1 //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes implement wrappers around llvm::Value in order to 11 // fully represent the range of values for C L- and R- values. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef CLANG_CODEGEN_CGVALUE_H 16 #define CLANG_CODEGEN_CGVALUE_H 17 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/Type.h" 21 #include "llvm/IR/Value.h" 22 23 namespace llvm { 24 class Constant; 25 class MDNode; 26 } 27 28 namespace clang { 29 namespace CodeGen { 30 class AggValueSlot; 31 struct CGBitFieldInfo; 32 33 /// RValue - This trivial value class is used to represent the result of an 34 /// expression that is evaluated. It can be one of three things: either a 35 /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the 36 /// address of an aggregate value in memory. 37 class RValue { 38 enum Flavor { Scalar, Complex, Aggregate }; 39 40 // Stores first value and flavor. 41 llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1; 42 // Stores second value and volatility. 43 llvm::PointerIntPair<llvm::Value *, 1, bool> V2; 44 45 public: 46 bool isScalar() const { return V1.getInt() == Scalar; } 47 bool isComplex() const { return V1.getInt() == Complex; } 48 bool isAggregate() const { return V1.getInt() == Aggregate; } 49 50 bool isVolatileQualified() const { return V2.getInt(); } 51 52 /// getScalarVal() - Return the Value* of this scalar value. 53 llvm::Value *getScalarVal() const { 54 assert(isScalar() && "Not a scalar!"); 55 return V1.getPointer(); 56 } 57 58 /// getComplexVal - Return the real/imag components of this complex value. 59 /// 60 std::pair<llvm::Value *, llvm::Value *> getComplexVal() const { 61 return std::make_pair(V1.getPointer(), V2.getPointer()); 62 } 63 64 /// getAggregateAddr() - Return the Value* of the address of the aggregate. 65 llvm::Value *getAggregateAddr() const { 66 assert(isAggregate() && "Not an aggregate!"); 67 return V1.getPointer(); 68 } 69 70 static RValue get(llvm::Value *V) { 71 RValue ER; 72 ER.V1.setPointer(V); 73 ER.V1.setInt(Scalar); 74 ER.V2.setInt(false); 75 return ER; 76 } 77 static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { 78 RValue ER; 79 ER.V1.setPointer(V1); 80 ER.V2.setPointer(V2); 81 ER.V1.setInt(Complex); 82 ER.V2.setInt(false); 83 return ER; 84 } 85 static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) { 86 return getComplex(C.first, C.second); 87 } 88 // FIXME: Aggregate rvalues need to retain information about whether they are 89 // volatile or not. Remove default to find all places that probably get this 90 // wrong. 91 static RValue getAggregate(llvm::Value *V, bool Volatile = false) { 92 RValue ER; 93 ER.V1.setPointer(V); 94 ER.V1.setInt(Aggregate); 95 ER.V2.setInt(Volatile); 96 return ER; 97 } 98 }; 99 100 /// Does an ARC strong l-value have precise lifetime? 101 enum ARCPreciseLifetime_t { 102 ARCImpreciseLifetime, ARCPreciseLifetime 103 }; 104 105 /// LValue - This represents an lvalue references. Because C/C++ allow 106 /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a 107 /// bitrange. 108 class LValue { 109 enum { 110 Simple, // This is a normal l-value, use getAddress(). 111 VectorElt, // This is a vector element l-value (V[i]), use getVector* 112 BitField, // This is a bitfield l-value, use getBitfield*. 113 ExtVectorElt // This is an extended vector subset, use getExtVectorComp 114 } LVType; 115 116 llvm::Value *V; 117 118 union { 119 // Index into a vector subscript: V[i] 120 llvm::Value *VectorIdx; 121 122 // ExtVector element subset: V.xyx 123 llvm::Constant *VectorElts; 124 125 // BitField start bit and size 126 const CGBitFieldInfo *BitFieldInfo; 127 }; 128 129 QualType Type; 130 131 // 'const' is unused here 132 Qualifiers Quals; 133 134 // The alignment to use when accessing this lvalue. (For vector elements, 135 // this is the alignment of the whole vector.) 