Home | History | Annotate | Download | only in Core
      1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a basic region store model. In this model, we do have field
     11 // sensitivity. But we assume nothing about the heap shape. So recursive data
     12 // structures are largely ignored. Basically we do 1-limiting analysis.
     13 // Parameter pointers are assumed with no aliasing. Pointee objects of
     14 // parameters are created lazily.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 #include "clang/AST/Attr.h"
     18 #include "clang/AST/CharUnits.h"
     19 #include "clang/Analysis/Analyses/LiveVariables.h"
     20 #include "clang/Analysis/AnalysisContext.h"
     21 #include "clang/Basic/TargetInfo.h"
     22 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
     23 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
     24 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
     25 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
     27 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
     28 #include "llvm/ADT/ImmutableList.h"
     29 #include "llvm/ADT/ImmutableMap.h"
     30 #include "llvm/ADT/Optional.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 
     33 using namespace clang;
     34 using namespace ento;
     35 
     36 //===----------------------------------------------------------------------===//
     37 // Representation of binding keys.
     38 //===----------------------------------------------------------------------===//
     39 
     40 namespace {
     41 class BindingKey {
     42 public:
     43   enum Kind { Default = 0x0, Direct = 0x1 };
     44 private:
     45   enum { Symbolic = 0x2 };
     46 
     47   llvm::PointerIntPair<const MemRegion *, 2> P;
     48   uint64_t Data;
     49 
     50   /// Create a key for a binding to region \p r, which has a symbolic offset
     51   /// from region \p Base.
     52   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
     53     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
     54     assert(r && Base && "Must have known regions.");
     55     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
     56   }
     57 
     58   /// Create a key for a binding at \p offset from base region \p r.
     59   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
     60     : P(r, k), Data(offset) {
     61     assert(r && "Must have known regions.");
     62     assert(getOffset() == offset && "Failed to store offset");
     63     assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
     64   }
     65 public:
     66 
     67   bool isDirect() const { return P.getInt() & Direct; }
     68   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
     69 
     70   const MemRegion *getRegion() const { return P.getPointer(); }
     71   uint64_t getOffset() const {
     72     assert(!hasSymbolicOffset());
     73     return Data;
     74   }
     75 
     76   const SubRegion *getConcreteOffsetRegion() const {
     77     assert(hasSymbolicOffset());
     78     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
     79   }
     80 
     81   const MemRegion *getBaseRegion() const {
     82     if (hasSymbolicOffset())
     83       return getConcreteOffsetRegion()->getBaseRegion();
     84     return getRegion()->getBaseRegion();
     85   }
     86 
     87   void Profile(llvm::FoldingSetNodeID& ID) const {
     88     ID.AddPointer(P.getOpaqueValue());
     89     ID.AddInteger(Data);
     90   }
     91 
     92   static BindingKey Make(const MemRegion *R, Kind k);
     93 
     94   bool operator<(const BindingKey &X) const {
     95     if (P.getOpaqueValue() < X.P.getOpaqueValue())
     96       return true;
     97     if (P.getOpaqueValue() > X.P.getOpaqueValue())
     98       return false;
     99     return Data < X.Data;
    100   }
    101 
    102   bool operator==(const BindingKey &X) const {
    103     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
    104            Data == X.Data;
    105   }
    106 
    107   LLVM_ATTRIBUTE_USED void dump() const;
    108 };
    109 } // end anonymous namespace
    110 
    111 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
    112   const RegionOffset &RO = R->getAsOffset();
    113   if (RO.hasSymbolicOffset())
    114     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
    115 
    116   return BindingKey(RO.getRegion(), RO.getOffset(), k);
    117 }
    118 
    119 namespace llvm {
    120   static inline
    121   raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
    122     os << '(' << K.getRegion();
    123     if (!K.hasSymbolicOffset())
    124       os << ',' << K.getOffset();
    125     os << ',' << (K.isDirect() ? "direct" : "default")
    126        << ')';
    127     return os;
    128   }
    129 
    130   template <typename T> struct isPodLike;
    131   template <> struct isPodLike<BindingKey> {
    132     static const bool value = true;
    133   };
    134 } // end llvm namespace
    135 
    136 void BindingKey::dump() const {
    137   llvm::errs() << *this;
    138 }
    139 
    140 //===----------------------------------------------------------------------===//
    141 // Actual Store type.
    142 //===----------------------------------------------------------------------===//
    143 
    144 typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
    145 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
    146 typedef std::pair<BindingKey, SVal> BindingPair;
    147 
    148 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
    149         RegionBindings;
    150 
    151 namespace {
    152 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
    153                                  ClusterBindings> {
    154  ClusterBindings::Factory &CBFactory;
    155 public:
    156   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
    157           ParentTy;
    158 
    159   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
    160                     const RegionBindings::TreeTy *T,
    161                     RegionBindings::TreeTy::Factory *F)
    162     : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
    163       CBFactory(CBFactory) {}
    164 
    165   RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
    166     : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
    167       CBFactory(CBFactory) {}
    168 
    169   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
    170     return RegionBindingsRef(static_cast<const ParentTy*>(this)->add(K, D),
    171                              CBFactory);
    172   }
    173 
    174   RegionBindingsRef remove(key_type_ref K) const {
    175     return RegionBindingsRef(static_cast<const ParentTy*>(this)->remove(K),
    176                              CBFactory);
    177   }
    178 
    179   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
    180 
    181   RegionBindingsRef addBinding(const MemRegion *R,
    182                                BindingKey::Kind k, SVal V) const;
    183 
    184   RegionBindingsRef &operator=(const RegionBindingsRef &X) {
    185     *static_cast<ParentTy*>(this) = X;
    186     return *this;
    187   }
    188 
    189   const SVal *lookup(BindingKey K) const;
    190   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
    191   const ClusterBindings *lookup(const MemRegion *R) const {
    192     return static_cast<const ParentTy*>(this)->lookup(R);
    193   }
    194 
    195   RegionBindingsRef removeBinding(BindingKey K);
    196 
    197   RegionBindingsRef removeBinding(const MemRegion *R,
    198                                   BindingKey::Kind k);
    199 
    200   RegionBindingsRef removeBinding(const MemRegion *R) {
    201     return removeBinding(R, BindingKey::Direct).
    202            removeBinding(R, BindingKey::Default);
    203   }
    204 
    205   Optional<SVal> getDirectBinding(const MemRegion *R) const;
    206 
    207   /// getDefaultBinding - Returns an SVal* representing an optional default
    208   ///  binding associated with a region and its subregions.
    209   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
    210 
    211   /// Return the internal tree as a Store.
    212   Store asStore() const {
    213     return asImmutableMap().getRootWithoutRetain();
    214   }
    215 
    216   void dump(raw_ostream &OS, const char *nl) const {
    217    for (iterator I = begin(), E = end(); I != E; ++I) {
    218      const ClusterBindings &Cluster = I.getData();
    219      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
    220           CI != CE; ++CI) {
    221        OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
    222      }
    223      OS << nl;
    224    }
    225   }
    226 
    227   LLVM_ATTRIBUTE_USED void dump() const {
    228     dump(llvm::errs(), "\n");
    229   }
    230 };
    231 } // end anonymous namespace
    232 
    233 typedef const RegionBindingsRef& RegionBindingsConstRef;
    234 
    235 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
    236   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
    237 }
    238 
    239 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
    240   if (R->isBoundable())
    241     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
    242       if (TR->getValueType()->isUnionType())
    243         return UnknownVal();
    244 
    245   return Optional<SVal>::create(lookup(R, BindingKey::Default));
    246 }
    247 
    248 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
    249   const MemRegion *Base = K.getBaseRegion();
    250 
    251   const ClusterBindings *ExistingCluster = lookup(Base);
    252   ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster
    253                              : CBFactory.getEmptyMap());
    254 
    255   ClusterBindings NewCluster = CBFactory.add(Cluster, K, V);
    256   return add(Base, NewCluster);
    257 }
    258 
    259 
    260 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
    261                                                 BindingKey::Kind k,
    262                                                 SVal V) const {
    263   return addBinding(BindingKey::Make(R, k), V);
    264 }
    265 
    266 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
    267   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
    268   if (!Cluster)
    269     return 0;
    270   return Cluster->lookup(K);
    271 }
    272 
    273 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
    274                                       BindingKey::Kind k) const {
    275   return lookup(BindingKey::Make(R, k));
    276 }
    277 
    278 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
    279   const MemRegion *Base = K.getBaseRegion();
    280   const ClusterBindings *Cluster = lookup(Base);
    281   if (!Cluster)
    282     return *this;
    283 
    284   ClusterBindings NewCluster = CBFactory.remove(*Cluster, K);
    285   if (NewCluster.isEmpty())
    286     return remove(Base);
    287   return add(Base, NewCluster);
    288 }
    289 
    290 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
    291                                                 BindingKey::Kind k){
    292   return removeBinding(BindingKey::Make(R, k));
    293 }
    294 
    295 //===----------------------------------------------------------------------===//
    296 // Fine-grained control of RegionStoreManager.
    297 //===----------------------------------------------------------------------===//
    298 
    299 namespace {
    300 struct minimal_features_tag {};
    301 struct maximal_features_tag {};
    302 
    303 class RegionStoreFeatures {
    304   bool SupportsFields;
    305 public:
    306   RegionStoreFeatures(minimal_features_tag) :
    307     SupportsFields(false) {}
    308 
    309   RegionStoreFeatures(maximal_features_tag) :
    310     SupportsFields(true) {}
    311 
    312   void enableFields(bool t) { SupportsFields = t; }
    313 
    314   bool supportsFields() const { return SupportsFields; }
    315 };
    316 }
    317 
    318 //===----------------------------------------------------------------------===//
    319 // Main RegionStore logic.
    320 //===----------------------------------------------------------------------===//
    321 
    322 namespace {
    323 class invalidateRegionsWorker;
    324 
    325 class RegionStoreManager : public StoreManager {
    326 public:
    327   const RegionStoreFeatures Features;
    328 
    329   RegionBindings::Factory RBFactory;
    330   mutable ClusterBindings::Factory CBFactory;
    331 
    332   typedef std::vector<SVal> SValListTy;
    333 private:
    334   typedef llvm::DenseMap<const LazyCompoundValData *,
    335                          SValListTy> LazyBindingsMapTy;
    336   LazyBindingsMapTy LazyBindingsMap;
    337 
    338   /// The largest number of fields a struct can have and still be
    339   /// considered "small".
