   1366         << getCppName(phi->getType()) << ", "
   1367         << phi->getNumIncomingValues() << ", \"";
   1368     printEscapedString(phi->getName());
   1369     Out << "\", " << bbname << ");";
   1370     nl(Out);
   1371     for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
   1372       Out << iName << "->addIncoming("
   1373           << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
   1374           << getOpName(phi->getIncomingBlock(i)) << ");";
   1375       nl(Out);
   1376     }
   1377     break;
   1378   }
   1379   case Instruction::Trunc:
   1380   case Instruction::ZExt:
   1381   case Instruction::SExt:
   1382   case Instruction::FPTrunc:
   1383   case Instruction::FPExt:
   1384   case Instruction::FPToUI:
   1385   case Instruction::FPToSI:
   1386   case Instruction::UIToFP:
   1387   case Instruction::SIToFP:
   1388   case Instruction::PtrToInt:
   1389   case Instruction::IntToPtr:
   1390   case Instruction::BitCast: {
   1391     const CastInst* cst = cast<CastInst>(I);
   1392     Out << "CastInst* " << iName << " = new ";
   1393     switch (I->getOpcode()) {
   1394     case Instruction::Trunc:    Out << "TruncInst"; break;
   1395     case Instruction::ZExt:     Out << "ZExtInst"; break;
   1396     case Instruction::SExt:     Out << "SExtInst"; break;
   1397     case Instruction::FPTrunc:  Out << "FPTruncInst"; break;
   1398     case Instruction::FPExt:    Out << "FPExtInst"; break;
   1399     case Instruction::FPToUI:   Out << "FPToUIInst"; break;
   1400     case Instruction::FPToSI:   Out << "FPToSIInst"; break;
   1401     case Instruction::UIToFP:   Out << "UIToFPInst"; break;
   1402     case Instruction::SIToFP:   Out << "SIToFPInst"; break;
   1403     case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
   1404     case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
   1405     case Instruction::BitCast:  Out << "BitCastInst"; break;
   1406     default: llvm_unreachable("Unreachable");
   1407     }
   1408     Out << "(" << opNames[0] << ", "
   1409         << getCppName(cst->getType()) << ", \"";
   1410     printEscapedString(cst->getName());
   1411     Out << "\", " << bbname << ");";
   1412     break;
   1413   }
   1414   case Instruction::Call: {
   1415     const CallInst* call = cast<CallInst>(I);
   1416     if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
   1417       Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
   1418           << getCppName(ila->getFunctionType()) << ", \""
   1419           << ila->getAsmString() << "\", \""
   1420           << ila->getConstraintString() << "\","
   1421           << (ila->hasSideEffects() ? "true" : "false") << ");";
   1422       nl(Out);
   1423     }
   1424     if (call->getNumArgOperands() > 1) {
   1425       Out << "std::vector<Value*> " << iName << "_params;";
   1426       nl(Out);
   1427       for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
   1428         Out << iName << "_params.push_back(" << opNames[i] << ");";
   1429         nl(Out);
   1430       }
   1431       Out << "CallInst* " << iName << " = CallInst::Create("
   1432           << opNames[call->getNumArgOperands()] << ", "
   1433           << iName << "_params, \"";
   1434     } else if (call->getNumArgOperands() == 1) {
   1435       Out << "CallInst* " << iName << " = CallInst::Create("
   1436           << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
   1437     } else {
   1438       Out << "CallInst* " << iName << " = CallInst::Create("
   1439           << opNames[call->getNumArgOperands()] << ", \"";
   1440     }
   1441     printEscapedString(call->getName());
   1442     Out << "\", " << bbname << ");";
   1443     nl(Out) << iName << "->setCallingConv(";
   1444     printCallingConv(call->getCallingConv());
   1445     Out << ");";
   1446     nl(Out) << iName << "->setTailCall("
   1447         << (call->isTailCall() ? "true" : "false");
   1448     Out << ");";
   1449     nl(Out);
   1450     printAttributes(call->getAttributes(), iName);
   1451     Out << iName << "->setAttributes(" << iName << "_PAL);";
   1452     nl(Out);
   1453     break;
   1454   }
   1455   case Instruction::Select: {
   1456     const SelectInst* sel = cast<SelectInst>(I);
   1457     Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
   1458     Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
   1459     printEscapedString(sel->getName());
   1460     Out << "\", " << bbname << ");";
   1461     break;
   1462   }
   1463   case Instruction::UserOp1:
   1464     /// FALL THROUGH
   1465   case Instruction::UserOp2: {
   1466     /// FIXME: What should be done here?
