Home | History | Annotate | Download | only in AST
      1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Decl subclasses.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/Decl.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/ASTMutationListener.h"
     17 #include "clang/AST/Attr.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/DeclObjC.h"
     20 #include "clang/AST/DeclTemplate.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "clang/AST/PrettyPrinter.h"
     24 #include "clang/AST/Stmt.h"
     25 #include "clang/AST/TypeLoc.h"
     26 #include "clang/Basic/Builtins.h"
     27 #include "clang/Basic/IdentifierTable.h"
     28 #include "clang/Basic/Module.h"
     29 #include "clang/Basic/Specifiers.h"
     30 #include "clang/Basic/TargetInfo.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/type_traits.h"
     33 #include <algorithm>
     34 
     35 using namespace clang;
     36 
     37 //===----------------------------------------------------------------------===//
     38 // NamedDecl Implementation
     39 //===----------------------------------------------------------------------===//
     40 
     41 // Visibility rules aren't rigorously externally specified, but here
     42 // are the basic principles behind what we implement:
     43 //
     44 // 1. An explicit visibility attribute is generally a direct expression
     45 // of the user's intent and should be honored.  Only the innermost
     46 // visibility attribute applies.  If no visibility attribute applies,
     47 // global visibility settings are considered.
     48 //
     49 // 2. There is one caveat to the above: on or in a template pattern,
     50 // an explicit visibility attribute is just a default rule, and
     51 // visibility can be decreased by the visibility of template
     52 // arguments.  But this, too, has an exception: an attribute on an
     53 // explicit specialization or instantiation causes all the visibility
     54 // restrictions of the template arguments to be ignored.
     55 //
     56 // 3. A variable that does not otherwise have explicit visibility can
     57 // be restricted by the visibility of its type.
     58 //
     59 // 4. A visibility restriction is explicit if it comes from an
     60 // attribute (or something like it), not a global visibility setting.
     61 // When emitting a reference to an external symbol, visibility
     62 // restrictions are ignored unless they are explicit.
     63 //
     64 // 5. When computing the visibility of a non-type, including a
     65 // non-type member of a class, only non-type visibility restrictions
     66 // are considered: the 'visibility' attribute, global value-visibility
     67 // settings, and a few special cases like __private_extern.
     68 //
     69 // 6. When computing the visibility of a type, including a type member
     70 // of a class, only type visibility restrictions are considered:
     71 // the 'type_visibility' attribute and global type-visibility settings.
     72 // However, a 'visibility' attribute counts as a 'type_visibility'
     73 // attribute on any declaration that only has the former.
     74 //
     75 // The visibility of a "secondary" entity, like a template argument,
     76 // is computed using the kind of that entity, not the kind of the
     77 // primary entity for which we are computing visibility.  For example,
     78 // the visibility of a specialization of either of these templates:
     79 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
     80 //   template <class T, bool (&compare)(T, X)> class matcher;
     81 // is restricted according to the type visibility of the argument 'T',
     82 // the type visibility of 'bool(&)(T,X)', and the value visibility of
     83 // the argument function 'compare'.  That 'has_match' is a value
     84 // and 'matcher' is a type only matters when looking for attributes
     85 // and settings from the immediate context.
     86 
     87 const unsigned IgnoreExplicitVisibilityBit = 2;
     88 const unsigned IgnoreAllVisibilityBit = 4;
     89 
     90 /// Kinds of LV computation.  The linkage side of the computation is
     91 /// always the same, but different things can change how visibility is
     92 /// computed.
     93 enum LVComputationKind {
     94   /// Do an LV computation for, ultimately, a type.
     95   /// Visibility may be restricted by type visibility settings and
     96   /// the visibility of template arguments.
     97   LVForType = NamedDecl::VisibilityForType,
     98 
     99   /// Do an LV computation for, ultimately, a non-type declaration.
    100   /// Visibility may be restricted by value visibility settings and
    101   /// the visibility of template arguments.
    102   LVForValue = NamedDecl::VisibilityForValue,
    103 
    104   /// Do an LV computation for, ultimately, a type that already has
    105   /// some sort of explicit visibility.  Visibility may only be
    106   /// restricted by the visibility of template arguments.
    107   LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
    108 
    109   /// Do an LV computation for, ultimately, a non-type declaration
    110   /// that already has some sort of explicit visibility.  Visibility
    111   /// may only be restricted by the visibility of template arguments.
    112   LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
    113 
    114   /// Do an LV computation when we only care about the linkage.
    115   LVForLinkageOnly =
    116       LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
    117 };
    118 
    119 /// Does this computation kind permit us to consider additional
    120 /// visibility settings from attributes and the like?
    121 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
    122   return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
    123 }
    124 
    125 /// Given an LVComputationKind, return one of the same type/value sort
    126 /// that records that it already has explicit visibility.
    127 static LVComputationKind
    128 withExplicitVisibilityAlready(LVComputationKind oldKind) {
    129   LVComputationKind newKind =
    130     static_cast<LVComputationKind>(unsigned(oldKind) |
    131                                    IgnoreExplicitVisibilityBit);
    132   assert(oldKind != LVForType          || newKind == LVForExplicitType);
    133   assert(oldKind != LVForValue         || newKind == LVForExplicitValue);
    134   assert(oldKind != LVForExplicitType  || newKind == LVForExplicitType);
    135   assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
    136   return newKind;
    137 }
    138 
    139 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
    140                                                   LVComputationKind kind) {
    141   assert(!hasExplicitVisibilityAlready(kind) &&
    142          "asking for explicit visibility when we shouldn't be");
    143   return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
    144 }
    145 
    146 /// Is the given declaration a "type" or a "value" for the purposes of
    147 /// visibility computation?
    148 static bool usesTypeVisibility(const NamedDecl *D) {
    149   return isa<TypeDecl>(D) ||
    150          isa<ClassTemplateDecl>(D) ||
    151          isa<ObjCInterfaceDecl>(D);
    152 }
    153 
    154 /// Does the given declaration have member specialization information,
    155 /// and if so, is it an explicit specialization?
    156 template <class T> static typename
    157 llvm::enable_if_c<!llvm::is_base_of<RedeclarableTemplateDecl, T>::value,
    158                   bool>::type
    159 isExplicitMemberSpecialization(const T *D) {
    160   if (const MemberSpecializationInfo *member =
    161         D->getMemberSpecializationInfo()) {
    162     return member->isExplicitSpecialization();
    163   }
    164   return false;
    165 }
    166 
    167 /// For templates, this question is easier: a member template can't be
    168 /// explicitly instantiated, so there's a single bit indicating whether
    169 /// or not this is an explicit member specialization.
    170 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
    171   return D->isMemberSpecialization();
    172 }
    173 
    174 /// Given a visibility attribute, return the explicit visibility
    175 /// associated with it.
    176 template <class T>
    177 static Visibility getVisibilityFromAttr(const T *attr) {
    178   switch (attr->getVisibility()) {
    179   case T::Default:
    180     return DefaultVisibility;
    181   case T::Hidden:
    182     return HiddenVisibility;
    183   case T::Protected:
    184     return ProtectedVisibility;
    185   }
    186   llvm_unreachable("bad visibility kind");
    187 }
    188 
    189 /// Return the explicit visibility of the given declaration.
    190 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
    191                                     NamedDecl::ExplicitVisibilityKind kind) {
    192   // If we're ultimately computing the visibility of a type, look for
    193   // a 'type_visibility' attribute before looking for 'visibility'.
    194   if (kind == NamedDecl::VisibilityForType) {
    195     if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) {
    196       return getVisibilityFromAttr(A);
    197     }
    198   }
    199 
    200   // If this declaration has an explicit visibility attribute, use it.
    201   if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
    202     return getVisibilityFromAttr(A);
    203   }
    204 
    205   // If we're on Mac OS X, an 'availability' for Mac OS X attribute
    206   // implies visibility(default).
    207   if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
    208     for (specific_attr_iterator<AvailabilityAttr>
    209               A = D->specific_attr_begin<AvailabilityAttr>(),
    210            AEnd = D->specific_attr_end<AvailabilityAttr>();
    211          A != AEnd; ++A)
    212       if ((*A)->getPlatform()->getName().equals("macosx"))
    213         return DefaultVisibility;
    214   }
    215 
    216   return None;
    217 }
    218 
    219 static LinkageInfo
    220 getLVForType(const Type &T, LVComputationKind computation) {
    221   if (computation == LVForLinkageOnly)
    222     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
    223   return T.getLinkageAndVisibility();
    224 }
    225 
    226 /// \brief Get the most restrictive linkage for the types in the given
    227 /// template parameter list.  For visibility purposes, template
    228 /// parameters are part of the signature of a template.
    229 static LinkageInfo
    230 getLVForTemplateParameterList(const TemplateParameterList *params,
    231                               LVComputationKind computation) {
    232   LinkageInfo LV;
    233   for (TemplateParameterList::const_iterator P = params->begin(),
    234                                           PEnd = params->end();
    235        P != PEnd; ++P) {
    236 
    237     // Template type parameters are the most common and never
    238     // contribute to visibility, pack or not.
    239     if (isa<TemplateTypeParmDecl>(*P))
    240       continue;
    241 
    242     // Non-type template parameters can be restricted by the value type, e.g.
    243     //   template <enum X> class A { ... };
    244     // We have to be careful here, though, because we can be dealing with
    245     // dependent types.
    246     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
    247       // Handle the non-pack case first.
    248       if (!NTTP->isExpandedParameterPack()) {
    249         if (!NTTP->getType()->isDependentType()) {
    250           LV.merge(getLVForType(*NTTP->getType(), computation));
    251         }
    252         continue;
    253       }
    254 
    255       // Look at all the types in an expanded pack.
    256       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
    257         QualType type = NTTP->getExpansionType(i);
    258         if (!type->isDependentType())
    259           LV.merge(type->getLinkageAndVisibility());
    260       }
    261       continue;
    262     }
    263 
    264     // Template template parameters can be restricted by their
    265     // template parameters, recursively.
    266     TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
    267 
    268     // Handle the non-pack case first.
    269     if (!TTP->isExpandedParameterPack()) {
    270       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
    271                                              computation));
    272       continue;
    273     }
    274 
    275     // Look at all expansions in an expanded pack.
    276     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
    277            i != n; ++i) {
    278       LV.merge(getLVForTemplateParameterList(
    279           TTP->getExpansionTemplateParameters(i), computation));
    280     }
    281   }
    282 
    283   return LV;
    284 }
    285 
    286 /// getLVForDecl - Get the linkage and visibility for the given declaration.
    287 static LinkageInfo getLVForDecl(const NamedDecl *D,
    288                                 LVComputationKind computation);
    289 
    290 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
    291   const Decl *Ret = NULL;
    292   const DeclContext *DC = D->getDeclContext();
    293   while (DC->getDeclKind() != Decl::TranslationUnit) {
    294     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
    295       Ret = cast<Decl>(DC);
    296     DC = DC->getParent();
    297   }
    298   return Ret;
    299 }
    300 
    301 /// \brief Get the most restrictive linkage for the types and
    302 /// declarations in the given template argument list.
    303 ///
    304 /// Note that we don't take an LVComputationKind because we always
    305 /// want to honor the visibility of template arguments in the same way.
    306 static LinkageInfo
    307 getLVForTemplateArgumentList(ArrayRef<TemplateArgument> args,
    308                              LVComputationKind computation) {
    309   LinkageInfo LV;
    310 
    311   for (unsigned i = 0, e = args.size(); i != e; ++i) {
    312     const TemplateArgument &arg = args[i];
    313     switch (arg.getKind()) {
    314     case TemplateArgument::Null:
    315     case TemplateArgument::Integral:
    316     case TemplateArgument::Expression:
    317       continue;
    318 
    319     case TemplateArgument::Type:
    320       LV.merge(getLVForType(*arg.getAsType(), computation));
    321       continue;
    322 
    323     case TemplateArgument::Declaration:
    324       if (NamedDecl *ND = dyn_cast<NamedDecl>(arg.getAsDecl())) {
    325         assert(!usesTypeVisibility(ND));
    326         LV.merge(getLVForDecl(ND, computation));
    327       }
    328       continue;
    329 
    330     case TemplateArgument::NullPtr:
    331       LV.merge(arg.getNullPtrType()->getLinkageAndVisibility());
    332       continue;
    333 
    334     case TemplateArgument::Template:
    335     case TemplateArgument::TemplateExpansion:
    336       if (TemplateDecl *Template
    337                 = arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
    338         LV.merge(getLVForDecl(Template, computation));
    339       continue;
    340 
    341     case TemplateArgument::Pack:
    342       LV.merge(getLVForTemplateArgumentList(arg.getPackAsArray(), computation));
    343       continue;
    344     }
    345     llvm_unreachable("bad template argument kind");
    346   }
    347 
    348   return LV;
    349 }
    350 
    351 static LinkageInfo
    352 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
    353                              LVComputationKind computation) {
    354   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
    355 }
    356 
    357 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
    358                         const FunctionTemplateSpecializationInfo *specInfo) {
    359   // Include visibility from the template parameters and arguments
    360   // only if this is not an explicit instantiation or specialization
    361   // with direct explicit visibility.  (Implicit instantiations won't
    362   // have a direct attribute.)
    363   if (!specInfo->isExplicitInstantiationOrSpecialization())
    364     return true;
    365 
    366   return !fn->hasAttr<VisibilityAttr>();
    367 }
    368 
    369 /// Merge in template-related linkage and visibility for the given
    370 /// function template specialization.
    371 ///
    372 /// We don't need a computation kind here because we can assume
    373 /// LVForValue.
    374 ///
    375 /// \param[out] LV the computation to use for the parent
    376 static void
    377 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
    378                 const FunctionTemplateSpecializationInfo *specInfo,
    379                 LVComputationKind computation) {
    380   bool considerVisibility =
    381     shouldConsiderTemplateVisibility(fn, specInfo);
    382 
    383   // Merge information from the template parameters.
    384   FunctionTemplateDecl *temp = specInfo->getTemplate();
    385   LinkageInfo tempLV =
    386     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
    387   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
    388 
    389   // Merge information from the template arguments.
    390   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
    391   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
    392   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
    393 }
    394 
    395 /// Does the given declaration have a direct visibility attribute
    396 /// that would match the given rules?
    397 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
    398                                          LVComputationKind computation) {
    399   switch (computation) {
    400   case LVForType:
    401   case LVForExplicitType:
    402     if (D->hasAttr<TypeVisibilityAttr>())
    403       return true;
    404     // fallthrough
    405   case LVForValue:
    406   case LVForExplicitValue:
    407     if (D->hasAttr<VisibilityAttr>())
    408       return true;
    409     return false;
    410   case LVForLinkageOnly:
    411     return false;
    412   }
    413   llvm_unreachable("bad visibility computation kind");
    414 }
    415 
    416 /// Should we consider visibility associated with the template
    417 /// arguments and parameters of the given class template specialization?
    418 static bool shouldConsiderTemplateVisibility(
    419                                  const ClassTemplateSpecializationDecl *spec,
    420                                  LVComputationKind computation) {
    421   // Include visibility from the template parameters and arguments
    422   // only if this is not an explicit instantiation or specialization
    423   // with direct explicit visibility (and note that implicit
    424   // instantiations won't have a direct attribute).
    425   //
    426   // Furthermore, we want to ignore template parameters and arguments
    427   // for an explicit specialization when computing the visibility of a
    428   // member thereof with explicit visibility.
    429   //
    430   // This is a bit complex; let's unpack it.
    431   //
    432   // An explicit class specialization is an independent, top-level
    433   // declaration.  As such, if it or any of its members has an
    434   // explicit visibility attribute, that must directly express the
    435   // user's intent, and we should honor it.  The same logic applies to
    436   // an explicit instantiation of a member of such a thing.
    437 
    438   // Fast path: if this is not an explicit instantiation or
    439   // specialization, we always want to consider template-related
    440   // visibility restrictions.
    441   if (!spec->isExplicitInstantiationOrSpecialization())
    442     return true;
    443 
    444   // This is the 'member thereof' check.
    445   if (spec->isExplicitSpecialization() &&
    446       hasExplicitVisibilityAlready(computation))
    447     return false;
    448 
    449   return !hasDirectVisibilityAttribute(spec, computation);
    450 }
    451 
    452 /// Merge in template-related linkage and visibility for the given
    453 /// class template specialization.
    454 static void mergeTemplateLV(LinkageInfo &LV,
    455                             const ClassTemplateSpecializationDecl *spec,
    456                             LVComputationKind computation) {
    457   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
    458 
    459   // Merge information from the template parameters, but ignore
    460   // visibility if we're only considering template arguments.