136 int64_t Alignment; 137 138 // objective-c's ivar 139 bool Ivar:1; 140 141 // objective-c's ivar is an array 142 bool ObjIsArray:1; 143 144 // LValue is non-gc'able for any reason, including being a parameter or local 145 // variable. 146 bool NonGC: 1; 147 148 // Lvalue is a global reference of an objective-c object 149 bool GlobalObjCRef : 1; 150 151 // Lvalue is a thread local reference 152 bool ThreadLocalRef : 1; 153 154 // Lvalue has ARC imprecise lifetime. We store this inverted to try 155 // to make the default bitfield pattern all-zeroes. 156 bool ImpreciseLifetime : 1; 157 158 Expr *BaseIvarExp; 159 160 /// Used by struct-path-aware TBAA. 161 QualType TBAABaseType; 162 /// Offset relative to the base type. 163 uint64_t TBAAOffset; 164 165 /// TBAAInfo - TBAA information to attach to dereferences of this LValue. 166 llvm::MDNode *TBAAInfo; 167 168 private: 169 void Initialize(QualType Type, Qualifiers Quals, 170 CharUnits Alignment, 171 llvm::MDNode *TBAAInfo = 0) { 172 this->Type = Type; 173 this->Quals = Quals; 174 this->Alignment = Alignment.getQuantity(); 175 assert(this->Alignment == Alignment.getQuantity() && 176 "Alignment exceeds allowed max!"); 177 178 // Initialize Objective-C flags. 179 this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false; 180 this->ImpreciseLifetime = false; 181 this->ThreadLocalRef = false; 182 this->BaseIvarExp = 0; 183 184 // Initialize fields for TBAA. 185 this->TBAABaseType = Type; 186 this->TBAAOffset = 0; 187 this->TBAAInfo = TBAAInfo; 188 } 189 190 public: 191 bool isSimple() const { return LVType == Simple; } 192 bool isVectorElt() const { return LVType == VectorElt; } 193 bool isBitField() const { return LVType == BitField; } 194 bool isExtVectorElt() const { return LVType == ExtVectorElt; } 195 196 bool isVolatileQualified() const { return Quals.hasVolatile(); } 197 bool isRestrictQualified() const { return Quals.hasRestrict(); } 198 unsigned getVRQualifiers() const { 199 return Quals.getCVRQualifiers() & ~Qualifiers::Const; 200 } 201 202 QualType getType() const { return Type; } 203 204 Qualifiers::ObjCLifetime getObjCLifetime() const { 205 return Quals.getObjCLifetime(); 206 } 207 208 bool isObjCIvar() const { return Ivar; } 209 void setObjCIvar(bool Value) { Ivar = Value; } 210 211 bool isObjCArray() const { return ObjIsArray; } 212 void setObjCArray(bool Value) { ObjIsArray = Value; } 213 214 bool isNonGC () const { return NonGC; } 215 void setNonGC(bool Value) { NonGC = Value; } 216 217 bool isGlobalObjCRef() const { return GlobalObjCRef; } 218 void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; } 219 220 bool isThreadLocalRef() const { return ThreadLocalRef; } 221 void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;} 222 223 ARCPreciseLifetime_t isARCPreciseLifetime() const { 224 return ARCPreciseLifetime_t(!ImpreciseLifetime); 225 } 226 void setARCPreciseLifetime(ARCPreciseLifetime_t value) { 227 ImpreciseLifetime = (value == ARCImpreciseLifetime); 228 } 229 230 bool isObjCWeak() const { 231 return Quals.getObjCGCAttr() == Qualifiers::Weak; 232 } 233 bool isObjCStrong() const { 234 return Quals.getObjCGCAttr() == Qualifiers::Strong; 235 } 236 237 bool isVolatile() const { 238 return Quals.hasVolatile(); 239 } 240 241 Expr *getBaseIvarExp() const { return BaseIvarExp; } 242 void setBaseIvarExp(Expr *V) { BaseIvarExp = V; } 243 244 QualType getTBAABaseType() const { return TBAABaseType; } 245 void setTBAABaseType(QualType T) { TBAABaseType = T; } 246 247 uint64_t getTBAAOffset() const { return TBAAOffset; } 248 void setTBAAOffset(uint64_t O) { TBAAOffset = O; } 249 250 llvm::MDNode *getTBAAInfo() const { return TBAAInfo; } 251 void setTBAAInfo(llvm::MDNode *N) { TBAAInfo = N; } 252 253 const Qualifiers &getQuals() const { return Quals; } 254 Qualifiers &getQuals() { return Quals; } 255 256 unsigned getAddressSpace() const { return Quals.getAddressSpace(); } 257 258 CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); } 259 void setAlignment(CharUnits A) { Alignment = A.getQuantity(); } 260 261 // simple lvalue 262 llvm::Value *getAddress() const { assert(isSimple()); return V; } 263 void setAddress(llvm::Value *address) { 264 assert(isSimple()); 265 V = address; 266 } 267 268 // vector elt lvalue 269 llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; } 270 llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; } 271 272 // extended vector elements. 273 llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; } 274 llvm::Constant *getExtVectorElts() const { 275 assert(isExtVectorElt()); 276 return VectorElts; 277 } 278 279 // bitfield lvalue 280 llvm::Value *getBitFieldAddr() const { 281 assert(isBitField()); 282 return V; 283 } 284 const CGBitFieldInfo &getBitFieldInfo() const { 285 assert(isBitField()); 286 return *BitFieldInfo; 287 } 288 289 static LValue MakeAddr(llvm::Value *address, QualType type, 290 CharUnits alignment, ASTContext &Context, 291 llvm::MDNode *TBAAInfo = 0) { 292 Qualifiers qs = type.getQualifiers(); 293 qs.setObjCGCAttr(Context.getObjCGCAttrKind(type)); 294 295 LValue R; 296 R.LVType = Simple; 297 R.V = address; 298 R.Initialize(type, qs, alignment, TBAAInfo); 299 return R; 300 } 301 302 static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx, 303 QualType type, CharUnits Alignment) { 304 LValue R; 305 R.LVType = VectorElt; 306 R.V = Vec; 307 R.VectorIdx = Idx; 308 R.Initialize(type, type.getQualifiers(), Alignment); 309 return R; 310 } 311 312 static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts, 313 QualType type, CharUnits Alignment) { 314 LValue R; 315 R.LVType = ExtVectorElt; 316 R.V = Vec; 317 R.VectorElts = Elts; 318 R.Initialize(type, type.getQualifiers(), Alignment); 319 return R; 320 } 321 322 /// \brief Create a new object to represent a bit-field access. 323 /// 324 /// \param Addr - The base address of the bit-field sequence this 325 /// bit-field refers to. 326 /// \param Info - The information describing how to perform the bit-field 327 /// access. 328 static LValue MakeBitfield(llvm::Value *Addr, 329 const CGBitFieldInfo &Info, 330 QualType type, CharUnits Alignment) { 331 LValue R; 332 R.LVType = BitField; 333 R.V = Addr; 334 R.BitFieldInfo = &Info; 335 R.Initialize(type, type.getQualifiers(), Alignment); 336 return R; 337 } 338 339 RValue asAggregateRValue() const { 340 // FIMXE: Alignment 341 return RValue::getAggregate(getAddress(), isVolatileQualified()); 342 } 343 }; 344 345 /// An aggregate value slot. 346 class AggValueSlot { 347 /// The address. 348 llvm::Value *Addr; 349 350 // Qualifiers 351 Qualifiers Quals; 352 353 unsigned short Alignment; 354 355 /// DestructedFlag - This is set to true if some external code is 356 /// responsible for setting up a destructor for the slot. Otherwise 357 /// the code which constructs it should push the appropriate cleanup. 358 bool DestructedFlag : 1; 359 360 /// ObjCGCFlag - This is set to true if writing to the memory in the 361 /// slot might require calling an appropriate Objective-C GC 362 /// barrier. The exact interaction here is unnecessarily mysterious. 363 bool ObjCGCFlag : 1; 364 365 /// ZeroedFlag - This is set to true if the memory in the slot is 366 /// known to be zero before the assignment into it. This means that 367 /// zero fields don't need to be set. 368 bool ZeroedFlag : 1; 369 370 /// AliasedFlag - This is set to true if the slot might be aliased 371 /// and it's not undefined behavior to access it through such an 372 /// alias. Note that it's always undefined behavior to access a C++ 373 /// object that's under construction through an alias derived from 374 /// outside the construction process. 