1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the writing of the LLVM IR as a set of C++ calls to the 11 // LLVM IR interface. The input module is assumed to be verified. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CPPTargetMachine.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Config/config.h" 19 #include "llvm/IR/CallingConv.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCInstrInfo.h" 28 #include "llvm/MC/MCSubtargetInfo.h" 29 #include "llvm/Pass.h" 30 #include "llvm/PassManager.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/FormattedStream.h" 34 #include "llvm/Support/TargetRegistry.h" 35 #include <algorithm> 36 #include <cstdio> 37 #include <map> 38 #include <set> 39 using namespace llvm; 40 41 static cl::opt<std::string> 42 FuncName("cppfname", cl::desc("Specify the name of the generated function"), 43 cl::value_desc("function name")); 44 45 enum WhatToGenerate { 46 GenProgram, 47 GenModule, 48 GenContents, 49 GenFunction, 50 GenFunctions, 51 GenInline, 52 GenVariable, 53 GenType 54 }; 55 56 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional, 57 cl::desc("Choose what kind of output to generate"), 58 cl::init(GenProgram), 59 cl::values( 60 clEnumValN(GenProgram, "program", "Generate a complete program"), 61 clEnumValN(GenModule, "module", "Generate a module definition"), 62 clEnumValN(GenContents, "contents", "Generate contents of a module"), 63 clEnumValN(GenFunction, "function", "Generate a function definition"), 64 clEnumValN(GenFunctions,"functions", "Generate all function definitions"), 65 clEnumValN(GenInline, "inline", "Generate an inline function"), 66 clEnumValN(GenVariable, "variable", "Generate a variable definition"), 67 clEnumValN(GenType, "type", "Generate a type definition"), 68 clEnumValEnd 69 ) 70 ); 71 72 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional, 73 cl::desc("Specify the name of the thing to generate"), 74 cl::init("!bad!")); 75 76 extern "C" void LLVMInitializeCppBackendTarget() { 77 // Register the target. 78 RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget); 79 } 80 81 namespace { 82 typedef std::vector<Type*> TypeList; 83 typedef std::map<Type*,std::string> TypeMap; 84 typedef std::map<const Value*,std::string> ValueMap; 85 typedef std::set<std::string> NameSet; 86 typedef std::set<Type*> TypeSet; 87 typedef std::set<const Value*> ValueSet; 88 typedef std::map<const Value*,std::string> ForwardRefMap; 89 90 /// CppWriter - This class is the main chunk of code that converts an LLVM 91 /// module to a C++ translation unit. 92 class CppWriter : public ModulePass { 93 formatted_raw_ostream &Out; 94 const Module *TheModule; 95 uint64_t uniqueNum; 96 TypeMap TypeNames; 97 ValueMap ValueNames; 98 NameSet UsedNames; 99 TypeSet DefinedTypes; 100 ValueSet DefinedValues; 101 ForwardRefMap ForwardRefs; 102 bool is_inline; 103 unsigned indent_level; 104 105 public: 106 static char ID; 107 explicit CppWriter(formatted_raw_ostream &o) : 108 ModulePass(ID), Out(o), uniqueNum(0), is_inline(false), indent_level(0){} 109 110 virtual const char *getPassName() const { return "C++ backend"; } 111 112 bool runOnModule(Module &M); 113 114 void printProgram(const std::string& fname, const std::string& modName ); 115 void printModule(const std::string& fname, const std::string& modName ); 116 void printContents(const std::string& fname, const std::string& modName ); 117 void printFunction(const std::string& fname, const std::string& funcName ); 118 void printFunctions(); 119 void printInline(const std::string& fname, const std::string& funcName ); 120 void printVariable(const std::string& fname, const std::string& varName ); 121 void printType(const std::string& fname, const std::string& typeName ); 122 123 void error(const std::string& msg); 124 125 126 formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0); 127 inline void in() { indent_level++; } 128 inline void out() { if (indent_level >0) indent_level--; } 129 130 private: 131 void printLinkageType(GlobalValue::LinkageTypes LT); 132 void printVisibilityType(GlobalValue::VisibilityTypes VisTypes); 133 void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM); 134 void printCallingConv(CallingConv::ID cc); 135 void printEscapedString(const std::string& str); 136 void printCFP(const ConstantFP* CFP); 137 138 std::string getCppName(Type* val); 139 inline void printCppName(Type* val); 140 141 std::string getCppName(const Value* val); 142 inline void printCppName(const Value* val); 143 144 void printAttributes(const AttributeSet &PAL, const std::string &name); 145 void printType(Type* Ty); 146 void printTypes(const Module* M); 147 148 void printConstant(const Constant *CPV); 149 void printConstants(const Module* M); 150 151 void printVariableUses(const GlobalVariable *GV); 152 void printVariableHead(const GlobalVariable *GV); 153 void printVariableBody(const GlobalVariable *GV); 154 155 void printFunctionUses(const Function *F); 156 void printFunctionHead(const Function *F); 157 void printFunctionBody(const Function *F); 158 void printInstruction(const Instruction *I, const std::string& bbname); 159 std::string getOpName(const Value*); 160 161 void printModuleBody(); 162 }; 163 } // end anonymous namespace. 164 165 formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) { 166 Out << '\n'; 167 if (delta >= 0 || indent_level >= unsigned(-delta)) 168 indent_level += delta; 169 Out.indent(indent_level); 170 return Out; 171 } 172 173 static inline void sanitize(std::string &str) { 174 for (size_t i = 0; i < str.length(); ++i) 175 if (!isalnum(str[i]) && str[i] != '_') 176 str[i] = '_'; 177 } 178 179 static std::string getTypePrefix(Type *Ty) { 180 switch (Ty->getTypeID()) { 181 case Type::VoidTyID: return "void_"; 182 case Type::IntegerTyID: 183 return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_"; 184 case Type::FloatTyID: return "float_"; 185 case Type::DoubleTyID: return "double_"; 186 case Type::LabelTyID: return "label_"; 187 case Type::FunctionTyID: return "func_"; 188 case Type::StructTyID: return "struct_"; 189 case Type::ArrayTyID: return "array_"; 190 case Type::PointerTyID: return "ptr_"; 191 case Type::VectorTyID: return "packed_"; 192 default: return "other_"; 193 } 194 } 195 196 void CppWriter::error(const std::string& msg) { 197 report_fatal_error(msg); 198 } 199 200 static inline std::string ftostr(const APFloat& V) { 201 std::string Buf; 202 if (&V.getSemantics() == &APFloat::IEEEdouble) { 203 raw_string_ostream(Buf) << V.convertToDouble(); 204 return Buf; 205 } else if (&V.getSemantics() == &APFloat::IEEEsingle) { 206 raw_string_ostream(Buf) << (double)V.convertToFloat(); 207 return Buf; 208 } 209 return "<unknown format in ftostr>"; // error 210 } 211 212 // printCFP - Print a floating point constant .. very carefully :) 213 // This makes sure that conversion to/from floating yields the same binary 214 // result so that we don't lose precision. 215 void CppWriter::printCFP(const ConstantFP *CFP) { 216 bool ignored; 217 APFloat APF = APFloat(CFP->getValueAPF()); // copy 218 if (CFP->getType() == Type::getFloatTy(CFP->getContext())) 219 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored); 220 Out << "ConstantFP::get(mod->getContext(), "; 221 Out << "APFloat("; 222 #if HAVE_PRINTF_A 223 char Buffer[100]; 224 sprintf(Buffer, "%A", APF.convertToDouble()); 225 if ((!strncmp(Buffer, "0x", 2) || 226 !strncmp(Buffer, "-0x", 3) || 227 !strncmp(Buffer, "+0x", 3)) && 228 APF.bitwiseIsEqual(APFloat(atof(Buffer)))) { 229 if (CFP->getType() == Type::getDoubleTy(CFP->getContext())) 230 Out << "BitsToDouble(" << Buffer << ")"; 231 else 232 Out << "BitsToFloat((float)" << Buffer << ")"; 233 Out << ")"; 234 } else { 235 #endif 236 std::string StrVal = ftostr(CFP->getValueAPF()); 237 238 while (StrVal[0] == ' ') 239 StrVal.erase(StrVal.begin()); 240 241 // Check to make sure that the stringized number is not some string like 242 // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex. 243 if (((StrVal[0] >= '0' && StrVal[0] <= '9') || 244 ((StrVal[0] == '-' || StrVal[0] == '+') && 245 (StrVal[1] >= '0' && StrVal[1] <= '9'))) && 246 (CFP->isExactlyValue(atof(StrVal.c_str())))) { 247 if (CFP->getType() == Type::getDoubleTy(CFP->getContext())) 248 Out << StrVal; 249 else 250 Out << StrVal << "f"; 251 } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext())) 252 Out << "BitsToDouble(0x" 253 << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue()) 254 << "ULL) /* " << StrVal << " */"; 255 else 256 Out << "BitsToFloat(0x" 257 << utohexstr((uint32_t)CFP->getValueAPF(). 258 bitcastToAPInt().getZExtValue()) 259 << "U) /* " << StrVal << " */"; 260 Out << ")"; 261 #if HAVE_PRINTF_A 262 } 263 #endif 264 Out << ")"; 265 } 266 267 void CppWriter::printCallingConv(CallingConv::ID cc){ 268 // Print the calling convention. 