1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the function verifier interface, that can be used for some 11 // sanity checking of input to the system. 12 // 13 // Note that this does not provide full `Java style' security and verifications, 14 // instead it just tries to ensure that code is well-formed. 15 // 16 // * Both of a binary operator's parameters are of the same type 17 // * Verify that the indices of mem access instructions match other operands 18 // * Verify that arithmetic and other things are only performed on first-class 19 // types. Verify that shifts & logicals only happen on integrals f.e. 20 // * All of the constants in a switch statement are of the correct type 21 // * The code is in valid SSA form 22 // * It should be illegal to put a label into any other type (like a structure) 23 // or to return one. [except constant arrays!] 24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 25 // * PHI nodes must have an entry for each predecessor, with no extras. 26 // * PHI nodes must be the first thing in a basic block, all grouped together 27 // * PHI nodes must have at least one entry 28 // * All basic blocks should only end with terminator insts, not contain them 29 // * The entry node to a function must not have predecessors 30 // * All Instructions must be embedded into a basic block 31 // * Functions cannot take a void-typed parameter 32 // * Verify that a function's argument list agrees with it's declared type. 33 // * It is illegal to specify a name for a void value. 34 // * It is illegal to have a internal global value with no initializer 35 // * It is illegal to have a ret instruction that returns a value that does not 36 // agree with the function return value type. 37 // * Function call argument types match the function prototype 38 // * A landing pad is defined by a landingpad instruction, and can be jumped to 39 // only by the unwind edge of an invoke instruction. 40 // * A landingpad instruction must be the first non-PHI instruction in the 41 // block. 42 // * All landingpad instructions must use the same personality function with 43 // the same function. 44 // * All other things that are tested by asserts spread about the code... 45 // 46 //===----------------------------------------------------------------------===// 47 48 #include "llvm/Analysis/Verifier.h" 49 #include "llvm/ADT/STLExtras.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallVector.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/Analysis/Dominators.h" 55 #include "llvm/Assembly/Writer.h" 56 #include "llvm/DebugInfo.h" 57 #include "llvm/IR/CallingConv.h" 58 #include "llvm/IR/Constants.h" 59 #include "llvm/IR/DataLayout.h" 60 #include "llvm/IR/DerivedTypes.h" 61 #include "llvm/IR/InlineAsm.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/InstVisitor.h" 67 #include "llvm/Pass.h" 68 #include "llvm/PassManager.h" 69 #include "llvm/Support/CFG.h" 70 #include "llvm/Support/CallSite.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/ConstantRange.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <algorithm> 77 #include <cstdarg> 78 using namespace llvm; 79 80 static cl::opt<bool> DisableDebugInfoVerifier("disable-debug-info-verifier", 81 cl::init(false)); 82 83 namespace { // Anonymous namespace for class 84 struct PreVerifier : public FunctionPass { 85 static char ID; // Pass ID, replacement for typeid 86 87 PreVerifier() : FunctionPass(ID) { 88 initializePreVerifierPass(*PassRegistry::getPassRegistry()); 89 } 90 91 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 92 AU.setPreservesAll(); 93 } 94 95 // Check that the prerequisites for successful DominatorTree construction 96 // are satisfied. 97 bool runOnFunction(Function &F) { 98 bool Broken = false; 99 100 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { 101 if (I->empty() || !I->back().isTerminator()) { 102 dbgs() << "Basic Block in function '" << F.getName() 103 << "' does not have terminator!\n"; 104 WriteAsOperand(dbgs(), I, true); 105 dbgs() << "\n"; 106 Broken = true; 107 } 108 } 109 110 if (Broken) 111 report_fatal_error("Broken module, no Basic Block terminator!"); 112 113 return false; 114 } 115 }; 116 } 117 118 char PreVerifier::ID = 0; 119 INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification", 120 false, false) 121 static char &PreVerifyID = PreVerifier::ID; 122 123 namespace { 124 struct Verifier : public FunctionPass, public InstVisitor<Verifier> { 125 static char ID; // Pass ID, replacement for typeid 126 bool Broken; // Is this module found to be broken? 127 VerifierFailureAction action; 128 // What to do if verification fails. 