Home | History | Annotate | Download | only in Utils
      1 //===-- Local.h - Functions to perform local transformations ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform various local transformations to the
     11 // program.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
     16 #define LLVM_TRANSFORMS_UTILS_LOCAL_H
     17 
     18 #include "llvm/IR/DataLayout.h"
     19 #include "llvm/IR/IRBuilder.h"
     20 #include "llvm/IR/Operator.h"
     21 #include "llvm/Support/GetElementPtrTypeIterator.h"
     22 
     23 namespace llvm {
     24 
     25 class User;
     26 class BasicBlock;
     27 class Function;
     28 class BranchInst;
     29 class Instruction;
     30 class DbgDeclareInst;
     31 class StoreInst;
     32 class LoadInst;
     33 class Value;
     34 class Pass;
     35 class PHINode;
     36 class AllocaInst;
     37 class ConstantExpr;
     38 class DataLayout;
     39 class TargetLibraryInfo;
     40 class TargetTransformInfo;
     41 class DIBuilder;
     42 class AliasAnalysis;
     43 
     44 template<typename T> class SmallVectorImpl;
     45 
     46 //===----------------------------------------------------------------------===//
     47 //  Local constant propagation.
     48 //
     49 
     50 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
     51 /// constant value, convert it into an unconditional branch to the constant
     52 /// destination.  This is a nontrivial operation because the successors of this
     53 /// basic block must have their PHI nodes updated.
     54 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
     55 /// conditions and indirectbr addresses this might make dead if
     56 /// DeleteDeadConditions is true.
     57 bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
     58                             const TargetLibraryInfo *TLI = 0);
     59 
     60 //===----------------------------------------------------------------------===//
     61 //  Local dead code elimination.
     62 //
     63 
     64 /// isInstructionTriviallyDead - Return true if the result produced by the
     65 /// instruction is not used, and the instruction has no side effects.
     66 ///
     67 bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=0);
     68 
     69 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
     70 /// trivially dead instruction, delete it.  If that makes any of its operands
     71 /// trivially dead, delete them too, recursively.  Return true if any
     72 /// instructions were deleted.
     73 bool RecursivelyDeleteTriviallyDeadInstructions(Value *V,
     74                                                 const TargetLibraryInfo *TLI=0);
     75 
     76 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
     77 /// dead PHI node, due to being a def-use chain of single-use nodes that
     78 /// either forms a cycle or is terminated by a trivially dead instruction,
     79 /// delete it.  If that makes any of its operands trivially dead, delete them
     80 /// too, recursively.  Return true if a change was made.
     81 bool RecursivelyDeleteDeadPHINode(PHINode *PN, const TargetLibraryInfo *TLI=0);
     82 
     83 
     84 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
     85 /// simplify any instructions in it and recursively delete dead instructions.
     86 ///
     87 /// This returns true if it changed the code, note that it can delete
     88 /// instructions in other blocks as well in this block.
     89 bool SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD = 0,
     90                                  const TargetLibraryInfo *TLI = 0);
     91 
     92 //===----------------------------------------------------------------------===//
     93 //  Control Flow Graph Restructuring.
     94 //
     95 
     96 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
     97 /// method is called when we're about to delete Pred as a predecessor of BB.  If
     98 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
     99 ///
    100 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
    101 /// nodes that collapse into identity values.  For example, if we have:
    102 ///   x = phi(1, 0, 0, 0)
    103 ///   y = and x, z
    104 ///
    105 /// .. and delete the predecessor corresponding to the '1', this will attempt to
    106 /// recursively fold the 'and' to 0.
    107 void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
    108                                   DataLayout *TD = 0);
    109 
    110 
    111 /// MergeBasicBlockIntoOnlyPred - BB is a block with one predecessor and its
    112 /// predecessor is known to have one successor (BB!).  Eliminate the edge
    113 /// between them, moving the instructions in the predecessor into BB.  This
    114 /// deletes the predecessor block.
    115 ///
    116 void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, Pass *P = 0);
    117 
    118 
    119 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
    120 /// unconditional branch, and contains no instructions other than PHI nodes,
    121 /// potential debug intrinsics and the branch.  If possible, eliminate BB by
    122 /// rewriting all the predecessors to branch to the successor block and return
    123 /// true.  If we can't transform, return false.
    124 bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB);
    125 
    126 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
    127 /// nodes in this block. This doesn't try to be clever about PHI nodes
    128 /// which differ only in the order of the incoming values, but instcombine
    129 /// orders them so it usually won't matter.
    130 ///
    131 bool EliminateDuplicatePHINodes(BasicBlock *BB);
    132 
    133 /// SimplifyCFG - This function is used to do simplification of a CFG.  For
    134 /// example, it adjusts branches to branches to eliminate the extra hop, it
    135 /// eliminates unreachable basic blocks, and does other "peephole" optimization
    136 /// of the CFG.  It returns true if a modification was made, possibly deleting
    137 /// the basic block that was pointed to.
    138 ///
    139 bool SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
    140                  const DataLayout *TD = 0);
    141 
    142 /// FlatternCFG - This function is used to flatten a CFG.  For
    143 /// example, it uses parallel-and and parallel-or mode to collapse
    144 //  if-conditions and merge if-regions with identical statements.