269 switch (cc) { 270 case CallingConv::C: Out << "CallingConv::C"; break; 271 case CallingConv::Fast: Out << "CallingConv::Fast"; break; 272 case CallingConv::Cold: Out << "CallingConv::Cold"; break; 273 case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break; 274 default: Out << cc; break; 275 } 276 } 277 278 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) { 279 switch (LT) { 280 case GlobalValue::InternalLinkage: 281 Out << "GlobalValue::InternalLinkage"; break; 282 case GlobalValue::PrivateLinkage: 283 Out << "GlobalValue::PrivateLinkage"; break; 284 case GlobalValue::LinkerPrivateLinkage: 285 Out << "GlobalValue::LinkerPrivateLinkage"; break; 286 case GlobalValue::LinkerPrivateWeakLinkage: 287 Out << "GlobalValue::LinkerPrivateWeakLinkage"; break; 288 case GlobalValue::AvailableExternallyLinkage: 289 Out << "GlobalValue::AvailableExternallyLinkage "; break; 290 case GlobalValue::LinkOnceAnyLinkage: 291 Out << "GlobalValue::LinkOnceAnyLinkage "; break; 292 case GlobalValue::LinkOnceODRLinkage: 293 Out << "GlobalValue::LinkOnceODRLinkage "; break; 294 case GlobalValue::LinkOnceODRAutoHideLinkage: 295 Out << "GlobalValue::LinkOnceODRAutoHideLinkage"; break; 296 case GlobalValue::WeakAnyLinkage: 297 Out << "GlobalValue::WeakAnyLinkage"; break; 298 case GlobalValue::WeakODRLinkage: 299 Out << "GlobalValue::WeakODRLinkage"; break; 300 case GlobalValue::AppendingLinkage: 301 Out << "GlobalValue::AppendingLinkage"; break; 302 case GlobalValue::ExternalLinkage: 303 Out << "GlobalValue::ExternalLinkage"; break; 304 case GlobalValue::DLLImportLinkage: 305 Out << "GlobalValue::DLLImportLinkage"; break; 306 case GlobalValue::DLLExportLinkage: 307 Out << "GlobalValue::DLLExportLinkage"; break; 308 case GlobalValue::ExternalWeakLinkage: 309 Out << "GlobalValue::ExternalWeakLinkage"; break; 310 case GlobalValue::CommonLinkage: 311 Out << "GlobalValue::CommonLinkage"; break; 312 } 313 } 314 315 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) { 316 switch (VisType) { 317 case GlobalValue::DefaultVisibility: 318 Out << "GlobalValue::DefaultVisibility"; 319 break; 320 case GlobalValue::HiddenVisibility: 321 Out << "GlobalValue::HiddenVisibility"; 322 break; 323 case GlobalValue::ProtectedVisibility: 324 Out << "GlobalValue::ProtectedVisibility"; 325 break; 326 } 327 } 328 329 void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) { 330 switch (TLM) { 331 case GlobalVariable::NotThreadLocal: 332 Out << "GlobalVariable::NotThreadLocal"; 333 break; 334 case GlobalVariable::GeneralDynamicTLSModel: 335 Out << "GlobalVariable::GeneralDynamicTLSModel"; 336 break; 337 case GlobalVariable::LocalDynamicTLSModel: 338 Out << "GlobalVariable::LocalDynamicTLSModel"; 339 break; 340 case GlobalVariable::InitialExecTLSModel: 341 Out << "GlobalVariable::InitialExecTLSModel"; 342 break; 343 case GlobalVariable::LocalExecTLSModel: 344 Out << "GlobalVariable::LocalExecTLSModel"; 345 break; 346 } 347 } 348 349 // printEscapedString - Print each character of the specified string, escaping 350 // it if it is not printable or if it is an escape char. 351 void CppWriter::printEscapedString(const std::string &Str) { 352 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 353 unsigned char C = Str[i]; 354 if (isprint(C) && C != '"' && C != '\\') { 355 Out << C; 356 } else { 357 Out << "\\x" 358 << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')) 359 << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); 360 } 361 } 362 } 363 364 std::string CppWriter::getCppName(Type* Ty) { 365 // First, handle the primitive types .. easy 366 if (Ty->isPrimitiveType() || Ty->isIntegerTy()) { 367 switch (Ty->getTypeID()) { 368 case Type::VoidTyID: return "Type::getVoidTy(mod->getContext())"; 369 case Type::IntegerTyID: { 370 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 371 return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")"; 372 } 373 case Type::X86_FP80TyID: return "Type::getX86_FP80Ty(mod->getContext())"; 374 case Type::FloatTyID: return "Type::getFloatTy(mod->getContext())"; 375 case Type::DoubleTyID: return "Type::getDoubleTy(mod->getContext())"; 376 case Type::LabelTyID: return "Type::getLabelTy(mod->getContext())"; 377 case Type::X86_MMXTyID: return "Type::getX86_MMXTy(mod->getContext())"; 378 default: 379 error("Invalid primitive type"); 380 break; 381 } 382 // shouldn't be returned, but make it sensible 383 return "Type::getVoidTy(mod->getContext())"; 384 } 385 386 // Now, see if we've seen the type before and return that 387 TypeMap::iterator I = TypeNames.find(Ty); 388 if (I != TypeNames.end()) 389 return I->second; 390 391 // Okay, let's build a new name for this type. Start with a prefix 392 const char* prefix = 0; 393 switch (Ty->getTypeID()) { 394 case Type::FunctionTyID: prefix = "FuncTy_"; break; 395 case Type::StructTyID: prefix = "StructTy_"; break; 396 case Type::ArrayTyID: prefix = "ArrayTy_"; break; 397 case Type::PointerTyID: prefix = "PointerTy_"; break; 398 case Type::VectorTyID: prefix = "VectorTy_"; break; 399 default: prefix = "OtherTy_"; break; // prevent breakage 400 } 401 402 // See if the type has a name in the symboltable and build accordingly 403 std::string name; 404 if (StructType *STy = dyn_cast<StructType>(Ty)) 405 if (STy->hasName()) 406 name = STy->getName(); 407 408 if (name.empty()) 409 name = utostr(uniqueNum++); 410 411 name = std::string(prefix) + name; 412 sanitize(name); 413 414 // Save the name 415 return TypeNames[Ty] = name; 416 } 417 418 void CppWriter::printCppName(Type* Ty) { 419 printEscapedString(getCppName(Ty)); 420 } 421 422 std::string CppWriter::getCppName(const Value* val) { 423 std::string name; 424 ValueMap::iterator I = ValueNames.find(val); 425 if (I != ValueNames.end() && I->first == val) 426 return I->second; 427 428 if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) { 429 name = std::string("gvar_") + 430 getTypePrefix(GV->getType()->getElementType()); 431 } else if (isa<Function>(val)) { 432 name = std::string("func_"); 433 } else if (const Constant* C = dyn_cast<Constant>(val)) { 434 name = std::string("const_") + getTypePrefix(C->getType()); 435 } else if (const Argument* Arg = dyn_cast<Argument>(val)) { 436 if (is_inline) { 437 unsigned argNum = std::distance(Arg->getParent()->arg_begin(), 438 Function::const_arg_iterator(Arg)) + 1; 439 name = std::string("arg_") + utostr(argNum); 440 NameSet::iterator NI = UsedNames.find(name); 441 if (NI != UsedNames.end()) 442 name += std::string("_") + utostr(uniqueNum++); 443 UsedNames.insert(name); 444 return ValueNames[val] = name; 445 } else { 446 name = getTypePrefix(val->getType()); 447 } 448 } else { 449 name = getTypePrefix(val->getType()); 450 } 451 if (val->hasName()) 452 name += val->getName(); 453 else 454 name += utostr(uniqueNum++); 455 sanitize(name); 456 NameSet::iterator NI = UsedNames.find(name); 457 if (NI != UsedNames.end()) 458 name += std::string("_") + utostr(uniqueNum++); 459 UsedNames.insert(name); 460 return ValueNames[val] = name; 461 } 462 463 void CppWriter::printCppName(const Value* val) { 464 printEscapedString(getCppName(val)); 465 } 466 467 void CppWriter::printAttributes(const AttributeSet &PAL, 468 const std::string &name) { 469 Out << "AttributeSet " << name << "_PAL;"; 470 nl(Out); 471 if (!PAL.isEmpty()) { 472 Out << '{'; in(); nl(Out); 473 Out << "SmallVector<AttributeSet, 4> Attrs;"; nl(Out); 474 Out << "AttributeSet PAS;"; in(); nl(Out); 475 for (unsigned i = 0; i < PAL.getNumSlots(); ++i) { 476 unsigned index = PAL.getSlotIndex(i); 477 AttrBuilder attrs(PAL.getSlotAttributes(i), index); 478 Out << "{"; in(); nl(Out); 479 Out << "AttrBuilder B;"; nl(Out); 480 481 #define HANDLE_ATTR(X) \ 482 if (attrs.contains(Attribute::X)) { \ 483 Out << "B.addAttribute(Attribute::" #X ");"; nl(Out); \ 484 attrs.removeAttribute(Attribute::X); \ 485 } 486 487 HANDLE_ATTR(SExt); 488 HANDLE_ATTR(ZExt); 489 HANDLE_ATTR(NoReturn); 490 HANDLE_ATTR(InReg); 491 HANDLE_ATTR(StructRet); 492 HANDLE_ATTR(NoUnwind); 493 HANDLE_ATTR(NoAlias); 494 HANDLE_ATTR(ByVal); 495 HANDLE_ATTR(Nest); 496 HANDLE_ATTR(ReadNone); 497 HANDLE_ATTR(ReadOnly); 498 HANDLE_ATTR(NoInline); 499 HANDLE_ATTR(AlwaysInline); 500 HANDLE_ATTR(OptimizeForSize); 501 HANDLE_ATTR(StackProtect); 502 HANDLE_ATTR(StackProtectReq); 503 HANDLE_ATTR(StackProtectStrong); 504 HANDLE_ATTR(NoCapture); 505 HANDLE_ATTR(NoRedZone); 506 HANDLE_ATTR(NoImplicitFloat); 507 HANDLE_ATTR(Naked); 508 HANDLE_ATTR(InlineHint); 509 HANDLE_ATTR(ReturnsTwice); 510 HANDLE_ATTR(UWTable); 511 HANDLE_ATTR(NonLazyBind); 512 HANDLE_ATTR(MinSize); 513 #undef HANDLE_ATTR 514 515 if (attrs.contains(Attribute::StackAlignment)) { 516 Out << "B.addStackAlignmentAttr(" << attrs.getStackAlignment()<<')'; 517 nl(Out); 518 attrs.removeAttribute(Attribute::StackAlignment); 519 } 520 521 Out << "PAS = AttributeSet::get(mod->getContext(), "; 522 if (index == ~0U) 523 Out << "~0U,"; 524 else 525 Out << index << "U,"; 526 Out << " B);"; out(); nl(Out); 527 Out << "}"; out(); nl(Out); 528 nl(Out); 529 Out << "Attrs.push_back(PAS);"; nl(Out); 530 } 531 Out << name << "_PAL = AttributeSet::get(mod->getContext(), Attrs);"; 532 nl(Out); 533 out(); nl(Out); 534 Out << '}'; nl(Out); 535 } 536 } 537 538 void CppWriter::printType(Type* Ty) { 539 // We don't print definitions for primitive types 540 if (Ty->isPrimitiveType() || Ty->isIntegerTy()) 541 return; 542 543 // If we already defined this type, we don't need to define it again. 