    461 
    462   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
    463   LinkageInfo tempLV =
    464     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
    465   LV.mergeMaybeWithVisibility(tempLV,
    466            considerVisibility && !hasExplicitVisibilityAlready(computation));
    467 
    468   // Merge information from the template arguments.  We ignore
    469   // template-argument visibility if we've got an explicit
    470   // instantiation with a visibility attribute.
    471   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
    472   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
    473   if (considerVisibility)
    474     LV.mergeVisibility(argsLV);
    475   LV.mergeExternalVisibility(argsLV);
    476 }
    477 
    478 static bool useInlineVisibilityHidden(const NamedDecl *D) {
    479   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
    480   const LangOptions &Opts = D->getASTContext().getLangOpts();
    481   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
    482     return false;
    483 
    484   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
    485   if (!FD)
    486     return false;
    487 
    488   TemplateSpecializationKind TSK = TSK_Undeclared;
    489   if (FunctionTemplateSpecializationInfo *spec
    490       = FD->getTemplateSpecializationInfo()) {
    491     TSK = spec->getTemplateSpecializationKind();
    492   } else if (MemberSpecializationInfo *MSI =
    493              FD->getMemberSpecializationInfo()) {
    494     TSK = MSI->getTemplateSpecializationKind();
    495   }
    496 
    497   const FunctionDecl *Def = 0;
    498   // InlineVisibilityHidden only applies to definitions, and
    499   // isInlined() only gives meaningful answers on definitions
    500   // anyway.
    501   return TSK != TSK_ExplicitInstantiationDeclaration &&
    502     TSK != TSK_ExplicitInstantiationDefinition &&
    503     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
    504 }
    505 
    506 template <typename T> static bool isFirstInExternCContext(T *D) {
    507   const T *First = D->getFirstDeclaration();
    508   return First->isInExternCContext();
    509 }
    510 
    511 static bool isSingleLineExternC(const Decl &D) {
    512   if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
    513     if (SD->getLanguage() == LinkageSpecDecl::lang_c && !SD->hasBraces())
    514       return true;
    515   return false;
    516 }
    517 
    518 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
    519                                               LVComputationKind computation) {
    520   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
    521          "Not a name having namespace scope");
    522   ASTContext &Context = D->getASTContext();
    523 
    524   // C++ [basic.link]p3:
    525   //   A name having namespace scope (3.3.6) has internal linkage if it
    526   //   is the name of
    527   //     - an object, reference, function or function template that is
    528   //       explicitly declared static; or,
    529   // (This bullet corresponds to C99 6.2.2p3.)
    530   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
    531     // Explicitly declared static.
    532     if (Var->getStorageClass() == SC_Static)
    533       return LinkageInfo::internal();
    534 
    535     // - a non-volatile object or reference that is explicitly declared const
    536     //   or constexpr and neither explicitly declared extern nor previously
    537     //   declared to have external linkage; or (there is no equivalent in C99)
    538     if (Context.getLangOpts().CPlusPlus &&
    539         Var->getType().isConstQualified() &&
    540         !Var->getType().isVolatileQualified()) {
    541       const VarDecl *PrevVar = Var->getPreviousDecl();
    542       if (PrevVar)
    543         return getLVForDecl(PrevVar, computation);
    544 
    545       if (Var->getStorageClass() != SC_Extern &&
    546           Var->getStorageClass() != SC_PrivateExtern &&
    547           !isSingleLineExternC(*Var))
    548         return LinkageInfo::internal();
    549     }
    550 
    551     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
    552          PrevVar = PrevVar->getPreviousDecl()) {
    553       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
    554           Var->getStorageClass() == SC_None)
    555         return PrevVar->getLinkageAndVisibility();
    556       // Explicitly declared static.
    557       if (PrevVar->getStorageClass() == SC_Static)
    558         return LinkageInfo::internal();
    559     }
    560   } else if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) {
    561     // C++ [temp]p4:
    562     //   A non-member function template can have internal linkage; any
    563     //   other template name shall have external linkage.
    564     const FunctionDecl *Function = 0;
    565     if (const FunctionTemplateDecl *FunTmpl
    566                                         = dyn_cast<FunctionTemplateDecl>(D))
    567       Function = FunTmpl->getTemplatedDecl();
    568     else
    569       Function = cast<FunctionDecl>(D);
    570 
    571     // Explicitly declared static.
    572     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
    573       return LinkageInfo(InternalLinkage, DefaultVisibility, false);
    574   } else if (const FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
    575     //   - a data member of an anonymous union.
    576     if (cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
    577       return LinkageInfo::internal();
    578   }
    579 
    580   if (D->isInAnonymousNamespace()) {
    581     const VarDecl *Var = dyn_cast<VarDecl>(D);
    582     const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
    583     if ((!Var || !isFirstInExternCContext(Var)) &&
    584         (!Func || !isFirstInExternCContext(Func)))
    585       return LinkageInfo::uniqueExternal();
    586   }
    587 
    588   // Set up the defaults.
    589 
    590   // C99 6.2.2p5:
    591   //   If the declaration of an identifier for an object has file
    592   //   scope and no storage-class specifier, its linkage is
    593   //   external.
    594   LinkageInfo LV;
    595 
    596   if (!hasExplicitVisibilityAlready(computation)) {
    597     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
    598       LV.mergeVisibility(*Vis, true);
    599     } else {
    600       // If we're declared in a namespace with a visibility attribute,
    601       // use that namespace's visibility, and it still counts as explicit.
    602       for (const DeclContext *DC = D->getDeclContext();
    603            !isa<TranslationUnitDecl>(DC);
    604            DC = DC->getParent()) {
    605         const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
    606         if (!ND) continue;
    607         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
    608           LV.mergeVisibility(*Vis, true);
    609           break;
    610         }
    611       }
    612     }
    613 
    614     // Add in global settings if the above didn't give us direct visibility.
    615     if (!LV.isVisibilityExplicit()) {
    616       // Use global type/value visibility as appropriate.
    617       Visibility globalVisibility;
    618       if (computation == LVForValue) {
    619         globalVisibility = Context.getLangOpts().getValueVisibilityMode();
    620       } else {
    621         assert(computation == LVForType);
    622         globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
    623       }
    624       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
    625 
    626       // If we're paying attention to global visibility, apply
    627       // -finline-visibility-hidden if this is an inline method.
    628       if (useInlineVisibilityHidden(D))
    629         LV.mergeVisibility(HiddenVisibility, true);
    630     }
    631   }
    632 
    633   // C++ [basic.link]p4:
    634 
    635   //   A name having namespace scope has external linkage if it is the
    636   //   name of
    637   //
    638   //     - an object or reference, unless it has internal linkage; or
    639   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
    640     // GCC applies the following optimization to variables and static
    641     // data members, but not to functions:
    642     //
    643     // Modify the variable's LV by the LV of its type unless this is
    644     // C or extern "C".  This follows from [basic.link]p9:
    645     //   A type without linkage shall not be used as the type of a
    646     //   variable or function with external linkage unless
    647     //    - the entity has C language linkage, or
    648     //    - the entity is declared within an unnamed namespace, or
    649     //    - the entity is not used or is defined in the same
    650     //      translation unit.
    651     // and [basic.link]p10:
    652     //   ...the types specified by all declarations referring to a
    653     //   given variable or function shall be identical...
    654     // C does not have an equivalent rule.
    655     //
    656     // Ignore this if we've got an explicit attribute;  the user
    657     // probably knows what they're doing.
    658     //
    659     // Note that we don't want to make the variable non-external
    660     // because of this, but unique-external linkage suits us.
    661     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
    662       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
    663       if (TypeLV.getLinkage() != ExternalLinkage)
    664         return LinkageInfo::uniqueExternal();
    665       if (!LV.isVisibilityExplicit())
    666         LV.mergeVisibility(TypeLV);
    667     }
    668 
    669     if (Var->getStorageClass() == SC_PrivateExtern)
    670       LV.mergeVisibility(HiddenVisibility, true);
    671 
    672     // Note that Sema::MergeVarDecl already takes care of implementing
    673     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
    674     // to do it here.
    675 
    676   //     - a function, unless it has internal linkage; or
    677   } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
    678     // In theory, we can modify the function's LV by the LV of its
    679     // type unless it has C linkage (see comment above about variables
    680     // for justification).  In practice, GCC doesn't do this, so it's
    681     // just too painful to make work.
    682 
    683     if (Function->getStorageClass() == SC_PrivateExtern)
    684       LV.mergeVisibility(HiddenVisibility, true);
    685 
    686     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
    687     // merging storage classes and visibility attributes, so we don't have to
    688     // look at previous decls in here.
    689 
    690     // In C++, then if the type of the function uses a type with
    691     // unique-external linkage, it's not legally usable from outside
    692     // this translation unit.  However, we should use the C linkage
    693     // rules instead for extern "C" declarations.
    694     if (Context.getLangOpts().CPlusPlus &&
    695         !Function->isInExternCContext()) {
    696       // Only look at the type-as-written. If this function has an auto-deduced
    697       // return type, we can't compute the linkage of that type because it could
    698       // require looking at the linkage of this function, and we don't need this
    699       // for correctness because the type is not part of the function's
    700       // signature.
    701       // FIXME: This is a hack. We should be able to solve this circularity some
    702       // other way.
    703       QualType TypeAsWritten = Function->getType();
    704       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
    705         TypeAsWritten = TSI->getType();
    706       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
    707         return LinkageInfo::uniqueExternal();
    708     }
    709 
    710     // Consider LV from the template and the template arguments.
    711     // We're at file scope, so we do not need to worry about nested
    712     // specializations.
    713     if (FunctionTemplateSpecializationInfo *specInfo
    714                                = Function->getTemplateSpecializationInfo()) {
    715       mergeTemplateLV(LV, Function, specInfo, computation);
    716     }
    717 
    718   //     - a named class (Clause 9), or an unnamed class defined in a
    719   //       typedef declaration in which the class has the typedef name
    720   //       for linkage purposes (7.1.3); or
    721   //     - a named enumeration (7.2), or an unnamed enumeration
    722   //       defined in a typedef declaration in which the enumeration
    723   //       has the typedef name for linkage purposes (7.1.3); or
    724   } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
    725     // Unnamed tags have no linkage.
    726     if (!Tag->hasNameForLinkage())
    727       return LinkageInfo::none();
    728 
    729     // If this is a class template specialization, consider the
    730     // linkage of the template and template arguments.  We're at file
    731     // scope, so we do not need to worry about nested specializations.
    732     if (const ClassTemplateSpecializationDecl *spec
    733           = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
    734       mergeTemplateLV(LV, spec, computation);
    735     }
    736 
    737   //     - an enumerator belonging to an enumeration with external linkage;
    738   } else if (isa<EnumConstantDecl>(D)) {
    739     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
    740                                       computation);
    741     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
    742       return LinkageInfo::none();
    743     LV.merge(EnumLV);
    744 
    745   //     - a template, unless it is a function template that has
    746   //       internal linkage (Clause 14);
    747   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
    748     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
    749     LinkageInfo tempLV =
    750       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
    751     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
    752 
    753   //     - a namespace (7.3), unless it is declared within an unnamed
    754   //       namespace.
    755   } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
    756     return LV;
    757 
    758   // By extension, we assign external linkage to Objective-C
    759   // interfaces.
    760   } else if (isa<ObjCInterfaceDecl>(D)) {
    761     // fallout
    762 
    763   // Everything not covered here has no linkage.
    764   } else {
    765     return LinkageInfo::none();
    766   }
    767 
    768   // If we ended up with non-external linkage, visibility should
    769   // always be default.
    770   if (LV.getLinkage() != ExternalLinkage)
    771     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
    772 
    773   return LV;
    774 }
    775 
    776 static LinkageInfo getLVForClassMember(const NamedDecl *D,
    777                                        LVComputationKind computation) {
    778   // Only certain class members have linkage.  Note that fields don't
    779   // really have linkage, but it's convenient to say they do for the
    780   // purposes of calculating linkage of pointer-to-data-member
    781   // template arguments.
    782   if (!(isa<CXXMethodDecl>(D) ||
    783         isa<VarDecl>(D) ||
    784         isa<FieldDecl>(D) ||
    785         isa<TagDecl>(D)))
    786     return LinkageInfo::none();
    787 
    788   LinkageInfo LV;
    789 
    790   // If we have an explicit visibility attribute, merge that in.
    791   if (!hasExplicitVisibilityAlready(computation)) {
    792     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
    793       LV.mergeVisibility(*Vis, true);
    794     // If we're paying attention to global visibility, apply
    795     // -finline-visibility-hidden if this is an inline method.
    796     //
    797     // Note that we do this before merging information about
    798     // the class visibility.
    799     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
    800       LV.mergeVisibility(HiddenVisibility, true);
    801   }
    802 
    803   // If this class member has an explicit visibility attribute, the only
    804   // thing that can change its visibility is the template arguments, so
    805   // only look for them when processing the class.
    806   LVComputationKind classComputation = computation;
    807   if (LV.isVisibilityExplicit())
    808     classComputation = withExplicitVisibilityAlready(computation);
    809 
    810   LinkageInfo classLV =
    811     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
    812   // If the class already has unique-external linkage, we can't improve.
    813   if (classLV.getLinkage() == UniqueExternalLinkage)
    814     return LinkageInfo::uniqueExternal();
    815 
    816   if (!isExternallyVisible(classLV.getLinkage()))
    817     return LinkageInfo::none();
    818 
    819 
    820   // Otherwise, don't merge in classLV yet, because in certain cases
    821   // we need to completely ignore the visibility from it.
    822 
    823   // Specifically, if this decl exists and has an explicit attribute.
    824   const NamedDecl *explicitSpecSuppressor = 0;
    825 
    826   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
    827     // If the type of the function uses a type with unique-external
    828     // linkage, it's not legally usable from outside this translation unit.
    829     if (MD->getType()->getLinkage() == UniqueExternalLinkage)
    830       return LinkageInfo::uniqueExternal();
    831 
    832     // If this is a method template specialization, use the linkage for
    833     // the template parameters and arguments.
    834     if (FunctionTemplateSpecializationInfo *spec
    835            = MD->getTemplateSpecializationInfo()) {
    836       mergeTemplateLV(LV, MD, spec, computation);
    837       if (spec->isExplicitSpecialization()) {
    838         explicitSpecSuppressor = MD;
    839       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
    840         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
    841       }
    842     } else if (isExplicitMemberSpecialization(MD)) {
    843       explicitSpecSuppressor = MD;
    844     }
    845 
    846   } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
    847     if (const ClassTemplateSpecializationDecl *spec
    848         = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
    849       mergeTemplateLV(LV, spec, computation);
    850       if (spec->isExplicitSpecialization()) {
    851         explicitSpecSuppressor = spec;
    852       } else {
    853         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
    854         if (isExplicitMemberSpecialization(temp)) {
    855           explicitSpecSuppressor = temp->getTemplatedDecl();
    856         }
    857       }
    858     } else if (isExplicitMemberSpecialization(RD)) {
    859       explicitSpecSuppressor = RD;
    860     }
    861 
    862   // Static data members.
    863   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    864     // Modify the variable's linkage by its type, but ignore the
    865     // type's visibility unless it's a definition.
    866     LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
    867     if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
    868       LV.mergeVisibility(typeLV);
    869     LV.mergeExternalVisibility(typeLV);
    870 
    871     if (isExplicitMemberSpecialization(VD)) {
    872       explicitSpecSuppressor = VD;
    873     }
    874 
    875   // Template members.
    876   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
    877     bool considerVisibility =
    878       (!LV.isVisibilityExplicit() &&
    879        !classLV.isVisibilityExplicit() &&
    880        !hasExplicitVisibilityAlready(computation));
    881     LinkageInfo tempLV =
    882       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
    883     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
    884 
    885     if (const RedeclarableTemplateDecl *redeclTemp =
    886           dyn_cast<RedeclarableTemplateDecl>(temp)) {
    887       if (isExplicitMemberSpecialization(redeclTemp)) {
    888         explicitSpecSuppressor = temp->getTemplatedDecl();
    889       }
    890     }
    891   }
    892 
    893   // We should never be looking for an attribute directly on a template.
    894   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
    895 
    896   // If this member is an explicit member specialization, and it has
    897   // an explicit attribute, ignore visibility from the parent.
    898   bool considerClassVisibility = true;
    899   if (explicitSpecSuppressor &&
    900       // optimization: hasDVA() is true only with explicit visibility.
    901       LV.isVisibilityExplicit() &&
    902       classLV.getVisibility() != DefaultVisibility &&
    903       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
    904     considerClassVisibility = false;
    905   }
    906 
    907   // Finally, merge in information from the class.