129 Module *Mod; // Module we are verifying right now 130 LLVMContext *Context; // Context within which we are verifying 131 DominatorTree *DT; // Dominator Tree, caution can be null! 132 const DataLayout *DL; 133 134 std::string Messages; 135 raw_string_ostream MessagesStr; 136 137 /// InstInThisBlock - when verifying a basic block, keep track of all of the 138 /// instructions we have seen so far. This allows us to do efficient 139 /// dominance checks for the case when an instruction has an operand that is 140 /// an instruction in the same block. 141 SmallPtrSet<Instruction*, 16> InstsInThisBlock; 142 143 /// MDNodes - keep track of the metadata nodes that have been checked 144 /// already. 145 SmallPtrSet<MDNode *, 32> MDNodes; 146 147 /// PersonalityFn - The personality function referenced by the 148 /// LandingPadInsts. All LandingPadInsts within the same function must use 149 /// the same personality function. 150 const Value *PersonalityFn; 151 152 /// Finder keeps track of all debug info MDNodes in a Module. 153 DebugInfoFinder Finder; 154 155 Verifier() 156 : FunctionPass(ID), Broken(false), 157 action(AbortProcessAction), Mod(0), Context(0), DT(0), DL(0), 158 MessagesStr(Messages), PersonalityFn(0) { 159 initializeVerifierPass(*PassRegistry::getPassRegistry()); 160 } 161 explicit Verifier(VerifierFailureAction ctn) 162 : FunctionPass(ID), Broken(false), action(ctn), Mod(0), 163 Context(0), DT(0), DL(0), MessagesStr(Messages), PersonalityFn(0) { 164 initializeVerifierPass(*PassRegistry::getPassRegistry()); 165 } 166 167 bool doInitialization(Module &M) { 168 Mod = &M; 169 Context = &M.getContext(); 170 Finder.reset(); 171 172 DL = getAnalysisIfAvailable<DataLayout>(); 173 174 // We must abort before returning back to the pass manager, or else the 175 // pass manager may try to run other passes on the broken module. 176 return abortIfBroken(); 177 } 178 179 bool runOnFunction(Function &F) { 180 // Get dominator information if we are being run by PassManager 181 DT = &getAnalysis<DominatorTree>(); 182 183 Mod = F.getParent(); 184 if (!Context) Context = &F.getContext(); 185 186 visit(F); 187 InstsInThisBlock.clear(); 188 PersonalityFn = 0; 189 190 // We must abort before returning back to the pass manager, or else the 191 // pass manager may try to run other passes on the broken module. 192 return abortIfBroken(); 193 } 194 195 bool doFinalization(Module &M) { 196 // Scan through, checking all of the external function's linkage now... 197 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { 198 visitGlobalValue(*I); 199 200 // Check to make sure function prototypes are okay. 201 if (I->isDeclaration()) visitFunction(*I); 202 } 203 204 for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 205 I != E; ++I) 206 visitGlobalVariable(*I); 207 208 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 209 I != E; ++I) 210 visitGlobalAlias(*I); 211 212 for (Module::named_metadata_iterator I = M.named_metadata_begin(), 213 E = M.named_metadata_end(); I != E; ++I) 214 visitNamedMDNode(*I); 215 216 visitModuleFlags(M); 217 218 // Verify Debug Info. 219 verifyDebugInfo(M); 220 221 // If the module is broken, abort at this time. 222 return abortIfBroken(); 223 } 224 225 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 226 AU.setPreservesAll(); 227 AU.addRequiredID(PreVerifyID); 228 AU.addRequired<DominatorTree>(); 229 } 230 231 /// abortIfBroken - If the module is broken and we are supposed to abort on 232 /// this condition, do so. 233 /// 234 bool abortIfBroken() { 235 if (!Broken) return false; 236 MessagesStr << "Broken module found, "; 237 switch (action) { 238 case AbortProcessAction: 239 MessagesStr << "compilation aborted!\n"; 240 dbgs() << MessagesStr.str(); 241 // Client should choose different reaction if abort is not desired 242 abort(); 243 case PrintMessageAction: 244 MessagesStr << "verification continues.\n"; 245 dbgs() << MessagesStr.str(); 246 return false; 247 case ReturnStatusAction: 248 MessagesStr << "compilation terminated.\n"; 249 return true; 250 } 251 llvm_unreachable("Invalid action"); 252 } 253 254 255 // Verification methods... 