   1467     break;
   1468   }
   1469   case Instruction::VAArg: {
   1470     const VAArgInst* va = cast<VAArgInst>(I);
   1471     Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
   1472         << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
   1473     printEscapedString(va->getName());
   1474     Out << "\", " << bbname << ");";
   1475     break;
   1476   }
   1477   case Instruction::ExtractElement: {
   1478     const ExtractElementInst* eei = cast<ExtractElementInst>(I);
   1479     Out << "ExtractElementInst* " << getCppName(eei)
   1480         << " = new ExtractElementInst(" << opNames[0]
   1481         << ", " << opNames[1] << ", \"";
   1482     printEscapedString(eei->getName());
   1483     Out << "\", " << bbname << ");";
   1484     break;
   1485   }
   1486   case Instruction::InsertElement: {
   1487     const InsertElementInst* iei = cast<InsertElementInst>(I);
   1488     Out << "InsertElementInst* " << getCppName(iei)
   1489         << " = InsertElementInst::Create(" << opNames[0]
   1490         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
   1491     printEscapedString(iei->getName());
   1492     Out << "\", " << bbname << ");";
   1493     break;
   1494   }
   1495   case Instruction::ShuffleVector: {
   1496     const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
   1497     Out << "ShuffleVectorInst* " << getCppName(svi)
   1498         << " = new ShuffleVectorInst(" << opNames[0]
   1499         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
   1500     printEscapedString(svi->getName());
   1501     Out << "\", " << bbname << ");";
   1502     break;
   1503   }
   1504   case Instruction::ExtractValue: {
   1505     const ExtractValueInst *evi = cast<ExtractValueInst>(I);
   1506     Out << "std::vector<unsigned> " << iName << "_indices;";
   1507     nl(Out);
   1508     for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
   1509       Out << iName << "_indices.push_back("
   1510           << evi->idx_begin()[i] << ");";
   1511       nl(Out);
   1512     }
   1513     Out << "ExtractValueInst* " << getCppName(evi)
   1514         << " = ExtractValueInst::Create(" << opNames[0]
   1515         << ", "
   1516         << iName << "_indices, \"";
   1517     printEscapedString(evi->getName());
   1518     Out << "\", " << bbname << ");";
   1519     break;
   1520   }
   1521   case Instruction::InsertValue: {
   1522     const InsertValueInst *ivi = cast<InsertValueInst>(I);
   1523     Out << "std::vector<unsigned> " << iName << "_indices;";
   1524     nl(Out);
   1525     for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
   1526       Out << iName << "_indices.push_back("
   1527           << ivi->idx_begin()[i] << ");";
   1528       nl(Out);
   1529     }
   1530     Out << "InsertValueInst* " << getCppName(ivi)
   1531         << " = InsertValueInst::Create(" << opNames[0]
   1532         << ", " << opNames[1] << ", "
   1533         << iName << "_indices, \"";
   1534     printEscapedString(ivi->getName());
   1535     Out << "\", " << bbname << ");";
   1536     break;
   1537   }
   1538   case Instruction::Fence: {
   1539     const FenceInst *fi = cast<FenceInst>(I);
   1540     StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering());
   1541     StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope());
   1542     Out << "FenceInst* " << iName
   1543         << " = new FenceInst(mod->getContext(), "
   1544         << Ordering << ", " << CrossThread << ", " << bbname
   1545         << ");";
   1546     break;
   1547   }
   1548   case Instruction::AtomicCmpXchg: {
   1549     const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I);
   1550     StringRef Ordering = ConvertAtomicOrdering(cxi->getOrdering());
   1551     StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope());
   1552     Out << "AtomicCmpXchgInst* " << iName
   1553         << " = new AtomicCmpXchgInst("
   1554         << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", "
   1555         << Ordering << ", " << CrossThread << ", " << bbname
   1556         << ");";
   1557     nl(Out) << iName << "->setName(\"";
   1558     printEscapedString(cxi->getName());
   1559     Out << "\");";
   1560     break;
   1561   }
   1562   case Instruction::AtomicRMW: {
   1563     const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I);
   1564     StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering());
   1565     StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope());
   1566     StringRef Operation;
   1567     switch (rmwi->getOperation()) {
   1568       case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break;
   1569       case AtomicRMWInst::Add:  Operation = "AtomicRMWInst::Add"; break;
   1570       case AtomicRMWInst::Sub:  Operation = "AtomicRMWInst::Sub"; break;
   1571       case AtomicRMWInst::And:  Operation = "AtomicRMWInst::And"; break;
   1572       case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break;
   1573       case AtomicRMWInst::Or:   Operation = "AtomicRMWInst::Or"; break;