    340   ///
    341   /// This is currently used to decide whether or not it is worth "forcing" a
    342   /// LazyCompoundVal on bind.
    343   ///
    344   /// This is controlled by 'region-store-small-struct-limit' option.
    345   /// To disable all small-struct-dependent behavior, set the option to "0".
    346   unsigned SmallStructLimit;
    347 
    348   /// \brief A helper used to populate the work list with the given set of
    349   /// regions.
    350   void populateWorkList(invalidateRegionsWorker &W,
    351                         ArrayRef<SVal> Values,
    352                         bool IsArrayOfConstRegions,
    353                         InvalidatedRegions *TopLevelRegions);
    354 
    355 public:
    356   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
    357     : StoreManager(mgr), Features(f),
    358       RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
    359       SmallStructLimit(0) {
    360     if (SubEngine *Eng = StateMgr.getOwningEngine()) {
    361       AnalyzerOptions &Options = Eng->getAnalysisManager().options;
    362       SmallStructLimit =
    363         Options.getOptionAsInteger("region-store-small-struct-limit", 2);
    364     }
    365   }
    366 
    367 
    368   /// setImplicitDefaultValue - Set the default binding for the provided
    369   ///  MemRegion to the value implicitly defined for compound literals when
    370   ///  the value is not specified.
    371   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
    372                                             const MemRegion *R, QualType T);
    373 
    374   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
    375   ///  type.  'Array' represents the lvalue of the array being decayed
    376   ///  to a pointer, and the returned SVal represents the decayed
    377   ///  version of that lvalue (i.e., a pointer to the first element of
    378   ///  the array).  This is called by ExprEngine when evaluating
    379   ///  casts from arrays to pointers.
    380   SVal ArrayToPointer(Loc Array, QualType ElementTy);
    381 
    382   StoreRef getInitialStore(const LocationContext *InitLoc) {
    383     return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
    384   }
    385 
    386   //===-------------------------------------------------------------------===//
    387   // Binding values to regions.
    388   //===-------------------------------------------------------------------===//
    389   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
    390                                            const Expr *Ex,
    391                                            unsigned Count,
    392                                            const LocationContext *LCtx,
    393                                            RegionBindingsRef B,
    394                                            InvalidatedRegions *Invalidated);
    395 
    396   StoreRef invalidateRegions(Store store,
    397                              ArrayRef<SVal> Values,
    398                              ArrayRef<SVal> ConstValues,
    399                              const Expr *E, unsigned Count,
    400                              const LocationContext *LCtx,
    401                              const CallEvent *Call,
    402                              InvalidatedSymbols &IS,
    403                              InvalidatedSymbols &ConstIS,
    404                              InvalidatedRegions *Invalidated,
    405                              InvalidatedRegions *InvalidatedTopLevel,
    406                              InvalidatedRegions *InvalidatedTopLevelConst);
    407 
    408   bool scanReachableSymbols(Store S, const MemRegion *R,
    409                             ScanReachableSymbols &Callbacks);
    410 
    411   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
    412                                             const SubRegion *R);
    413 
    414 public: // Part of public interface to class.
    415 
    416   virtual StoreRef Bind(Store store, Loc LV, SVal V) {
    417     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
    418   }
    419 
    420   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
    421 
    422   // BindDefault is only used to initialize a region with a default value.
    423   StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
    424     RegionBindingsRef B = getRegionBindings(store);
    425     assert(!B.lookup(R, BindingKey::Default));
    426     assert(!B.lookup(R, BindingKey::Direct));
    427     return StoreRef(B.addBinding(R, BindingKey::Default, V)
    428                      .asImmutableMap()
    429                      .getRootWithoutRetain(), *this);
    430   }
    431 
    432   /// Attempt to extract the fields of \p LCV and bind them to the struct region
    433   /// \p R.
    434   ///
    435   /// This path is used when it seems advantageous to "force" loading the values
    436   /// within a LazyCompoundVal to bind memberwise to the struct region, rather
    437   /// than using a Default binding at the base of the entire region. This is a
    438   /// heuristic attempting to avoid building long chains of LazyCompoundVals.
    439   ///
    440   /// \returns The updated store bindings, or \c None if binding non-lazily
    441   ///          would be too expensive.
    442   Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
    443                                                  const TypedValueRegion *R,
    444                                                  const RecordDecl *RD,
    445                                                  nonloc::LazyCompoundVal LCV);
    446 
    447   /// BindStruct - Bind a compound value to a structure.
    448   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
    449                                const TypedValueRegion* R, SVal V);
    450 
    451   /// BindVector - Bind a compound value to a vector.
    452   RegionBindingsRef bindVector(RegionBindingsConstRef B,
    453                                const TypedValueRegion* R, SVal V);
    454 
    455   RegionBindingsRef bindArray(RegionBindingsConstRef B,
    456                               const TypedValueRegion* R,
    457                               SVal V);
    458 
    459   /// Clears out all bindings in the given region and assigns a new value
    460   /// as a Default binding.
    461   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
    462                                   const TypedRegion *R,
    463                                   SVal DefaultVal);
    464 
    465   /// \brief Create a new store with the specified binding removed.
    466   /// \param ST the original store, that is the basis for the new store.
    467   /// \param L the location whose binding should be removed.
    468   virtual StoreRef killBinding(Store ST, Loc L);
    469 
    470   void incrementReferenceCount(Store store) {
    471     getRegionBindings(store).manualRetain();
    472   }
    473 
    474   /// If the StoreManager supports it, decrement the reference count of
    475   /// the specified Store object.  If the reference count hits 0, the memory
    476   /// associated with the object is recycled.
    477   void decrementReferenceCount(Store store) {
    478     getRegionBindings(store).manualRelease();
    479   }
    480 
    481   bool includedInBindings(Store store, const MemRegion *region) const;
    482 
    483   /// \brief Return the value bound to specified location in a given state.
    484   ///
    485   /// The high level logic for this method is this:
    486   /// getBinding (L)
    487   ///   if L has binding
    488   ///     return L's binding
    489   ///   else if L is in killset
    490   ///     return unknown
    491   ///   else
    492   ///     if L is on stack or heap
    493   ///       return undefined
    494   ///     else
    495   ///       return symbolic
    496   virtual SVal getBinding(Store S, Loc L, QualType T) {
    497     return getBinding(getRegionBindings(S), L, T);
    498   }
    499 
    500   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
    501 
    502   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
    503 
    504   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
    505 
    506   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
    507 
    508   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
    509 
    510   SVal getBindingForLazySymbol(const TypedValueRegion *R);
    511 
    512   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
    513                                          const TypedValueRegion *R,
    514                                          QualType Ty);
    515 
    516   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
    517                       RegionBindingsRef LazyBinding);
    518 
    519   /// Get bindings for the values in a struct and return a CompoundVal, used
    520   /// when doing struct copy:
    521   /// struct s x, y;
    522   /// x = y;
    523   /// y's value is retrieved by this method.
    524   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
    525   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
    526   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
    527 
    528   /// Used to lazily generate derived symbols for bindings that are defined
    529   /// implicitly by default bindings in a super region.
    530   ///
    531   /// Note that callers may need to specially handle LazyCompoundVals, which
    532   /// are returned as is in case the caller needs to treat them differently.
    533   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
    534                                                   const MemRegion *superR,
    535                                                   const TypedValueRegion *R,
    536                                                   QualType Ty);
    537 
    538   /// Get the state and region whose binding this region \p R corresponds to.
    539   ///
    540   /// If there is no lazy binding for \p R, the returned value will have a null
    541   /// \c second. Note that a null pointer can represents a valid Store.
    542   std::pair<Store, const SubRegion *>
    543   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
    544                   const SubRegion *originalRegion);
    545 
    546   /// Returns the cached set of interesting SVals contained within a lazy
    547   /// binding.
    548   ///
    549   /// The precise value of "interesting" is determined for the purposes of
    550   /// RegionStore's internal analysis. It must always contain all regions and
    551   /// symbols, but may omit constants and other kinds of SVal.
    552   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
    553 
    554   //===------------------------------------------------------------------===//
    555   // State pruning.
    556   //===------------------------------------------------------------------===//
    557 
    558   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
    559   ///  It returns a new Store with these values removed.
    560   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
    561                               SymbolReaper& SymReaper);
    562 
    563   //===------------------------------------------------------------------===//
    564   // Region "extents".
    565   //===------------------------------------------------------------------===//
    566 
    567   // FIXME: This method will soon be eliminated; see the note in Store.h.
    568   DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
    569                                          const MemRegion* R, QualType EleTy);
    570 
    571   //===------------------------------------------------------------------===//
    572   // Utility methods.
    573   //===------------------------------------------------------------------===//
    574 
    575   RegionBindingsRef getRegionBindings(Store store) const {
    576     return RegionBindingsRef(CBFactory,
    577                              static_cast<const RegionBindings::TreeTy*>(store),
    578                              RBFactory.getTreeFactory());
    579   }
    580 
    581   void print(Store store, raw_ostream &Out, const char* nl,
    582              const char *sep);
    583 
    584   void iterBindings(Store store, BindingsHandler& f) {
    585     RegionBindingsRef B = getRegionBindings(store);
    586     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
    587       const ClusterBindings &Cluster = I.getData();
    588       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
    589            CI != CE; ++CI) {
    590         const BindingKey &K = CI.getKey();
    591         if (!K.isDirect())
    592           continue;
    593         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
    594           // FIXME: Possibly incorporate the offset?
    595           if (!f.HandleBinding(*this, store, R, CI.getData()))
    596             return;
    597         }
    598       }
    599     }
    600   }
    601 };
    602 
    603 } // end anonymous namespace
    604 
    605 //===----------------------------------------------------------------------===//
    606 // RegionStore creation.