544 if (DefinedTypes.find(Ty) != DefinedTypes.end()) 545 return; 546 547 // Everything below needs the name for the type so get it now. 548 std::string typeName(getCppName(Ty)); 549 550 // Print the type definition 551 switch (Ty->getTypeID()) { 552 case Type::FunctionTyID: { 553 FunctionType* FT = cast<FunctionType>(Ty); 554 Out << "std::vector<Type*>" << typeName << "_args;"; 555 nl(Out); 556 FunctionType::param_iterator PI = FT->param_begin(); 557 FunctionType::param_iterator PE = FT->param_end(); 558 for (; PI != PE; ++PI) { 559 Type* argTy = static_cast<Type*>(*PI); 560 printType(argTy); 561 std::string argName(getCppName(argTy)); 562 Out << typeName << "_args.push_back(" << argName; 563 Out << ");"; 564 nl(Out); 565 } 566 printType(FT->getReturnType()); 567 std::string retTypeName(getCppName(FT->getReturnType())); 568 Out << "FunctionType* " << typeName << " = FunctionType::get("; 569 in(); nl(Out) << "/*Result=*/" << retTypeName; 570 Out << ","; 571 nl(Out) << "/*Params=*/" << typeName << "_args,"; 572 nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");"; 573 out(); 574 nl(Out); 575 break; 576 } 577 case Type::StructTyID: { 578 StructType* ST = cast<StructType>(Ty); 579 if (!ST->isLiteral()) { 580 Out << "StructType *" << typeName << " = mod->getTypeByName(\""; 581 printEscapedString(ST->getName()); 582 Out << "\");"; 583 nl(Out); 584 Out << "if (!" << typeName << ") {"; 585 nl(Out); 586 Out << typeName << " = "; 587 Out << "StructType::create(mod->getContext(), \""; 588 printEscapedString(ST->getName()); 589 Out << "\");"; 590 nl(Out); 591 Out << "}"; 592 nl(Out); 593 // Indicate that this type is now defined. 594 DefinedTypes.insert(Ty); 595 } 596 597 Out << "std::vector<Type*>" << typeName << "_fields;"; 598 nl(Out); 599 StructType::element_iterator EI = ST->element_begin(); 600 StructType::element_iterator EE = ST->element_end(); 601 for (; EI != EE; ++EI) { 602 Type* fieldTy = static_cast<Type*>(*EI); 603 printType(fieldTy); 604 std::string fieldName(getCppName(fieldTy)); 605 Out << typeName << "_fields.push_back(" << fieldName; 606 Out << ");"; 607 nl(Out); 608 } 609 610 if (ST->isLiteral()) { 611 Out << "StructType *" << typeName << " = "; 612 Out << "StructType::get(" << "mod->getContext(), "; 613 } else { 614 Out << "if (" << typeName << "->isOpaque()) {"; 615 nl(Out); 616 Out << typeName << "->setBody("; 617 } 618 619 Out << typeName << "_fields, /*isPacked=*/" 620 << (ST->isPacked() ? "true" : "false") << ");"; 621 nl(Out); 622 if (!ST->isLiteral()) { 623 Out << "}"; 624 nl(Out); 625 } 626 break; 627 } 628 case Type::ArrayTyID: { 629 ArrayType* AT = cast<ArrayType>(Ty); 630 Type* ET = AT->getElementType(); 631 printType(ET); 632 if (DefinedTypes.find(Ty) == DefinedTypes.end()) { 633 std::string elemName(getCppName(ET)); 634 Out << "ArrayType* " << typeName << " = ArrayType::get(" 635 << elemName 636 << ", " << utostr(AT->getNumElements()) << ");"; 637 nl(Out); 638 } 639 break; 640 } 641 case Type::PointerTyID: { 642 PointerType* PT = cast<PointerType>(Ty); 643 Type* ET = PT->getElementType(); 644 printType(ET); 645 if (DefinedTypes.find(Ty) == DefinedTypes.end()) { 646 std::string elemName(getCppName(ET)); 647 Out << "PointerType* " << typeName << " = PointerType::get(" 648 << elemName 649 << ", " << utostr(PT->getAddressSpace()) << ");"; 650 nl(Out); 651 } 652 break; 653 } 654 case Type::VectorTyID: { 655 VectorType* PT = cast<VectorType>(Ty); 656 Type* ET = PT->getElementType(); 657 printType(ET); 658 if (DefinedTypes.find(Ty) == DefinedTypes.end()) { 659 std::string elemName(getCppName(ET)); 660 Out << "VectorType* " << typeName << " = VectorType::get(" 661 << elemName 662 << ", " << utostr(PT->getNumElements()) << ");"; 663 nl(Out); 664 } 665 break; 666 } 667 default: 668 error("Invalid TypeID"); 669 } 670 671 // Indicate that this type is now defined. 672 DefinedTypes.insert(Ty); 673 674 // Finally, separate the type definition from other with a newline. 675 nl(Out); 676 } 677 678 void CppWriter::printTypes(const Module* M) { 679 // Add all of the global variables to the value table. 680 for (Module::const_global_iterator I = TheModule->global_begin(), 681 E = TheModule->global_end(); I != E; ++I) { 682 if (I->hasInitializer()) 683 printType(I->getInitializer()->getType()); 684 printType(I->getType()); 685 } 686 687 // Add all the functions to the table 688 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); 689 FI != FE; ++FI) { 690 printType(FI->getReturnType()); 691 printType(FI->getFunctionType()); 692 // Add all the function arguments 693 for (Function::const_arg_iterator AI = FI->arg_begin(), 694 AE = FI->arg_end(); AI != AE; ++AI) { 695 printType(AI->getType()); 696 } 697 698 // Add all of the basic blocks and instructions 699 for (Function::const_iterator BB = FI->begin(), 700 E = FI->end(); BB != E; ++BB) { 701 printType(BB->getType()); 702 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; 703 ++I) { 704 printType(I->getType()); 705 for (unsigned i = 0; i < I->getNumOperands(); ++i) 706 printType(I->getOperand(i)->getType()); 707 } 708 } 709 } 710 } 711 712 713 // printConstant - Print out a constant pool entry... 714 void CppWriter::printConstant(const Constant *CV) { 715 // First, if the constant is actually a GlobalValue (variable or function) 716 // or its already in the constant list then we've printed it already and we 717 // can just return. 718 if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end()) 719 return; 720 721 std::string constName(getCppName(CV)); 722 std::string typeName(getCppName(CV->getType())); 723 724 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 725 std::string constValue = CI->getValue().toString(10, true); 726 Out << "ConstantInt* " << constName 727 << " = ConstantInt::get(mod->getContext(), APInt(" 728 << cast<IntegerType>(CI->getType())->getBitWidth() 729 << ", StringRef(\"" << constValue << "\"), 10));"; 730 } else if (isa<ConstantAggregateZero>(CV)) { 731 Out << "ConstantAggregateZero* " << constName 732 << " = ConstantAggregateZero::get(" << typeName << ");"; 733 } else if (isa<ConstantPointerNull>(CV)) { 734 Out << "ConstantPointerNull* " << constName 735 << " = ConstantPointerNull::get(" << typeName << ");"; 736 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 737 Out << "ConstantFP* " << constName << " = "; 738 printCFP(CFP); 739 Out << ";"; 740 } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { 741 Out << "std::vector<Constant*> " << constName << "_elems;"; 742 nl(Out); 743 unsigned N = CA->getNumOperands(); 744 for (unsigned i = 0; i < N; ++i) { 745 printConstant(CA->getOperand(i)); // recurse to print operands 746 Out << constName << "_elems.push_back(" 747 << getCppName(CA->getOperand(i)) << ");"; 748 nl(Out); 749 } 750 Out << "Constant* " << constName << " = ConstantArray::get(" 751 << typeName << ", " << constName << "_elems);"; 752 } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { 753 Out << "std::vector<Constant*> " << constName << "_fields;"; 754 nl(Out); 755 unsigned N = CS->getNumOperands(); 756 for (unsigned i = 0; i < N; i++) { 757 printConstant(CS->getOperand(i)); 758 Out << constName << "_fields.push_back(" 759 << getCppName(CS->getOperand(i)) << ");"; 760 nl(Out); 761 } 762 Out << "Constant* " << constName << " = ConstantStruct::get(" 763 << typeName << ", " << constName << "_fields);"; 764 } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) { 765 Out << "std::vector<Constant*> " << constName << "_elems;"; 766 nl(Out); 767 unsigned N = CVec->getNumOperands(); 768 for (unsigned i = 0; i < N; ++i) { 769 printConstant(CVec->getOperand(i)); 770 Out << constName << "_elems.push_back(" 771 << getCppName(CVec->getOperand(i)) << ");"; 772 nl(Out); 773 } 774 Out << "Constant* " << constName << " = ConstantVector::get(" 775 << typeName << ", " << constName << "_elems);"; 776 } else if (isa<UndefValue>(CV)) { 777 Out << "UndefValue* " << constName << " = UndefValue::get(" 778 << typeName << ");"; 779 } else if (const ConstantDataSequential *CDS = 780 dyn_cast<ConstantDataSequential>(CV)) { 781 if (CDS->isString()) { 782 Out << "Constant *" << constName << 783 " = ConstantDataArray::getString(mod->getContext(), \""; 784 StringRef Str = CDS->getAsString(); 785 bool nullTerminate = false; 786 if (Str.back() == 0) { 787 Str = Str.drop_back(); 788 nullTerminate = true; 789 } 790 printEscapedString(Str); 791 // Determine if we want null termination or not. 792 if (nullTerminate) 793 Out << "\", true);"; 794 else 795 Out << "\", false);";// No null terminator 796 } else { 797 // TODO: Could generate more efficient code generating CDS calls instead. 