    908   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
    909   return LV;
    910 }
    911 
    912 void NamedDecl::anchor() { }
    913 
    914 static LinkageInfo computeLVForDecl(const NamedDecl *D,
    915                                     LVComputationKind computation);
    916 
    917 bool NamedDecl::isLinkageValid() const {
    918   if (!hasCachedLinkage())
    919     return true;
    920 
    921   return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
    922          getCachedLinkage();
    923 }
    924 
    925 Linkage NamedDecl::getLinkageInternal() const {
    926   // We don't care about visibility here, so ask for the cheapest
    927   // possible visibility analysis.
    928   return getLVForDecl(this, LVForLinkageOnly).getLinkage();
    929 }
    930 
    931 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
    932   LVComputationKind computation =
    933     (usesTypeVisibility(this) ? LVForType : LVForValue);
    934   return getLVForDecl(this, computation);
    935 }
    936 
    937 Optional<Visibility>
    938 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
    939   // Check the declaration itself first.
    940   if (Optional<Visibility> V = getVisibilityOf(this, kind))
    941     return V;
    942 
    943   // If this is a member class of a specialization of a class template
    944   // and the corresponding decl has explicit visibility, use that.
    945   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(this)) {
    946     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
    947     if (InstantiatedFrom)
    948       return getVisibilityOf(InstantiatedFrom, kind);
    949   }
    950 
    951   // If there wasn't explicit visibility there, and this is a
    952   // specialization of a class template, check for visibility
    953   // on the pattern.
    954   if (const ClassTemplateSpecializationDecl *spec
    955         = dyn_cast<ClassTemplateSpecializationDecl>(this))
    956     return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
    957                            kind);
    958 
    959   // Use the most recent declaration.
    960   const NamedDecl *MostRecent = cast<NamedDecl>(this->getMostRecentDecl());
    961   if (MostRecent != this)
    962     return MostRecent->getExplicitVisibility(kind);
    963 
    964   if (const VarDecl *Var = dyn_cast<VarDecl>(this)) {
    965     if (Var->isStaticDataMember()) {
    966       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
    967       if (InstantiatedFrom)
    968         return getVisibilityOf(InstantiatedFrom, kind);
    969     }
    970 
    971     return None;
    972   }
    973   // Also handle function template specializations.
    974   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(this)) {
    975     // If the function is a specialization of a template with an
    976     // explicit visibility attribute, use that.
    977     if (FunctionTemplateSpecializationInfo *templateInfo
    978           = fn->getTemplateSpecializationInfo())
    979       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
    980                              kind);
    981 
    982     // If the function is a member of a specialization of a class template
    983     // and the corresponding decl has explicit visibility, use that.
    984     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
    985     if (InstantiatedFrom)
    986       return getVisibilityOf(InstantiatedFrom, kind);
    987 
    988     return None;
    989   }
    990 
    991   // The visibility of a template is stored in the templated decl.
    992   if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(this))
    993     return getVisibilityOf(TD->getTemplatedDecl(), kind);
    994 
    995   return None;
    996 }
    997 
    998 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
    999                                    LVComputationKind computation) {
   1000   // This lambda has its linkage/visibility determined by its owner.
   1001   if (ContextDecl) {
   1002     if (isa<ParmVarDecl>(ContextDecl))
   1003       DC = ContextDecl->getDeclContext()->getRedeclContext();
   1004     else
   1005       return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
   1006   }
   1007 
   1008   if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
   1009     return getLVForDecl(ND, computation);
   1010 
   1011   return LinkageInfo::external();
   1012 }
   1013 
   1014 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
   1015                                      LVComputationKind computation) {
   1016   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
   1017     if (Function->isInAnonymousNamespace() &&
   1018         !Function->isInExternCContext())
   1019       return LinkageInfo::uniqueExternal();
   1020 
   1021     // This is a "void f();" which got merged with a file static.
   1022     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
   1023       return LinkageInfo::internal();
   1024 
   1025     LinkageInfo LV;
   1026     if (!hasExplicitVisibilityAlready(computation)) {
   1027       if (Optional<Visibility> Vis =
   1028               getExplicitVisibility(Function, computation))
   1029         LV.mergeVisibility(*Vis, true);
   1030     }
   1031 
   1032     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
   1033     // merging storage classes and visibility attributes, so we don't have to
   1034     // look at previous decls in here.
   1035 
   1036     return LV;
   1037   }
   1038 
   1039   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
   1040     if (Var->hasExternalStorage()) {
   1041       if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
   1042         return LinkageInfo::uniqueExternal();
   1043 
   1044       LinkageInfo LV;
   1045       if (Var->getStorageClass() == SC_PrivateExtern)
   1046         LV.mergeVisibility(HiddenVisibility, true);
   1047       else if (!hasExplicitVisibilityAlready(computation)) {
   1048         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
   1049           LV.mergeVisibility(*Vis, true);
   1050       }
   1051 
   1052       if (const VarDecl *Prev = Var->getPreviousDecl()) {
   1053         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
   1054         if (PrevLV.getLinkage())
   1055           LV.setLinkage(PrevLV.getLinkage());
   1056         LV.mergeVisibility(PrevLV);
   1057       }
   1058 
   1059       return LV;
   1060     }
   1061 
   1062     if (!Var->isStaticLocal())
   1063       return LinkageInfo::none();
   1064   }
   1065 
   1066   ASTContext &Context = D->getASTContext();
   1067   if (!Context.getLangOpts().CPlusPlus)
   1068     return LinkageInfo::none();
   1069 
   1070   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
   1071   if (!OuterD)
   1072     return LinkageInfo::none();
   1073 
   1074   LinkageInfo LV;
   1075   if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) {
   1076     if (!BD->getBlockManglingNumber())
   1077       return LinkageInfo::none();
   1078 
   1079     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
   1080                          BD->getBlockManglingContextDecl(), computation);
   1081   } else {
   1082     const FunctionDecl *FD = cast<FunctionDecl>(OuterD);
   1083     if (!FD->isInlined() &&
   1084         FD->getTemplateSpecializationKind() == TSK_Undeclared)
   1085       return LinkageInfo::none();
   1086 
   1087     LV = getLVForDecl(FD, computation);
   1088   }
   1089   if (!isExternallyVisible(LV.getLinkage()))
   1090     return LinkageInfo::none();
   1091   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
   1092                      LV.isVisibilityExplicit());
   1093 }
   1094 
   1095 static LinkageInfo computeLVForDecl(const NamedDecl *D,
   1096                                     LVComputationKind computation) {
   1097   // Objective-C: treat all Objective-C declarations as having external
   1098   // linkage.
   1099   switch (D->getKind()) {
   1100     default:
   1101       break;
   1102     case Decl::ParmVar:
   1103       return LinkageInfo::none();
   1104     case Decl::TemplateTemplateParm: // count these as external
   1105     case Decl::NonTypeTemplateParm:
   1106     case Decl::ObjCAtDefsField:
   1107     case Decl::ObjCCategory:
   1108     case Decl::ObjCCategoryImpl:
   1109     case Decl::ObjCCompatibleAlias:
   1110     case Decl::ObjCImplementation:
   1111     case Decl::ObjCMethod:
   1112     case Decl::ObjCProperty:
   1113     case Decl::ObjCPropertyImpl:
   1114     case Decl::ObjCProtocol:
   1115       return LinkageInfo::external();
   1116 
   1117     case Decl::CXXRecord: {
   1118       const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
   1119       if (Record->isLambda()) {
   1120         if (!Record->getLambdaManglingNumber()) {
   1121           // This lambda has no mangling number, so it's internal.
   1122           return LinkageInfo::internal();
   1123         }
   1124 
   1125         // This lambda has its linkage/visibility determined by its owner.
   1126         return getLVForClosure(D->getDeclContext()->getRedeclContext(),
   1127                                Record->getLambdaContextDecl(), computation);
   1128       }
   1129 
   1130       break;
   1131     }
   1132   }
   1133 
   1134   // Handle linkage for namespace-scope names.
   1135   if (D->getDeclContext()->getRedeclContext()->isFileContext())
   1136     return getLVForNamespaceScopeDecl(D, computation);
   1137 
   1138   // C++ [basic.link]p5:
   1139   //   In addition, a member function, static data member, a named
   1140   //   class or enumeration of class scope, or an unnamed class or
   1141   //   enumeration defined in a class-scope typedef declaration such
   1142   //   that the class or enumeration has the typedef name for linkage
   1143   //   purposes (7.1.3), has external linkage if the name of the class
   1144   //   has external linkage.
   1145   if (D->getDeclContext()->isRecord())
   1146     return getLVForClassMember(D, computation);
   1147 
   1148   // C++ [basic.link]p6:
   1149   //   The name of a function declared in block scope and the name of
   1150   //   an object declared by a block scope extern declaration have
   1151   //   linkage. If there is a visible declaration of an entity with
   1152   //   linkage having the same name and type, ignoring entities
   1153   //   declared outside the innermost enclosing namespace scope, the
   1154   //   block scope declaration declares that same entity and receives
   1155   //   the linkage of the previous declaration. If there is more than
   1156   //   one such matching entity, the program is ill-formed. Otherwise,
   1157   //   if no matching entity is found, the block scope entity receives
   1158   //   external linkage.
   1159   if (D->getDeclContext()->isFunctionOrMethod())
   1160     return getLVForLocalDecl(D, computation);
   1161 
   1162   // C++ [basic.link]p6:
   1163   //   Names not covered by these rules have no linkage.
   1164   return LinkageInfo::none();
   1165 }
   1166 
   1167 namespace clang {
   1168 class LinkageComputer {
   1169 public:
   1170   static LinkageInfo getLVForDecl(const NamedDecl *D,
   1171                                   LVComputationKind computation) {
   1172     if (computation == LVForLinkageOnly && D->hasCachedLinkage())
   1173       return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
   1174 
   1175     LinkageInfo LV = computeLVForDecl(D, computation);
   1176     if (D->hasCachedLinkage())
   1177       assert(D->getCachedLinkage() == LV.getLinkage());
   1178 
   1179     D->setCachedLinkage(LV.getLinkage());
   1180 
   1181 #ifndef NDEBUG
   1182     // In C (because of gnu inline) and in c++ with microsoft extensions an
   1183     // static can follow an extern, so we can have two decls with different
   1184     // linkages.
   1185     const LangOptions &Opts = D->getASTContext().getLangOpts();
   1186     if (!Opts.CPlusPlus || Opts.MicrosoftExt)
   1187       return LV;
   1188 
   1189     // We have just computed the linkage for this decl. By induction we know
   1190     // that all other computed linkages match, check that the one we just
   1191     // computed
   1192     // also does.
   1193     NamedDecl *Old = NULL;
   1194     for (NamedDecl::redecl_iterator I = D->redecls_begin(),
   1195                                     E = D->redecls_end();
   1196          I != E; ++I) {
   1197       NamedDecl *T = cast<NamedDecl>(*I);
   1198       if (T == D)
   1199         continue;
   1200       if (T->hasCachedLinkage()) {
   1201         Old = T;
   1202         break;
   1203       }
   1204     }
   1205     assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
   1206 #endif
   1207 
   1208     return LV;
   1209   }
   1210 };
   1211 }
   1212 
   1213 static LinkageInfo getLVForDecl(const NamedDecl *D,
   1214                                 LVComputationKind computation) {
   1215   return clang::LinkageComputer::getLVForDecl(D, computation);
   1216 }
   1217 
   1218 std::string NamedDecl::getQualifiedNameAsString() const {
   1219   return getQualifiedNameAsString(getASTContext().getPrintingPolicy());
   1220 }
   1221 
   1222 std::string NamedDecl::getQualifiedNameAsString(const PrintingPolicy &P) const {
   1223   std::string QualName;
   1224   llvm::raw_string_ostream OS(QualName);
   1225   printQualifiedName(OS, P);
   1226   return OS.str();
   1227 }
   1228 
   1229 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
   1230   printQualifiedName(OS, getASTContext().getPrintingPolicy());
   1231 }
   1232 
   1233 void NamedDecl::printQualifiedName(raw_ostream &OS,
   1234                                    const PrintingPolicy &P) const {
   1235   const DeclContext *Ctx = getDeclContext();
   1236 
   1237   if (Ctx->isFunctionOrMethod()) {
   1238     printName(OS);
   1239     return;
   1240   }
   1241 
   1242   typedef SmallVector<const DeclContext *, 8> ContextsTy;
   1243   ContextsTy Contexts;
   1244 
   1245   // Collect contexts.
   1246   while (Ctx && isa<NamedDecl>(Ctx)) {
   1247     Contexts.push_back(Ctx);
   1248     Ctx = Ctx->getParent();
   1249   }
   1250 
   1251   for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
   1252        I != E; ++I) {
   1253     if (const ClassTemplateSpecializationDecl *Spec
   1254           = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
   1255       OS << Spec->getName();
   1256       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
   1257       TemplateSpecializationType::PrintTemplateArgumentList(OS,
   1258                                                             TemplateArgs.data(),
   1259                                                             TemplateArgs.size(),
   1260                                                             P);
   1261     } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
   1262       if (ND->isAnonymousNamespace())
   1263         OS << "<anonymous namespace>";
   1264       else
   1265         OS << *ND;
   1266     } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
   1267       if (!RD->getIdentifier())
   1268         OS << "<anonymous " << RD->getKindName() << '>';
   1269       else
   1270         OS << *RD;
   1271     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
   1272       const FunctionProtoType *FT = 0;
   1273       if (FD->hasWrittenPrototype())
   1274         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
   1275 
   1276       OS << *FD << '(';
   1277       if (FT) {
   1278         unsigned NumParams = FD->getNumParams();
   1279         for (unsigned i = 0; i < NumParams; ++i) {
   1280           if (i)
   1281             OS << ", ";
   1282           OS << FD->getParamDecl(i)->getType().stream(P);
   1283         }
   1284 
   1285         if (FT->isVariadic()) {
   1286           if (NumParams > 0)
   1287             OS << ", ";
   1288           OS << "...";
   1289         }
   1290       }
   1291       OS << ')';
   1292     } else {
   1293       OS << *cast<NamedDecl>(*I);
   1294     }
   1295     OS << "::";
   1296   }
   1297 
   1298   if (getDeclName())
   1299     OS << *this;
   1300   else
   1301     OS << "<anonymous>";
   1302 }
   1303 
   1304 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
   1305                                      const PrintingPolicy &Policy,
   1306                                      bool Qualified) const {
   1307   if (Qualified)
   1308     printQualifiedName(OS, Policy);
   1309   else
   1310     printName(OS);
   1311 }
   1312 
   1313 bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
   1314   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
   1315 
   1316   // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
   1317   // We want to keep it, unless it nominates same namespace.
   1318   if (getKind() == Decl::UsingDirective) {
   1319     return cast<UsingDirectiveDecl>(this)->getNominatedNamespace()
   1320              ->getOriginalNamespace() ==
   1321            cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
   1322              ->getOriginalNamespace();
   1323   }
   1324 
   1325   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
   1326     // For function declarations, we keep track of redeclarations.
   1327     return FD->getPreviousDecl() == OldD;
   1328 
   1329   // For function templates, the underlying function declarations are linked.
   1330   if (const FunctionTemplateDecl *FunctionTemplate
   1331         = dyn_cast<FunctionTemplateDecl>(this))
   1332     if (const FunctionTemplateDecl *OldFunctionTemplate
   1333           = dyn_cast<FunctionTemplateDecl>(OldD))
   1334       return FunctionTemplate->getTemplatedDecl()
   1335                ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl());
   1336 
   1337   // For method declarations, we keep track of redeclarations.
   1338   if (isa<ObjCMethodDecl>(this))
   1339     return false;
   1340 
   1341   if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD))
   1342     return true;
   1343 
   1344   if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD))
   1345     return cast<UsingShadowDecl>(this)->getTargetDecl() ==
   1346            cast<UsingShadowDecl>(OldD)->getTargetDecl();
   1347 
   1348   if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) {
   1349     ASTContext &Context = getASTContext();
   1350     return Context.getCanonicalNestedNameSpecifier(
   1351                                      cast<UsingDecl>(this)->getQualifier()) ==
   1352            Context.getCanonicalNestedNameSpecifier(
   1353                                         cast<UsingDecl>(OldD)->getQualifier());
   1354   }
   1355 
   1356   // A typedef of an Objective-C class type can replace an Objective-C class
   1357   // declaration or definition, and vice versa.
   1358   if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) ||
   1359       (isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD)))
   1360     return true;
   1361 
   1362   // For non-function declarations, if the declarations are of the
   1363   // same kind then this must be a redeclaration, or semantic analysis
   1364   // would not have given us the new declaration.