    607 //===----------------------------------------------------------------------===//
    608 
    609 StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
    610   RegionStoreFeatures F = maximal_features_tag();
    611   return new RegionStoreManager(StMgr, F);
    612 }
    613 
    614 StoreManager *
    615 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
    616   RegionStoreFeatures F = minimal_features_tag();
    617   F.enableFields(true);
    618   return new RegionStoreManager(StMgr, F);
    619 }
    620 
    621 
    622 //===----------------------------------------------------------------------===//
    623 // Region Cluster analysis.
    624 //===----------------------------------------------------------------------===//
    625 
    626 namespace {
    627 /// Used to determine which global regions are automatically included in the
    628 /// initial worklist of a ClusterAnalysis.
    629 enum GlobalsFilterKind {
    630   /// Don't include any global regions.
    631   GFK_None,
    632   /// Only include system globals.
    633   GFK_SystemOnly,
    634   /// Include all global regions.
    635   GFK_All
    636 };
    637 
    638 template <typename DERIVED>
    639 class ClusterAnalysis  {
    640 protected:
    641   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
    642   typedef llvm::PointerIntPair<const MemRegion *, 1, bool> WorkListElement;
    643   typedef SmallVector<WorkListElement, 10> WorkList;
    644 
    645   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
    646 
    647   WorkList WL;
    648 
    649   RegionStoreManager &RM;
    650   ASTContext &Ctx;
    651   SValBuilder &svalBuilder;
    652 
    653   RegionBindingsRef B;
    654 
    655 private:
    656   GlobalsFilterKind GlobalsFilter;
    657 
    658 protected:
    659   const ClusterBindings *getCluster(const MemRegion *R) {
    660     return B.lookup(R);
    661   }
    662 
    663   /// Returns true if the memory space of the given region is one of the global
    664   /// regions specially included at the start of analysis.
    665   bool isInitiallyIncludedGlobalRegion(const MemRegion *R) {
    666     switch (GlobalsFilter) {
    667     case GFK_None:
    668       return false;
    669     case GFK_SystemOnly:
    670       return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
    671     case GFK_All:
    672       return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
    673     }
    674 
    675     llvm_unreachable("unknown globals filter");
    676   }
    677 
    678 public:
    679   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
    680                   RegionBindingsRef b, GlobalsFilterKind GFK)
    681     : RM(rm), Ctx(StateMgr.getContext()),
    682       svalBuilder(StateMgr.getSValBuilder()),
    683       B(b), GlobalsFilter(GFK) {}
    684 
    685   RegionBindingsRef getRegionBindings() const { return B; }
    686 
    687   bool isVisited(const MemRegion *R) {
    688     return Visited.count(getCluster(R));
    689   }
    690 
    691   void GenerateClusters() {
    692     // Scan the entire set of bindings and record the region clusters.
    693     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
    694          RI != RE; ++RI){
    695       const MemRegion *Base = RI.getKey();
    696 
    697       const ClusterBindings &Cluster = RI.getData();
    698       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
    699       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
    700 
    701       // If this is an interesting global region, add it the work list up front.
    702       if (isInitiallyIncludedGlobalRegion(Base))
    703         AddToWorkList(WorkListElement(Base), &Cluster);
    704     }
    705   }
    706 
    707   bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
    708     if (C && !Visited.insert(C))
    709       return false;
    710     WL.push_back(E);
    711     return true;
    712   }
    713 
    714   bool AddToWorkList(const MemRegion *R, bool Flag = false) {
    715     const MemRegion *BaseR = R->getBaseRegion();
    716     return AddToWorkList(WorkListElement(BaseR, Flag), getCluster(BaseR));
    717   }
    718 
    719   void RunWorkList() {
    720     while (!WL.empty()) {
    721       WorkListElement E = WL.pop_back_val();
    722       const MemRegion *BaseR = E.getPointer();
    723 
    724       static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR),
    725                                                 E.getInt());
    726     }
    727   }
    728 
    729   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
    730   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
    731 
    732   void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
    733                     bool Flag) {
    734     static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
    735   }
    736 };
    737 }
    738 
    739 //===----------------------------------------------------------------------===//
    740 // Binding invalidation.
    741 //===----------------------------------------------------------------------===//
    742 
    743 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
    744                                               ScanReachableSymbols &Callbacks) {
    745   assert(R == R->getBaseRegion() && "Should only be called for base regions");
    746   RegionBindingsRef B = getRegionBindings(S);
    747   const ClusterBindings *Cluster = B.lookup(R);
    748 
    749   if (!Cluster)
    750     return true;
    751 
    752   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
    753        RI != RE; ++RI) {
    754     if (!Callbacks.scan(RI.getData()))
    755       return false;
    756   }
    757 
    758   return true;
    759 }
    760 
    761 static inline bool isUnionField(const FieldRegion *FR) {
    762   return FR->getDecl()->getParent()->isUnion();
    763 }
    764 
    765 typedef SmallVector<const FieldDecl *, 8> FieldVector;
    766 
    767 void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
    768   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
    769 
    770   const MemRegion *Base = K.getConcreteOffsetRegion();
    771   const MemRegion *R = K.getRegion();
    772 
    773   while (R != Base) {
    774     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
    775       if (!isUnionField(FR))
    776         Fields.push_back(FR->getDecl());
    777 
    778     R = cast<SubRegion>(R)->getSuperRegion();
    779   }
    780 }
    781 
    782 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
    783   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
    784 
    785   if (Fields.empty())
    786     return true;
    787 
    788   FieldVector FieldsInBindingKey;
    789   getSymbolicOffsetFields(K, FieldsInBindingKey);
    790 
    791   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
    792   if (Delta >= 0)
    793     return std::equal(FieldsInBindingKey.begin() + Delta,
    794                       FieldsInBindingKey.end(),
    795                       Fields.begin());
    796   else
    797     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
    798                       Fields.begin() - Delta);
    799 }
    800 
    801 /// Collects all bindings in \p Cluster that may refer to bindings within
    802 /// \p Top.
    803 ///
    804 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
    805 /// \c second is the value (an SVal).
    806 ///
    807 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
    808 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
    809 /// an aggregate within a larger aggregate with a default binding.
    810 static void
    811 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
    812                          SValBuilder &SVB, const ClusterBindings &Cluster,
    813                          const SubRegion *Top, BindingKey TopKey,
    814                          bool IncludeAllDefaultBindings) {
    815   FieldVector FieldsInSymbolicSubregions;
    816   if (TopKey.hasSymbolicOffset()) {
    817     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
    818     Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion());
    819     TopKey = BindingKey::Make(Top, BindingKey::Default);
    820   }
    821 
    822   // Find the length (in bits) of the region being invalidated.
    823   uint64_t Length = UINT64_MAX;
    824   SVal Extent = Top->getExtent(SVB);
    825   if (Optional<nonloc::ConcreteInt> ExtentCI =
    826           Extent.getAs<nonloc::ConcreteInt>()) {
    827     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
    828     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
    829     // Extents are in bytes but region offsets are in bits. Be careful!
    830     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
    831   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
    832     if (FR->getDecl()->isBitField())
    833       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
    834   }
    835 
    836   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
    837        I != E; ++I) {
    838     BindingKey NextKey = I.getKey();
    839     if (NextKey.getRegion() == TopKey.getRegion()) {
    840       // FIXME: This doesn't catch the case where we're really invalidating a
    841       // region with a symbolic offset. Example:
    842       //      R: points[i].y
    843       //   Next: points[0].x
    844 
    845       if (NextKey.getOffset() > TopKey.getOffset() &&
    846           NextKey.getOffset() - TopKey.getOffset() < Length) {
    847         // Case 1: The next binding is inside the region we're invalidating.
    848         // Include it.
    849         Bindings.push_back(*I);
    850 
    851       } else if (NextKey.getOffset() == TopKey.getOffset()) {
    852         // Case 2: The next binding is at the same offset as the region we're
    853         // invalidating. In this case, we need to leave default bindings alone,
    854         // since they may be providing a default value for a regions beyond what
    855         // we're invalidating.
    856         // FIXME: This is probably incorrect; consider invalidating an outer
    857         // struct whose first field is bound to a LazyCompoundVal.
    858         if (IncludeAllDefaultBindings || NextKey.isDirect())
    859           Bindings.push_back(*I);
    860       }
    861 
    862     } else if (NextKey.hasSymbolicOffset()) {
    863       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
    864       if (Top->isSubRegionOf(Base)) {
    865         // Case 3: The next key is symbolic and we just changed something within
    866         // its concrete region. We don't know if the binding is still valid, so
    867         // we'll be conservative and include it.
    868         if (IncludeAllDefaultBindings || NextKey.isDirect())
    869           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
    870             Bindings.push_back(*I);
    871       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
    872         // Case 4: The next key is symbolic, but we changed a known
    873         // super-region. In this case the binding is certainly included.
    874         if (Top == Base || BaseSR->isSubRegionOf(Top))
    875           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
    876             Bindings.push_back(*I);
    877       }
    878     }
    879   }
    880 }
    881 
    882 static void
    883 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
    884                          SValBuilder &SVB, const ClusterBindings &Cluster,
    885                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
    886   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
    887                            BindingKey::Make(Top, BindingKey::Default),
    888                            IncludeAllDefaultBindings);
    889 }
    890 
    891 RegionBindingsRef
    892 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
    893                                             const SubRegion *Top) {
    894   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
    895   const MemRegion *ClusterHead = TopKey.getBaseRegion();
    896 
    897   if (Top == ClusterHead) {
    898     // We can remove an entire cluster's bindings all in one go.
    899     return B.remove(Top);
    900   }
    901 
    902   const ClusterBindings *Cluster = B.lookup(ClusterHead);
    903   if (!Cluster) {
    904     // If we're invalidating a region with a symbolic offset, we need to make
    905     // sure we don't treat the base region as uninitialized anymore.
    906     if (TopKey.hasSymbolicOffset()) {
    907       const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
    908       return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
    909     }
    910     return B;
    911   }
    912 
    913   SmallVector<BindingPair, 32> Bindings;
    914   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
    915                            /*IncludeAllDefaultBindings=*/false);
    916 
    917   ClusterBindingsRef Result(*Cluster, CBFactory);
    918   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
    919                                                     E = Bindings.end();
    920        I != E; ++I)
    921     Result = Result.remove(I->first);
    922 
    923   // If we're invalidating a region with a symbolic offset, we need to make sure
    924   // we don't treat the base region as uninitialized anymore.