256 void visitGlobalValue(GlobalValue &GV); 257 void visitGlobalVariable(GlobalVariable &GV); 258 void visitGlobalAlias(GlobalAlias &GA); 259 void visitNamedMDNode(NamedMDNode &NMD); 260 void visitMDNode(MDNode &MD, Function *F); 261 void visitModuleFlags(Module &M); 262 void visitModuleFlag(MDNode *Op, DenseMap<MDString*, MDNode*> &SeenIDs, 263 SmallVectorImpl<MDNode*> &Requirements); 264 void visitFunction(Function &F); 265 void visitBasicBlock(BasicBlock &BB); 266 using InstVisitor<Verifier>::visit; 267 268 void visit(Instruction &I); 269 270 void visitTruncInst(TruncInst &I); 271 void visitZExtInst(ZExtInst &I); 272 void visitSExtInst(SExtInst &I); 273 void visitFPTruncInst(FPTruncInst &I); 274 void visitFPExtInst(FPExtInst &I); 275 void visitFPToUIInst(FPToUIInst &I); 276 void visitFPToSIInst(FPToSIInst &I); 277 void visitUIToFPInst(UIToFPInst &I); 278 void visitSIToFPInst(SIToFPInst &I); 279 void visitIntToPtrInst(IntToPtrInst &I); 280 void visitPtrToIntInst(PtrToIntInst &I); 281 void visitBitCastInst(BitCastInst &I); 282 void visitPHINode(PHINode &PN); 283 void visitBinaryOperator(BinaryOperator &B); 284 void visitICmpInst(ICmpInst &IC); 285 void visitFCmpInst(FCmpInst &FC); 286 void visitExtractElementInst(ExtractElementInst &EI); 287 void visitInsertElementInst(InsertElementInst &EI); 288 void visitShuffleVectorInst(ShuffleVectorInst &EI); 289 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 290 void visitCallInst(CallInst &CI); 291 void visitInvokeInst(InvokeInst &II); 292 void visitGetElementPtrInst(GetElementPtrInst &GEP); 293 void visitLoadInst(LoadInst &LI); 294 void visitStoreInst(StoreInst &SI); 295 void verifyDominatesUse(Instruction &I, unsigned i); 296 void visitInstruction(Instruction &I); 297 void visitTerminatorInst(TerminatorInst &I); 298 void visitBranchInst(BranchInst &BI); 299 void visitReturnInst(ReturnInst &RI); 300 void visitSwitchInst(SwitchInst &SI); 301 void visitIndirectBrInst(IndirectBrInst &BI); 302 void visitSelectInst(SelectInst &SI); 303 void visitUserOp1(Instruction &I); 304 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 305 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); 306 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 307 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 308 void visitFenceInst(FenceInst &FI); 309 void visitAllocaInst(AllocaInst &AI); 310 void visitExtractValueInst(ExtractValueInst &EVI); 311 void visitInsertValueInst(InsertValueInst &IVI); 312 void visitLandingPadInst(LandingPadInst &LPI); 313 314 void VerifyCallSite(CallSite CS); 315 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, 316 int VT, unsigned ArgNo, std::string &Suffix); 317 bool VerifyIntrinsicType(Type *Ty, 318 ArrayRef<Intrinsic::IITDescriptor> &Infos, 319 SmallVectorImpl<Type*> &ArgTys); 320 bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params); 321 void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, 322 bool isFunction, const Value *V); 323 void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, 324 bool isReturnValue, const Value *V); 325 void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, 326 const Value *V); 327 328 void VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy); 329 void VerifyConstantExprBitcastType(const ConstantExpr *CE); 330 331 void verifyDebugInfo(Module &M); 332 333 void WriteValue(const Value *V) { 334 if (!V) return; 335 if (isa<Instruction>(V)) { 336 MessagesStr << *V << '\n'; 337 } else { 338 WriteAsOperand(MessagesStr, V, true, Mod); 339 MessagesStr << '\n'; 340 } 341 } 342 343 void WriteType(Type *T) { 344 if (!T) return; 345 MessagesStr << ' ' << *T; 346 } 347 348 349 // CheckFailed - A check failed, so print out the condition and the message 350 // that failed. This provides a nice place to put a breakpoint if you want 351 // to see why something is not correct. 352 void CheckFailed(const Twine &Message, 353 const Value *V1 = 0, const Value *V2 = 0, 354 const Value *V3 = 0, const Value *V4 = 0) { 355 MessagesStr << Message.str() << "\n"; 356 WriteValue(V1); 357 WriteValue(V2); 358 WriteValue(V3); 359 WriteValue(V4); 360 Broken = true; 361 } 362 363 void CheckFailed(const Twine &Message, const Value *V1, 364 Type *T2, const Value *V3 = 0) { 365 MessagesStr << Message.str() << "\n"; 366 WriteValue(V1); 367 WriteType(T2); 368 WriteValue(V3); 369 Broken = true; 370 } 371 372 void CheckFailed(const Twine &Message, Type *T1, 373 Type *T2 = 0, Type *T3 = 0) { 374 MessagesStr << Message.str() << "\n"; 375 WriteType(T1); 376 WriteType(T2); 377 WriteType(T3); 378 Broken = true; 379 } 380 }; 381 } // End anonymous namespace 382 383 char Verifier::ID = 0; 384 INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false) 385 INITIALIZE_PASS_DEPENDENCY(PreVerifier) 386 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 387 INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false) 388 389 // Assert - We know that cond should be true, if not print an error message. 390 #define Assert(C, M) \ 391 do { if (!