   1365   return this->getKind() == OldD->getKind();
   1366 }
   1367 
   1368 bool NamedDecl::hasLinkage() const {
   1369   return getFormalLinkage() != NoLinkage;
   1370 }
   1371 
   1372 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
   1373   NamedDecl *ND = this;
   1374   while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
   1375     ND = UD->getTargetDecl();
   1376 
   1377   if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
   1378     return AD->getClassInterface();
   1379 
   1380   return ND;
   1381 }
   1382 
   1383 bool NamedDecl::isCXXInstanceMember() const {
   1384   if (!isCXXClassMember())
   1385     return false;
   1386 
   1387   const NamedDecl *D = this;
   1388   if (isa<UsingShadowDecl>(D))
   1389     D = cast<UsingShadowDecl>(D)->getTargetDecl();
   1390 
   1391   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
   1392     return true;
   1393   if (isa<CXXMethodDecl>(D))
   1394     return cast<CXXMethodDecl>(D)->isInstance();
   1395   if (isa<FunctionTemplateDecl>(D))
   1396     return cast<CXXMethodDecl>(cast<FunctionTemplateDecl>(D)
   1397                                  ->getTemplatedDecl())->isInstance();
   1398   return false;
   1399 }
   1400 
   1401 //===----------------------------------------------------------------------===//
   1402 // DeclaratorDecl Implementation
   1403 //===----------------------------------------------------------------------===//
   1404 
   1405 template <typename DeclT>
   1406 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
   1407   if (decl->getNumTemplateParameterLists() > 0)
   1408     return decl->getTemplateParameterList(0)->getTemplateLoc();
   1409   else
   1410     return decl->getInnerLocStart();
   1411 }
   1412 
   1413 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
   1414   TypeSourceInfo *TSI = getTypeSourceInfo();
   1415   if (TSI) return TSI->getTypeLoc().getBeginLoc();
   1416   return SourceLocation();
   1417 }
   1418 
   1419 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
   1420   if (QualifierLoc) {
   1421     // Make sure the extended decl info is allocated.
   1422     if (!hasExtInfo()) {
   1423       // Save (non-extended) type source info pointer.
   1424       TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
   1425       // Allocate external info struct.
   1426       DeclInfo = new (getASTContext()) ExtInfo;
   1427       // Restore savedTInfo into (extended) decl info.
   1428       getExtInfo()->TInfo = savedTInfo;
   1429     }
   1430     // Set qualifier info.
   1431     getExtInfo()->QualifierLoc = QualifierLoc;
   1432   } else {
   1433     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
   1434     if (hasExtInfo()) {
   1435       if (getExtInfo()->NumTemplParamLists == 0) {
   1436         // Save type source info pointer.
   1437         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
   1438         // Deallocate the extended decl info.
   1439         getASTContext().Deallocate(getExtInfo());
   1440         // Restore savedTInfo into (non-extended) decl info.
   1441         DeclInfo = savedTInfo;
   1442       }
   1443       else
   1444         getExtInfo()->QualifierLoc = QualifierLoc;
   1445     }
   1446   }
   1447 }
   1448 
   1449 void
   1450 DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
   1451                                               unsigned NumTPLists,
   1452                                               TemplateParameterList **TPLists) {
   1453   assert(NumTPLists > 0);
   1454   // Make sure the extended decl info is allocated.
   1455   if (!hasExtInfo()) {
   1456     // Save (non-extended) type source info pointer.
   1457     TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
   1458     // Allocate external info struct.
   1459     DeclInfo = new (getASTContext()) ExtInfo;
   1460     // Restore savedTInfo into (extended) decl info.
   1461     getExtInfo()->TInfo = savedTInfo;
   1462   }
   1463   // Set the template parameter lists info.
   1464   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
   1465 }
   1466 
   1467 SourceLocation DeclaratorDecl::getOuterLocStart() const {
   1468   return getTemplateOrInnerLocStart(this);
   1469 }
   1470 
   1471 namespace {
   1472 
   1473 // Helper function: returns true if QT is or contains a type
   1474 // having a postfix component.
   1475 bool typeIsPostfix(clang::QualType QT) {
   1476   while (true) {
   1477     const Type* T = QT.getTypePtr();
   1478     switch (T->getTypeClass()) {
   1479     default:
   1480       return false;
   1481     case Type::Pointer:
   1482       QT = cast<PointerType>(T)->getPointeeType();
   1483       break;
   1484     case Type::BlockPointer:
   1485       QT = cast<BlockPointerType>(T)->getPointeeType();
   1486       break;
   1487     case Type::MemberPointer:
   1488       QT = cast<MemberPointerType>(T)->getPointeeType();
   1489       break;
   1490     case Type::LValueReference:
   1491     case Type::RValueReference:
   1492       QT = cast<ReferenceType>(T)->getPointeeType();
   1493       break;
   1494     case Type::PackExpansion:
   1495       QT = cast<PackExpansionType>(T)->getPattern();
   1496       break;
   1497     case Type::Paren:
   1498     case Type::ConstantArray:
   1499     case Type::DependentSizedArray:
   1500     case Type::IncompleteArray:
   1501     case Type::VariableArray:
   1502     case Type::FunctionProto:
   1503     case Type::FunctionNoProto:
   1504       return true;
   1505     }
   1506   }
   1507 }
   1508 
   1509 } // namespace
   1510 
   1511 SourceRange DeclaratorDecl::getSourceRange() const {
   1512   SourceLocation RangeEnd = getLocation();
   1513   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
   1514     if (typeIsPostfix(TInfo->getType()))
   1515       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
   1516   }
   1517   return SourceRange(getOuterLocStart(), RangeEnd);
   1518 }
   1519 
   1520 void
   1521 QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
   1522                                              unsigned NumTPLists,
   1523                                              TemplateParameterList **TPLists) {
   1524   assert((NumTPLists == 0 || TPLists != 0) &&
   1525          "Empty array of template parameters with positive size!");
   1526 
   1527   // Free previous template parameters (if any).
   1528   if (NumTemplParamLists > 0) {
   1529     Context.Deallocate(TemplParamLists);
   1530     TemplParamLists = 0;
   1531     NumTemplParamLists = 0;
   1532   }
   1533   // Set info on matched template parameter lists (if any).
   1534   if (NumTPLists > 0) {
   1535     TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
   1536     NumTemplParamLists = NumTPLists;
   1537     for (unsigned i = NumTPLists; i-- > 0; )
   1538       TemplParamLists[i] = TPLists[i];
   1539   }
   1540 }
   1541 
   1542 //===----------------------------------------------------------------------===//
   1543 // VarDecl Implementation
   1544 //===----------------------------------------------------------------------===//
   1545 
   1546 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
   1547   switch (SC) {
   1548   case SC_None:                 break;
   1549   case SC_Auto:                 return "auto";
   1550   case SC_Extern:               return "extern";
   1551   case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
   1552   case SC_PrivateExtern:        return "__private_extern__";
   1553   case SC_Register:             return "register";
   1554   case SC_Static:               return "static";
   1555   }
   1556 
   1557   llvm_unreachable("Invalid storage class");
   1558 }
   1559 
   1560 VarDecl::VarDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
   1561                  SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
   1562                  TypeSourceInfo *TInfo, StorageClass SC)
   1563     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), Init() {
   1564   assert(sizeof(VarDeclBitfields) <= sizeof(unsigned));
   1565   assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned));
   1566   AllBits = 0;
   1567   VarDeclBits.SClass = SC;
   1568   // Everything else is implicitly initialized to false.
   1569 }
   1570 
   1571 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
   1572                          SourceLocation StartL, SourceLocation IdL,
   1573                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
   1574                          StorageClass S) {
   1575   return new (C) VarDecl(Var, DC, StartL, IdL, Id, T, TInfo, S);
   1576 }
   1577 
   1578 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1579   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(VarDecl));
   1580   return new (Mem) VarDecl(Var, 0, SourceLocation(), SourceLocation(), 0,
   1581                            QualType(), 0, SC_None);
   1582 }
   1583 
   1584 void VarDecl::setStorageClass(StorageClass SC) {
   1585   assert(isLegalForVariable(SC));
   1586   VarDeclBits.SClass = SC;
   1587 }
   1588 
   1589 SourceRange VarDecl::getSourceRange() const {
   1590   if (const Expr *Init = getInit()) {
   1591     SourceLocation InitEnd = Init->getLocEnd();
   1592     // If Init is implicit, ignore its source range and fallback on
   1593     // DeclaratorDecl::getSourceRange() to handle postfix elements.
   1594     if (InitEnd.isValid() && InitEnd != getLocation())
   1595       return SourceRange(getOuterLocStart(), InitEnd);
   1596   }
   1597   return DeclaratorDecl::getSourceRange();
   1598 }
   1599 
   1600 template<typename T>
   1601 static LanguageLinkage getLanguageLinkageTemplate(const T &D) {
   1602   // C++ [dcl.link]p1: All function types, function names with external linkage,
   1603   // and variable names with external linkage have a language linkage.
   1604   if (!D.hasExternalFormalLinkage())
   1605     return NoLanguageLinkage;
   1606 
   1607   // Language linkage is a C++ concept, but saying that everything else in C has
   1608   // C language linkage fits the implementation nicely.
   1609   ASTContext &Context = D.getASTContext();
   1610   if (!Context.getLangOpts().CPlusPlus)
   1611     return CLanguageLinkage;
   1612 
   1613   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
   1614   // language linkage of the names of class members and the function type of
   1615   // class member functions.
   1616   const DeclContext *DC = D.getDeclContext();
   1617   if (DC->isRecord())
   1618     return CXXLanguageLinkage;
   1619 
   1620   // If the first decl is in an extern "C" context, any other redeclaration
   1621   // will have C language linkage. If the first one is not in an extern "C"
   1622   // context, we would have reported an error for any other decl being in one.
   1623   if (isFirstInExternCContext(&D))
   1624     return CLanguageLinkage;
   1625   return CXXLanguageLinkage;
   1626 }
   1627 
   1628 template<typename T>
   1629 static bool isExternCTemplate(const T &D) {
   1630   // Since the context is ignored for class members, they can only have C++
   1631   // language linkage or no language linkage.
   1632   const DeclContext *DC = D.getDeclContext();
   1633   if (DC->isRecord()) {
   1634     assert(D.getASTContext().getLangOpts().CPlusPlus);
   1635     return false;
   1636   }
   1637 
   1638   return D.getLanguageLinkage() == CLanguageLinkage;
   1639 }
   1640 
   1641 LanguageLinkage VarDecl::getLanguageLinkage() const {
   1642   return getLanguageLinkageTemplate(*this);
   1643 }
   1644 
   1645 bool VarDecl::isExternC() const {
   1646   return isExternCTemplate(*this);
   1647 }
   1648 
   1649 static bool isLinkageSpecContext(const DeclContext *DC,
   1650                                  LinkageSpecDecl::LanguageIDs ID) {
   1651   while (DC->getDeclKind() != Decl::TranslationUnit) {
   1652     if (DC->getDeclKind() == Decl::LinkageSpec)
   1653       return cast<LinkageSpecDecl>(DC)->getLanguage() == ID;
   1654     DC = DC->getParent();
   1655   }
   1656   return false;
   1657 }
   1658 
   1659 template <typename T>
   1660 static bool isInLanguageSpecContext(T *D, LinkageSpecDecl::LanguageIDs ID) {
   1661   return isLinkageSpecContext(D->getLexicalDeclContext(), ID);
   1662 }
   1663 
   1664 bool VarDecl::isInExternCContext() const {
   1665   return isInLanguageSpecContext(this, LinkageSpecDecl::lang_c);
   1666 }
   1667 
   1668 bool VarDecl::isInExternCXXContext() const {
   1669   return isInLanguageSpecContext(this, LinkageSpecDecl::lang_cxx);
   1670 }
   1671 
   1672 VarDecl *VarDecl::getCanonicalDecl() {
   1673   return getFirstDeclaration();
   1674 }
   1675 
   1676 VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition(
   1677   ASTContext &C) const
   1678 {
   1679   // C++ [basic.def]p2:
   1680   //   A declaration is a definition unless [...] it contains the 'extern'
   1681   //   specifier or a linkage-specification and neither an initializer [...],
   1682   //   it declares a static data member in a class declaration [...].
   1683   // C++ [temp.expl.spec]p15:
   1684   //   An explicit specialization of a static data member of a template is a
   1685   //   definition if the declaration includes an initializer; otherwise, it is
   1686   //   a declaration.
   1687   if (isStaticDataMember()) {
   1688     if (isOutOfLine() && (hasInit() ||
   1689           getTemplateSpecializationKind() != TSK_ExplicitSpecialization))
   1690       return Definition;
   1691     else
   1692       return DeclarationOnly;
   1693   }
   1694   // C99 6.7p5:
   1695   //   A definition of an identifier is a declaration for that identifier that
   1696   //   [...] causes storage to be reserved for that object.
   1697   // Note: that applies for all non-file-scope objects.
   1698   // C99 6.9.2p1:
   1699   //   If the declaration of an identifier for an object has file scope and an
   1700   //   initializer, the declaration is an external definition for the identifier
   1701   if (hasInit())
   1702     return Definition;
   1703 
   1704   if (hasExternalStorage())
   1705     return DeclarationOnly;
   1706 
   1707   // [dcl.link] p7:
   1708   //   A declaration directly contained in a linkage-specification is treated
   1709   //   as if it contains the extern specifier for the purpose of determining
   1710   //   the linkage of the declared name and whether it is a definition.
   1711   if (isSingleLineExternC(*this))
   1712     return DeclarationOnly;
   1713 
   1714   // C99 6.9.2p2:
   1715   //   A declaration of an object that has file scope without an initializer,
   1716   //   and without a storage class specifier or the scs 'static', constitutes
   1717   //   a tentative definition.
   1718   // No such thing in C++.
   1719   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
   1720     return TentativeDefinition;
   1721 
   1722   // What's left is (in C, block-scope) declarations without initializers or
   1723   // external storage. These are definitions.
   1724   return Definition;
   1725 }
   1726 
   1727 VarDecl *VarDecl::getActingDefinition() {
   1728   DefinitionKind Kind = isThisDeclarationADefinition();
   1729   if (Kind != TentativeDefinition)
   1730     return 0;
   1731 
   1732   VarDecl *LastTentative = 0;
   1733   VarDecl *First = getFirstDeclaration();
   1734   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
   1735        I != E; ++I) {
   1736     Kind = (*I)->isThisDeclarationADefinition();
   1737     if (Kind == Definition)
   1738       return 0;
   1739     else if (Kind == TentativeDefinition)
   1740       LastTentative = *I;
   1741   }
   1742   return LastTentative;
   1743 }
   1744 
   1745 VarDecl *VarDecl::getDefinition(ASTContext &C) {
   1746   VarDecl *First = getFirstDeclaration();
   1747   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
   1748        I != E; ++I) {
   1749     if ((*I)->isThisDeclarationADefinition(C) == Definition)
   1750       return *I;
   1751   }
   1752   return 0;
   1753 }
   1754 
   1755 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
   1756   DefinitionKind Kind = DeclarationOnly;
   1757 
   1758   const VarDecl *First = getFirstDeclaration();
   1759   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
   1760        I != E; ++I) {
   1761     Kind = std::max(Kind, (*I)->isThisDeclarationADefinition(C));
   1762     if (Kind == Definition)
   1763       break;
   1764   }
   1765 
   1766   return Kind;
   1767 }
   1768 
   1769 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
   1770   redecl_iterator I = redecls_begin(), E = redecls_end();
   1771   while (I != E && !I->getInit())
   1772     ++I;
   1773 
   1774   if (I != E) {
   1775     D = *I;
   1776     return I->getInit();
   1777   }
   1778   return 0;
   1779 }
   1780 
   1781 bool VarDecl::isOutOfLine() const {
   1782   if (Decl::isOutOfLine())
   1783     return true;
   1784 
   1785   if (!isStaticDataMember())
   1786     return false;
   1787 
   1788   // If this static data member was instantiated from a static data member of
   1789   // a class template, check whether that static data member was defined
   1790   // out-of-line.
   1791   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
   1792     return VD->isOutOfLine();
   1793 
   1794   return false;
   1795 }
   1796 
   1797 VarDecl *VarDecl::getOutOfLineDefinition() {
   1798   if (!isStaticDataMember())
   1799     return 0;
   1800 
   1801   for (VarDecl::redecl_iterator RD = redecls_begin(), RDEnd = redecls_end();
   1802        RD != RDEnd; ++RD) {
   1803     if (RD->getLexicalDeclContext()->isFileContext())
   1804       return *RD;
   1805   }
   1806 
   1807   return 0;
   1808 }
   1809 
   1810 void VarDecl::setInit(Expr *I) {
   1811   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
   1812     Eval->~EvaluatedStmt();
   1813     getASTContext().Deallocate(Eval);
   1814   }
   1815 
   1816   Init = I;
   1817 }
   1818 
   1819 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
   1820   const LangOptions &Lang = C.getLangOpts();
   1821 
   1822   if (!Lang.CPlusPlus)
   1823     return false;
   1824 
   1825   // In C++11, any variable of reference type can be used in a constant
   1826   // expression if it is initialized by a constant expression.