    925   // FIXME: This isn't very precise; see the example in
    926   // collectSubRegionBindings.
    927   if (TopKey.hasSymbolicOffset()) {
    928     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
    929     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
    930                         UnknownVal());
    931   }
    932 
    933   if (Result.isEmpty())
    934     return B.remove(ClusterHead);
    935   return B.add(ClusterHead, Result.asImmutableMap());
    936 }
    937 
    938 namespace {
    939 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
    940 {
    941   const Expr *Ex;
    942   unsigned Count;
    943   const LocationContext *LCtx;
    944   InvalidatedSymbols &IS;
    945   InvalidatedSymbols &ConstIS;
    946   StoreManager::InvalidatedRegions *Regions;
    947 public:
    948   invalidateRegionsWorker(RegionStoreManager &rm,
    949                           ProgramStateManager &stateMgr,
    950                           RegionBindingsRef b,
    951                           const Expr *ex, unsigned count,
    952                           const LocationContext *lctx,
    953                           InvalidatedSymbols &is,
    954                           InvalidatedSymbols &inConstIS,
    955                           StoreManager::InvalidatedRegions *r,
    956                           GlobalsFilterKind GFK)
    957     : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, GFK),
    958       Ex(ex), Count(count), LCtx(lctx), IS(is), ConstIS(inConstIS), Regions(r){}
    959 
    960   /// \param IsConst Specifies if the region we are invalidating is constant.
    961   /// If it is, we invalidate all subregions, but not the base region itself.
    962   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C,
    963                     bool IsConst);
    964   void VisitBinding(SVal V);
    965 };
    966 }
    967 
    968 void invalidateRegionsWorker::VisitBinding(SVal V) {
    969   // A symbol?  Mark it touched by the invalidation.
    970   if (SymbolRef Sym = V.getAsSymbol())
    971     IS.insert(Sym);
    972 
    973   if (const MemRegion *R = V.getAsRegion()) {
    974     AddToWorkList(R);
    975     return;
    976   }
    977 
    978   // Is it a LazyCompoundVal?  All references get invalidated as well.
    979   if (Optional<nonloc::LazyCompoundVal> LCS =
    980           V.getAs<nonloc::LazyCompoundVal>()) {
    981 
    982     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
    983 
    984     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
    985                                                         E = Vals.end();
    986          I != E; ++I)
    987       VisitBinding(*I);
    988 
    989     return;
    990   }
    991 }
    992 
    993 void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
    994                                            const ClusterBindings *C,
    995                                            bool IsConst) {
    996   if (C) {
    997     for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
    998       VisitBinding(I.getData());
    999 
   1000     // Invalidate the contents of a non-const base region.
   1001     if (!IsConst)
   1002       B = B.remove(baseR);
   1003   }
   1004 
   1005   // BlockDataRegion?  If so, invalidate captured variables that are passed
   1006   // by reference.
   1007   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
   1008     for (BlockDataRegion::referenced_vars_iterator
   1009          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
   1010          BI != BE; ++BI) {
   1011       const VarRegion *VR = BI.getCapturedRegion();
   1012       const VarDecl *VD = VR->getDecl();
   1013       if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
   1014         AddToWorkList(VR);
   1015       }
   1016       else if (Loc::isLocType(VR->getValueType())) {
   1017         // Map the current bindings to a Store to retrieve the value
   1018         // of the binding.  If that binding itself is a region, we should
   1019         // invalidate that region.  This is because a block may capture
   1020         // a pointer value, but the thing pointed by that pointer may
   1021         // get invalidated.
   1022         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
   1023         if (Optional<Loc> L = V.getAs<Loc>()) {
   1024           if (const MemRegion *LR = L->getAsRegion())
   1025             AddToWorkList(LR);
   1026         }
   1027       }
   1028     }
   1029     return;
   1030   }
   1031 
   1032   // Symbolic region?
   1033   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
   1034     SymbolRef RegionSym = SR->getSymbol();
   1035 
   1036     // Mark that symbol touched by the invalidation.
   1037     if (IsConst)
   1038       ConstIS.insert(RegionSym);
   1039     else
   1040       IS.insert(RegionSym);
   1041   }
   1042 
   1043   // Nothing else should be done for a const region.
   1044   if (IsConst)
   1045     return;
   1046 
   1047   // Otherwise, we have a normal data region. Record that we touched the region.
   1048   if (Regions)
   1049     Regions->push_back(baseR);
   1050 
   1051   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
   1052     // Invalidate the region by setting its default value to
   1053     // conjured symbol. The type of the symbol is irrelavant.
   1054     DefinedOrUnknownSVal V =
   1055       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
   1056     B = B.addBinding(baseR, BindingKey::Default, V);
   1057     return;
   1058   }
   1059 
   1060   if (!baseR->isBoundable())
   1061     return;
   1062 
   1063   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
   1064   QualType T = TR->getValueType();
   1065 
   1066   if (isInitiallyIncludedGlobalRegion(baseR)) {
   1067     // If the region is a global and we are invalidating all globals,
   1068     // erasing the entry is good enough.  This causes all globals to be lazily
   1069     // symbolicated from the same base symbol.
   1070     return;
   1071   }
   1072 
   1073   if (T->isStructureOrClassType()) {
   1074     // Invalidate the region by setting its default value to
   1075     // conjured symbol. The type of the symbol is irrelavant.
   1076     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
   1077                                                           Ctx.IntTy, Count);
   1078     B = B.addBinding(baseR, BindingKey::Default, V);
   1079     return;
   1080   }
   1081 
   1082   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
   1083       // Set the default value of the array to conjured symbol.
   1084     DefinedOrUnknownSVal V =
   1085     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
   1086                                      AT->getElementType(), Count);
   1087     B = B.addBinding(baseR, BindingKey::Default, V);
   1088     return;
   1089   }
   1090 
   1091   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
   1092                                                         T,Count);
   1093   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
   1094   B = B.addBinding(baseR, BindingKey::Direct, V);
   1095 }
   1096 
   1097 RegionBindingsRef
   1098 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
   1099                                            const Expr *Ex,
   1100                                            unsigned Count,
   1101                                            const LocationContext *LCtx,
   1102                                            RegionBindingsRef B,
   1103                                            InvalidatedRegions *Invalidated) {
   1104   // Bind the globals memory space to a new symbol that we will use to derive
   1105   // the bindings for all globals.
   1106   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
   1107   SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
   1108                                         /* type does not matter */ Ctx.IntTy,
   1109                                         Count);
   1110 
   1111   B = B.removeBinding(GS)
   1112        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
   1113 
   1114   // Even if there are no bindings in the global scope, we still need to
   1115   // record that we touched it.
   1116   if (Invalidated)
   1117     Invalidated->push_back(GS);
   1118 
   1119   return B;
   1120 }
   1121 
   1122 void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W,
   1123                                           ArrayRef<SVal> Values,
   1124                                           bool IsArrayOfConstRegions,
   1125                                           InvalidatedRegions *TopLevelRegions) {
   1126   for (ArrayRef<SVal>::iterator I = Values.begin(),
   1127                                 E = Values.end(); I != E; ++I) {
   1128     SVal V = *I;
   1129     if (Optional<nonloc::LazyCompoundVal> LCS =
   1130         V.getAs<nonloc::LazyCompoundVal>()) {
   1131 
   1132       const SValListTy &Vals = getInterestingValues(*LCS);
   1133 
   1134       for (SValListTy::const_iterator I = Vals.begin(),
   1135                                       E = Vals.end(); I != E; ++I) {
   1136         // Note: the last argument is false here because these are
   1137         // non-top-level regions.
   1138         if (const MemRegion *R = (*I).getAsRegion())
   1139           W.AddToWorkList(R, /*IsConst=*/ false);
   1140       }
   1141       continue;
   1142     }
   1143 
   1144     if (const MemRegion *R = V.getAsRegion()) {
   1145       if (TopLevelRegions)
   1146         TopLevelRegions->push_back(R);
   1147       W.AddToWorkList(R, /*IsConst=*/ IsArrayOfConstRegions);
   1148       continue;
   1149     }
   1150   }
   1151 }
   1152 
   1153 StoreRef
   1154 RegionStoreManager::invalidateRegions(Store store,
   1155                                       ArrayRef<SVal> Values,
   1156                                       ArrayRef<SVal> ConstValues,
   1157                                       const Expr *Ex, unsigned Count,
   1158                                       const LocationContext *LCtx,
   1159                                       const CallEvent *Call,
   1160                                       InvalidatedSymbols &IS,
   1161                                       InvalidatedSymbols &ConstIS,
   1162                                       InvalidatedRegions *TopLevelRegions,
   1163                                       InvalidatedRegions *TopLevelConstRegions,
   1164                                       InvalidatedRegions *Invalidated) {
   1165   GlobalsFilterKind GlobalsFilter;
   1166   if (Call) {
   1167     if (Call->isInSystemHeader())
   1168       GlobalsFilter = GFK_SystemOnly;
   1169     else
   1170       GlobalsFilter = GFK_All;
   1171   } else {
   1172     GlobalsFilter = GFK_None;
   1173   }
   1174 
   1175   RegionBindingsRef B = getRegionBindings(store);
   1176   invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ConstIS,
   1177                             Invalidated, GlobalsFilter);
   1178 
   1179   // Scan the bindings and generate the clusters.
   1180   W.GenerateClusters();
   1181 
   1182   // Add the regions to the worklist.
   1183   populateWorkList(W, Values, /*IsArrayOfConstRegions*/ false,
   1184                    TopLevelRegions);
   1185   populateWorkList(W, ConstValues, /*IsArrayOfConstRegions*/ true,
   1186                    TopLevelConstRegions);
   1187 
   1188   W.RunWorkList();
   1189 
   1190   // Return the new bindings.
   1191   B = W.getRegionBindings();
   1192 
   1193   // For calls, determine which global regions should be invalidated and
   1194   // invalidate them. (Note that function-static and immutable globals are never
   1195   // invalidated by this.)
   1196   // TODO: This could possibly be more precise with modules.