   1574       case AtomicRMWInst::Xor:  Operation = "AtomicRMWInst::Xor"; break;
   1575       case AtomicRMWInst::Max:  Operation = "AtomicRMWInst::Max"; break;
   1576       case AtomicRMWInst::Min:  Operation = "AtomicRMWInst::Min"; break;
   1577       case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break;
   1578       case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break;
   1579       case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation");
   1580     }
   1581     Out << "AtomicRMWInst* " << iName
   1582         << " = new AtomicRMWInst("
   1583         << Operation << ", "
   1584         << opNames[0] << ", " << opNames[1] << ", "
   1585         << Ordering << ", " << CrossThread << ", " << bbname
   1586         << ");";
   1587     nl(Out) << iName << "->setName(\"";
   1588     printEscapedString(rmwi->getName());
   1589     Out << "\");";
   1590     break;
   1591   }
   1592   }
   1593   DefinedValues.insert(I);
   1594   nl(Out);
   1595   delete [] opNames;
   1596 }
   1597 
   1598 // Print out the types, constants and declarations needed by one function
   1599 void CppWriter::printFunctionUses(const Function* F) {
   1600   nl(Out) << "// Type Definitions"; nl(Out);
   1601   if (!is_inline) {
   1602     // Print the function's return type
   1603     printType(F->getReturnType());
   1604 
   1605     // Print the function's function type
   1606     printType(F->getFunctionType());
   1607 
   1608     // Print the types of each of the function's arguments
   1609     for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
   1610          AI != AE; ++AI) {
   1611       printType(AI->getType());
   1612     }
   1613   }
   1614 
   1615   // Print type definitions for every type referenced by an instruction and
   1616   // make a note of any global values or constants that are referenced
   1617   SmallPtrSet<GlobalValue*,64> gvs;
   1618   SmallPtrSet<Constant*,64> consts;
   1619   for (Function::const_iterator BB = F->begin(), BE = F->end();
   1620        BB != BE; ++BB){
   1621     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
   1622          I != E; ++I) {
   1623       // Print the type of the instruction itself
   1624       printType(I->getType());
   1625 
   1626       // Print the type of each of the instruction's operands
   1627       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
   1628         Value* operand = I->getOperand(i);
   1629         printType(operand->getType());
   1630 
   1631         // If the operand references a GVal or Constant, make a note of it
   1632         if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
   1633           gvs.insert(GV);
   1634           if (GenerationType != GenFunction)
   1635             if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
   1636               if (GVar->hasInitializer())
   1637                 consts.insert(GVar->getInitializer());
   1638         } else if (Constant* C = dyn_cast<Constant>(operand)) {
   1639           consts.insert(C);
   1640           for (unsigned j = 0; j < C->getNumOperands(); ++j) {
   1641             // If the operand references a GVal or Constant, make a note of it
   1642             Value* operand = C->getOperand(j);
   1643             printType(operand->getType());
   1644             if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
   1645               gvs.insert(GV);
   1646               if (GenerationType != GenFunction)
   1647                 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
   1648                   if (GVar->hasInitializer())
   1649                     consts.insert(GVar->getInitializer());
   1650             }
   1651           }
   1652         }
   1653       }
   1654     }
   1655   }
   1656 
   1657   // Print the function declarations for any functions encountered
   1658   nl(Out) << "// Function Declarations"; nl(Out);
   1659   for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
   1660        I != E; ++I) {
   1661     if (Function* Fun = dyn_cast<Function>(*I)) {
   1662       if (!is_inline || Fun != F)
   1663         printFunctionHead(Fun);
   1664     }
   1665   }
   1666 
   1667   // Print the global variable declarations for any variables encountered
   1668   nl(Out) << "// Global Variable Declarations"; nl(Out);
   1669   for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
   1670        I != E; ++I) {
   1671     if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
   1672       printVariableHead(F);
   1673   }
   1674 
   1675   // Print the constants found
   1676   nl(Out) << "// Constant Definitions"; nl(Out);
   1677   for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(),
   1678          E = consts.end(); I != E; ++I) {
   1679     printConstant(*I);
   1680   }
   1681 
   1682   // Process the global variables definitions now that all the constants have
   1683   // been emitted. These definitions just couple the gvars with their constant
   1684   // initializers.