   1827   if (Lang.CPlusPlus11 && getType()->isReferenceType())
   1828     return true;
   1829 
   1830   // Only const objects can be used in constant expressions in C++. C++98 does
   1831   // not require the variable to be non-volatile, but we consider this to be a
   1832   // defect.
   1833   if (!getType().isConstQualified() || getType().isVolatileQualified())
   1834     return false;
   1835 
   1836   // In C++, const, non-volatile variables of integral or enumeration types
   1837   // can be used in constant expressions.
   1838   if (getType()->isIntegralOrEnumerationType())
   1839     return true;
   1840 
   1841   // Additionally, in C++11, non-volatile constexpr variables can be used in
   1842   // constant expressions.
   1843   return Lang.CPlusPlus11 && isConstexpr();
   1844 }
   1845 
   1846 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
   1847 /// form, which contains extra information on the evaluated value of the
   1848 /// initializer.
   1849 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
   1850   EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
   1851   if (!Eval) {
   1852     Stmt *S = Init.get<Stmt *>();
   1853     // Note: EvaluatedStmt contains an APValue, which usually holds
   1854     // resources not allocated from the ASTContext.  We need to do some
   1855     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
   1856     // where we can detect whether there's anything to clean up or not.
   1857     Eval = new (getASTContext()) EvaluatedStmt;
   1858     Eval->Value = S;
   1859     Init = Eval;
   1860   }
   1861   return Eval;
   1862 }
   1863 
   1864 APValue *VarDecl::evaluateValue() const {
   1865   SmallVector<PartialDiagnosticAt, 8> Notes;
   1866   return evaluateValue(Notes);
   1867 }
   1868 
   1869 namespace {
   1870 // Destroy an APValue that was allocated in an ASTContext.
   1871 void DestroyAPValue(void* UntypedValue) {
   1872   static_cast<APValue*>(UntypedValue)->~APValue();
   1873 }
   1874 } // namespace
   1875 
   1876 APValue *VarDecl::evaluateValue(
   1877     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
   1878   EvaluatedStmt *Eval = ensureEvaluatedStmt();
   1879 
   1880   // We only produce notes indicating why an initializer is non-constant the
   1881   // first time it is evaluated. FIXME: The notes won't always be emitted the
   1882   // first time we try evaluation, so might not be produced at all.
   1883   if (Eval->WasEvaluated)
   1884     return Eval->Evaluated.isUninit() ? 0 : &Eval->Evaluated;
   1885 
   1886   const Expr *Init = cast<Expr>(Eval->Value);
   1887   assert(!Init->isValueDependent());
   1888 
   1889   if (Eval->IsEvaluating) {
   1890     // FIXME: Produce a diagnostic for self-initialization.
   1891     Eval->CheckedICE = true;
   1892     Eval->IsICE = false;
   1893     return 0;
   1894   }
   1895 
   1896   Eval->IsEvaluating = true;
   1897 
   1898   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
   1899                                             this, Notes);
   1900 
   1901   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
   1902   // or that it's empty (so that there's nothing to clean up) if evaluation
   1903   // failed.
   1904   if (!Result)
   1905     Eval->Evaluated = APValue();
   1906   else if (Eval->Evaluated.needsCleanup())
   1907     getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
   1908 
   1909   Eval->IsEvaluating = false;
   1910   Eval->WasEvaluated = true;
   1911 
   1912   // In C++11, we have determined whether the initializer was a constant
   1913   // expression as a side-effect.
   1914   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
   1915     Eval->CheckedICE = true;
   1916     Eval->IsICE = Result && Notes.empty();
   1917   }
   1918 
   1919   return Result ? &Eval->Evaluated : 0;
   1920 }
   1921 
   1922 bool VarDecl::checkInitIsICE() const {
   1923   // Initializers of weak variables are never ICEs.
   1924   if (isWeak())
   1925     return false;
   1926 
   1927   EvaluatedStmt *Eval = ensureEvaluatedStmt();
   1928   if (Eval->CheckedICE)
   1929     // We have already checked whether this subexpression is an
   1930     // integral constant expression.
   1931     return Eval->IsICE;
   1932 
   1933   const Expr *Init = cast<Expr>(Eval->Value);
   1934   assert(!Init->isValueDependent());
   1935 
   1936   // In C++11, evaluate the initializer to check whether it's a constant
   1937   // expression.
   1938   if (getASTContext().getLangOpts().CPlusPlus11) {
   1939     SmallVector<PartialDiagnosticAt, 8> Notes;
   1940     evaluateValue(Notes);
   1941     return Eval->IsICE;
   1942   }
   1943 
   1944   // It's an ICE whether or not the definition we found is
   1945   // out-of-line.  See DR 721 and the discussion in Clang PR
   1946   // 6206 for details.
   1947 
   1948   if (Eval->CheckingICE)
   1949     return false;
   1950   Eval->CheckingICE = true;
   1951 
   1952   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
   1953   Eval->CheckingICE = false;
   1954   Eval->CheckedICE = true;
   1955   return Eval->IsICE;
   1956 }
   1957 
   1958 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
   1959   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
   1960     return cast<VarDecl>(MSI->getInstantiatedFrom());
   1961 
   1962   return 0;
   1963 }
   1964 
   1965 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
   1966   if (const VarTemplateSpecializationDecl *Spec =
   1967           dyn_cast<VarTemplateSpecializationDecl>(this))
   1968     return Spec->getSpecializationKind();
   1969 
   1970   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
   1971     return MSI->getTemplateSpecializationKind();
   1972 
   1973   return TSK_Undeclared;
   1974 }
   1975 
   1976 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
   1977   return getASTContext().getTemplateOrSpecializationInfo(this)
   1978       .dyn_cast<VarTemplateDecl *>();
   1979 }
   1980 
   1981 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
   1982   getASTContext().setTemplateOrSpecializationInfo(this, Template);
   1983 }
   1984 
   1985 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
   1986   if (isStaticDataMember())
   1987     // FIXME: Remove ?
   1988     // return getASTContext().getInstantiatedFromStaticDataMember(this);
   1989     return getASTContext().getTemplateOrSpecializationInfo(this)
   1990         .dyn_cast<MemberSpecializationInfo *>();
   1991   return 0;
   1992 }
   1993 
   1994 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
   1995                                          SourceLocation PointOfInstantiation) {
   1996   if (VarTemplateSpecializationDecl *Spec =
   1997           dyn_cast<VarTemplateSpecializationDecl>(this)) {
   1998     Spec->setSpecializationKind(TSK);
   1999     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
   2000         Spec->getPointOfInstantiation().isInvalid())
   2001       Spec->setPointOfInstantiation(PointOfInstantiation);
   2002     return;
   2003   }
   2004 
   2005   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
   2006     MSI->setTemplateSpecializationKind(TSK);
   2007     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
   2008         MSI->getPointOfInstantiation().isInvalid())
   2009       MSI->setPointOfInstantiation(PointOfInstantiation);
   2010     return;
   2011   }
   2012 
   2013   llvm_unreachable(
   2014       "Not a variable or static data member template specialization");
   2015 }
   2016 
   2017 void
   2018 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
   2019                                             TemplateSpecializationKind TSK) {
   2020   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
   2021          "Previous template or instantiation?");
   2022   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
   2023 }
   2024 
   2025 //===----------------------------------------------------------------------===//
   2026 // ParmVarDecl Implementation
   2027 //===----------------------------------------------------------------------===//
   2028 
   2029 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
   2030                                  SourceLocation StartLoc,
   2031                                  SourceLocation IdLoc, IdentifierInfo *Id,
   2032                                  QualType T, TypeSourceInfo *TInfo,
   2033                                  StorageClass S, Expr *DefArg) {
   2034   return new (C) ParmVarDecl(ParmVar, DC, StartLoc, IdLoc, Id, T, TInfo,
   2035                              S, DefArg);
   2036 }
   2037 
   2038 QualType ParmVarDecl::getOriginalType() const {
   2039   TypeSourceInfo *TSI = getTypeSourceInfo();
   2040   QualType T = TSI ? TSI->getType() : getType();
   2041   if (const DecayedType *DT = dyn_cast<DecayedType>(T))
   2042     return DT->getOriginalType();
   2043   return T;
   2044 }
   2045 
   2046 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2047   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ParmVarDecl));
   2048   return new (Mem) ParmVarDecl(ParmVar, 0, SourceLocation(), SourceLocation(),
   2049                                0, QualType(), 0, SC_None, 0);
   2050 }
   2051 
   2052 SourceRange ParmVarDecl::getSourceRange() const {
   2053   if (!hasInheritedDefaultArg()) {
   2054     SourceRange ArgRange = getDefaultArgRange();
   2055     if (ArgRange.isValid())
   2056       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
   2057   }
   2058 
   2059   // DeclaratorDecl considers the range of postfix types as overlapping with the
   2060   // declaration name, but this is not the case with parameters in ObjC methods.
   2061   if (isa<ObjCMethodDecl>(getDeclContext()))
   2062     return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
   2063 
   2064   return DeclaratorDecl::getSourceRange();
   2065 }
   2066 
   2067 Expr *ParmVarDecl::getDefaultArg() {
   2068   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
   2069   assert(!hasUninstantiatedDefaultArg() &&
   2070          "Default argument is not yet instantiated!");
   2071 
   2072   Expr *Arg = getInit();
   2073   if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
   2074     return E->getSubExpr();
   2075 
   2076   return Arg;
   2077 }
   2078 
   2079 SourceRange ParmVarDecl::getDefaultArgRange() const {
   2080   if (const Expr *E = getInit())
   2081     return E->getSourceRange();
   2082 
   2083   if (hasUninstantiatedDefaultArg())
   2084     return getUninstantiatedDefaultArg()->getSourceRange();
   2085 
   2086   return SourceRange();
   2087 }
   2088 
   2089 bool ParmVarDecl::isParameterPack() const {
   2090   return isa<PackExpansionType>(getType());
   2091 }
   2092 
   2093 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
   2094   getASTContext().setParameterIndex(this, parameterIndex);
   2095   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
   2096 }
   2097 
   2098 unsigned ParmVarDecl::getParameterIndexLarge() const {
   2099   return getASTContext().getParameterIndex(this);
   2100 }
   2101 
   2102 //===----------------------------------------------------------------------===//
   2103 // FunctionDecl Implementation
   2104 //===----------------------------------------------------------------------===//
   2105 
   2106 void FunctionDecl::getNameForDiagnostic(
   2107     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
   2108   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
   2109   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
   2110   if (TemplateArgs)
   2111     TemplateSpecializationType::PrintTemplateArgumentList(
   2112         OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
   2113 }
   2114 
   2115 bool FunctionDecl::isVariadic() const {
   2116   if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
   2117     return FT->isVariadic();
   2118   return false;
   2119 }
   2120 
   2121 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
   2122   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
   2123     if (I->Body || I->IsLateTemplateParsed) {
   2124       Definition = *I;
   2125       return true;
   2126     }
   2127   }
   2128 
   2129   return false;
   2130 }
   2131 
   2132 bool FunctionDecl::hasTrivialBody() const
   2133 {
   2134   Stmt *S = getBody();
   2135   if (!S) {
   2136     // Since we don't have a body for this function, we don't know if it's
   2137     // trivial or not.
   2138     return false;
   2139   }
   2140 
   2141   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
   2142     return true;
   2143   return false;
   2144 }
   2145 
   2146 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
   2147   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
   2148     if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed) {
   2149       Definition = I->IsDeleted ? I->getCanonicalDecl() : *I;
   2150       return true;
   2151     }
   2152   }
   2153 
   2154   return false;
   2155 }
   2156 
   2157 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
   2158   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
   2159     if (I->Body) {
   2160       Definition = *I;
   2161       return I->Body.get(getASTContext().getExternalSource());
   2162     } else if (I->IsLateTemplateParsed) {
   2163       Definition = *I;
   2164       return 0;
   2165     }
   2166   }
   2167 
   2168   return 0;
   2169 }
   2170 
   2171 void FunctionDecl::setBody(Stmt *B) {
   2172   Body = B;
   2173   if (B)
   2174     EndRangeLoc = B->getLocEnd();
   2175 }
   2176 
   2177 void FunctionDecl::setPure(bool P) {
   2178   IsPure = P;
   2179   if (P)
   2180     if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
   2181       Parent->markedVirtualFunctionPure();
   2182 }
   2183 
   2184 template<std::size_t Len>
   2185 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
   2186   IdentifierInfo *II = ND->getIdentifier();
   2187   return II && II->isStr(Str);
   2188 }
   2189 
   2190 bool FunctionDecl::isMain() const {
   2191   const TranslationUnitDecl *tunit =
   2192     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
   2193   return tunit &&
   2194          !tunit->getASTContext().getLangOpts().Freestanding &&
   2195          isNamed(this, "main");
   2196 }
   2197 
   2198 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
   2199   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
   2200   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
   2201          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
   2202          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
   2203          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
   2204 
   2205   if (isa<CXXRecordDecl>(getDeclContext())) return false;
   2206   assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
   2207 
   2208   const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
   2209   if (proto->getNumArgs() != 2 || proto->isVariadic()) return false;
   2210 
   2211   ASTContext &Context =
   2212     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
   2213       ->getASTContext();
   2214 
   2215   // The result type and first argument type are constant across all
   2216   // these operators.  The second argument must be exactly void*.
   2217   return (proto->getArgType(1).getCanonicalType() == Context.VoidPtrTy);
   2218 }
   2219 
   2220 static bool isNamespaceStd(const DeclContext *DC) {
   2221   const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC->getRedeclContext());
   2222   return ND && isNamed(ND, "std") &&
   2223          ND->getParent()->getRedeclContext()->isTranslationUnit();
   2224 }
   2225 
   2226 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
   2227   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
   2228     return false;
   2229   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
   2230       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
   2231       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
   2232       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
   2233     return false;
   2234 
   2235   if (isa<CXXRecordDecl>(getDeclContext()))
   2236     return false;
   2237   assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
   2238 
   2239   const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
   2240   if (FPT->getNumArgs() > 2 || FPT->isVariadic())
   2241     return false;
   2242 
   2243   // If this is a single-parameter function, it must be a replaceable global
   2244   // allocation or deallocation function.
   2245   if (FPT->getNumArgs() == 1)
   2246     return true;
   2247 
   2248   // Otherwise, we're looking for a second parameter whose type is
   2249   // 'const std::nothrow_t &'.
   2250   QualType Ty = FPT->getArgType(1);
   2251   if (!Ty->isReferenceType())
   2252     return false;
   2253   Ty = Ty->getPointeeType();
   2254   if (Ty.getCVRQualifiers() != Qualifiers::Const)
   2255     return false;
   2256   // FIXME: Recognise nothrow_t in an inline namespace inside std?
   2257   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
   2258   return RD && isNamed(RD, "nothrow_t") && isNamespaceStd(RD->getDeclContext());
   2259 }
   2260 
   2261 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
   2262   // Users expect to be able to write
   2263   // extern "C" void *__builtin_alloca (size_t);
   2264   // so consider builtins as having C language linkage.
   2265   if (getBuiltinID())
   2266     return CLanguageLinkage;
   2267 
   2268   return getLanguageLinkageTemplate(*this);
   2269 }
   2270 
   2271 bool FunctionDecl::isExternC() const {
   2272   return isExternCTemplate(*this);
   2273 }
   2274 
   2275 bool FunctionDecl::isInExternCContext() const {
   2276   return isInLanguageSpecContext(this, LinkageSpecDecl::lang_c);
   2277 }
   2278 
   2279 bool FunctionDecl::isInExternCXXContext() const {
   2280   return isInLanguageSpecContext(this, LinkageSpecDecl::lang_cxx);
   2281 }
   2282 
   2283 bool FunctionDecl::isGlobal() const {
   2284   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
   2285     return Method->isStatic();
   2286 
   2287   if (getCanonicalDecl()->getStorageClass() == SC_Static)
   2288     return false;
   2289 
   2290   for (const DeclContext *DC = getDeclContext();
   2291        DC->isNamespace();
   2292        DC = DC->getParent()) {
   2293     if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
   2294       if (!Namespace->getDeclName())
   2295         return false;
   2296       break;
   2297     }
   2298   }
   2299 
   2300   return true;
   2301 }
   2302 
   2303 bool FunctionDecl::isNoReturn() const {
   2304   return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
   2305          hasAttr<C11NoReturnAttr>() ||
   2306          getType()->getAs<FunctionType>()->getNoReturnAttr();
   2307 }
   2308 
   2309 void
   2310 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
   2311   redeclarable_base::setPreviousDeclaration(PrevDecl);
   2312 
   2313   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
   2314     FunctionTemplateDecl *PrevFunTmpl
   2315       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : 0;
   2316     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
   2317     FunTmpl->setPreviousDeclaration(PrevFunTmpl);
   2318   }
   2319 
   2320   if (PrevDecl && PrevDecl->IsInline)
   2321     IsInline = true;
   2322 }
   2323 
   2324 const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
   2325   return getFirstDeclaration();
   2326 }
   2327 
   2328 FunctionDecl *FunctionDecl::getCanonicalDecl() {
   2329   return getFirstDeclaration();
   2330 }
   2331 
   2332 /// \brief Returns a value indicating whether this function
   2333 /// corresponds to a builtin function.