798 Out << "std::vector<Constant*> " << constName << "_elems;"; 799 nl(Out); 800 for (unsigned i = 0; i != CDS->getNumElements(); ++i) { 801 Constant *Elt = CDS->getElementAsConstant(i); 802 printConstant(Elt); 803 Out << constName << "_elems.push_back(" << getCppName(Elt) << ");"; 804 nl(Out); 805 } 806 Out << "Constant* " << constName; 807 808 if (isa<ArrayType>(CDS->getType())) 809 Out << " = ConstantArray::get("; 810 else 811 Out << " = ConstantVector::get("; 812 Out << typeName << ", " << constName << "_elems);"; 813 } 814 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 815 if (CE->getOpcode() == Instruction::GetElementPtr) { 816 Out << "std::vector<Constant*> " << constName << "_indices;"; 817 nl(Out); 818 printConstant(CE->getOperand(0)); 819 for (unsigned i = 1; i < CE->getNumOperands(); ++i ) { 820 printConstant(CE->getOperand(i)); 821 Out << constName << "_indices.push_back(" 822 << getCppName(CE->getOperand(i)) << ");"; 823 nl(Out); 824 } 825 Out << "Constant* " << constName 826 << " = ConstantExpr::getGetElementPtr(" 827 << getCppName(CE->getOperand(0)) << ", " 828 << constName << "_indices);"; 829 } else if (CE->isCast()) { 830 printConstant(CE->getOperand(0)); 831 Out << "Constant* " << constName << " = ConstantExpr::getCast("; 832 switch (CE->getOpcode()) { 833 default: llvm_unreachable("Invalid cast opcode"); 834 case Instruction::Trunc: Out << "Instruction::Trunc"; break; 835 case Instruction::ZExt: Out << "Instruction::ZExt"; break; 836 case Instruction::SExt: Out << "Instruction::SExt"; break; 837 case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break; 838 case Instruction::FPExt: Out << "Instruction::FPExt"; break; 839 case Instruction::FPToUI: Out << "Instruction::FPToUI"; break; 840 case Instruction::FPToSI: Out << "Instruction::FPToSI"; break; 841 case Instruction::UIToFP: Out << "Instruction::UIToFP"; break; 842 case Instruction::SIToFP: Out << "Instruction::SIToFP"; break; 843 case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break; 844 case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break; 845 case Instruction::BitCast: Out << "Instruction::BitCast"; break; 846 } 847 Out << ", " << getCppName(CE->getOperand(0)) << ", " 848 << getCppName(CE->getType()) << ");"; 849 } else { 850 unsigned N = CE->getNumOperands(); 851 for (unsigned i = 0; i < N; ++i ) { 852 printConstant(CE->getOperand(i)); 853 } 854 Out << "Constant* " << constName << " = ConstantExpr::"; 855 switch (CE->getOpcode()) { 856 case Instruction::Add: Out << "getAdd("; break; 857 case Instruction::FAdd: Out << "getFAdd("; break; 858 case Instruction::Sub: Out << "getSub("; break; 859 case Instruction::FSub: Out << "getFSub("; break; 860 case Instruction::Mul: Out << "getMul("; break; 861 case Instruction::FMul: Out << "getFMul("; break; 862 case Instruction::UDiv: Out << "getUDiv("; break; 863 case Instruction::SDiv: Out << "getSDiv("; break; 864 case Instruction::FDiv: Out << "getFDiv("; break; 865 case Instruction::URem: Out << "getURem("; break; 866 case Instruction::SRem: Out << "getSRem("; break; 867 case Instruction::FRem: Out << "getFRem("; break; 868 case Instruction::And: Out << "getAnd("; break; 869 case Instruction::Or: Out << "getOr("; break; 870 case Instruction::Xor: Out << "getXor("; break; 871 case Instruction::ICmp: 872 Out << "getICmp(ICmpInst::ICMP_"; 873 switch (CE->getPredicate()) { 874 case ICmpInst::ICMP_EQ: Out << "EQ"; break; 875 case ICmpInst::ICMP_NE: Out << "NE"; break; 876 case ICmpInst::ICMP_SLT: Out << "SLT"; break; 877 case ICmpInst::ICMP_ULT: Out << "ULT"; break; 878 case ICmpInst::ICMP_SGT: Out << "SGT"; break; 879 case ICmpInst::ICMP_UGT: Out << "UGT"; break; 880 case ICmpInst::ICMP_SLE: Out << "SLE"; break; 881 case ICmpInst::ICMP_ULE: Out << "ULE"; break; 882 case ICmpInst::ICMP_SGE: Out << "SGE"; break; 883 case ICmpInst::ICMP_UGE: Out << "UGE"; break; 884 default: error("Invalid ICmp Predicate"); 885 } 886 break; 887 case Instruction::FCmp: 888 Out << "getFCmp(FCmpInst::FCMP_"; 889 switch (CE->getPredicate()) { 890 case FCmpInst::FCMP_FALSE: Out << "FALSE"; break; 891 case FCmpInst::FCMP_ORD: Out << "ORD"; break; 892 case FCmpInst::FCMP_UNO: Out << "UNO"; break; 893 case FCmpInst::FCMP_OEQ: Out << "OEQ"; break; 894 case FCmpInst::FCMP_UEQ: Out << "UEQ"; break; 895 case FCmpInst::FCMP_ONE: Out << "ONE"; break; 896 case FCmpInst::FCMP_UNE: Out << "UNE"; break; 897 case FCmpInst::FCMP_OLT: Out << "OLT"; break; 898 case FCmpInst::FCMP_ULT: Out << "ULT"; break; 899 case FCmpInst::FCMP_OGT: Out << "OGT"; break; 900 case FCmpInst::FCMP_UGT: Out << "UGT"; break; 901 case FCmpInst::FCMP_OLE: Out << "OLE"; break; 902 case FCmpInst::FCMP_ULE: Out << "ULE"; break; 903 case FCmpInst::FCMP_OGE: Out << "OGE"; break; 904 case FCmpInst::FCMP_UGE: Out << "UGE"; break; 905 case FCmpInst::FCMP_TRUE: Out << "TRUE"; break; 906 default: error("Invalid FCmp Predicate"); 907 } 908 break; 909 case Instruction::Shl: Out << "getShl("; break; 910 case Instruction::LShr: Out << "getLShr("; break; 911 case Instruction::AShr: Out << "getAShr("; break; 912 case Instruction::Select: Out << "getSelect("; break; 913 case Instruction::ExtractElement: Out << "getExtractElement("; break; 914 case Instruction::InsertElement: Out << "getInsertElement("; break; 915 case Instruction::ShuffleVector: Out << "getShuffleVector("; break; 916 default: 917 error("Invalid constant expression"); 918 break; 919 } 920 Out << getCppName(CE->getOperand(0)); 921 for (unsigned i = 1; i < CE->getNumOperands(); ++i) 922 Out << ", " << getCppName(CE->getOperand(i)); 923 Out << ");"; 924 } 925 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 926 Out << "Constant* " << constName << " = "; 927 Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");"; 928 } else { 929 error("Bad Constant"); 930 Out << "Constant* " << constName << " = 0; "; 931 } 932 nl(Out); 933 } 934 935 void CppWriter::printConstants(const Module* M) { 936 // Traverse all the global variables looking for constant initializers 937 for (Module::const_global_iterator I = TheModule->global_begin(), 938 E = TheModule->global_end(); I != E; ++I) 939 if (I->hasInitializer()) 940 printConstant(I->getInitializer()); 941 942 // Traverse the LLVM functions looking for constants 943 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); 944 FI != FE; ++FI) { 945 // Add all of the basic blocks and instructions 946 for (Function::const_iterator BB = FI->begin(), 947 E = FI->end(); BB != E; ++BB) { 948 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; 949 ++I) { 950 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 951 if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) { 952 printConstant(C); 953 } 954 } 955 } 956 } 957 } 958 } 959 960 void CppWriter::printVariableUses(const GlobalVariable *GV) { 961 nl(Out) << "// Type Definitions"; 962 nl(Out); 963 printType(GV->getType()); 964 if (GV->hasInitializer()) { 965 const Constant *Init = GV->getInitializer(); 966 printType(Init->getType()); 967 if (const Function *F = dyn_cast<Function>(Init)) { 968 nl(Out)<< "/ Function Declarations"; nl(Out); 969 printFunctionHead(F); 970 } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) { 971 nl(Out) << "// Global Variable Declarations"; nl(Out); 972 printVariableHead(gv); 973 974 nl(Out) << "// Global Variable Definitions"; nl(Out); 975 printVariableBody(gv); 976 } else { 977 nl(Out) << "// Constant Definitions"; nl(Out); 978 printConstant(Init); 979 } 980 } 981 } 982 983 void CppWriter::printVariableHead(const GlobalVariable *GV) { 984 nl(Out) << "GlobalVariable* " << getCppName(GV); 985 if (is_inline) { 986 Out << " = mod->getGlobalVariable(mod->getContext(), "; 987 printEscapedString(GV->getName()); 988 Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)"; 989 nl(Out) << "if (!" << getCppName(GV) << ") {"; 990 in(); nl(Out) << getCppName(GV); 991 } 992 Out << " = new GlobalVariable(/*Module=*/*mod, "; 993 nl(Out) << "/*Type=*/"; 994 printCppName(GV->getType()->getElementType()); 995 Out << ","; 996 nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false"); 997 Out << ","; 998 nl(Out) << "/*Linkage=*/"; 999 printLinkageType(GV->getLinkage()); 1000 Out << ","; 1001 nl(Out) << "/*Initializer=*/0, "; 1002 if (GV->hasInitializer()) { 1003 Out << "// has initializer, specified below"; 1004 } 1005 nl(Out) << "/*Name=*/\""; 1006 printEscapedString(GV->getName()); 1007 Out << "\");"; 1008 nl(Out); 1009 1010 if (GV->hasSection()) { 1011 printCppName(GV); 1012 Out << "->setSection(\""; 1013 printEscapedString(GV->getSection()); 1014 Out << "\");"; 1015 nl(Out); 1016 } 1017 if (GV->getAlignment()) { 1018 printCppName(GV); 1019 Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");"; 1020 nl(Out); 1021 } 1022 if (GV->getVisibility() != GlobalValue::DefaultVisibility) { 1023 printCppName(GV); 1024 Out << "->setVisibility("; 1025 printVisibilityType(GV->getVisibility()); 1026 Out << ");"; 1027 nl(Out); 1028 } 1029 if (GV->isThreadLocal()) { 1030 printCppName(GV); 1031 Out << "->setThreadLocalMode("; 1032 printThreadLocalMode(GV->getThreadLocalMode()); 1033 Out << ");"; 1034 nl(Out); 1035 } 1036 if (is_inline) { 1037 out(); Out << "}"; nl(Out); 1038 } 1039 } 1040 1041 void CppWriter::printVariableBody(const GlobalVariable *GV) { 1042 if (GV->hasInitializer()) { 1043 printCppName(GV); 1044 Out << "->setInitializer("; 1045 Out << getCppName(GV->getInitializer()) << ");"; 1046 nl(Out); 1047 } 1048 } 1049 1050 std::string CppWriter::getOpName(const Value* V) { 1051 if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end()) 1052 return getCppName(V); 1053 1054 // See if its alread in the map of forward references, if so just return the 1055 // name we already set up for it 1056 ForwardRefMap::const_iterator I = ForwardRefs.find(V); 1057 if (I != ForwardRefs.end()) 1058 return I->second; 1059 1060 // This is a new forward reference. Generate a unique name for it 1061 std::string result(std::string("fwdref_") + utostr(uniqueNum++)); 1062 1063 // Yes, this is a hack. An Argument is the smallest instantiable value that 1064 // we can make as a placeholder for the real value. We'll replace these 1065 // Argument instances later. 