   1197   switch (GlobalsFilter) {
   1198   case GFK_All:
   1199     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
   1200                                Ex, Count, LCtx, B, Invalidated);
   1201     // FALLTHROUGH
   1202   case GFK_SystemOnly:
   1203     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
   1204                                Ex, Count, LCtx, B, Invalidated);
   1205     // FALLTHROUGH
   1206   case GFK_None:
   1207     break;
   1208   }
   1209 
   1210   return StoreRef(B.asStore(), *this);
   1211 }
   1212 
   1213 //===----------------------------------------------------------------------===//
   1214 // Extents for regions.
   1215 //===----------------------------------------------------------------------===//
   1216 
   1217 DefinedOrUnknownSVal
   1218 RegionStoreManager::getSizeInElements(ProgramStateRef state,
   1219                                       const MemRegion *R,
   1220                                       QualType EleTy) {
   1221   SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
   1222   const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
   1223   if (!SizeInt)
   1224     return UnknownVal();
   1225 
   1226   CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
   1227 
   1228   if (Ctx.getAsVariableArrayType(EleTy)) {
   1229     // FIXME: We need to track extra state to properly record the size
   1230     // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
   1231     // we don't have a divide-by-zero below.
   1232     return UnknownVal();
   1233   }
   1234 
   1235   CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
   1236 
   1237   // If a variable is reinterpreted as a type that doesn't fit into a larger
   1238   // type evenly, round it down.
   1239   // This is a signed value, since it's used in arithmetic with signed indices.
   1240   return svalBuilder.makeIntVal(RegionSize / EleSize, false);
   1241 }
   1242 
   1243 //===----------------------------------------------------------------------===//
   1244 // Location and region casting.
   1245 //===----------------------------------------------------------------------===//
   1246 
   1247 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
   1248 ///  type.  'Array' represents the lvalue of the array being decayed
   1249 ///  to a pointer, and the returned SVal represents the decayed
   1250 ///  version of that lvalue (i.e., a pointer to the first element of
   1251 ///  the array).  This is called by ExprEngine when evaluating casts
   1252 ///  from arrays to pointers.
   1253 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
   1254   if (!Array.getAs<loc::MemRegionVal>())
   1255     return UnknownVal();
   1256 
   1257   const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion();
   1258   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
   1259   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
   1260 }
   1261 
   1262 //===----------------------------------------------------------------------===//
   1263 // Loading values from regions.
   1264 //===----------------------------------------------------------------------===//
   1265 
   1266 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
   1267   assert(!L.getAs<UnknownVal>() && "location unknown");
   1268   assert(!L.getAs<UndefinedVal>() && "location undefined");
   1269 
   1270   // For access to concrete addresses, return UnknownVal.  Checks
   1271   // for null dereferences (and similar errors) are done by checkers, not
   1272   // the Store.
   1273   // FIXME: We can consider lazily symbolicating such memory, but we really
   1274   // should defer this when we can reason easily about symbolicating arrays
   1275   // of bytes.
   1276   if (L.getAs<loc::ConcreteInt>()) {
   1277     return UnknownVal();
   1278   }
   1279   if (!L.getAs<loc::MemRegionVal>()) {
   1280     return UnknownVal();
   1281   }
   1282 
   1283   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
   1284 
   1285   if (isa<AllocaRegion>(MR) ||
   1286       isa<SymbolicRegion>(MR) ||
   1287       isa<CodeTextRegion>(MR)) {
   1288     if (T.isNull()) {
   1289       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
   1290         T = TR->getLocationType();
   1291       else {
   1292         const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
   1293         T = SR->getSymbol()->getType();
   1294       }
   1295     }
   1296     MR = GetElementZeroRegion(MR, T);
   1297   }
   1298 
   1299   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
   1300   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
   1301   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
   1302   QualType RTy = R->getValueType();
   1303 
   1304   // FIXME: we do not yet model the parts of a complex type, so treat the
   1305   // whole thing as "unknown".
   1306   if (RTy->isAnyComplexType())
   1307     return UnknownVal();
   1308 
   1309   // FIXME: We should eventually handle funny addressing.  e.g.:
   1310   //
   1311   //   int x = ...;
   1312   //   int *p = &x;
   1313   //   char *q = (char*) p;
   1314   //   char c = *q;  // returns the first byte of 'x'.
   1315   //
   1316   // Such funny addressing will occur due to layering of regions.
   1317   if (RTy->isStructureOrClassType())
   1318     return getBindingForStruct(B, R);
   1319 
   1320   // FIXME: Handle unions.
   1321   if (RTy->isUnionType())
   1322     return UnknownVal();
   1323 
   1324   if (RTy->isArrayType()) {
   1325     if (RTy->isConstantArrayType())
   1326       return getBindingForArray(B, R);
   1327     else
   1328       return UnknownVal();
   1329   }
   1330 
   1331   // FIXME: handle Vector types.
   1332   if (RTy->isVectorType())
   1333     return UnknownVal();
   1334 
   1335   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
   1336     return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
   1337 
   1338   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
   1339     // FIXME: Here we actually perform an implicit conversion from the loaded
   1340     // value to the element type.  Eventually we want to compose these values
   1341     // more intelligently.  For example, an 'element' can encompass multiple
   1342     // bound regions (e.g., several bound bytes), or could be a subset of
   1343     // a larger value.
   1344     return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
   1345   }
   1346 
   1347   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
   1348     // FIXME: Here we actually perform an implicit conversion from the loaded
   1349     // value to the ivar type.  What we should model is stores to ivars
   1350     // that blow past the extent of the ivar.  If the address of the ivar is
   1351     // reinterpretted, it is possible we stored a different value that could
   1352     // fit within the ivar.  Either we need to cast these when storing them
   1353     // or reinterpret them lazily (as we do here).
   1354     return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
   1355   }
   1356 
   1357   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
   1358     // FIXME: Here we actually perform an implicit conversion from the loaded
   1359     // value to the variable type.  What we should model is stores to variables
   1360     // that blow past the extent of the variable.  If the address of the
   1361     // variable is reinterpretted, it is possible we stored a different value
   1362     // that could fit within the variable.  Either we need to cast these when
   1363     // storing them or reinterpret them lazily (as we do here).
   1364     return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
   1365   }
   1366 
   1367   const SVal *V = B.lookup(R, BindingKey::Direct);
   1368 
   1369   // Check if the region has a binding.
   1370   if (V)
   1371     return *V;
   1372 
   1373   // The location does not have a bound value.  This means that it has
   1374   // the value it had upon its creation and/or entry to the analyzed
   1375   // function/method.  These are either symbolic values or 'undefined'.
   1376   if (R->hasStackNonParametersStorage()) {
   1377     // All stack variables are considered to have undefined values
   1378     // upon creation.  All heap allocated blocks are considered to
   1379     // have undefined values as well unless they are explicitly bound
   1380     // to specific values.
   1381     return UndefinedVal();
   1382   }
   1383 
   1384   // All other values are symbolic.
   1385   return svalBuilder.getRegionValueSymbolVal(R);
   1386 }
   1387 
   1388 static QualType getUnderlyingType(const SubRegion *R) {
   1389   QualType RegionTy;
   1390   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
   1391     RegionTy = TVR->getValueType();
   1392 
   1393   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
   1394     RegionTy = SR->getSymbol()->getType();
   1395 
   1396   return RegionTy;
   1397 }
   1398 
   1399 /// Checks to see if store \p B has a lazy binding for region \p R.
   1400 ///
   1401 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
   1402 /// if there are additional bindings within \p R.
   1403 ///
   1404 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
   1405 /// for lazy bindings for super-regions of \p R.
   1406 static Optional<nonloc::LazyCompoundVal>
   1407 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
   1408                        const SubRegion *R, bool AllowSubregionBindings) {
   1409   Optional<SVal> V = B.getDefaultBinding(R);
   1410   if (!V)
   1411     return None;
   1412 
   1413   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
   1414   if (!LCV)
   1415     return None;
   1416 
   1417   // If the LCV is for a subregion, the types might not match, and we shouldn't
   1418   // reuse the binding.
   1419   QualType RegionTy = getUnderlyingType(R);
   1420   if (!RegionTy.isNull() &&
   1421       !RegionTy->isVoidPointerType()) {
   1422     QualType SourceRegionTy = LCV->getRegion()->getValueType();
   1423     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
   1424       return None;
   1425   }
   1426 
   1427   if (!AllowSubregionBindings) {
   1428     // If there are any other bindings within this region, we shouldn't reuse
   1429     // the top-level binding.
   1430     SmallVector<BindingPair, 16> Bindings;
   1431     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
   1432                              /*IncludeAllDefaultBindings=*/true);
   1433     if (Bindings.size() > 1)
   1434       return None;
   1435   }
   1436 
   1437   return *LCV;
   1438 }
   1439 
   1440 
   1441 std::pair<Store, const SubRegion *>
   1442 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
   1443                                    const SubRegion *R,
   1444                                    const SubRegion *originalRegion) {
   1445   if (originalRegion != R) {
   1446     if (Optional<nonloc::LazyCompoundVal> V =
   1447           getExistingLazyBinding(svalBuilder, B, R, true))
   1448       return std::make_pair(V->getStore(), V->getRegion());
   1449   }
   1450 
   1451   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
   1452   StoreRegionPair Result = StoreRegionPair();
   1453 
   1454   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
   1455     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
   1456                              originalRegion);
   1457 
   1458     if (Result.second)
   1459       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
   1460 
   1461   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
   1462     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
   1463                                        originalRegion);
   1464 
   1465     if (Result.second)
   1466       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
   1467 
   1468   } else if (const CXXBaseObjectRegion *BaseReg =
   1469                dyn_cast<CXXBaseObjectRegion>(R)) {
   1470     // C++ base object region is another kind of region that we should blast
   1471     // through to look for lazy compound value. It is like a field region.
   1472     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
   1473                              originalRegion);
   1474 
   1475     if (Result.second)
   1476       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
   1477                                                             Result.second);
   1478   }
   1479 
   1480   return Result;
   1481 }
   1482 
   1483 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
   1484                                               const ElementRegion* R) {
   1485   // We do not currently model bindings of the CompoundLiteralregion.