375 /// 376 /// This flag controls whether calls that produce the aggregate 377 /// value may be evaluated directly into the slot, or whether they 378 /// must be evaluated into an unaliased temporary and then memcpy'ed 379 /// over. Since it's invalid in general to memcpy a non-POD C++ 380 /// object, it's important that this flag never be set when 381 /// evaluating an expression which constructs such an object. 382 bool AliasedFlag : 1; 383 384 public: 385 enum IsAliased_t { IsNotAliased, IsAliased }; 386 enum IsDestructed_t { IsNotDestructed, IsDestructed }; 387 enum IsZeroed_t { IsNotZeroed, IsZeroed }; 388 enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers }; 389 390 /// ignored - Returns an aggregate value slot indicating that the 391 /// aggregate value is being ignored. 392 static AggValueSlot ignored() { 393 return forAddr(0, CharUnits(), Qualifiers(), IsNotDestructed, 394 DoesNotNeedGCBarriers, IsNotAliased); 395 } 396 397 /// forAddr - Make a slot for an aggregate value. 398 /// 399 /// \param quals - The qualifiers that dictate how the slot should 400 /// be initialied. Only 'volatile' and the Objective-C lifetime 401 /// qualifiers matter. 402 /// 403 /// \param isDestructed - true if something else is responsible 404 /// for calling destructors on this object 405 /// \param needsGC - true if the slot is potentially located 406 /// somewhere that ObjC GC calls should be emitted for 407 static AggValueSlot forAddr(llvm::Value *addr, CharUnits align, 408 Qualifiers quals, 409 IsDestructed_t isDestructed, 410 NeedsGCBarriers_t needsGC, 411 IsAliased_t isAliased, 412 IsZeroed_t isZeroed = IsNotZeroed) { 413 AggValueSlot AV; 414 AV.Addr = addr; 415 AV.Alignment = align.getQuantity(); 416 AV.Quals = quals; 417 AV.DestructedFlag = isDestructed; 418 AV.ObjCGCFlag = needsGC; 419 AV.ZeroedFlag = isZeroed; 420 AV.AliasedFlag = isAliased; 421 return AV; 422 } 423 424 static AggValueSlot forLValue(const LValue &LV, 425 IsDestructed_t isDestructed, 426 NeedsGCBarriers_t needsGC, 427 IsAliased_t isAliased, 428 IsZeroed_t isZeroed = IsNotZeroed) { 429 return forAddr(LV.getAddress(), LV.getAlignment(), 430 LV.getQuals(), isDestructed, needsGC, isAliased, isZeroed); 431 } 432 433 IsDestructed_t isExternallyDestructed() const { 434 return IsDestructed_t(DestructedFlag); 435 } 436 void setExternallyDestructed(bool destructed = true) { 437 DestructedFlag = destructed; 438 } 439 440 Qualifiers getQualifiers() const { return Quals; } 441 442 bool isVolatile() const { 443 return Quals.hasVolatile(); 444 } 445 446 void setVolatile(bool flag) { 447 Quals.setVolatile(flag); 448 } 449 450 Qualifiers::ObjCLifetime getObjCLifetime() const { 451 return Quals.getObjCLifetime(); 452 } 453 454 NeedsGCBarriers_t requiresGCollection() const { 455 return NeedsGCBarriers_t(ObjCGCFlag); 456 } 457 458 llvm::Value *getAddr() const { 459 return Addr; 460 } 461 462 bool isIgnored() const { 463 return Addr == 0; 464 } 465 466 CharUnits getAlignment() const { 467 return CharUnits::fromQuantity(Alignment); 468 } 469 470 IsAliased_t isPotentiallyAliased() const { 471 return IsAliased_t(AliasedFlag); 472 } 473 474 // FIXME: Alignment? 475 RValue asRValue() const { 476 return RValue::getAggregate(getAddr(), isVolatile()); 477 } 478 479 void setZeroed(bool V = true) { ZeroedFlag = V; } 480 IsZeroed_t isZeroed() const { 481 return IsZeroed_t(ZeroedFlag); 482 } 483 }; 484 485 } // end namespace CodeGen 486 } // end namespace clang 487 488 #endif 489