1066 Out << "Argument* " << result << " = new Argument(" 1067 << getCppName(V->getType()) << ");"; 1068 nl(Out); 1069 ForwardRefs[V] = result; 1070 return result; 1071 } 1072 1073 static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) { 1074 switch (Ordering) { 1075 case NotAtomic: return "NotAtomic"; 1076 case Unordered: return "Unordered"; 1077 case Monotonic: return "Monotonic"; 1078 case Acquire: return "Acquire"; 1079 case Release: return "Release"; 1080 case AcquireRelease: return "AcquireRelease"; 1081 case SequentiallyConsistent: return "SequentiallyConsistent"; 1082 } 1083 llvm_unreachable("Unknown ordering"); 1084 } 1085 1086 static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) { 1087 switch (SynchScope) { 1088 case SingleThread: return "SingleThread"; 1089 case CrossThread: return "CrossThread"; 1090 } 1091 llvm_unreachable("Unknown synch scope"); 1092 } 1093 1094 // printInstruction - This member is called for each Instruction in a function. 1095 void CppWriter::printInstruction(const Instruction *I, 1096 const std::string& bbname) { 1097 std::string iName(getCppName(I)); 1098 1099 // Before we emit this instruction, we need to take care of generating any 1100 // forward references. So, we get the names of all the operands in advance 1101 const unsigned Ops(I->getNumOperands()); 1102 std::string* opNames = new std::string[Ops]; 1103 for (unsigned i = 0; i < Ops; i++) 1104 opNames[i] = getOpName(I->getOperand(i)); 1105 1106 switch (I->getOpcode()) { 1107 default: 1108 error("Invalid instruction"); 1109 break; 1110 1111 case Instruction::Ret: { 1112 const ReturnInst* ret = cast<ReturnInst>(I); 1113 Out << "ReturnInst::Create(mod->getContext(), " 1114 << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");"; 1115 break; 1116 } 1117 case Instruction::Br: { 1118 const BranchInst* br = cast<BranchInst>(I); 1119 Out << "BranchInst::Create(" ; 1120 if (br->getNumOperands() == 3) { 1121 Out << opNames[2] << ", " 1122 << opNames[1] << ", " 1123 << opNames[0] << ", "; 1124 1125 } else if (br->getNumOperands() == 1) { 1126 Out << opNames[0] << ", "; 1127 } else { 1128 error("Branch with 2 operands?"); 1129 } 1130 Out << bbname << ");"; 1131 break; 1132 } 1133 case Instruction::Switch: { 1134 const SwitchInst *SI = cast<SwitchInst>(I); 1135 Out << "SwitchInst* " << iName << " = SwitchInst::Create(" 1136 << getOpName(SI->getCondition()) << ", " 1137 << getOpName(SI->getDefaultDest()) << ", " 1138 << SI->getNumCases() << ", " << bbname << ");"; 1139 nl(Out); 1140 for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end(); 1141 i != e; ++i) { 1142 const IntegersSubset CaseVal = i.getCaseValueEx(); 1143 const BasicBlock *BB = i.getCaseSuccessor(); 1144 Out << iName << "->addCase(" 1145 << getOpName(CaseVal) << ", " 1146 << getOpName(BB) << ");"; 1147 nl(Out); 1148 } 1149 break; 1150 } 1151 case Instruction::IndirectBr: { 1152 const IndirectBrInst *IBI = cast<IndirectBrInst>(I); 1153 Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create(" 1154 << opNames[0] << ", " << IBI->getNumDestinations() << ");"; 1155 nl(Out); 1156 for (unsigned i = 1; i != IBI->getNumOperands(); ++i) { 1157 Out << iName << "->addDestination(" << opNames[i] << ");"; 1158 nl(Out); 1159 } 1160 break; 1161 } 1162 case Instruction::Resume: { 1163 Out << "ResumeInst::Create(mod->getContext(), " << opNames[0] 1164 << ", " << bbname << ");"; 1165 break; 1166 } 1167 case Instruction::Invoke: { 1168 const InvokeInst* inv = cast<InvokeInst>(I); 1169 Out << "std::vector<Value*> " << iName << "_params;"; 1170 nl(Out); 1171 for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) { 1172 Out << iName << "_params.push_back(" 1173 << getOpName(inv->getArgOperand(i)) << ");"; 1174 nl(Out); 1175 } 1176 // FIXME: This shouldn't use magic numbers -3, -2, and -1. 1177 Out << "InvokeInst *" << iName << " = InvokeInst::Create(" 1178 << getOpName(inv->getCalledFunction()) << ", " 1179 << getOpName(inv->getNormalDest()) << ", " 1180 << getOpName(inv->getUnwindDest()) << ", " 1181 << iName << "_params, \""; 1182 printEscapedString(inv->getName()); 1183 Out << "\", " << bbname << ");"; 1184 nl(Out) << iName << "->setCallingConv("; 1185 printCallingConv(inv->getCallingConv()); 1186 Out << ");"; 1187 printAttributes(inv->getAttributes(), iName); 1188 Out << iName << "->setAttributes(" << iName << "_PAL);"; 1189 nl(Out); 1190 break; 1191 } 1192 case Instruction::Unreachable: { 1193 Out << "new UnreachableInst(" 1194 << "mod->getContext(), " 1195 << bbname << ");"; 1196 break; 1197 } 1198 case Instruction::Add: 1199 case Instruction::FAdd: 1200 case Instruction::Sub: 1201 case Instruction::FSub: 1202 case Instruction::Mul: 1203 case Instruction::FMul: 1204 case Instruction::UDiv: 1205 case Instruction::SDiv: 1206 case Instruction::FDiv: 1207 case Instruction::URem: 1208 case Instruction::SRem: 1209 case Instruction::FRem: 1210 case Instruction::And: 1211 case Instruction::Or: 1212 case Instruction::Xor: 1213 case Instruction::Shl: 1214 case Instruction::LShr: 1215 case Instruction::AShr:{ 1216 Out << "BinaryOperator* " << iName << " = BinaryOperator::Create("; 1217 switch (I->getOpcode()) { 1218 case Instruction::Add: Out << "Instruction::Add"; break; 1219 case Instruction::FAdd: Out << "Instruction::FAdd"; break; 1220 case Instruction::Sub: Out << "Instruction::Sub"; break; 1221 case Instruction::FSub: Out << "Instruction::FSub"; break; 1222 case Instruction::Mul: Out << "Instruction::Mul"; break; 1223 case Instruction::FMul: Out << "Instruction::FMul"; break; 1224 case Instruction::UDiv:Out << "Instruction::UDiv"; break; 1225 case Instruction::SDiv:Out << "Instruction::SDiv"; break; 1226 case Instruction::FDiv:Out << "Instruction::FDiv"; break; 1227 case Instruction::URem:Out << "Instruction::URem"; break; 1228 case Instruction::SRem:Out << "Instruction::SRem"; break; 1229 case Instruction::FRem:Out << "Instruction::FRem"; break; 1230 case Instruction::And: Out << "Instruction::And"; break; 1231 case Instruction::Or: Out << "Instruction::Or"; break; 1232 case Instruction::Xor: Out << "Instruction::Xor"; break; 1233 case Instruction::Shl: Out << "Instruction::Shl"; break; 1234 case Instruction::LShr:Out << "Instruction::LShr"; break; 1235 case Instruction::AShr:Out << "Instruction::AShr"; break; 1236 default: Out << "Instruction::BadOpCode"; break; 1237 } 1238 Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; 1239 printEscapedString(I->getName()); 1240 Out << "\", " << bbname << ");"; 1241 break; 1242 } 1243 case Instruction::FCmp: { 1244 Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", "; 1245 switch (cast<FCmpInst>(I)->getPredicate()) { 1246 case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break; 1247 case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break; 1248 case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break; 1249 case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break; 1250 case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break; 1251 case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break; 1252 case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break; 1253 case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break; 1254 case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break; 1255 case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break; 1256 case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break; 1257 case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break; 1258 case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break; 1259 case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break; 1260 case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break; 1261 case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break; 1262 default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break; 1263 } 1264 Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; 1265 printEscapedString(I->getName()); 1266 Out << "\");"; 1267 break; 1268 } 1269 case Instruction::ICmp: { 1270 Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", "; 1271 switch (cast<ICmpInst>(I)->getPredicate()) { 1272 case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break; 1273 case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break; 1274 case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break; 1275 case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break; 1276 case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break; 1277 case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break; 1278 case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break; 1279 case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break; 1280 case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break; 1281 case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break; 1282 default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break; 1283 } 1284 Out << ", " << opNames[0] << ", " << opNames[1] << ", \""; 1285 printEscapedString(I->getName()); 1286 Out << "\");"; 1287 break; 1288 } 1289 case Instruction::Alloca: { 1290 const AllocaInst* allocaI = cast<AllocaInst>(I); 1291 Out << "AllocaInst* " << iName << " = new AllocaInst(" 1292 << getCppName(allocaI->getAllocatedType()) << ", "; 1293 if (allocaI->isArrayAllocation()) 1294 Out << opNames[0] << ", "; 1295 Out << "\""; 1296 printEscapedString(allocaI->getName()); 1297 Out << "\", " << bbname << ");"; 1298 if (allocaI->getAlignment()) 1299 nl(Out) << iName << "->setAlignment(" 1300 << allocaI->getAlignment() << ");"; 1301 break; 1302 } 1303 case Instruction::Load: { 1304 const LoadInst* load = cast<LoadInst>(I); 1305 Out << "LoadInst* " << iName << " = new LoadInst(" 1306 << opNames[0] << ", \""; 1307 printEscapedString(load->getName()); 1308 Out << "\", " << (load->isVolatile() ? "true" : "false" ) 1309 << ", " << bbname << ");"; 1310 if (load->getAlignment()) 1311 