   1486   if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
   1487     return UnknownVal();
   1488 
   1489   // Check if the region has a binding.
   1490   if (const Optional<SVal> &V = B.getDirectBinding(R))
   1491     return *V;
   1492 
   1493   const MemRegion* superR = R->getSuperRegion();
   1494 
   1495   // Check if the region is an element region of a string literal.
   1496   if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
   1497     // FIXME: Handle loads from strings where the literal is treated as
   1498     // an integer, e.g., *((unsigned int*)"hello")
   1499     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
   1500     if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
   1501       return UnknownVal();
   1502 
   1503     const StringLiteral *Str = StrR->getStringLiteral();
   1504     SVal Idx = R->getIndex();
   1505     if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
   1506       int64_t i = CI->getValue().getSExtValue();
   1507       // Abort on string underrun.  This can be possible by arbitrary
   1508       // clients of getBindingForElement().
   1509       if (i < 0)
   1510         return UndefinedVal();
   1511       int64_t length = Str->getLength();
   1512       // Technically, only i == length is guaranteed to be null.
   1513       // However, such overflows should be caught before reaching this point;
   1514       // the only time such an access would be made is if a string literal was
   1515       // used to initialize a larger array.
   1516       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
   1517       return svalBuilder.makeIntVal(c, T);
   1518     }
   1519   }
   1520 
   1521   // Check for loads from a code text region.  For such loads, just give up.
   1522   if (isa<CodeTextRegion>(superR))
   1523     return UnknownVal();
   1524 
   1525   // Handle the case where we are indexing into a larger scalar object.
   1526   // For example, this handles:
   1527   //   int x = ...
   1528   //   char *y = &x;
   1529   //   return *y;
   1530   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
   1531   const RegionRawOffset &O = R->getAsArrayOffset();
   1532 
   1533   // If we cannot reason about the offset, return an unknown value.
   1534   if (!O.getRegion())
   1535     return UnknownVal();
   1536 
   1537   if (const TypedValueRegion *baseR =
   1538         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
   1539     QualType baseT = baseR->getValueType();
   1540     if (baseT->isScalarType()) {
   1541       QualType elemT = R->getElementType();
   1542       if (elemT->isScalarType()) {
   1543         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
   1544           if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
   1545             if (SymbolRef parentSym = V->getAsSymbol())
   1546               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
   1547 
   1548             if (V->isUnknownOrUndef())
   1549               return *V;
   1550             // Other cases: give up.  We are indexing into a larger object
   1551             // that has some value, but we don't know how to handle that yet.
   1552             return UnknownVal();
   1553           }
   1554         }
   1555       }
   1556     }
   1557   }
   1558   return getBindingForFieldOrElementCommon(B, R, R->getElementType());
   1559 }
   1560 
   1561 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
   1562                                             const FieldRegion* R) {
   1563 
   1564   // Check if the region has a binding.
   1565   if (const Optional<SVal> &V = B.getDirectBinding(R))
   1566     return *V;
   1567 
   1568   QualType Ty = R->getValueType();
   1569   return getBindingForFieldOrElementCommon(B, R, Ty);
   1570 }
   1571 
   1572 Optional<SVal>
   1573 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
   1574                                                      const MemRegion *superR,
   1575                                                      const TypedValueRegion *R,
   1576                                                      QualType Ty) {
   1577 
   1578   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
   1579     const SVal &val = D.getValue();
   1580     if (SymbolRef parentSym = val.getAsSymbol())
   1581       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
   1582 
   1583     if (val.isZeroConstant())
   1584       return svalBuilder.makeZeroVal(Ty);
   1585 
   1586     if (val.isUnknownOrUndef())
   1587       return val;
   1588 
   1589     // Lazy bindings are usually handled through getExistingLazyBinding().
   1590     // We should unify these two code paths at some point.
   1591     if (val.getAs<nonloc::LazyCompoundVal>())
   1592       return val;
   1593 
   1594     llvm_unreachable("Unknown default value");
   1595   }
   1596 
   1597   return None;
   1598 }
   1599 
   1600 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
   1601                                         RegionBindingsRef LazyBinding) {
   1602   SVal Result;
   1603   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
   1604     Result = getBindingForElement(LazyBinding, ER);
   1605   else
   1606     Result = getBindingForField(LazyBinding,
   1607                                 cast<FieldRegion>(LazyBindingRegion));
   1608 
   1609   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
   1610   // default value for /part/ of an aggregate from a default value for the
   1611   // /entire/ aggregate. The most common case of this is when struct Outer
   1612   // has as its first member a struct Inner, which is copied in from a stack
   1613   // variable. In this case, even if the Outer's default value is symbolic, 0,
   1614   // or unknown, it gets overridden by the Inner's default value of undefined.
   1615   //
   1616   // This is a general problem -- if the Inner is zero-initialized, the Outer
   1617   // will now look zero-initialized. The proper way to solve this is with a
   1618   // new version of RegionStore that tracks the extent of a binding as well
   1619   // as the offset.
   1620   //
   1621   // This hack only takes care of the undefined case because that can very
   1622   // quickly result in a warning.
   1623   if (Result.isUndef())
   1624     Result = UnknownVal();
   1625 
   1626   return Result;
   1627 }
   1628 
   1629 SVal
   1630 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
   1631                                                       const TypedValueRegion *R,
   1632                                                       QualType Ty) {
   1633 
   1634   // At this point we have already checked in either getBindingForElement or
   1635   // getBindingForField if 'R' has a direct binding.
   1636 
   1637   // Lazy binding?
   1638   Store lazyBindingStore = NULL;
   1639   const SubRegion *lazyBindingRegion = NULL;
   1640   llvm::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
   1641   if (lazyBindingRegion)
   1642     return getLazyBinding(lazyBindingRegion,
   1643                           getRegionBindings(lazyBindingStore));
   1644 
   1645   // Record whether or not we see a symbolic index.  That can completely
   1646   // be out of scope of our lookup.
   1647   bool hasSymbolicIndex = false;
   1648 
   1649   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
   1650   // default value for /part/ of an aggregate from a default value for the
   1651   // /entire/ aggregate. The most common case of this is when struct Outer
   1652   // has as its first member a struct Inner, which is copied in from a stack
   1653   // variable. In this case, even if the Outer's default value is symbolic, 0,
   1654   // or unknown, it gets overridden by the Inner's default value of undefined.
   1655   //
   1656   // This is a general problem -- if the Inner is zero-initialized, the Outer
   1657   // will now look zero-initialized. The proper way to solve this is with a
   1658   // new version of RegionStore that tracks the extent of a binding as well
   1659   // as the offset.
   1660   //
   1661   // This hack only takes care of the undefined case because that can very
   1662   // quickly result in a warning.
   1663   bool hasPartialLazyBinding = false;
   1664 
   1665   const SubRegion *SR = dyn_cast<SubRegion>(R);
   1666   while (SR) {
   1667     const MemRegion *Base = SR->getSuperRegion();
   1668     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
   1669       if (D->getAs<nonloc::LazyCompoundVal>()) {
   1670         hasPartialLazyBinding = true;
   1671         break;
   1672       }
   1673 
   1674       return *D;
   1675     }
   1676 
   1677     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
   1678       NonLoc index = ER->getIndex();
   1679       if (!index.isConstant())
   1680         hasSymbolicIndex = true;
   1681     }
   1682 
   1683     // If our super region is a field or element itself, walk up the region
   1684     // hierarchy to see if there is a default value installed in an ancestor.
   1685     SR = dyn_cast<SubRegion>(Base);
   1686   }
   1687 
   1688   if (R->hasStackNonParametersStorage()) {
   1689     if (isa<ElementRegion>(R)) {
   1690       // Currently we don't reason specially about Clang-style vectors.  Check
   1691       // if superR is a vector and if so return Unknown.
   1692       if (const TypedValueRegion *typedSuperR =
   1693             dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
   1694         if (typedSuperR->getValueType()->isVectorType())
   1695           return UnknownVal();
   1696       }
   1697     }
   1698 
   1699     // FIXME: We also need to take ElementRegions with symbolic indexes into
   1700     // account.  This case handles both directly accessing an ElementRegion
   1701     // with a symbolic offset, but also fields within an element with
   1702     // a symbolic offset.
   1703     if (hasSymbolicIndex)
   1704       return UnknownVal();
   1705 
   1706     if (!hasPartialLazyBinding)
   1707       return UndefinedVal();
   1708   }
   1709 
   1710   // All other values are symbolic.
   1711   return svalBuilder.getRegionValueSymbolVal(R);
   1712 }
   1713 
   1714 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
   1715                                                const ObjCIvarRegion* R) {
   1716   // Check if the region has a binding.
   1717   if (const Optional<SVal> &V = B.getDirectBinding(R))
   1718     return *V;
   1719 
   1720   const MemRegion *superR = R->getSuperRegion();
   1721 
   1722   // Check if the super region has a default binding.
   1723   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
   1724     if (SymbolRef parentSym = V->getAsSymbol())
   1725       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
   1726 
   1727     // Other cases: give up.
   1728     return UnknownVal();
   1729   }
   1730 
   1731   return getBindingForLazySymbol(R);
   1732 }
   1733 
   1734 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
   1735                                           const VarRegion *R) {
   1736 
   1737   // Check if the region has a binding.
   1738   if (const Optional<SVal> &V = B.getDirectBinding(R))
   1739     return *V;
   1740 
   1741   // Lazily derive a value for the VarRegion.
   1742   const VarDecl *VD = R->getDecl();
   1743   const MemSpaceRegion *MS = R->getMemorySpace();
   1744 
   1745   // Arguments are always symbolic.
   1746   if (isa<StackArgumentsSpaceRegion>(MS))
   1747     return svalBuilder.getRegionValueSymbolVal(R);
   1748 
   1749   // Is 'VD' declared constant?  If so, retrieve the constant value.
   1750   if (VD->getType().isConstQualified())
   1751     if (const Expr *Init = VD->getInit())
   1752       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
   1753         return *V;
   1754 
   1755   // This must come after the check for constants because closure-captured
   1756   // constant variables may appear in UnknownSpaceRegion.