   1685   if (GenerationType != GenFunction) {
   1686     nl(Out) << "// Global Variable Definitions"; nl(Out);
   1687     for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
   1688          I != E; ++I) {
   1689       if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
   1690         printVariableBody(GV);
   1691     }
   1692   }
   1693 }
   1694 
   1695 void CppWriter::printFunctionHead(const Function* F) {
   1696   nl(Out) << "Function* " << getCppName(F);
   1697   Out << " = mod->getFunction(\"";
   1698   printEscapedString(F->getName());
   1699   Out << "\");";
   1700   nl(Out) << "if (!" << getCppName(F) << ") {";
   1701   nl(Out) << getCppName(F);
   1702 
   1703   Out<< " = Function::Create(";
   1704   nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
   1705   nl(Out) << "/*Linkage=*/";
   1706   printLinkageType(F->getLinkage());
   1707   Out << ",";
   1708   nl(Out) << "/*Name=*/\"";
   1709   printEscapedString(F->getName());
   1710   Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
   1711   nl(Out,-1);
   1712   printCppName(F);
   1713   Out << "->setCallingConv(";
   1714   printCallingConv(F->getCallingConv());
   1715   Out << ");";
   1716   nl(Out);
   1717   if (F->hasSection()) {
   1718     printCppName(F);
   1719     Out << "->setSection(\"" << F->getSection() << "\");";
   1720     nl(Out);
   1721   }
   1722   if (F->getAlignment()) {
   1723     printCppName(F);
   1724     Out << "->setAlignment(" << F->getAlignment() << ");";
   1725     nl(Out);
   1726   }
   1727   if (F->getVisibility() != GlobalValue::DefaultVisibility) {
   1728     printCppName(F);
   1729     Out << "->setVisibility(";
   1730     printVisibilityType(F->getVisibility());
   1731     Out << ");";
   1732     nl(Out);
   1733   }
   1734   if (F->hasGC()) {
   1735     printCppName(F);
   1736     Out << "->setGC(\"" << F->getGC() << "\");";
   1737     nl(Out);
   1738   }
   1739   Out << "}";
   1740   nl(Out);
   1741   printAttributes(F->getAttributes(), getCppName(F));
   1742   printCppName(F);
   1743   Out << "->setAttributes(" << getCppName(F) << "_PAL);";
   1744   nl(Out);
   1745 }
   1746 
   1747 void CppWriter::printFunctionBody(const Function *F) {
   1748   if (F->isDeclaration())
   1749     return; // external functions have no bodies.
   1750 
   1751   // Clear the DefinedValues and ForwardRefs maps because we can't have
   1752   // cross-function forward refs
   1753   ForwardRefs.clear();
   1754   DefinedValues.clear();
   1755 
   1756   // Create all the argument values
   1757   if (!is_inline) {
   1758     if (!F->arg_empty()) {
   1759       Out << "Function::arg_iterator args = " << getCppName(F)
   1760           << "->arg_begin();";
   1761       nl(Out);
   1762     }
   1763     for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
   1764          AI != AE; ++AI) {
   1765       Out << "Value* " << getCppName(AI) << " = args++;";
   1766       nl(Out);
   1767       if (AI->hasName()) {
   1768         Out << getCppName(AI) << "->setName(\"";
   1769         printEscapedString(AI->getName());
   1770         Out << "\");";
   1771         nl(Out);
   1772       }
   1773     }
   1774   }
   1775 
   1776   // Create all the basic blocks
   1777   nl(Out);
   1778   for (Function::const_iterator BI = F->begin(), BE = F->end();
   1779        BI != BE; ++BI) {
   1780     std::string bbname(getCppName(BI));
   1781     Out << "BasicBlock* " << bbname <<
   1782            " = BasicBlock::Create(mod->getContext(), \"";
   1783     if (BI->hasName())
   1784       printEscapedString(BI->getName());
   1785     Out << "\"," << getCppName(BI->getParent()) << ",0);";
   1786     nl(Out);
   1787   }
   1788 
   1789   // Output all of its basic blocks... for the function
   1790   for (Function::const_iterator BI = F->begin(), BE = F->end();
   1791        BI != BE; ++BI) {
   1792     std::string bbname(getCppName(BI));
   1793     nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
   1794     nl(Out);
   1795 
   1796     // Output all of the instructions in the basic block...