   2334 ///
   2335 /// The function corresponds to a built-in function if it is
   2336 /// declared at translation scope or within an extern "C" block and
   2337 /// its name matches with the name of a builtin. The returned value
   2338 /// will be 0 for functions that do not correspond to a builtin, a
   2339 /// value of type \c Builtin::ID if in the target-independent range
   2340 /// \c [1,Builtin::First), or a target-specific builtin value.
   2341 unsigned FunctionDecl::getBuiltinID() const {
   2342   if (!getIdentifier())
   2343     return 0;
   2344 
   2345   unsigned BuiltinID = getIdentifier()->getBuiltinID();
   2346   if (!BuiltinID)
   2347     return 0;
   2348 
   2349   ASTContext &Context = getASTContext();
   2350   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
   2351     return BuiltinID;
   2352 
   2353   // This function has the name of a known C library
   2354   // function. Determine whether it actually refers to the C library
   2355   // function or whether it just has the same name.
   2356 
   2357   // If this is a static function, it's not a builtin.
   2358   if (getStorageClass() == SC_Static)
   2359     return 0;
   2360 
   2361   // If this function is at translation-unit scope and we're not in
   2362   // C++, it refers to the C library function.
   2363   if (!Context.getLangOpts().CPlusPlus &&
   2364       getDeclContext()->isTranslationUnit())
   2365     return BuiltinID;
   2366 
   2367   // If the function is in an extern "C" linkage specification and is
   2368   // not marked "overloadable", it's the real function.
   2369   if (isa<LinkageSpecDecl>(getDeclContext()) &&
   2370       cast<LinkageSpecDecl>(getDeclContext())->getLanguage()
   2371         == LinkageSpecDecl::lang_c &&
   2372       !getAttr<OverloadableAttr>())
   2373     return BuiltinID;
   2374 
   2375   // Not a builtin
   2376   return 0;
   2377 }
   2378 
   2379 
   2380 /// getNumParams - Return the number of parameters this function must have
   2381 /// based on its FunctionType.  This is the length of the ParamInfo array
   2382 /// after it has been created.
   2383 unsigned FunctionDecl::getNumParams() const {
   2384   const FunctionType *FT = getType()->castAs<FunctionType>();
   2385   if (isa<FunctionNoProtoType>(FT))
   2386     return 0;
   2387   return cast<FunctionProtoType>(FT)->getNumArgs();
   2388 
   2389 }
   2390 
   2391 void FunctionDecl::setParams(ASTContext &C,
   2392                              ArrayRef<ParmVarDecl *> NewParamInfo) {
   2393   assert(ParamInfo == 0 && "Already has param info!");
   2394   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
   2395 
   2396   // Zero params -> null pointer.
   2397   if (!NewParamInfo.empty()) {
   2398     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
   2399     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
   2400   }
   2401 }
   2402 
   2403 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
   2404   assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
   2405 
   2406   if (!NewDecls.empty()) {
   2407     NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
   2408     std::copy(NewDecls.begin(), NewDecls.end(), A);
   2409     DeclsInPrototypeScope = ArrayRef<NamedDecl *>(A, NewDecls.size());
   2410   }
   2411 }
   2412 
   2413 /// getMinRequiredArguments - Returns the minimum number of arguments
   2414 /// needed to call this function. This may be fewer than the number of
   2415 /// function parameters, if some of the parameters have default
   2416 /// arguments (in C++) or the last parameter is a parameter pack.
   2417 unsigned FunctionDecl::getMinRequiredArguments() const {
   2418   if (!getASTContext().getLangOpts().CPlusPlus)
   2419     return getNumParams();
   2420 
   2421   unsigned NumRequiredArgs = getNumParams();
   2422 
   2423   // If the last parameter is a parameter pack, we don't need an argument for
   2424   // it.
   2425   if (NumRequiredArgs > 0 &&
   2426       getParamDecl(NumRequiredArgs - 1)->isParameterPack())
   2427     --NumRequiredArgs;
   2428 
   2429   // If this parameter has a default argument, we don't need an argument for
   2430   // it.
   2431   while (NumRequiredArgs > 0 &&
   2432          getParamDecl(NumRequiredArgs-1)->hasDefaultArg())
   2433     --NumRequiredArgs;
   2434 
   2435   // We might have parameter packs before the end. These can't be deduced,
   2436   // but they can still handle multiple arguments.
   2437   unsigned ArgIdx = NumRequiredArgs;
   2438   while (ArgIdx > 0) {
   2439     if (getParamDecl(ArgIdx - 1)->isParameterPack())
   2440       NumRequiredArgs = ArgIdx;
   2441 
   2442     --ArgIdx;
   2443   }
   2444 
   2445   return NumRequiredArgs;
   2446 }
   2447 
   2448 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
   2449   // Only consider file-scope declarations in this test.
   2450   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
   2451     return false;
   2452 
   2453   // Only consider explicit declarations; the presence of a builtin for a
   2454   // libcall shouldn't affect whether a definition is externally visible.
   2455   if (Redecl->isImplicit())
   2456     return false;
   2457 
   2458   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
   2459     return true; // Not an inline definition
   2460 
   2461   return false;
   2462 }
   2463 
   2464 /// \brief For a function declaration in C or C++, determine whether this
   2465 /// declaration causes the definition to be externally visible.
   2466 ///
   2467 /// Specifically, this determines if adding the current declaration to the set
   2468 /// of redeclarations of the given functions causes
   2469 /// isInlineDefinitionExternallyVisible to change from false to true.
   2470 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
   2471   assert(!doesThisDeclarationHaveABody() &&
   2472          "Must have a declaration without a body.");
   2473 
   2474   ASTContext &Context = getASTContext();
   2475 
   2476   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
   2477     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
   2478     // an externally visible definition.
   2479     //
   2480     // FIXME: What happens if gnu_inline gets added on after the first
   2481     // declaration?
   2482     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
   2483       return false;
   2484 
   2485     const FunctionDecl *Prev = this;
   2486     bool FoundBody = false;
   2487     while ((Prev = Prev->getPreviousDecl())) {
   2488       FoundBody |= Prev->Body.isValid();
   2489 
   2490       if (Prev->Body) {
   2491         // If it's not the case that both 'inline' and 'extern' are
   2492         // specified on the definition, then it is always externally visible.
   2493         if (!Prev->isInlineSpecified() ||
   2494             Prev->getStorageClass() != SC_Extern)
   2495           return false;
   2496       } else if (Prev->isInlineSpecified() &&
   2497                  Prev->getStorageClass() != SC_Extern) {
   2498         return false;
   2499       }
   2500     }
   2501     return FoundBody;
   2502   }
   2503 
   2504   if (Context.getLangOpts().CPlusPlus)
   2505     return false;
   2506 
   2507   // C99 6.7.4p6:
   2508   //   [...] If all of the file scope declarations for a function in a
   2509   //   translation unit include the inline function specifier without extern,
   2510   //   then the definition in that translation unit is an inline definition.
   2511   if (isInlineSpecified() && getStorageClass() != SC_Extern)
   2512     return false;
   2513   const FunctionDecl *Prev = this;
   2514   bool FoundBody = false;
   2515   while ((Prev = Prev->getPreviousDecl())) {
   2516     FoundBody |= Prev->Body.isValid();
   2517     if (RedeclForcesDefC99(Prev))
   2518       return false;
   2519   }
   2520   return FoundBody;
   2521 }
   2522 
   2523 /// \brief For an inline function definition in C, or for a gnu_inline function
   2524 /// in C++, determine whether the definition will be externally visible.
   2525 ///
   2526 /// Inline function definitions are always available for inlining optimizations.
   2527 /// However, depending on the language dialect, declaration specifiers, and
   2528 /// attributes, the definition of an inline function may or may not be
   2529 /// "externally" visible to other translation units in the program.
   2530 ///
   2531 /// In C99, inline definitions are not externally visible by default. However,
   2532 /// if even one of the global-scope declarations is marked "extern inline", the
   2533 /// inline definition becomes externally visible (C99 6.7.4p6).
   2534 ///
   2535 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
   2536 /// definition, we use the GNU semantics for inline, which are nearly the
   2537 /// opposite of C99 semantics. In particular, "inline" by itself will create
   2538 /// an externally visible symbol, but "extern inline" will not create an
   2539 /// externally visible symbol.
   2540 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
   2541   assert(doesThisDeclarationHaveABody() && "Must have the function definition");
   2542   assert(isInlined() && "Function must be inline");
   2543   ASTContext &Context = getASTContext();
   2544 
   2545   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
   2546     // Note: If you change the logic here, please change
   2547     // doesDeclarationForceExternallyVisibleDefinition as well.
   2548     //
   2549     // If it's not the case that both 'inline' and 'extern' are
   2550     // specified on the definition, then this inline definition is
   2551     // externally visible.
   2552     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
   2553       return true;
   2554 
   2555     // If any declaration is 'inline' but not 'extern', then this definition
   2556     // is externally visible.
   2557     for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
   2558          Redecl != RedeclEnd;
   2559          ++Redecl) {
   2560       if (Redecl->isInlineSpecified() &&
   2561           Redecl->getStorageClass() != SC_Extern)
   2562         return true;
   2563     }
   2564 
   2565     return false;
   2566   }
   2567 
   2568   // The rest of this function is C-only.
   2569   assert(!Context.getLangOpts().CPlusPlus &&
   2570          "should not use C inline rules in C++");
   2571 
   2572   // C99 6.7.4p6:
   2573   //   [...] If all of the file scope declarations for a function in a
   2574   //   translation unit include the inline function specifier without extern,
   2575   //   then the definition in that translation unit is an inline definition.
   2576   for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
   2577        Redecl != RedeclEnd;
   2578        ++Redecl) {
   2579     if (RedeclForcesDefC99(*Redecl))
   2580       return true;
   2581   }
   2582 
   2583   // C99 6.7.4p6:
   2584   //   An inline definition does not provide an external definition for the
   2585   //   function, and does not forbid an external definition in another
   2586   //   translation unit.
   2587   return false;
   2588 }
   2589 
   2590 /// getOverloadedOperator - Which C++ overloaded operator this
   2591 /// function represents, if any.
   2592 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
   2593   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
   2594     return getDeclName().getCXXOverloadedOperator();
   2595   else
   2596     return OO_None;
   2597 }
   2598 
   2599 /// getLiteralIdentifier - The literal suffix identifier this function
   2600 /// represents, if any.
   2601 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
   2602   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
   2603     return getDeclName().getCXXLiteralIdentifier();
   2604   else
   2605     return 0;
   2606 }
   2607 
   2608 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
   2609   if (TemplateOrSpecialization.isNull())
   2610     return TK_NonTemplate;
   2611   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
   2612     return TK_FunctionTemplate;
   2613   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
   2614     return TK_MemberSpecialization;
   2615   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
   2616     return TK_FunctionTemplateSpecialization;
   2617   if (TemplateOrSpecialization.is
   2618                                <DependentFunctionTemplateSpecializationInfo*>())
   2619     return TK_DependentFunctionTemplateSpecialization;
   2620 
   2621   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
   2622 }
   2623 
   2624 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
   2625   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
   2626     return cast<FunctionDecl>(Info->getInstantiatedFrom());
   2627 
   2628   return 0;
   2629 }
   2630 
   2631 void
   2632 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
   2633                                                FunctionDecl *FD,
   2634                                                TemplateSpecializationKind TSK) {
   2635   assert(TemplateOrSpecialization.isNull() &&
   2636          "Member function is already a specialization");
   2637   MemberSpecializationInfo *Info
   2638     = new (C) MemberSpecializationInfo(FD, TSK);
   2639   TemplateOrSpecialization = Info;
   2640 }
   2641 
   2642 bool FunctionDecl::isImplicitlyInstantiable() const {
   2643   // If the function is invalid, it can't be implicitly instantiated.
   2644   if (isInvalidDecl())
   2645     return false;
   2646 
   2647   switch (getTemplateSpecializationKind()) {
   2648   case TSK_Undeclared:
   2649   case TSK_ExplicitInstantiationDefinition:
   2650     return false;
   2651 
   2652   case TSK_ImplicitInstantiation:
   2653     return true;
   2654 
   2655   // It is possible to instantiate TSK_ExplicitSpecialization kind
   2656   // if the FunctionDecl has a class scope specialization pattern.
   2657   case TSK_ExplicitSpecialization:
   2658     return getClassScopeSpecializationPattern() != 0;
   2659 
   2660   case TSK_ExplicitInstantiationDeclaration:
   2661     // Handled below.
   2662     break;
   2663   }
   2664 
   2665   // Find the actual template from which we will instantiate.
   2666   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
   2667   bool HasPattern = false;
   2668   if (PatternDecl)
   2669     HasPattern = PatternDecl->hasBody(PatternDecl);
   2670 
   2671   // C++0x [temp.explicit]p9:
   2672   //   Except for inline functions, other explicit instantiation declarations
   2673   //   have the effect of suppressing the implicit instantiation of the entity
   2674   //   to which they refer.
   2675   if (!HasPattern || !PatternDecl)
   2676     return true;
   2677 
   2678   return PatternDecl->isInlined();
   2679 }
   2680 
   2681 bool FunctionDecl::isTemplateInstantiation() const {
   2682   switch (getTemplateSpecializationKind()) {
   2683     case TSK_Undeclared:
   2684     case TSK_ExplicitSpecialization:
   2685       return false;
   2686     case TSK_ImplicitInstantiation:
   2687     case TSK_ExplicitInstantiationDeclaration:
   2688     case TSK_ExplicitInstantiationDefinition:
   2689       return true;
   2690   }
   2691   llvm_unreachable("All TSK values handled.");
   2692 }
   2693 
   2694 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
   2695   // Handle class scope explicit specialization special case.
   2696   if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
   2697     return getClassScopeSpecializationPattern();
   2698 
   2699   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
   2700     while (Primary->getInstantiatedFromMemberTemplate()) {
   2701       // If we have hit a point where the user provided a specialization of
   2702       // this template, we're done looking.