   1757   if (isa<UnknownSpaceRegion>(MS))
   1758     return svalBuilder.getRegionValueSymbolVal(R);
   1759 
   1760   if (isa<GlobalsSpaceRegion>(MS)) {
   1761     QualType T = VD->getType();
   1762 
   1763     // Function-scoped static variables are default-initialized to 0; if they
   1764     // have an initializer, it would have been processed by now.
   1765     if (isa<StaticGlobalSpaceRegion>(MS))
   1766       return svalBuilder.makeZeroVal(T);
   1767 
   1768     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
   1769       assert(!V->getAs<nonloc::LazyCompoundVal>());
   1770       return V.getValue();
   1771     }
   1772 
   1773     return svalBuilder.getRegionValueSymbolVal(R);
   1774   }
   1775 
   1776   return UndefinedVal();
   1777 }
   1778 
   1779 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
   1780   // All other values are symbolic.
   1781   return svalBuilder.getRegionValueSymbolVal(R);
   1782 }
   1783 
   1784 const RegionStoreManager::SValListTy &
   1785 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
   1786   // First, check the cache.
   1787   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
   1788   if (I != LazyBindingsMap.end())
   1789     return I->second;
   1790 
   1791   // If we don't have a list of values cached, start constructing it.
   1792   SValListTy List;
   1793 
   1794   const SubRegion *LazyR = LCV.getRegion();
   1795   RegionBindingsRef B = getRegionBindings(LCV.getStore());
   1796 
   1797   // If this region had /no/ bindings at the time, there are no interesting
   1798   // values to return.
   1799   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
   1800   if (!Cluster)
   1801     return (LazyBindingsMap[LCV.getCVData()] = llvm_move(List));
   1802 
   1803   SmallVector<BindingPair, 32> Bindings;
   1804   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
   1805                            /*IncludeAllDefaultBindings=*/true);
   1806   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
   1807                                                     E = Bindings.end();
   1808        I != E; ++I) {
   1809     SVal V = I->second;
   1810     if (V.isUnknownOrUndef() || V.isConstant())
   1811       continue;
   1812 
   1813     if (Optional<nonloc::LazyCompoundVal> InnerLCV =
   1814             V.getAs<nonloc::LazyCompoundVal>()) {
   1815       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
   1816       List.insert(List.end(), InnerList.begin(), InnerList.end());
   1817       continue;
   1818     }
   1819 
   1820     List.push_back(V);
   1821   }
   1822 
   1823   return (LazyBindingsMap[LCV.getCVData()] = llvm_move(List));
   1824 }
   1825 
   1826 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
   1827                                              const TypedValueRegion *R) {
   1828   if (Optional<nonloc::LazyCompoundVal> V =
   1829         getExistingLazyBinding(svalBuilder, B, R, false))
   1830     return *V;
   1831 
   1832   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
   1833 }
   1834 
   1835 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
   1836                                              const TypedValueRegion *R) {
   1837   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
   1838   if (RD->field_empty())
   1839     return UnknownVal();
   1840 
   1841   return createLazyBinding(B, R);
   1842 }
   1843 
   1844 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
   1845                                             const TypedValueRegion *R) {
   1846   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
   1847          "Only constant array types can have compound bindings.");
   1848 
   1849   return createLazyBinding(B, R);
   1850 }
   1851 
   1852 bool RegionStoreManager::includedInBindings(Store store,
   1853                                             const MemRegion *region) const {
   1854   RegionBindingsRef B = getRegionBindings(store);
   1855   region = region->getBaseRegion();
   1856 
   1857   // Quick path: if the base is the head of a cluster, the region is live.
   1858   if (B.lookup(region))
   1859     return true;
   1860 
   1861   // Slow path: if the region is the VALUE of any binding, it is live.
   1862   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
   1863     const ClusterBindings &Cluster = RI.getData();
   1864     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
   1865          CI != CE; ++CI) {
   1866       const SVal &D = CI.getData();
   1867       if (const MemRegion *R = D.getAsRegion())
   1868         if (R->getBaseRegion() == region)
   1869           return true;
   1870     }
   1871   }
   1872 
   1873   return false;
   1874 }
   1875 
   1876 //===----------------------------------------------------------------------===//
   1877 // Binding values to regions.
   1878 //===----------------------------------------------------------------------===//
   1879 
   1880 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
   1881   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
   1882     if (const MemRegion* R = LV->getRegion())
   1883       return StoreRef(getRegionBindings(ST).removeBinding(R)
   1884                                            .asImmutableMap()
   1885                                            .getRootWithoutRetain(),
   1886                       *this);
   1887 
   1888   return StoreRef(ST, *this);
   1889 }
   1890 
   1891 RegionBindingsRef
   1892 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
   1893   if (L.getAs<loc::ConcreteInt>())
   1894     return B;
   1895 
   1896   // If we get here, the location should be a region.
   1897   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
   1898 
   1899   // Check if the region is a struct region.
   1900   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
   1901     QualType Ty = TR->getValueType();
   1902     if (Ty->isArrayType())
   1903       return bindArray(B, TR, V);
   1904     if (Ty->isStructureOrClassType())
   1905       return bindStruct(B, TR, V);
   1906     if (Ty->isVectorType())
   1907       return bindVector(B, TR, V);
   1908   }
   1909 
   1910   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
   1911     // Binding directly to a symbolic region should be treated as binding
   1912     // to element 0.
   1913     QualType T = SR->getSymbol()->getType();
   1914     if (T->isAnyPointerType() || T->isReferenceType())
   1915       T = T->getPointeeType();
   1916 
   1917     R = GetElementZeroRegion(SR, T);
   1918   }
   1919 
   1920   // Clear out bindings that may overlap with this binding.
   1921   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
   1922   return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
   1923 }
   1924 
   1925 RegionBindingsRef
   1926 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
   1927                                             const MemRegion *R,
   1928                                             QualType T) {
   1929   SVal V;
   1930 
   1931   if (Loc::isLocType(T))
   1932     V = svalBuilder.makeNull();
   1933   else if (T->isIntegralOrEnumerationType())
   1934     V = svalBuilder.makeZeroVal(T);
   1935   else if (T->isStructureOrClassType() || T->isArrayType()) {
   1936     // Set the default value to a zero constant when it is a structure
   1937     // or array.  The type doesn't really matter.
   1938     V = svalBuilder.makeZeroVal(Ctx.IntTy);
   1939   }
   1940   else {
   1941     // We can't represent values of this type, but we still need to set a value
   1942     // to record that the region has been initialized.
   1943     // If this assertion ever fires, a new case should be added above -- we
   1944     // should know how to default-initialize any value we can symbolicate.
   1945     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
   1946     V = UnknownVal();
   1947   }
   1948 
   1949   return B.addBinding(R, BindingKey::Default, V);
   1950 }
   1951 
   1952 RegionBindingsRef
   1953 RegionStoreManager::bindArray(RegionBindingsConstRef B,
   1954                               const TypedValueRegion* R,
   1955                               SVal Init) {
   1956 
   1957   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
   1958   QualType ElementTy = AT->getElementType();
   1959   Optional<uint64_t> Size;
   1960 
   1961   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
   1962     Size = CAT->getSize().getZExtValue();
   1963 
   1964   // Check if the init expr is a string literal.
   1965   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
   1966     const StringRegion *S = cast<StringRegion>(MRV->getRegion());
   1967 
   1968     // Treat the string as a lazy compound value.
   1969     StoreRef store(B.asStore(), *this);
   1970     nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S)
   1971         .castAs<nonloc::LazyCompoundVal>();
   1972     return bindAggregate(B, R, LCV);
   1973   }
   1974 
   1975   // Handle lazy compound values.
   1976   if (Init.getAs<nonloc::LazyCompoundVal>())
   1977     return bindAggregate(B, R, Init);
   1978 
   1979   // Remaining case: explicit compound values.
   1980 
   1981   if (Init.isUnknown())
   1982     return setImplicitDefaultValue(B, R, ElementTy);
   1983 
   1984   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
   1985   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
   1986   uint64_t i = 0;
   1987 
   1988   RegionBindingsRef NewB(B);
   1989 
   1990   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
   1991     // The init list might be shorter than the array length.
   1992     if (VI == VE)
   1993       break;
   1994 
   1995     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
   1996     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
   1997 
   1998     if (ElementTy->isStructureOrClassType())
   1999       NewB = bindStruct(NewB, ER, *VI);
   2000     else if (ElementTy->isArrayType())
   2001       NewB = bindArray(NewB, ER, *VI);
   2002     else
   2003       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
   2004   }
   2005 
   2006   // If the init list is shorter than the array length, set the
   2007   // array default value.
   2008   if (Size.hasValue() && i < Size.getValue())
   2009     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
   2010 
   2011   return NewB;
   2012 }
   2013 
   2014 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
   2015                                                  const TypedValueRegion* R,
   2016                                                  SVal V) {
   2017   QualType T = R->getValueType();
   2018   assert(T->isVectorType());
   2019   const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
   2020 
   2021   // Handle lazy compound values and symbolic values.
   2022   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
   2023     return bindAggregate(B, R, V);
   2024 
   2025   // We may get non-CompoundVal accidentally due to imprecise cast logic or
   2026   // that we are binding symbolic struct value. Kill the field values, and if
   2027   // the value is symbolic go and bind it as a "default" binding.
   2028   if (!V.getAs<nonloc::CompoundVal>()) {
   2029     return bindAggregate(B, R, UnknownVal());
   2030   }
   2031 
   2032   QualType ElemType = VT->getElementType();
   2033   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
   2034   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
   2035   unsigned index = 0, numElements = VT->getNumElements();
   2036   RegionBindingsRef NewB(B);
   2037 
   2038   for ( ; index != numElements ; ++index) {
   2039     if (VI == VE)
   2040       break;
   2041 
   2042     NonLoc Idx = svalBuilder.makeArrayIndex(index);
   2043     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
   2044 
   2045     if (ElemType->isArrayType())
   2046       NewB = bindArray(NewB, ER, *VI);
   2047     else if (ElemType->isStructureOrClassType())
   2048       NewB = bindStruct(NewB, ER, *VI);
   2049     else
   2050       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
   2051   }
   2052   return NewB;
   2053 }
   2054 
   2055 Optional<RegionBindingsRef>
   2056 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
   2057                                        const TypedValueRegion *R,
   2058                                        const RecordDecl *RD,
   2059                                        nonloc::LazyCompoundVal LCV) {
   2060   FieldVector Fields;
   2061 
   2062   if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
   2063     if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
   2064       return None;
   2065 
   2066   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
   2067        I != E; ++I) {
   2068     const FieldDecl *FD = *I;
   2069     if (FD->isUnnamedBitfield())
   2070       continue;
   2071 
   2072     // If there are too many fields, or if any of the fields are aggregates,
   2073     // just use the LCV as a default binding.