   1797     for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
   1798          I != E; ++I) {
   1799       printInstruction(I,bbname);
   1800     }
   1801   }
   1802 
   1803   // Loop over the ForwardRefs and resolve them now that all instructions
   1804   // are generated.
   1805   if (!ForwardRefs.empty()) {
   1806     nl(Out) << "// Resolve Forward References";
   1807     nl(Out);
   1808   }
   1809 
   1810   while (!ForwardRefs.empty()) {
   1811     ForwardRefMap::iterator I = ForwardRefs.begin();
   1812     Out << I->second << "->replaceAllUsesWith("
   1813         << getCppName(I->first) << "); delete " << I->second << ";";
   1814     nl(Out);
   1815     ForwardRefs.erase(I);
   1816   }
   1817 }
   1818 
   1819 void CppWriter::printInline(const std::string& fname,
   1820                             const std::string& func) {
   1821   const Function* F = TheModule->getFunction(func);
   1822   if (!F) {
   1823     error(std::string("Function '") + func + "' not found in input module");
   1824     return;
   1825   }
   1826   if (F->isDeclaration()) {
   1827     error(std::string("Function '") + func + "' is external!");
   1828     return;
   1829   }
   1830   nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
   1831           << getCppName(F);
   1832   unsigned arg_count = 1;
   1833   for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
   1834        AI != AE; ++AI) {
   1835     Out << ", Value* arg_" << arg_count++;
   1836   }
   1837   Out << ") {";
   1838   nl(Out);
   1839   is_inline = true;
   1840   printFunctionUses(F);
   1841   printFunctionBody(F);
   1842   is_inline = false;
   1843   Out << "return " << getCppName(F->begin()) << ";";
   1844   nl(Out) << "}";
   1845   nl(Out);
   1846 }
   1847 
   1848 void CppWriter::printModuleBody() {
   1849   // Print out all the type definitions
   1850   nl(Out) << "// Type Definitions"; nl(Out);
   1851   printTypes(TheModule);
   1852 
   1853   // Functions can call each other and global variables can reference them so
   1854   // define all the functions first before emitting their function bodies.
   1855   nl(Out) << "// Function Declarations"; nl(Out);
   1856   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
   1857        I != E; ++I)
   1858     printFunctionHead(I);
   1859 
   1860   // Process the global variables declarations. We can't initialze them until
   1861   // after the constants are printed so just print a header for each global
   1862   nl(Out) << "// Global Variable Declarations\n"; nl(Out);
   1863   for (Module::const_global_iterator I = TheModule->global_begin(),
   1864          E = TheModule->global_end(); I != E; ++I) {
   1865     printVariableHead(I);
   1866   }
   1867 
   1868   // Print out all the constants definitions. Constants don't recurse except
   1869   // through GlobalValues. All GlobalValues have been declared at this point
   1870   // so we can proceed to generate the constants.
   1871   nl(Out) << "// Constant Definitions"; nl(Out);
   1872   printConstants(TheModule);
   1873 
   1874   // Process the global variables definitions now that all the constants have
   1875   // been emitted. These definitions just couple the gvars with their constant
   1876   // initializers.
   1877   nl(Out) << "// Global Variable Definitions"; nl(Out);
   1878   for (Module::const_global_iterator I = TheModule->global_begin(),
   1879          E = TheModule->global_end(); I != E; ++I) {
   1880     printVariableBody(I);
   1881   }
   1882 
   1883   // Finally, we can safely put out all of the function bodies.