nl(Out) << iName << "->setAlignment(" 1312 << load->getAlignment() << ");"; 1313 if (load->isAtomic()) { 1314 StringRef Ordering = ConvertAtomicOrdering(load->getOrdering()); 1315 StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope()); 1316 nl(Out) << iName << "->setAtomic(" 1317 << Ordering << ", " << CrossThread << ");"; 1318 } 1319 break; 1320 } 1321 case Instruction::Store: { 1322 const StoreInst* store = cast<StoreInst>(I); 1323 Out << "StoreInst* " << iName << " = new StoreInst(" 1324 << opNames[0] << ", " 1325 << opNames[1] << ", " 1326 << (store->isVolatile() ? "true" : "false") 1327 << ", " << bbname << ");"; 1328 if (store->getAlignment()) 1329 nl(Out) << iName << "->setAlignment(" 1330 << store->getAlignment() << ");"; 1331 if (store->isAtomic()) { 1332 StringRef Ordering = ConvertAtomicOrdering(store->getOrdering()); 1333 StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope()); 1334 nl(Out) << iName << "->setAtomic(" 1335 << Ordering << ", " << CrossThread << ");"; 1336 } 1337 break; 1338 } 1339 case Instruction::GetElementPtr: { 1340 const GetElementPtrInst* gep = cast<GetElementPtrInst>(I); 1341 if (gep->getNumOperands() <= 2) { 1342 Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create(" 1343 << opNames[0]; 1344 if (gep->getNumOperands() == 2) 1345 Out << ", " << opNames[1]; 1346 } else { 1347 Out << "std::vector<Value*> " << iName << "_indices;"; 1348 nl(Out); 1349 for (unsigned i = 1; i < gep->getNumOperands(); ++i ) { 1350 Out << iName << "_indices.push_back(" 1351 << opNames[i] << ");"; 1352 nl(Out); 1353 } 1354 Out << "Instruction* " << iName << " = GetElementPtrInst::Create(" 1355 << opNames[0] << ", " << iName << "_indices"; 1356 } 1357 Out << ", \""; 1358 printEscapedString(gep->getName()); 1359 Out << "\", " << bbname << ");"; 1360 break; 1361 } 1362 case Instruction::PHI: { 1363 const PHINode* phi = cast<PHINode>(I); 1364 1365 Out << "PHINode* " << iName << " = PHINode::Create(" 1366 << getCppName(phi->getType()) << ", " 1367 << phi->getNumIncomingValues() << ", \""; 1368 printEscapedString(phi->getName()); 1369 Out << "\", " << bbname << ");"; 1370 nl(Out); 1371 for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) { 1372 Out << iName << "->addIncoming(" 1373 << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", " 1374 << getOpName(phi->getIncomingBlock(i)) << ");"; 1375 nl(Out); 1376 } 1377 break; 1378 } 1379 case Instruction::Trunc: 1380 case Instruction::ZExt: 1381 case Instruction::SExt: 1382 case Instruction::FPTrunc: 1383 case Instruction::FPExt: 1384 case Instruction::FPToUI: 1385 case Instruction::FPToSI: 1386 case Instruction::UIToFP: 1387 case Instruction::SIToFP: 1388 case Instruction::PtrToInt: 1389 case Instruction::IntToPtr: 1390 case Instruction::BitCast: { 1391 const CastInst* cst = cast<CastInst>(I); 1392 Out << "CastInst* " << iName << " = new "; 1393 switch (I->getOpcode()) { 1394 case Instruction::Trunc: Out << "TruncInst"; break; 1395 case Instruction::ZExt: Out << "ZExtInst"; break; 1396 case Instruction::SExt: Out << "SExtInst"; break; 1397 case Instruction::FPTrunc: Out << "FPTruncInst"; break; 1398 case Instruction::FPExt: Out << "FPExtInst"; break; 1399 case Instruction::FPToUI: Out << "FPToUIInst"; break; 1400 case Instruction::FPToSI: Out << "FPToSIInst"; break; 1401 case Instruction::UIToFP: Out << "UIToFPInst"; break; 1402 case Instruction::SIToFP: Out << "SIToFPInst"; break; 1403 case Instruction::PtrToInt: Out << "PtrToIntInst"; break; 1404 case Instruction::IntToPtr: Out << "IntToPtrInst"; break; 1405 case Instruction::BitCast: Out << "BitCastInst"; break; 1406 default: llvm_unreachable("Unreachable"); 1407 } 1408 Out << "(" << opNames[0] << ", " 1409 << getCppName(cst->getType()) << ", \""; 1410 printEscapedString(cst->getName()); 1411 Out << "\", " << bbname << ");"; 1412 break; 1413 } 1414 case Instruction::Call: { 1415 const CallInst* call = cast<CallInst>(I); 1416 if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) { 1417 Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get(" 1418 << getCppName(ila->getFunctionType()) << ", \"" 1419 << ila->getAsmString() << "\", \"" 1420 << ila->getConstraintString() << "\"," 1421 << (ila->hasSideEffects() ? "true" : "false") << ");"; 1422 nl(Out); 1423 } 1424 if (call->getNumArgOperands() > 1) { 1425 Out << "std::vector<Value*> " << iName << "_params;"; 1426 nl(Out); 1427 for (unsigned i = 0; i < call->getNumArgOperands(); ++i) { 1428 Out << iName << "_params.push_back(" << opNames[i] << ");"; 1429 nl(Out); 1430 } 1431 Out << "CallInst* " << iName << " = CallInst::Create(" 1432 << opNames[call->getNumArgOperands()] << ", " 1433 << iName << "_params, \""; 1434 } else if (call->getNumArgOperands() == 1) { 1435 Out << "CallInst* " << iName << " = CallInst::Create(" 1436 << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \""; 1437 } else { 1438 Out << "CallInst* " << iName << " = CallInst::Create(" 1439 << opNames[call->getNumArgOperands()] << ", \""; 1440 } 1441 printEscapedString(call->getName()); 1442 Out << "\", " << bbname << ");"; 1443 nl(Out) << iName << "->setCallingConv("; 1444 printCallingConv(call->getCallingConv()); 1445 Out << ");"; 1446 nl(Out) << iName << "->setTailCall(" 1447 << (call->isTailCall() ? "true" : "false"); 1448 Out << ");"; 1449 nl(Out); 1450 printAttributes(call->getAttributes(), iName); 1451 Out << iName << "->setAttributes(" << iName << "_PAL);"; 1452 nl(Out); 1453 break; 1454 } 1455 case Instruction::Select: { 1456 const SelectInst* sel = cast<SelectInst>(I); 1457 Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create("; 1458 Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \""; 1459 printEscapedString(sel->getName()); 1460 Out << "\", " << bbname << ");"; 1461 break; 1462 } 1463 case Instruction::UserOp1: 1464 /// FALL THROUGH 1465 case Instruction::UserOp2: { 1466 /// FIXME: What should be done here? 1467 break; 1468 } 1469 case Instruction::VAArg: { 1470 const VAArgInst* va = cast<VAArgInst>(I); 1471 Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst(" 1472 << opNames[0] << ", " << getCppName(va->getType()) << ", \""; 1473 printEscapedString(va->getName()); 1474 Out << "\", " << bbname << ");"; 1475 break; 1476 } 1477 case Instruction::ExtractElement: { 1478 const ExtractElementInst* eei = cast<ExtractElementInst>(I); 1479 Out << "ExtractElementInst* " << getCppName(eei) 1480 << " = new ExtractElementInst(" << opNames[0] 1481 << ", " << opNames[1] << ", \""; 1482 printEscapedString(eei->getName()); 1483 Out << "\", " << bbname << ");"; 1484 break; 1485 } 1486 case Instruction::InsertElement: { 1487 const InsertElementInst* iei = cast<InsertElementInst>(I); 1488 Out << "InsertElementInst* " << getCppName(iei) 1489 << " = InsertElementInst::Create(" << opNames[0] 1490 << ", " << opNames[1] << ", " << opNames[2] << ", \""; 1491 printEscapedString(iei->getName()); 1492 Out << "\", " << bbname << ");"; 1493 break; 1494 } 1495 case Instruction::ShuffleVector: { 1496 const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I); 1497 Out << "ShuffleVectorInst* " << getCppName(svi) 1498 << " = new ShuffleVectorInst(" << opNames[0] 1499 << ", " << opNames[1] << ", " << opNames[2] << ", \""; 1500 printEscapedString(svi->getName()); 1501 Out << "\", " << bbname << ");"; 1502 break; 1503 } 1504 case Instruction::ExtractValue: { 1505 const ExtractValueInst *evi = cast<ExtractValueInst>(I); 1506 Out << "std::vector<unsigned> " << iName << "_indices;"; 1507 nl(Out); 1508 for (unsigned i = 0; i < evi->getNumIndices(); ++i) { 1509 Out << iName << "_indices.push_back(" 1510 << evi->idx_begin()[i] << ");"; 1511 nl(Out); 1512 } 1513 Out << "ExtractValueInst* " << getCppName(evi) 1514 << " = ExtractValueInst::Create(" << opNames[0] 1515 << ", " 1516 << iName << "_indices, \""; 1517 printEscapedString(evi->getName()); 1518 Out << "\", " << bbname << ");"; 1519 break; 1520 } 1521 case Instruction::InsertValue: { 1522 const InsertValueInst *ivi = cast<InsertValueInst>(I); 1523 Out << "std::vector<unsigned> " << iName << "_indices;"; 1524 nl(Out); 1525 for (unsigned i = 0; i < ivi->getNumIndices(); ++i) { 1526 Out << iName << "_indices.push_back(" 1527 << ivi->idx_begin()[i] << ");"; 1528 nl(Out); 1529 } 1530 Out << "InsertValueInst* " << getCppName(ivi) 1531 << " = InsertValueInst::Create(" << opNames[0] 1532 << ", " << opNames[1] << ", " 1533 << iName << "_indices, \""; 1534 printEscapedString(ivi->getName()); 1535 Out << "\", " << bbname << ");"; 1536 break; 1537 } 1538 case Instruction::Fence: { 1539 const FenceInst *fi = cast<FenceInst>(I); 1540 StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering()); 1541 StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope()); 1542 Out << "FenceInst* " << iName 1543 << " = new FenceInst(mod->getContext(), " 1544 << Ordering << ", " << CrossThread << ", " << bbname 1545 << ");"; 1546 break; 1547 } 1548 case Instruction::AtomicCmpXchg: { 1549 const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I); 1550 StringRef Ordering = ConvertAtomicOrdering(cxi->getOrdering()); 1551 StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope()); 1552 Out << "AtomicCmpXchgInst* " << iName 1553 << " = new AtomicCmpXchgInst(" 1554 << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", " 1555 << Ordering << ", " << CrossThread << ", " << bbname 1556 << ");"; 1557 nl(Out) << iName << "->setName(\""; 1558 