    145 ///
    146 bool FlattenCFG(BasicBlock *BB, AliasAnalysis *AA = 0);
    147 
    148 /// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
    149 /// and if a predecessor branches to us and one of our successors, fold the
    150 /// setcc into the predecessor and use logical operations to pick the right
    151 /// destination.
    152 bool FoldBranchToCommonDest(BranchInst *BI);
    153 
    154 /// DemoteRegToStack - This function takes a virtual register computed by an
    155 /// Instruction and replaces it with a slot in the stack frame, allocated via
    156 /// alloca.  This allows the CFG to be changed around without fear of
    157 /// invalidating the SSA information for the value.  It returns the pointer to
    158 /// the alloca inserted to create a stack slot for X.
    159 ///
    160 AllocaInst *DemoteRegToStack(Instruction &X,
    161                              bool VolatileLoads = false,
    162                              Instruction *AllocaPoint = 0);
    163 
    164 /// DemotePHIToStack - This function takes a virtual register computed by a phi
    165 /// node and replaces it with a slot in the stack frame, allocated via alloca.
    166 /// The phi node is deleted and it returns the pointer to the alloca inserted.
    167 AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = 0);
    168 
    169 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
    170 /// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
    171 /// and it is more than the alignment of the ultimate object, see if we can
    172 /// increase the alignment of the ultimate object, making this check succeed.
    173 unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
    174                                     const DataLayout *TD = 0);
    175 
    176 /// getKnownAlignment - Try to infer an alignment for the specified pointer.
    177 static inline unsigned getKnownAlignment(Value *V, const DataLayout *TD = 0) {
    178   return getOrEnforceKnownAlignment(V, 0, TD);
    179 }
    180 
    181 /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
    182 /// code necessary to compute the offset from the base pointer (without adding
    183 /// in the base pointer).  Return the result as a signed integer of intptr size.
    184 /// When NoAssumptions is true, no assumptions about index computation not
    185 /// overflowing is made.
    186 template<typename IRBuilderTy>
    187 Value *EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &TD, User *GEP,
    188                      bool NoAssumptions = false) {
    189   GEPOperator *GEPOp = cast<GEPOperator>(GEP);
    190   Type *IntPtrTy = TD.getIntPtrType(GEP->getType());
    191   Value *Result = Constant::getNullValue(IntPtrTy);
    192 
    193   // If the GEP is inbounds, we know that none of the addressing operations will
    194   // overflow in an unsigned sense.
    195   bool isInBounds = GEPOp->isInBounds() && !NoAssumptions;
    196 
    197   // Build a mask for high order bits.
    198   unsigned IntPtrWidth = IntPtrTy->getScalarType()->getIntegerBitWidth();
    199   uint64_t PtrSizeMask = ~0ULL >> (64 - IntPtrWidth);
    200 
    201   gep_type_iterator GTI = gep_type_begin(GEP);
    202   for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
    203        ++i, ++GTI) {
    204     Value *Op = *i;
    205     uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
    206     if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
    207       if (OpC->isZero()) continue;
    208 
    209       // Handle a struct index, which adds its field offset to the pointer.
    210       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    211         Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
    212 
    213         if (Size)
    214           Result = Builder->CreateAdd(Result, ConstantInt::get(IntPtrTy, Size),
    215                                       GEP->getName()+".offs");
    216         continue;
    217       }
    218 
    219       Constant *Scale = ConstantInt::get(IntPtrTy, Size);
    220       Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
    221       Scale = ConstantExpr::getMul(OC, Scale, isInBounds/*NUW*/);
    222       // Emit an add instruction.
    223       Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
    224       continue;
    225     }
    226     // Convert to correct type.
    227     if (Op->getType() != IntPtrTy)
    228       Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
    229     if (Size != 1) {
    230       // We'll let instcombine(mul) convert this to a shl if possible.
    231       Op = Builder->CreateMul(Op, ConstantInt::get(IntPtrTy, Size),
    232                               GEP->getName()+".idx", isInBounds /*NUW*/);
    233     }
    234 
    235     // Emit an add instruction.
    236     Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
    237   }
    238   return Result;
    239 }
    240 
    241 ///===---------------------------------------------------------------------===//
    242 ///  Dbg Intrinsic utilities
    243 ///
    244 
    245 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
    246 /// that has an associated llvm.dbg.decl intrinsic.
    247 bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
    248                                      StoreInst *SI, DIBuilder &Builder);
    249 
    250 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
    251 /// that has an associated llvm.dbg.decl intrinsic.
    252 bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
    253                                      LoadInst *LI, DIBuilder &Builder);
    254 
    255 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
    256 /// of llvm.dbg.value intrinsics.
    257 bool LowerDbgDeclare(Function &F);
    258 
    259 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic corresponding to
    260 /// an alloca, if any.
    261 DbgDeclareInst *FindAllocaDbgDeclare(Value *V);
    262 
    263 /// replaceDbgDeclareForAlloca - Replaces llvm.dbg.declare instruction when
    264 /// alloca is replaced with a new value.
    265 bool replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
    266                                 DIBuilder &Builder);
    267 
    268 /// \brief Remove all blocks that can not be reached from the function's entry.
    269 ///
    270 /// Returns true if any basic block was removed.
    271 bool removeUnreachableBlocks(Function &F);
    272 
    273 } // End llvm namespace
    274 
    275 #endif
    276