   2703       if (Primary->isMemberSpecialization())
   2704         break;
   2705 
   2706       Primary = Primary->getInstantiatedFromMemberTemplate();
   2707     }
   2708 
   2709     return Primary->getTemplatedDecl();
   2710   }
   2711 
   2712   return getInstantiatedFromMemberFunction();
   2713 }
   2714 
   2715 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
   2716   if (FunctionTemplateSpecializationInfo *Info
   2717         = TemplateOrSpecialization
   2718             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
   2719     return Info->Template.getPointer();
   2720   }
   2721   return 0;
   2722 }
   2723 
   2724 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
   2725     return getASTContext().getClassScopeSpecializationPattern(this);
   2726 }
   2727 
   2728 const TemplateArgumentList *
   2729 FunctionDecl::getTemplateSpecializationArgs() const {
   2730   if (FunctionTemplateSpecializationInfo *Info
   2731         = TemplateOrSpecialization
   2732             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
   2733     return Info->TemplateArguments;
   2734   }
   2735   return 0;
   2736 }
   2737 
   2738 const ASTTemplateArgumentListInfo *
   2739 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
   2740   if (FunctionTemplateSpecializationInfo *Info
   2741         = TemplateOrSpecialization
   2742             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
   2743     return Info->TemplateArgumentsAsWritten;
   2744   }
   2745   return 0;
   2746 }
   2747 
   2748 void
   2749 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
   2750                                                 FunctionTemplateDecl *Template,
   2751                                      const TemplateArgumentList *TemplateArgs,
   2752                                                 void *InsertPos,
   2753                                                 TemplateSpecializationKind TSK,
   2754                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
   2755                                           SourceLocation PointOfInstantiation) {
   2756   assert(TSK != TSK_Undeclared &&
   2757          "Must specify the type of function template specialization");
   2758   FunctionTemplateSpecializationInfo *Info
   2759     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
   2760   if (!Info)
   2761     Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
   2762                                                       TemplateArgs,
   2763                                                       TemplateArgsAsWritten,
   2764                                                       PointOfInstantiation);
   2765   TemplateOrSpecialization = Info;
   2766   Template->addSpecialization(Info, InsertPos);
   2767 }
   2768 
   2769 void
   2770 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
   2771                                     const UnresolvedSetImpl &Templates,
   2772                              const TemplateArgumentListInfo &TemplateArgs) {
   2773   assert(TemplateOrSpecialization.isNull());
   2774   size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
   2775   Size += Templates.size() * sizeof(FunctionTemplateDecl*);
   2776   Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
   2777   void *Buffer = Context.Allocate(Size);
   2778   DependentFunctionTemplateSpecializationInfo *Info =
   2779     new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
   2780                                                              TemplateArgs);
   2781   TemplateOrSpecialization = Info;
   2782 }
   2783 
   2784 DependentFunctionTemplateSpecializationInfo::
   2785 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
   2786                                       const TemplateArgumentListInfo &TArgs)
   2787   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
   2788 
   2789   d.NumTemplates = Ts.size();
   2790   d.NumArgs = TArgs.size();
   2791 
   2792   FunctionTemplateDecl **TsArray =
   2793     const_cast<FunctionTemplateDecl**>(getTemplates());
   2794   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
   2795     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
   2796 
   2797   TemplateArgumentLoc *ArgsArray =
   2798     const_cast<TemplateArgumentLoc*>(getTemplateArgs());
   2799   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
   2800     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
   2801 }
   2802 
   2803 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
   2804   // For a function template specialization, query the specialization
   2805   // information object.
   2806   FunctionTemplateSpecializationInfo *FTSInfo
   2807     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
   2808   if (FTSInfo)
   2809     return FTSInfo->getTemplateSpecializationKind();
   2810 
   2811   MemberSpecializationInfo *MSInfo
   2812     = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
   2813   if (MSInfo)
   2814     return MSInfo->getTemplateSpecializationKind();
   2815 
   2816   return TSK_Undeclared;
   2817 }
   2818 
   2819 void
   2820 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
   2821                                           SourceLocation PointOfInstantiation) {
   2822   if (FunctionTemplateSpecializationInfo *FTSInfo
   2823         = TemplateOrSpecialization.dyn_cast<
   2824                                     FunctionTemplateSpecializationInfo*>()) {
   2825     FTSInfo->setTemplateSpecializationKind(TSK);
   2826     if (TSK != TSK_ExplicitSpecialization &&
   2827         PointOfInstantiation.isValid() &&
   2828         FTSInfo->getPointOfInstantiation().isInvalid())
   2829       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
   2830   } else if (MemberSpecializationInfo *MSInfo
   2831              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
   2832     MSInfo->setTemplateSpecializationKind(TSK);
   2833     if (TSK != TSK_ExplicitSpecialization &&
   2834         PointOfInstantiation.isValid() &&
   2835         MSInfo->getPointOfInstantiation().isInvalid())
   2836       MSInfo->setPointOfInstantiation(PointOfInstantiation);
   2837   } else
   2838     llvm_unreachable("Function cannot have a template specialization kind");
   2839 }
   2840 
   2841 SourceLocation FunctionDecl::getPointOfInstantiation() const {
   2842   if (FunctionTemplateSpecializationInfo *FTSInfo
   2843         = TemplateOrSpecialization.dyn_cast<
   2844                                         FunctionTemplateSpecializationInfo*>())
   2845     return FTSInfo->getPointOfInstantiation();
   2846   else if (MemberSpecializationInfo *MSInfo
   2847              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
   2848     return MSInfo->getPointOfInstantiation();
   2849 
   2850   return SourceLocation();
   2851 }
   2852 
   2853 bool FunctionDecl::isOutOfLine() const {
   2854   if (Decl::isOutOfLine())
   2855     return true;
   2856 
   2857   // If this function was instantiated from a member function of a
   2858   // class template, check whether that member function was defined out-of-line.
   2859   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
   2860     const FunctionDecl *Definition;
   2861     if (FD->hasBody(Definition))
   2862       return Definition->isOutOfLine();
   2863   }
   2864 
   2865   // If this function was instantiated from a function template,
   2866   // check whether that function template was defined out-of-line.
   2867   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
   2868     const FunctionDecl *Definition;
   2869     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
   2870       return Definition->isOutOfLine();
   2871   }
   2872 
   2873   return false;
   2874 }
   2875 
   2876 SourceRange FunctionDecl::getSourceRange() const {
   2877   return SourceRange(getOuterLocStart(), EndRangeLoc);
   2878 }
   2879 
   2880 unsigned FunctionDecl::getMemoryFunctionKind() const {
   2881   IdentifierInfo *FnInfo = getIdentifier();
   2882 
   2883   if (!FnInfo)
   2884     return 0;
   2885 
   2886   // Builtin handling.
   2887   switch (getBuiltinID()) {
   2888   case Builtin::BI__builtin_memset:
   2889   case Builtin::BI__builtin___memset_chk:
   2890   case Builtin::BImemset:
   2891     return Builtin::BImemset;
   2892 
   2893   case Builtin::BI__builtin_memcpy:
   2894   case Builtin::BI__builtin___memcpy_chk:
   2895   case Builtin::BImemcpy:
   2896     return Builtin::BImemcpy;
   2897 
   2898   case Builtin::BI__builtin_memmove:
   2899   case Builtin::BI__builtin___memmove_chk:
   2900   case Builtin::BImemmove:
   2901     return Builtin::BImemmove;
   2902 
   2903   case Builtin::BIstrlcpy:
   2904     return Builtin::BIstrlcpy;
   2905   case Builtin::BIstrlcat:
   2906     return Builtin::BIstrlcat;
   2907 
   2908   case Builtin::BI__builtin_memcmp:
   2909   case Builtin::BImemcmp:
   2910     return Builtin::BImemcmp;
   2911 
   2912   case Builtin::BI__builtin_strncpy:
   2913   case Builtin::BI__builtin___strncpy_chk:
   2914   case Builtin::BIstrncpy:
   2915     return Builtin::BIstrncpy;
   2916 
   2917   case Builtin::BI__builtin_strncmp:
   2918   case Builtin::BIstrncmp:
   2919     return Builtin::BIstrncmp;
   2920 
   2921   case Builtin::BI__builtin_strncasecmp:
   2922   case Builtin::BIstrncasecmp:
   2923     return Builtin::BIstrncasecmp;
   2924 
   2925   case Builtin::BI__builtin_strncat:
   2926   case Builtin::BI__builtin___strncat_chk:
   2927   case Builtin::BIstrncat:
   2928     return Builtin::BIstrncat;
   2929 
   2930   case Builtin::BI__builtin_strndup:
   2931   case Builtin::BIstrndup:
   2932     return Builtin::BIstrndup;
   2933 
   2934   case Builtin::BI__builtin_strlen:
   2935   case Builtin::BIstrlen:
   2936     return Builtin::BIstrlen;
   2937 
   2938   default:
   2939     if (isExternC()) {
   2940       if (FnInfo->isStr("memset"))
   2941         return Builtin::BImemset;
   2942       else if (FnInfo->isStr("memcpy"))
   2943         return Builtin::BImemcpy;
   2944       else if (FnInfo->isStr("memmove"))
   2945         return Builtin::BImemmove;
   2946       else if (FnInfo->isStr("memcmp"))
   2947         return Builtin::BImemcmp;
   2948       else if (FnInfo->isStr("strncpy"))
   2949         return Builtin::BIstrncpy;
   2950       else if (FnInfo->isStr("strncmp"))
   2951         return Builtin::BIstrncmp;
   2952       else if (FnInfo->isStr("strncasecmp"))
   2953         return Builtin::BIstrncasecmp;
   2954       else if (FnInfo->isStr("strncat"))
   2955         return Builtin::BIstrncat;
   2956       else if (FnInfo->isStr("strndup"))
   2957         return Builtin::BIstrndup;
   2958       else if (FnInfo->isStr("strlen"))
   2959         return Builtin::BIstrlen;
   2960     }
   2961     break;
   2962   }
   2963   return 0;
   2964 }
   2965 
   2966 //===----------------------------------------------------------------------===//
   2967 // FieldDecl Implementation
   2968 //===----------------------------------------------------------------------===//
   2969 
   2970 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
   2971                              SourceLocation StartLoc, SourceLocation IdLoc,
   2972                              IdentifierInfo *Id, QualType T,
   2973                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
   2974                              InClassInitStyle InitStyle) {
   2975   return new (C) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
   2976                            BW, Mutable, InitStyle);
   2977 }
   2978 
   2979 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2980   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FieldDecl));
   2981   return new (Mem) FieldDecl(Field, 0, SourceLocation(), SourceLocation(),
   2982                              0, QualType(), 0, 0, false, ICIS_NoInit);
   2983 }
   2984 
   2985 bool FieldDecl::isAnonymousStructOrUnion() const {
   2986   if (!isImplicit() || getDeclName())
   2987     return false;
   2988 
   2989   if (const RecordType *Record = getType()->getAs<RecordType>())
   2990     return Record->getDecl()->isAnonymousStructOrUnion();
   2991 
   2992   return false;
   2993 }
   2994 
   2995 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
   2996   assert(isBitField() && "not a bitfield");
   2997   Expr *BitWidth = InitializerOrBitWidth.getPointer();
   2998   return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
   2999 }
   3000 
   3001 unsigned FieldDecl::getFieldIndex() const {
   3002   if (CachedFieldIndex) return CachedFieldIndex - 1;
   3003 
   3004   unsigned Index = 0;
   3005   const RecordDecl *RD = getParent();
   3006 
   3007   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
   3008        I != E; ++I, ++Index)
   3009     I->CachedFieldIndex = Index + 1;
   3010 
   3011   assert(CachedFieldIndex && "failed to find field in parent");
   3012   return CachedFieldIndex - 1;
   3013 }
   3014 
   3015 SourceRange FieldDecl::getSourceRange() const {
   3016   if (const Expr *E = InitializerOrBitWidth.getPointer())
   3017     return SourceRange(getInnerLocStart(), E->getLocEnd());
   3018   return DeclaratorDecl::getSourceRange();
   3019 }
   3020 
   3021 void FieldDecl::setBitWidth(Expr *Width) {
   3022   assert(!InitializerOrBitWidth.getPointer() && !hasInClassInitializer() &&
   3023          "bit width or initializer already set");
   3024   InitializerOrBitWidth.setPointer(Width);
   3025 }
   3026 
   3027 void FieldDecl::setInClassInitializer(Expr *Init) {
   3028   assert(!InitializerOrBitWidth.getPointer() && hasInClassInitializer() &&
   3029          "bit width or initializer already set");
   3030   InitializerOrBitWidth.setPointer(Init);
   3031 }
   3032 
   3033 //===----------------------------------------------------------------------===//
   3034 // TagDecl Implementation
   3035 //===----------------------------------------------------------------------===//
   3036 
   3037 SourceLocation TagDecl::getOuterLocStart() const {
   3038   return getTemplateOrInnerLocStart(this);
   3039 }
   3040 
   3041 SourceRange TagDecl::getSourceRange() const {
   3042   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
   3043   return SourceRange(getOuterLocStart(), E);
   3044 }
   3045 
   3046 TagDecl* TagDecl::getCanonicalDecl() {
   3047   return getFirstDeclaration();
   3048 }
   3049 
   3050 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
   3051   TypedefNameDeclOrQualifier = TDD;
   3052   if (TypeForDecl)
   3053     assert(TypeForDecl->isLinkageValid());
   3054   assert(isLinkageValid());
   3055 }
   3056 
   3057 void TagDecl::startDefinition() {
   3058   IsBeingDefined = true;
   3059 
   3060   if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) {
   3061     struct CXXRecordDecl::DefinitionData *Data =
   3062       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
   3063     for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I)
   3064       cast<CXXRecordDecl>(*I)->DefinitionData = Data;
   3065   }
   3066 }
   3067 
   3068 void TagDecl::completeDefinition() {
   3069   assert((!isa<CXXRecordDecl>(this) ||
   3070           cast<CXXRecordDecl>(this)->hasDefinition()) &&
   3071          "definition completed but not started");
   3072 
   3073   IsCompleteDefinition = true;
   3074   IsBeingDefined = false;
   3075 
   3076   if (ASTMutationListener *L = getASTMutationListener())
   3077     L->CompletedTagDefinition(this);
   3078 }
   3079 
   3080 TagDecl *TagDecl::getDefinition() const {
   3081   if (isCompleteDefinition())
   3082     return const_cast<TagDecl *>(this);
   3083 
   3084   // If it's possible for us to have an out-of-date definition, check now.
   3085   if (MayHaveOutOfDateDef) {
   3086     if (IdentifierInfo *II = getIdentifier()) {
   3087       if (II->isOutOfDate()) {
   3088         updateOutOfDate(*II);
   3089       }
   3090     }
   3091   }
   3092 
   3093   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
   3094     return CXXRD->getDefinition();
   3095 
   3096   for (redecl_iterator R = redecls_begin(), REnd = redecls_end();
   3097        R != REnd; ++R)
   3098     if (R->isCompleteDefinition())
   3099       return *R;
   3100 
   3101   return 0;
   3102 }
   3103 
   3104 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
   3105   if (QualifierLoc) {
   3106     // Make sure the extended qualifier info is allocated.
   3107     if (!hasExtInfo())
   3108       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
   3109     // Set qualifier info.
   3110     getExtInfo()->QualifierLoc = QualifierLoc;
   3111   } else {
   3112     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
   3113     if (hasExtInfo()) {
   3114       if (getExtInfo()->NumTemplParamLists == 0) {
   3115         getASTContext().Deallocate(getExtInfo());
   3116         TypedefNameDeclOrQualifier = (TypedefNameDecl*) 0;
   3117       }
   3118       else
   3119         getExtInfo()->QualifierLoc = QualifierLoc;
   3120     }
   3121   }
   3122 }
   3123 
   3124 void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
   3125                                             unsigned NumTPLists,
   3126                                             TemplateParameterList **TPLists) {
   3127   assert(NumTPLists > 0);
   3128   // Make sure the extended decl info is allocated.
   3129   if (!hasExtInfo())
   3130     // Allocate external info struct.
   3131     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
   3132   // Set the template parameter lists info.