   2074     if (Fields.size() == SmallStructLimit)
   2075       return None;
   2076 
   2077     QualType Ty = FD->getType();
   2078     if (!(Ty->isScalarType() || Ty->isReferenceType()))
   2079       return None;
   2080 
   2081     Fields.push_back(*I);
   2082   }
   2083 
   2084   RegionBindingsRef NewB = B;
   2085 
   2086   for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
   2087     const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
   2088     SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
   2089 
   2090     const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
   2091     NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
   2092   }
   2093 
   2094   return NewB;
   2095 }
   2096 
   2097 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
   2098                                                  const TypedValueRegion* R,
   2099                                                  SVal V) {
   2100   if (!Features.supportsFields())
   2101     return B;
   2102 
   2103   QualType T = R->getValueType();
   2104   assert(T->isStructureOrClassType());
   2105 
   2106   const RecordType* RT = T->getAs<RecordType>();
   2107   const RecordDecl *RD = RT->getDecl();
   2108 
   2109   if (!RD->isCompleteDefinition())
   2110     return B;
   2111 
   2112   // Handle lazy compound values and symbolic values.
   2113   if (Optional<nonloc::LazyCompoundVal> LCV =
   2114         V.getAs<nonloc::LazyCompoundVal>()) {
   2115     if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
   2116       return *NewB;
   2117     return bindAggregate(B, R, V);
   2118   }
   2119   if (V.getAs<nonloc::SymbolVal>())
   2120     return bindAggregate(B, R, V);
   2121 
   2122   // We may get non-CompoundVal accidentally due to imprecise cast logic or
   2123   // that we are binding symbolic struct value. Kill the field values, and if
   2124   // the value is symbolic go and bind it as a "default" binding.
   2125   if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
   2126     return bindAggregate(B, R, UnknownVal());
   2127 
   2128   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
   2129   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
   2130 
   2131   RecordDecl::field_iterator FI, FE;
   2132   RegionBindingsRef NewB(B);
   2133 
   2134   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
   2135 
   2136     if (VI == VE)
   2137       break;
   2138 
   2139     // Skip any unnamed bitfields to stay in sync with the initializers.
   2140     if (FI->isUnnamedBitfield())
   2141       continue;
   2142 
   2143     QualType FTy = FI->getType();
   2144     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
   2145 
   2146     if (FTy->isArrayType())
   2147       NewB = bindArray(NewB, FR, *VI);
   2148     else if (FTy->isStructureOrClassType())
   2149       NewB = bindStruct(NewB, FR, *VI);
   2150     else
   2151       NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
   2152     ++VI;
   2153   }
   2154 
   2155   // There may be fewer values in the initialize list than the fields of struct.
   2156   if (FI != FE) {
   2157     NewB = NewB.addBinding(R, BindingKey::Default,
   2158                            svalBuilder.makeIntVal(0, false));
   2159   }
   2160 
   2161   return NewB;
   2162 }
   2163 
   2164 RegionBindingsRef
   2165 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
   2166                                   const TypedRegion *R,
   2167                                   SVal Val) {
   2168   // Remove the old bindings, using 'R' as the root of all regions
   2169   // we will invalidate. Then add the new binding.
   2170   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
   2171 }
   2172 
   2173 //===----------------------------------------------------------------------===//
   2174 // State pruning.
   2175 //===----------------------------------------------------------------------===//
   2176 
   2177 namespace {
   2178 class removeDeadBindingsWorker :
   2179   public ClusterAnalysis<removeDeadBindingsWorker> {
   2180   SmallVector<const SymbolicRegion*, 12> Postponed;
   2181   SymbolReaper &SymReaper;
   2182   const StackFrameContext *CurrentLCtx;
   2183 
   2184 public:
   2185   removeDeadBindingsWorker(RegionStoreManager &rm,
   2186                            ProgramStateManager &stateMgr,
   2187                            RegionBindingsRef b, SymbolReaper &symReaper,
   2188                            const StackFrameContext *LCtx)
   2189     : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b, GFK_None),
   2190       SymReaper(symReaper), CurrentLCtx(LCtx) {}
   2191 
   2192   // Called by ClusterAnalysis.
   2193   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
   2194   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
   2195   using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster;
   2196 
   2197   bool UpdatePostponed();
   2198   void VisitBinding(SVal V);
   2199 };
   2200 }
   2201 
   2202 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
   2203                                                    const ClusterBindings &C) {
   2204 
   2205   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
   2206     if (SymReaper.isLive(VR))
   2207       AddToWorkList(baseR, &C);
   2208 
   2209     return;
   2210   }
   2211 
   2212   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
   2213     if (SymReaper.isLive(SR->getSymbol()))
   2214       AddToWorkList(SR, &C);
   2215     else
   2216       Postponed.push_back(SR);
   2217 
   2218     return;
   2219   }
   2220 
   2221   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
   2222     AddToWorkList(baseR, &C);
   2223     return;
   2224   }
   2225 
   2226   // CXXThisRegion in the current or parent location context is live.
   2227   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
   2228     const StackArgumentsSpaceRegion *StackReg =
   2229       cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
   2230     const StackFrameContext *RegCtx = StackReg->getStackFrame();
   2231     if (CurrentLCtx &&
   2232         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
   2233       AddToWorkList(TR, &C);
   2234   }
   2235 }
   2236 
   2237 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
   2238                                             const ClusterBindings *C) {
   2239   if (!C)
   2240     return;
   2241 
   2242   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
   2243   // This means we should continue to track that symbol.
   2244   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
   2245     SymReaper.markLive(SymR->getSymbol());
   2246 
   2247   for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
   2248     VisitBinding(I.getData());
   2249 }
   2250 
   2251 void removeDeadBindingsWorker::VisitBinding(SVal V) {
   2252   // Is it a LazyCompoundVal?  All referenced regions are live as well.
   2253   if (Optional<nonloc::LazyCompoundVal> LCS =
   2254           V.getAs<nonloc::LazyCompoundVal>()) {
   2255 
   2256     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
   2257 
   2258     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
   2259                                                         E = Vals.end();
   2260          I != E; ++I)
   2261       VisitBinding(*I);
   2262 
   2263     return;
   2264   }
   2265 
   2266   // If V is a region, then add it to the worklist.
   2267   if (const MemRegion *R = V.getAsRegion()) {
   2268     AddToWorkList(R);
   2269 
   2270     // All regions captured by a block are also live.
   2271     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
   2272       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
   2273                                                 E = BR->referenced_vars_end();
   2274       for ( ; I != E; ++I)
   2275         AddToWorkList(I.getCapturedRegion());
   2276     }
   2277   }
   2278 
   2279 
   2280   // Update the set of live symbols.
   2281   for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
   2282        SI!=SE; ++SI)
   2283     SymReaper.markLive(*SI);
   2284 }
   2285 
   2286 bool removeDeadBindingsWorker::UpdatePostponed() {
   2287   // See if any postponed SymbolicRegions are actually live now, after
   2288   // having done a scan.
   2289   bool changed = false;
   2290 
   2291   for (SmallVectorImpl<const SymbolicRegion*>::iterator
   2292         I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
   2293     if (const SymbolicRegion *SR = *I) {
   2294       if (SymReaper.isLive(SR->getSymbol())) {
   2295         changed |= AddToWorkList(SR);
   2296         *I = NULL;
   2297       }
   2298     }
   2299   }
   2300 
   2301   return changed;
   2302 }
   2303 
   2304 StoreRef RegionStoreManager::removeDeadBindings(Store store,
   2305                                                 const StackFrameContext *LCtx,
   2306                                                 SymbolReaper& SymReaper) {
   2307   RegionBindingsRef B = getRegionBindings(store);
   2308   removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
   2309   W.GenerateClusters();
   2310 
   2311   // Enqueue the region roots onto the worklist.
   2312   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
   2313        E = SymReaper.region_end(); I != E; ++I) {
   2314     W.AddToWorkList(*I);
   2315   }
   2316 
   2317   do W.RunWorkList(); while (W.UpdatePostponed());
   2318 
   2319   // We have now scanned the store, marking reachable regions and symbols
   2320   // as live.  We now remove all the regions that are dead from the store
   2321   // as well as update DSymbols with the set symbols that are now dead.
   2322   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
   2323     const MemRegion *Base = I.getKey();
   2324 
   2325     // If the cluster has been visited, we know the region has been marked.
   2326     if (W.isVisited(Base))
   2327       continue;
   2328 
   2329     // Remove the dead entry.
   2330     B = B.remove(Base);
   2331 
   2332     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
   2333       SymReaper.maybeDead(SymR->getSymbol());
   2334 
   2335     // Mark all non-live symbols that this binding references as dead.
   2336     const ClusterBindings &Cluster = I.getData();
   2337     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
   2338          CI != CE; ++CI) {
   2339       SVal X = CI.getData();
   2340       SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
   2341       for (; SI != SE; ++SI)
   2342         SymReaper.maybeDead(*SI);
   2343     }
   2344   }
   2345 
   2346   return StoreRef(B.asStore(), *this);
   2347 }
   2348 
   2349 //===----------------------------------------------------------------------===//
   2350 // Utility methods.
   2351 //===----------------------------------------------------------------------===//
   2352 
   2353 void RegionStoreManager::print(Store store, raw_ostream &OS,
   2354                                const char* nl, const char *sep) {
   2355   RegionBindingsRef B = getRegionBindings(store);
   2356   OS << "Store (direct and default bindings), "
   2357      << B.asStore()
   2358      << " :" << nl;
   2359   B.dump(OS, nl);
   2360 }
   2361