printEscapedString(cxi->getName()); 1559 Out << "\");"; 1560 break; 1561 } 1562 case Instruction::AtomicRMW: { 1563 const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I); 1564 StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering()); 1565 StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope()); 1566 StringRef Operation; 1567 switch (rmwi->getOperation()) { 1568 case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break; 1569 case AtomicRMWInst::Add: Operation = "AtomicRMWInst::Add"; break; 1570 case AtomicRMWInst::Sub: Operation = "AtomicRMWInst::Sub"; break; 1571 case AtomicRMWInst::And: Operation = "AtomicRMWInst::And"; break; 1572 case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break; 1573 case AtomicRMWInst::Or: Operation = "AtomicRMWInst::Or"; break; 1574 case AtomicRMWInst::Xor: Operation = "AtomicRMWInst::Xor"; break; 1575 case AtomicRMWInst::Max: Operation = "AtomicRMWInst::Max"; break; 1576 case AtomicRMWInst::Min: Operation = "AtomicRMWInst::Min"; break; 1577 case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break; 1578 case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break; 1579 case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation"); 1580 } 1581 Out << "AtomicRMWInst* " << iName 1582 << " = new AtomicRMWInst(" 1583 << Operation << ", " 1584 << opNames[0] << ", " << opNames[1] << ", " 1585 << Ordering << ", " << CrossThread << ", " << bbname 1586 << ");"; 1587 nl(Out) << iName << "->setName(\""; 1588 printEscapedString(rmwi->getName()); 1589 Out << "\");"; 1590 break; 1591 } 1592 } 1593 DefinedValues.insert(I); 1594 nl(Out); 1595 delete [] opNames; 1596 } 1597 1598 // Print out the types, constants and declarations needed by one function 1599 void CppWriter::printFunctionUses(const Function* F) { 1600 nl(Out) << "// Type Definitions"; nl(Out); 1601 if (!is_inline) { 1602 // Print the function's return type 1603 printType(F->getReturnType()); 1604 1605 // Print the function's function type 1606 printType(F->getFunctionType()); 1607 1608 // Print the types of each of the function's arguments 1609 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1610 AI != AE; ++AI) { 1611 printType(AI->getType()); 1612 } 1613 } 1614 1615 // Print type definitions for every type referenced by an instruction and 1616 // make a note of any global values or constants that are referenced 1617 SmallPtrSet<GlobalValue*,64> gvs; 1618 SmallPtrSet<Constant*,64> consts; 1619 for (Function::const_iterator BB = F->begin(), BE = F->end(); 1620 BB != BE; ++BB){ 1621 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1622 I != E; ++I) { 1623 // Print the type of the instruction itself 1624 printType(I->getType()); 1625 1626 // Print the type of each of the instruction's operands 1627 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 1628 Value* operand = I->getOperand(i); 1629 printType(operand->getType()); 1630 1631 // If the operand references a GVal or Constant, make a note of it 1632 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) { 1633 gvs.insert(GV); 1634 if (GenerationType != GenFunction) 1635 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 1636 if (GVar->hasInitializer()) 1637 consts.insert(GVar->getInitializer()); 1638 } else if (Constant* C = dyn_cast<Constant>(operand)) { 1639 consts.insert(C); 1640 for (unsigned j = 0; j < C->getNumOperands(); ++j) { 1641 // If the operand references a GVal or Constant, make a note of it 1642 Value* operand = C->getOperand(j); 1643 printType(operand->getType()); 1644 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) { 1645 gvs.insert(GV); 1646 if (GenerationType != GenFunction) 1647 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 1648 if (GVar->hasInitializer()) 1649 consts.insert(GVar->getInitializer()); 1650 } 1651 } 1652 } 1653 } 1654 } 1655 } 1656 1657 // Print the function declarations for any functions encountered 1658 nl(Out) << "// Function Declarations"; nl(Out); 1659 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end(); 1660 I != E; ++I) { 1661 if (Function* Fun = dyn_cast<Function>(*I)) { 1662 if (!is_inline || Fun != F) 1663 printFunctionHead(Fun); 1664 } 1665 } 1666 1667 // Print the global variable declarations for any variables encountered 1668 nl(Out) << "// Global Variable Declarations"; nl(Out); 1669 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end(); 1670 I != E; ++I) { 1671 if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I)) 1672 printVariableHead(F); 1673 } 1674 1675 // Print the constants found 1676 nl(Out) << "// Constant Definitions"; nl(Out); 1677 for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(), 1678 E = consts.end(); I != E; ++I) { 1679 printConstant(*I); 1680 } 1681 1682 // Process the global variables definitions now that all the constants have 1683 // been emitted. These definitions just couple the gvars with their constant 1684 // initializers. 1685 if (GenerationType != GenFunction) { 1686 nl(Out) << "// Global Variable Definitions"; nl(Out); 1687 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end(); 1688 I != E; ++I) { 1689 if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I)) 1690 printVariableBody(GV); 1691 } 1692 } 1693 } 1694 1695 void CppWriter::printFunctionHead(const Function* F) { 1696 nl(Out) << "Function* " << getCppName(F); 1697 Out << " = mod->getFunction(\""; 1698 printEscapedString(F->getName()); 1699 Out << "\");"; 1700 nl(Out) << "if (!" << getCppName(F) << ") {"; 1701 nl(Out) << getCppName(F); 1702 1703 Out<< " = Function::Create("; 1704 nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ","; 1705 nl(Out) << "/*Linkage=*/"; 1706 printLinkageType(F->getLinkage()); 1707 Out << ","; 1708 nl(Out) << "/*Name=*/\""; 1709 printEscapedString(F->getName()); 1710 Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : ""); 1711 nl(Out,-1); 1712 printCppName(F); 1713 Out << "->setCallingConv("; 1714 printCallingConv(F->getCallingConv()); 1715 Out << ");"; 1716 nl(Out); 1717 if (F->hasSection()) { 1718 printCppName(F); 1719 Out << "->setSection(\"" << F->getSection() << "\");"; 1720 nl(Out); 1721 } 1722 if (F->getAlignment()) { 1723 printCppName(F); 1724 Out << "->setAlignment(" << F->getAlignment() << ");"; 1725 nl(Out); 1726 } 1727 if (F->getVisibility() != GlobalValue::DefaultVisibility) { 1728 printCppName(F); 1729 Out << "->setVisibility("; 1730 printVisibilityType(F->getVisibility()); 1731 Out << ");"; 1732 nl(Out); 1733 } 1734 if (F->hasGC()) { 1735 printCppName(F); 1736 Out << "->setGC(\"" << F->getGC() << "\");"; 1737 nl(Out); 1738 } 1739 Out << "}"; 1740 nl(Out); 1741 printAttributes(F->getAttributes(), getCppName(F)); 1742 printCppName(F); 1743 Out << "->setAttributes(" << getCppName(F) << "_PAL);"; 1744 nl(Out); 1745 } 1746 1747 void CppWriter::printFunctionBody(const Function *F) { 1748 if (F->isDeclaration()) 1749 return; // external functions have no bodies. 1750 1751 // Clear the DefinedValues and ForwardRefs maps because we can't have 1752 // cross-function forward refs 1753 ForwardRefs.clear(); 1754 DefinedValues.clear(); 1755 1756 // Create all the argument values 1757 if (!is_inline) { 1758 if (!F->arg_empty()) { 1759 Out << "Function::arg_iterator args = " << getCppName(F) 1760 << "->arg_begin();"; 1761 nl(Out); 1762 } 1763 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1764 AI != AE; ++AI) { 1765 Out << "Value* " << getCppName(AI) << " = args++;"; 1766 nl(Out); 1767 if (AI->hasName()) { 1768 Out << getCppName(AI) << "->setName(\""; 1769 printEscapedString(AI->getName()); 1770 Out << "\");"; 1771 nl(Out); 1772 } 1773 } 1774 } 1775 1776 // Create all the basic blocks 1777 nl(Out); 1778 for (Function::const_iterator BI = F->begin(), BE = F->end(); 1779 BI != BE; ++BI) { 1780 std::string bbname(getCppName(BI)); 1781 Out << "BasicBlock* " << bbname << 1782 " = BasicBlock::Create(mod->getContext(), \""; 1783 if (BI->hasName()) 1784 printEscapedString(BI->getName()); 1785 Out << "\"," << getCppName(BI->getParent()) << ",0);"; 1786 nl(Out); 1787 } 1788 1789 // Output all of its basic blocks... for the function 1790 for (Function::const_iterator BI = F->begin(), BE = F->end(); 1791 BI != BE; ++BI) { 1792 std::string bbname(getCppName(BI)); 1793 nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")"; 1794 nl(Out); 1795 1796 // Output all of the instructions in the basic block... 1797 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); 1798 I != E; ++I) { 1799 printInstruction(I,bbname); 1800 } 1801 } 1802 1803 // Loop over the ForwardRefs and resolve them now that all instructions 1804 // are generated. 1805 if (!ForwardRefs.empty()) { 1806 nl(Out) << "// Resolve Forward References"; 1807 nl(Out); 1808 } 1809 1810 while (!ForwardRefs.empty()) { 1811 ForwardRefMap::iterator I = ForwardRefs.begin(); 1812 Out << I->second << "->replaceAllUsesWith(" 1813 << getCppName(I->first) << "); delete " << I->second << ";"; 1814 nl(Out); 1815 ForwardRefs.erase(I); 1816 } 1817 } 1818 1819 void CppWriter::printInline(const std::string& fname, 1820 const std::string& func) { 1821 const Function* F = TheModule->getFunction(func); 1822 if (!F) { 1823 error(std::string("Function '") + func + "' not found in input module"); 1824 return; 1825 } 1826 if (F->isDeclaration()) { 1827 error(std::string("Function '") + func + "' is external!"); 1828 return; 1829 } 1830 nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *" 1831 << getCppName(F); 1832 unsigned arg_count = 1; 1833 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1834 AI != AE; ++AI) { 1835 Out << ", Value* arg_" << arg_count++; 1836 } 1837 Out << ") {"; 1838 nl(Out); 1839 is_inline = true; 1840 printFunctionUses(F); 1841 printFunctionBody(F); 1842 is_inline = false; 1843 Out << "return " << getCppName(F->begin()) << ";"; 1844 nl(Out) << "}"; 1845 nl(Out); 1846 } 1847 1848 void CppWriter::printModuleBody() { 1849 // Print out all the type definitions 1850 nl(Out) << "// Type Definitions"; nl(Out); 1851 printTypes(TheModule); 1852 1853 // Functions can call each other and global variables can reference them so 1854 // define all the functions first before emitting their function bodies. 