   1884   nl(Out) << "// Function Definitions"; nl(Out);
   1885   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
   1886        I != E; ++I) {
   1887     if (!I->isDeclaration()) {
   1888       nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
   1889               << ")";
   1890       nl(Out) << "{";
   1891       nl(Out,1);
   1892       printFunctionBody(I);
   1893       nl(Out,-1) << "}";
   1894       nl(Out);
   1895     }
   1896   }
   1897 }
   1898 
   1899 void CppWriter::printProgram(const std::string& fname,
   1900                              const std::string& mName) {
   1901   Out << "#include <llvm/Pass.h>\n";
   1902   Out << "#include <llvm/PassManager.h>\n";
   1903 
   1904   Out << "#include <llvm/ADT/SmallVector.h>\n";
   1905   Out << "#include <llvm/Analysis/Verifier.h>\n";
   1906   Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
   1907   Out << "#include <llvm/IR/BasicBlock.h>\n";
   1908   Out << "#include <llvm/IR/CallingConv.h>\n";
   1909   Out << "#include <llvm/IR/Constants.h>\n";
   1910   Out << "#include <llvm/IR/DerivedTypes.h>\n";
   1911   Out << "#include <llvm/IR/Function.h>\n";
   1912   Out << "#include <llvm/IR/GlobalVariable.h>\n";
   1913   Out << "#include <llvm/IR/InlineAsm.h>\n";
   1914   Out << "#include <llvm/IR/Instructions.h>\n";
   1915   Out << "#include <llvm/IR/LLVMContext.h>\n";
   1916   Out << "#include <llvm/IR/Module.h>\n";
   1917   Out << "#include <llvm/Support/FormattedStream.h>\n";
   1918   Out << "#include <llvm/Support/MathExtras.h>\n";
   1919   Out << "#include <algorithm>\n";
   1920   Out << "using namespace llvm;\n\n";
   1921   Out << "Module* " << fname << "();\n\n";
   1922   Out << "int main(int argc, char**argv) {\n";
   1923   Out << "  Module* Mod = " << fname << "();\n";
   1924   Out << "  verifyModule(*Mod, PrintMessageAction);\n";
   1925   Out << "  PassManager PM;\n";
   1926   Out << "  PM.add(createPrintModulePass(&outs()));\n";
   1927   Out << "  PM.run(*Mod);\n";
   1928   Out << "  return 0;\n";
   1929   Out << "}\n\n";
   1930   printModule(fname,mName);
   1931 }
   1932 
   1933 void CppWriter::printModule(const std::string& fname,
   1934                             const std::string& mName) {
   1935   nl(Out) << "Module* " << fname << "() {";
   1936   nl(Out,1) << "// Module Construction";
   1937   nl(Out) << "Module* mod = new Module(\"";
   1938   printEscapedString(mName);
   1939   Out << "\", getGlobalContext());";
   1940   if (!TheModule->getTargetTriple().empty()) {
   1941     nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
   1942   }
   1943   if (!TheModule->getTargetTriple().empty()) {
   1944     nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
   1945             << "\");";
   1946   }
   1947 
   1948   if (!TheModule->getModuleInlineAsm().empty()) {
   1949     nl(Out) << "mod->setModuleInlineAsm(\"";
   1950     printEscapedString(TheModule->getModuleInlineAsm());
   1951     Out << "\");";
   1952   }
   1953   nl(Out);
   1954 
   1955   printModuleBody();
   1956   nl(Out) << "return mod;";
   1957   nl(Out,-1) << "}";
   1958   nl(Out);
   1959 }
   1960 
   1961 void CppWriter::printContents(const std::string& fname,
   1962                               const std::string& mName) {
   1963   Out << "\nModule* " << fname << "(Module *mod) {\n";
   1964   Out << "\nmod->setModuleIdentifier(\"";
   1965   printEscapedString(mName);
   1966   Out << "\");\n";
   1967   printModuleBody();
   1968   Out << "\nreturn mod;\n";
   1969   Out << "\n}\n";
   1970 }
   1971 
   1972 void CppWriter::printFunction(const std::string& fname,
   1973                               const std::string& funcName) {
   1974   const Function* F = TheModule->getFunction(funcName);
   1975   if (!F) {
   1976     error(std::string("Function '") + funcName + "' not found in input module");
   1977     return;
   1978   }
   1979   Out << "\nFunction* " << fname << "(Module *mod) {\n";
   1980   printFunctionUses(F);
   1981   printFunctionHead(F);
   1982   printFunctionBody(F);
   1983   Out << "return " << getCppName(F) << ";\n";
   1984   Out << "}\n";
   1985 }
   1986 
   1987 void CppWriter::printFunctions() {
   1988   const Module::FunctionListType &funcs = TheModule->getFunctionList();
   1989   Module::const_iterator I  = funcs.begin();
   1990   Module::const_iterator IE = funcs.end();
   1991 
   1992   for (; I != IE; ++I) {
   1993     const Function &func = *I;