   3133   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
   3134 }
   3135 
   3136 //===----------------------------------------------------------------------===//
   3137 // EnumDecl Implementation
   3138 //===----------------------------------------------------------------------===//
   3139 
   3140 void EnumDecl::anchor() { }
   3141 
   3142 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
   3143                            SourceLocation StartLoc, SourceLocation IdLoc,
   3144                            IdentifierInfo *Id,
   3145                            EnumDecl *PrevDecl, bool IsScoped,
   3146                            bool IsScopedUsingClassTag, bool IsFixed) {
   3147   EnumDecl *Enum = new (C) EnumDecl(DC, StartLoc, IdLoc, Id, PrevDecl,
   3148                                     IsScoped, IsScopedUsingClassTag, IsFixed);
   3149   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
   3150   C.getTypeDeclType(Enum, PrevDecl);
   3151   return Enum;
   3152 }
   3153 
   3154 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3155   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumDecl));
   3156   EnumDecl *Enum = new (Mem) EnumDecl(0, SourceLocation(), SourceLocation(),
   3157                                       0, 0, false, false, false);
   3158   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
   3159   return Enum;
   3160 }
   3161 
   3162 void EnumDecl::completeDefinition(QualType NewType,
   3163                                   QualType NewPromotionType,
   3164                                   unsigned NumPositiveBits,
   3165                                   unsigned NumNegativeBits) {
   3166   assert(!isCompleteDefinition() && "Cannot redefine enums!");
   3167   if (!IntegerType)
   3168     IntegerType = NewType.getTypePtr();
   3169   PromotionType = NewPromotionType;
   3170   setNumPositiveBits(NumPositiveBits);
   3171   setNumNegativeBits(NumNegativeBits);
   3172   TagDecl::completeDefinition();
   3173 }
   3174 
   3175 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
   3176   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
   3177     return MSI->getTemplateSpecializationKind();
   3178 
   3179   return TSK_Undeclared;
   3180 }
   3181 
   3182 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
   3183                                          SourceLocation PointOfInstantiation) {
   3184   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
   3185   assert(MSI && "Not an instantiated member enumeration?");
   3186   MSI->setTemplateSpecializationKind(TSK);
   3187   if (TSK != TSK_ExplicitSpecialization &&
   3188       PointOfInstantiation.isValid() &&
   3189       MSI->getPointOfInstantiation().isInvalid())
   3190     MSI->setPointOfInstantiation(PointOfInstantiation);
   3191 }
   3192 
   3193 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
   3194   if (SpecializationInfo)
   3195     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
   3196 
   3197   return 0;
   3198 }
   3199 
   3200 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
   3201                                             TemplateSpecializationKind TSK) {
   3202   assert(!SpecializationInfo && "Member enum is already a specialization");
   3203   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
   3204 }
   3205 
   3206 //===----------------------------------------------------------------------===//
   3207 // RecordDecl Implementation
   3208 //===----------------------------------------------------------------------===//
   3209 
   3210 RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
   3211                        SourceLocation StartLoc, SourceLocation IdLoc,
   3212                        IdentifierInfo *Id, RecordDecl *PrevDecl)
   3213   : TagDecl(DK, TK, DC, IdLoc, Id, PrevDecl, StartLoc) {
   3214   HasFlexibleArrayMember = false;
   3215   AnonymousStructOrUnion = false;
   3216   HasObjectMember = false;
   3217   HasVolatileMember = false;
   3218   LoadedFieldsFromExternalStorage = false;
   3219   assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
   3220 }
   3221 
   3222 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
   3223                                SourceLocation StartLoc, SourceLocation IdLoc,
   3224                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
   3225   RecordDecl* R = new (C) RecordDecl(Record, TK, DC, StartLoc, IdLoc, Id,
   3226                                      PrevDecl);
   3227   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
   3228 
   3229   C.getTypeDeclType(R, PrevDecl);
   3230   return R;
   3231 }
   3232 
   3233 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
   3234   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(RecordDecl));
   3235   RecordDecl *R = new (Mem) RecordDecl(Record, TTK_Struct, 0, SourceLocation(),
   3236                                        SourceLocation(), 0, 0);
   3237   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
   3238   return R;
   3239 }
   3240 
   3241 bool RecordDecl::isInjectedClassName() const {
   3242   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
   3243     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
   3244 }
   3245 
   3246 RecordDecl::field_iterator RecordDecl::field_begin() const {
   3247   if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
   3248     LoadFieldsFromExternalStorage();
   3249 
   3250   return field_iterator(decl_iterator(FirstDecl));
   3251 }
   3252 
   3253 /// completeDefinition - Notes that the definition of this type is now
   3254 /// complete.
   3255 void RecordDecl::completeDefinition() {
   3256   assert(!isCompleteDefinition() && "Cannot redefine record!");
   3257   TagDecl::completeDefinition();
   3258 }
   3259 
   3260 /// isMsStruct - Get whether or not this record uses ms_struct layout.
   3261 /// This which can be turned on with an attribute, pragma, or the
   3262 /// -mms-bitfields command-line option.
   3263 bool RecordDecl::isMsStruct(const ASTContext &C) const {
   3264   return hasAttr<MsStructAttr>() || C.getLangOpts().MSBitfields == 1;
   3265 }
   3266 
   3267 static bool isFieldOrIndirectField(Decl::Kind K) {
   3268   return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
   3269 }
   3270 
   3271 void RecordDecl::LoadFieldsFromExternalStorage() const {
   3272   ExternalASTSource *Source = getASTContext().getExternalSource();
   3273   assert(hasExternalLexicalStorage() && Source && "No external storage?");
   3274 
   3275   // Notify that we have a RecordDecl doing some initialization.
   3276   ExternalASTSource::Deserializing TheFields(Source);
   3277 
   3278   SmallVector<Decl*, 64> Decls;
   3279   LoadedFieldsFromExternalStorage = true;
   3280   switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
   3281                                            Decls)) {
   3282   case ELR_Success:
   3283     break;
   3284 
   3285   case ELR_AlreadyLoaded:
   3286   case ELR_Failure:
   3287     return;
   3288   }
   3289 
   3290 #ifndef NDEBUG
   3291   // Check that all decls we got were FieldDecls.
   3292   for (unsigned i=0, e=Decls.size(); i != e; ++i)
   3293     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
   3294 #endif
   3295 
   3296   if (Decls.empty())
   3297     return;
   3298 
   3299   llvm::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
   3300                                                  /*FieldsAlreadyLoaded=*/false);
   3301 }
   3302 
   3303 //===----------------------------------------------------------------------===//
   3304 // BlockDecl Implementation
   3305 //===----------------------------------------------------------------------===//
   3306 
   3307 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
   3308   assert(ParamInfo == 0 && "Already has param info!");
   3309 
   3310   // Zero params -> null pointer.
   3311   if (!NewParamInfo.empty()) {
   3312     NumParams = NewParamInfo.size();
   3313     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
   3314     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
   3315   }
   3316 }
   3317 
   3318 void BlockDecl::setCaptures(ASTContext &Context,
   3319                             const Capture *begin,
   3320                             const Capture *end,
   3321                             bool capturesCXXThis) {
   3322   CapturesCXXThis = capturesCXXThis;
   3323 
   3324   if (begin == end) {
   3325     NumCaptures = 0;
   3326     Captures = 0;
   3327     return;
   3328   }
   3329 
   3330   NumCaptures = end - begin;
   3331 
   3332   // Avoid new Capture[] because we don't want to provide a default
   3333   // constructor.
   3334   size_t allocationSize = NumCaptures * sizeof(Capture);
   3335   void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
   3336   memcpy(buffer, begin, allocationSize);
   3337   Captures = static_cast<Capture*>(buffer);
   3338 }
   3339 
   3340 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
   3341   for (capture_const_iterator
   3342          i = capture_begin(), e = capture_end(); i != e; ++i)
   3343     // Only auto vars can be captured, so no redeclaration worries.
   3344     if (i->getVariable() == variable)
   3345       return true;
   3346 
   3347   return false;
   3348 }
   3349 
   3350 SourceRange BlockDecl::getSourceRange() const {
   3351   return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
   3352 }
   3353 
   3354 //===----------------------------------------------------------------------===//
   3355 // Other Decl Allocation/Deallocation Method Implementations
   3356 //===----------------------------------------------------------------------===//
   3357 
   3358 void TranslationUnitDecl::anchor() { }
   3359 
   3360 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
   3361   return new (C) TranslationUnitDecl(C);
   3362 }
   3363 
   3364 void LabelDecl::anchor() { }
   3365 
   3366 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
   3367                              SourceLocation IdentL, IdentifierInfo *II) {
   3368   return new (C) LabelDecl(DC, IdentL, II, 0, IdentL);
   3369 }
   3370 
   3371 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
   3372                              SourceLocation IdentL, IdentifierInfo *II,
   3373                              SourceLocation GnuLabelL) {
   3374   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
   3375   return new (C) LabelDecl(DC, IdentL, II, 0, GnuLabelL);
   3376 }
   3377 
   3378 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3379   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LabelDecl));
   3380   return new (Mem) LabelDecl(0, SourceLocation(), 0, 0, SourceLocation());
   3381 }
   3382 
   3383 void ValueDecl::anchor() { }
   3384 
   3385 bool ValueDecl::isWeak() const {
   3386   for (attr_iterator I = attr_begin(), E = attr_end(); I != E; ++I)
   3387     if (isa<WeakAttr>(*I) || isa<WeakRefAttr>(*I))
   3388       return true;
   3389 
   3390   return isWeakImported();
   3391 }
   3392 
   3393 void ImplicitParamDecl::anchor() { }
   3394 
   3395 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
   3396                                              SourceLocation IdLoc,
   3397                                              IdentifierInfo *Id,
   3398                                              QualType Type) {
   3399   return new (C) ImplicitParamDecl(DC, IdLoc, Id, Type);
   3400 }
   3401 
   3402 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
   3403                                                          unsigned ID) {
   3404   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ImplicitParamDecl));
   3405   return new (Mem) ImplicitParamDecl(0, SourceLocation(), 0, QualType());
   3406 }
   3407 
   3408 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
   3409                                    SourceLocation StartLoc,
   3410                                    const DeclarationNameInfo &NameInfo,
   3411                                    QualType T, TypeSourceInfo *TInfo,
   3412                                    StorageClass SC,
   3413                                    bool isInlineSpecified,
   3414                                    bool hasWrittenPrototype,
   3415                                    bool isConstexprSpecified) {
   3416   FunctionDecl *New = new (C) FunctionDecl(Function, DC, StartLoc, NameInfo,
   3417                                            T, TInfo, SC,
   3418                                            isInlineSpecified,
   3419                                            isConstexprSpecified);
   3420   New->HasWrittenPrototype = hasWrittenPrototype;
   3421   return New;
   3422 }
   3423 
   3424 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3425   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FunctionDecl));
   3426   return new (Mem) FunctionDecl(Function, 0, SourceLocation(),
   3427                                 DeclarationNameInfo(), QualType(), 0,
   3428                                 SC_None, false, false);
   3429 }
   3430 
   3431 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
   3432   return new (C) BlockDecl(DC, L);
   3433 }
   3434 
   3435 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3436   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(BlockDecl));
   3437   return new (Mem) BlockDecl(0, SourceLocation());
   3438 }
   3439 
   3440 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
   3441                                                    unsigned ID) {
   3442   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(MSPropertyDecl));
   3443   return new (Mem) MSPropertyDecl(0, SourceLocation(), DeclarationName(),
   3444                                   QualType(), 0, SourceLocation(),
   3445                                   0, 0);
   3446 }
   3447 
   3448 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
   3449                                    unsigned NumParams) {
   3450   unsigned Size = sizeof(CapturedDecl) + NumParams * sizeof(ImplicitParamDecl*);
   3451   return new (C.Allocate(Size)) CapturedDecl(DC, NumParams);
   3452 }
   3453 
   3454 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
   3455                                    unsigned NumParams) {
   3456   unsigned Size = sizeof(CapturedDecl) + NumParams * sizeof(ImplicitParamDecl*);
   3457   void *Mem = AllocateDeserializedDecl(C, ID, Size);
   3458   return new (Mem) CapturedDecl(0, NumParams);
   3459 }
   3460 
   3461 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
   3462                                            SourceLocation L,
   3463                                            IdentifierInfo *Id, QualType T,
   3464                                            Expr *E, const llvm::APSInt &V) {
   3465   return new (C) EnumConstantDecl(CD, L, Id, T, E, V);
   3466 }
   3467 
   3468 EnumConstantDecl *
   3469 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3470   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumConstantDecl));
   3471   return new (Mem) EnumConstantDecl(0, SourceLocation(), 0, QualType(), 0,
   3472                                     llvm::APSInt());
   3473 }
   3474 
   3475 void IndirectFieldDecl::anchor() { }
   3476 
   3477 IndirectFieldDecl *
   3478 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
   3479                           IdentifierInfo *Id, QualType T, NamedDecl **CH,
   3480                           unsigned CHS) {
   3481   return new (C) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
   3482 }
   3483 
   3484 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
   3485                                                          unsigned ID) {
   3486   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(IndirectFieldDecl));
   3487   return new (Mem) IndirectFieldDecl(0, SourceLocation(), DeclarationName(),
   3488                                      QualType(), 0, 0);
   3489 }
   3490 
   3491 SourceRange EnumConstantDecl::getSourceRange() const {
   3492   SourceLocation End = getLocation();
   3493   if (Init)
   3494     End = Init->getLocEnd();
   3495   return SourceRange(getLocation(), End);
   3496 }
   3497 
   3498 void TypeDecl::anchor() { }
   3499 
   3500 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
   3501                                  SourceLocation StartLoc, SourceLocation IdLoc,
   3502                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
   3503   return new (C) TypedefDecl(DC, StartLoc, IdLoc, Id, TInfo);
   3504 }
   3505 
   3506 void TypedefNameDecl::anchor() { }
   3507 
   3508 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3509   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypedefDecl));
   3510   return new (Mem) TypedefDecl(0, SourceLocation(), SourceLocation(), 0, 0);
   3511 }
   3512 
   3513 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
   3514                                      SourceLocation StartLoc,
   3515                                      SourceLocation IdLoc, IdentifierInfo *Id,
   3516                                      TypeSourceInfo *TInfo) {
   3517   return new (C) TypeAliasDecl(DC, StartLoc, IdLoc, Id, TInfo);
   3518 }
   3519 
   3520 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3521   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypeAliasDecl));
   3522   return new (Mem) TypeAliasDecl(0, SourceLocation(), SourceLocation(), 0, 0);
   3523 }
   3524 
   3525 SourceRange TypedefDecl::getSourceRange() const {
   3526   SourceLocation RangeEnd = getLocation();
   3527   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
   3528     if (typeIsPostfix(TInfo->getType()))
   3529       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
   3530   }
   3531   return SourceRange(getLocStart(), RangeEnd);
   3532 }
   3533 
   3534 SourceRange TypeAliasDecl::getSourceRange() const {
   3535   SourceLocation RangeEnd = getLocStart();
   3536   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
   3537     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
   3538   return SourceRange(getLocStart(), RangeEnd);
   3539 }
   3540 
   3541 void FileScopeAsmDecl::anchor() { }
   3542 
   3543 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
   3544                                            StringLiteral *Str,
   3545                                            SourceLocation AsmLoc,
   3546                                            SourceLocation RParenLoc) {
   3547   return new (C) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
   3548 }
   3549 
   3550 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
   3551                                                        unsigned ID) {
   3552   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FileScopeAsmDecl));
   3553   return new (Mem) FileScopeAsmDecl(0, 0, SourceLocation(), SourceLocation());
   3554 }
   3555 
   3556 void EmptyDecl::anchor() {}
   3557 
   3558 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
   3559   return new (C) EmptyDecl(DC, L);
   3560 }
   3561 
   3562 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3563   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EmptyDecl));
   3564   return new (Mem) EmptyDecl(0, SourceLocation());
   3565 }
   3566 
   3567 //===----------------------------------------------------------------------===//
   3568 // ImportDecl Implementation
   3569 //===----------------------------------------------------------------------===//
   3570 
   3571 /// \brief Retrieve the number of module identifiers needed to name the given
   3572 /// module.
   3573 static unsigned getNumModuleIdentifiers(Module *Mod) {
   3574   unsigned Result = 1;
   3575   while (Mod->Parent) {
   3576     Mod = Mod->Parent;
   3577     ++Result;
   3578   }
   3579   return Result;
   3580 }
   3581 
   3582 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
   3583                        Module *Imported,
   3584                        ArrayRef<SourceLocation> IdentifierLocs)
   3585   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
   3586     NextLocalImport()
   3587 {
   3588   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
   3589   SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
   3590   memcpy(StoredLocs, IdentifierLocs.data(),
   3591          IdentifierLocs.size() * sizeof(SourceLocation));
   3592 }
   3593 
   3594 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
   3595                        Module *Imported, SourceLocation EndLoc)
   3596   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
   3597     NextLocalImport()
   3598 {
   3599   *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
   3600 }
   3601 
   3602 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
   3603                                SourceLocation StartLoc, Module *Imported,
   3604                                ArrayRef<SourceLocation> IdentifierLocs) {
   3605   void *Mem = C.Allocate(sizeof(ImportDecl) +
   3606                          IdentifierLocs.size() * sizeof(SourceLocation));
   3607   return new (Mem) ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
   3608 }
   3609 
   3610 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
   3611                                        SourceLocation StartLoc,
   3612                                        Module *Imported,
   3613                                        SourceLocation EndLoc) {
   3614   void *Mem = C.Allocate(sizeof(ImportDecl) + sizeof(SourceLocation));
   3615   ImportDecl *Import = new (Mem) ImportDecl(DC, StartLoc, Imported, EndLoc);
   3616   Import->setImplicit();
   3617   return Import;
   3618 }
   3619 
   3620 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
   3621                                            unsigned NumLocations) {
   3622   void *Mem = AllocateDeserializedDecl(C, ID,
   3623                                        (sizeof(ImportDecl) +
   3624                                         NumLocations * sizeof(SourceLocation)));
   3625   return new (Mem) ImportDecl(EmptyShell());
   3626 }
   3627 
   3628 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
   3629   if (!ImportedAndComplete.getInt())
   3630     return None;
   3631 
   3632   const SourceLocation *StoredLocs
   3633     = reinterpret_cast<const SourceLocation *>(this + 1);
   3634   return ArrayRef<SourceLocation>(StoredLocs,
   3635                                   getNumModuleIdentifiers(getImportedModule()));
   3636 }
   3637 
   3638 SourceRange ImportDecl::getSourceRange() const {
   3639   if (!ImportedAndComplete.getInt())
   3640     return SourceRange(getLocation(),
   3641                        *reinterpret_cast<const SourceLocation *>(this + 1));
   3642 
   3643   return SourceRange(getLocation(), getIdentifierLocs().back());
   3644 }
   3645