1855 nl(Out) << "// Function Declarations"; nl(Out); 1856 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); 1857 I != E; ++I) 1858 printFunctionHead(I); 1859 1860 // Process the global variables declarations. We can't initialze them until 1861 // after the constants are printed so just print a header for each global 1862 nl(Out) << "// Global Variable Declarations\n"; nl(Out); 1863 for (Module::const_global_iterator I = TheModule->global_begin(), 1864 E = TheModule->global_end(); I != E; ++I) { 1865 printVariableHead(I); 1866 } 1867 1868 // Print out all the constants definitions. Constants don't recurse except 1869 // through GlobalValues. All GlobalValues have been declared at this point 1870 // so we can proceed to generate the constants. 1871 nl(Out) << "// Constant Definitions"; nl(Out); 1872 printConstants(TheModule); 1873 1874 // Process the global variables definitions now that all the constants have 1875 // been emitted. These definitions just couple the gvars with their constant 1876 // initializers. 1877 nl(Out) << "// Global Variable Definitions"; nl(Out); 1878 for (Module::const_global_iterator I = TheModule->global_begin(), 1879 E = TheModule->global_end(); I != E; ++I) { 1880 printVariableBody(I); 1881 } 1882 1883 // Finally, we can safely put out all of the function bodies. 1884 nl(Out) << "// Function Definitions"; nl(Out); 1885 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); 1886 I != E; ++I) { 1887 if (!I->isDeclaration()) { 1888 nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I) 1889 << ")"; 1890 nl(Out) << "{"; 1891 nl(Out,1); 1892 printFunctionBody(I); 1893 nl(Out,-1) << "}"; 1894 nl(Out); 1895 } 1896 } 1897 } 1898 1899 void CppWriter::printProgram(const std::string& fname, 1900 const std::string& mName) { 1901 Out << "#include <llvm/Pass.h>\n"; 1902 Out << "#include <llvm/PassManager.h>\n"; 1903 1904 Out << "#include <llvm/ADT/SmallVector.h>\n"; 1905 Out << "#include <llvm/Analysis/Verifier.h>\n"; 1906 Out << "#include <llvm/Assembly/PrintModulePass.h>\n"; 1907 Out << "#include <llvm/IR/BasicBlock.h>\n"; 1908 Out << "#include <llvm/IR/CallingConv.h>\n"; 1909 Out << "#include <llvm/IR/Constants.h>\n"; 1910 Out << "#include <llvm/IR/DerivedTypes.h>\n"; 1911 Out << "#include <llvm/IR/Function.h>\n"; 1912 Out << "#include <llvm/IR/GlobalVariable.h>\n"; 1913 Out << "#include <llvm/IR/InlineAsm.h>\n"; 1914 Out << "#include <llvm/IR/Instructions.h>\n"; 1915 Out << "#include <llvm/IR/LLVMContext.h>\n"; 1916 Out << "#include <llvm/IR/Module.h>\n"; 1917 Out << "#include <llvm/Support/FormattedStream.h>\n"; 1918 Out << "#include <llvm/Support/MathExtras.h>\n"; 1919 Out << "#include <algorithm>\n"; 1920 Out << "using namespace llvm;\n\n"; 1921 Out << "Module* " << fname << "();\n\n"; 1922 Out << "int main(int argc, char**argv) {\n"; 1923 Out << " Module* Mod = " << fname << "();\n"; 1924 Out << " verifyModule(*Mod, PrintMessageAction);\n"; 1925 Out << " PassManager PM;\n"; 1926 Out << " PM.add(createPrintModulePass(&outs()));\n"; 1927 Out << " PM.run(*Mod);\n"; 1928 Out << " return 0;\n"; 1929 Out << "}\n\n"; 1930 printModule(fname,mName); 1931 } 1932 1933 void CppWriter::printModule(const std::string& fname, 1934 const std::string& mName) { 1935 nl(Out) << "Module* " << fname << "() {"; 1936 nl(Out,1) << "// Module Construction"; 1937 nl(Out) << "Module* mod = new Module(\""; 1938 printEscapedString(mName); 1939 Out << "\", getGlobalContext());"; 1940 if (!TheModule->getTargetTriple().empty()) { 1941 nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");"; 1942 } 1943 if (!TheModule->getTargetTriple().empty()) { 1944 nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple() 1945 << "\");"; 1946 } 1947 1948 if (!TheModule->getModuleInlineAsm().empty()) { 1949 nl(Out) << "mod->setModuleInlineAsm(\""; 1950 printEscapedString(TheModule->getModuleInlineAsm()); 1951 Out << "\");"; 1952 } 1953 nl(Out); 1954 1955 printModuleBody(); 1956 nl(Out) << "return mod;"; 1957 nl(Out,-1) << "}"; 1958 nl(Out); 1959 } 1960 1961 void CppWriter::printContents(const std::string& fname, 1962 const std::string& mName) { 1963 Out << "\nModule* " << fname << "(Module *mod) {\n"; 1964 Out << "\nmod->setModuleIdentifier(\""; 1965 printEscapedString(mName); 1966 Out << "\");\n"; 1967 printModuleBody(); 1968 Out << "\nreturn mod;\n"; 1969 Out << "\n}\n"; 1970 } 1971 1972 void CppWriter::printFunction(const std::string& fname, 1973 const std::string& funcName) { 1974 const Function* F = TheModule->getFunction(funcName); 1975 if (!F) { 1976 error(std::string("Function '") + funcName + "' not found in input module"); 1977 return; 1978 } 1979 Out << "\nFunction* " << fname << "(Module *mod) {\n"; 1980 printFunctionUses(F); 1981 printFunctionHead(F); 1982 printFunctionBody(F); 1983 Out << "return " << getCppName(F) << ";\n"; 1984 Out << "}\n"; 1985 } 1986 1987 void CppWriter::printFunctions() { 1988 const Module::FunctionListType &funcs = TheModule->getFunctionList(); 1989 Module::const_iterator I = funcs.begin(); 1990 Module::const_iterator IE = funcs.end(); 1991 1992 for (; I != IE; ++I) { 1993 const Function &func = *I; 1994 if (!func.isDeclaration()) { 1995 std::string name("define_"); 1996 name += func.getName(); 1997 printFunction(name, func.getName()); 1998 } 1999 } 2000 } 2001 2002 void CppWriter::printVariable(const std::string& fname, 2003 const std::string& varName) { 2004 const GlobalVariable* GV = TheModule->getNamedGlobal(varName); 2005 2006 if (!GV) { 2007 error(std::string("Variable '") + varName + "' not found in input module"); 2008 return; 2009 } 2010 Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n"; 2011 printVariableUses(GV); 2012 printVariableHead(GV); 2013 printVariableBody(GV); 2014 Out << "return " << getCppName(GV) << ";\n"; 2015 Out << "}\n"; 2016 } 2017 2018 void CppWriter::printType(const std::string &fname, 2019 const std::string &typeName) { 2020 Type* Ty = TheModule->getTypeByName(typeName); 2021 if (!Ty) { 2022 error(std::string("Type '") + typeName + "' not found in input module"); 2023 return; 2024 } 2025 Out << "\nType* " << fname << "(Module *mod) {\n"; 2026 printType(Ty); 2027 Out << "return " << getCppName(Ty) << ";\n"; 2028 Out << "}\n"; 2029 } 2030 2031 bool CppWriter::runOnModule(Module &M) { 2032 TheModule = &M; 2033 2034 // Emit a header 2035 Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n"; 2036 2037 // Get the name of the function we're supposed to generate 2038 std::string fname = FuncName.getValue(); 2039 2040 // Get the name of the thing we are to generate 2041 std::string tgtname = NameToGenerate.getValue(); 2042 if (GenerationType == GenModule || 2043 GenerationType == GenContents || 2044 GenerationType == GenProgram || 2045 GenerationType == GenFunctions) { 2046 if (tgtname == "!bad!") { 2047 if (M.getModuleIdentifier() == "-") 2048 tgtname = "<stdin>"; 2049 else 2050 tgtname = M.getModuleIdentifier(); 2051 } 2052 } else if (tgtname == "!bad!") 2053 error("You must use the -for option with -gen-{function,variable,type}"); 2054 2055 switch (WhatToGenerate(GenerationType)) { 2056 case GenProgram: 2057 if (fname.empty()) 2058 fname = "makeLLVMModule"; 2059 printProgram(fname,tgtname); 2060 break; 2061 case GenModule: 2062 if (fname.empty()) 2063 fname = "makeLLVMModule"; 2064 printModule(fname,tgtname); 2065 break; 2066 case GenContents: 2067 if (fname.empty()) 2068 fname = "makeLLVMModuleContents"; 2069 printContents(fname,tgtname); 2070 break; 2071 case GenFunction: 2072 if (fname.empty()) 2073 fname = "makeLLVMFunction"; 2074 printFunction(fname,tgtname); 2075 break; 2076 case GenFunctions: 2077 printFunctions(); 2078 break; 2079 case GenInline: 2080 if (fname.empty()) 2081 fname = "makeLLVMInline"; 2082 printInline(fname,tgtname); 2083 break; 2084 case GenVariable: 2085 if (fname.empty()) 2086 fname = "makeLLVMVariable"; 2087 printVariable(fname,tgtname); 2088 break; 2089 case GenType: 2090 if (fname.empty()) 2091 fname = "makeLLVMType"; 2092 printType(fname,tgtname); 2093 break; 2094 } 2095 2096 return false; 2097 } 2098 2099 char CppWriter::ID = 0; 2100 2101 //===----------------------------------------------------------------------===// 2102 // External Interface declaration 2103 //===----------------------------------------------------------------------===// 2104 2105 bool CPPTargetMachine::addPassesToEmitFile(PassManagerBase &PM, 2106 formatted_raw_ostream &o, 2107 CodeGenFileType FileType, 2108 bool DisableVerify, 2109 AnalysisID StartAfter, 2110 AnalysisID StopAfter) { 2111 if (FileType != TargetMachine::CGFT_AssemblyFile) return true; 2112 PM.add(new CppWriter(o)); 2113 return false; 2114 } 2115