   1994     if (!func.isDeclaration()) {
   1995       std::string name("define_");
   1996       name += func.getName();
   1997       printFunction(name, func.getName());
   1998     }
   1999   }
   2000 }
   2001 
   2002 void CppWriter::printVariable(const std::string& fname,
   2003                               const std::string& varName) {
   2004   const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
   2005 
   2006   if (!GV) {
   2007     error(std::string("Variable '") + varName + "' not found in input module");
   2008     return;
   2009   }
   2010   Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
   2011   printVariableUses(GV);
   2012   printVariableHead(GV);
   2013   printVariableBody(GV);
   2014   Out << "return " << getCppName(GV) << ";\n";
   2015   Out << "}\n";
   2016 }
   2017 
   2018 void CppWriter::printType(const std::string &fname,
   2019                           const std::string &typeName) {
   2020   Type* Ty = TheModule->getTypeByName(typeName);
   2021   if (!Ty) {
   2022     error(std::string("Type '") + typeName + "' not found in input module");
   2023     return;
   2024   }
   2025   Out << "\nType* " << fname << "(Module *mod) {\n";
   2026   printType(Ty);
   2027   Out << "return " << getCppName(Ty) << ";\n";
   2028   Out << "}\n";
   2029 }
   2030 
   2031 bool CppWriter::runOnModule(Module &M) {
   2032   TheModule = &M;
   2033 
   2034   // Emit a header
   2035   Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
   2036 
   2037   // Get the name of the function we're supposed to generate
   2038   std::string fname = FuncName.getValue();
   2039 
   2040   // Get the name of the thing we are to generate
   2041   std::string tgtname = NameToGenerate.getValue();
   2042   if (GenerationType == GenModule ||
   2043       GenerationType == GenContents ||
   2044       GenerationType == GenProgram ||
   2045       GenerationType == GenFunctions) {
   2046     if (tgtname == "!bad!") {
   2047       if (M.getModuleIdentifier() == "-")
   2048         tgtname = "<stdin>";
   2049       else
   2050         tgtname = M.getModuleIdentifier();
   2051     }
   2052   } else if (tgtname == "!bad!")
   2053     error("You must use the -for option with -gen-{function,variable,type}");
   2054 
   2055   switch (WhatToGenerate(GenerationType)) {
   2056    case GenProgram:
   2057     if (fname.empty())
   2058       fname = "makeLLVMModule";
   2059     printProgram(fname,tgtname);
   2060     break;
   2061    case GenModule:
   2062     if (fname.empty())
   2063       fname = "makeLLVMModule";
   2064     printModule(fname,tgtname);
   2065     break;
   2066    case GenContents:
   2067     if (fname.empty())
   2068       fname = "makeLLVMModuleContents";
   2069     printContents(fname,tgtname);
   2070     break;
   2071    case GenFunction:
   2072     if (fname.empty())
   2073       fname = "makeLLVMFunction";
   2074     printFunction(fname,tgtname);
   2075     break;
   2076    case GenFunctions:
   2077     printFunctions();
   2078     break;
   2079    case GenInline:
   2080     if (fname.empty())
   2081       fname = "makeLLVMInline";
   2082     printInline(fname,tgtname);
   2083     break;
   2084    case GenVariable:
   2085     if (fname.empty())
   2086       fname = "makeLLVMVariable";
   2087     printVariable(fname,tgtname);
   2088     break;
   2089    case GenType:
   2090     if (fname.empty())
   2091       fname = "makeLLVMType";
   2092     printType(fname,tgtname);
   2093     break;
   2094   }
   2095 
   2096   return false;
   2097 }
   2098 
   2099 char CppWriter::ID = 0;
   2100 
   2101 //===----------------------------------------------------------------------===//
   2102 //                       External Interface declaration
   2103 //===----------------------------------------------------------------------===//
   2104 
   2105 bool CPPTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
   2106                                            formatted_raw_ostream &o,
   2107                                            CodeGenFileType FileType,
   2108                                            bool DisableVerify,
   2109                                            AnalysisID StartAfter,
   2110                                            AnalysisID StopAfter) {
   2111   if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
   2112   PM.add(new CppWriter(o));
   2113   return false;
   2114 }
   2115