(C)) { CheckFailed(M); return; } } while (0) 392 #define Assert1(C, M, V1) \ 393 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) 394 #define Assert2(C, M, V1, V2) \ 395 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) 396 #define Assert3(C, M, V1, V2, V3) \ 397 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) 398 #define Assert4(C, M, V1, V2, V3, V4) \ 399 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) 400 401 void Verifier::visit(Instruction &I) { 402 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 403 Assert1(I.getOperand(i) != 0, "Operand is null", &I); 404 InstVisitor<Verifier>::visit(I); 405 } 406 407 408 void Verifier::visitGlobalValue(GlobalValue &GV) { 409 Assert1(!GV.isDeclaration() || 410 GV.isMaterializable() || 411 GV.hasExternalLinkage() || 412 GV.hasDLLImportLinkage() || 413 GV.hasExternalWeakLinkage() || 414 (isa<GlobalAlias>(GV) && 415 (GV.hasLocalLinkage() || GV.hasWeakLinkage())), 416 "Global is external, but doesn't have external or dllimport or weak linkage!", 417 &GV); 418 419 Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(), 420 "Global is marked as dllimport, but not external", &GV); 421 422 Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 423 "Only global variables can have appending linkage!", &GV); 424 425 if (GV.hasAppendingLinkage()) { 426 GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 427 Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(), 428 "Only global arrays can have appending linkage!", GVar); 429 } 430 431 Assert1(!GV.hasLinkOnceODRAutoHideLinkage() || GV.hasDefaultVisibility(), 432 "linkonce_odr_auto_hide can only have default visibility!", 433 &GV); 434 } 435 436 void Verifier::visitGlobalVariable(GlobalVariable &GV) { 437 if (GV.hasInitializer()) { 438 Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(), 439 "Global variable initializer type does not match global " 440 "variable type!", &GV); 441 442 // If the global has common linkage, it must have a zero initializer and 443 // cannot be constant. 444 if (GV.hasCommonLinkage()) { 445 Assert1(GV.getInitializer()->isNullValue(), 446 "'common' global must have a zero initializer!", &GV); 447 Assert1(!GV.isConstant(), "'common' global may not be marked constant!", 448 &GV); 449 } 450 } else { 451 Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() || 452 GV.hasExternalWeakLinkage(), 453 "invalid linkage type for global declaration", &GV); 454 } 455 456 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 457 GV.getName() == "llvm.global_dtors")) { 458 Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(), 459 "invalid linkage for intrinsic global variable", &GV); 460 // Don't worry about emitting an error for it not being an array, 461 // visitGlobalValue will complain on appending non-array. 462 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) { 463 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 464 PointerType *FuncPtrTy = 465 FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo(); 466 Assert1(STy && STy->getNumElements() == 2 && 467 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 468 STy->getTypeAtIndex(1) == FuncPtrTy, 469 "wrong type for intrinsic global variable", &GV); 470 } 471 } 472 473 if (GV.hasName() && (GV.getName() == "llvm.used" || 474 GV.getName() == "llvm.compiler.used")) { 475 Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(), 476 "invalid linkage for intrinsic global variable", &GV); 477 Type *GVType = GV.getType()->getElementType(); 478 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 479 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 480 Assert1(PTy, "wrong type for intrinsic global variable", &GV); 481 if (GV.hasInitializer()) { 482 Constant *Init = GV.getInitializer(); 483 ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 484 Assert1(InitArray, "wrong initalizer for intrinsic global variable", 485 Init); 486 for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) { 487 Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases(); 488 Assert1( 489 isa<GlobalVariable>(V) || isa<Function>(V) || isa<GlobalAlias>(V), 490 "invalid llvm.used member", V); 491 Assert1(V->hasName(), "members of llvm.used must be named", V); 492 } 493 } 494 } 495 } 496 497 if (!GV.hasInitializer()) { 498 visitGlobalValue(GV); 499 return; 500 } 501 502 // Walk any aggregate initializers looking for bitcasts between address spaces 503 SmallPtrSet<const Value *, 4> Visited; 504 SmallVector<const Value *, 4> WorkStack; 505 WorkStack.push_back(cast<Value>(GV.getInitializer())); 506 507 while (!WorkStack.empty()) { 508 const Value *V = WorkStack.pop_back_val(); 509 if (!Visited.insert(V)) 510 continue; 511 512 if (const User *U = dyn_cast<User>(V)) { 513 for (unsigned I = 0, N = U->getNumOperands(); I != N; ++I) 514 WorkStack.push_back(U->getOperand(I)); 515 } 516 517 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 518 VerifyConstantExprBitcastType(CE); 519 if (Broken) 520 return; 521 } 522 } 523 524 visitGlobalValue(GV); 525 } 526 527 void Verifier::visitGlobalAlias(GlobalAlias &GA) { 528 Assert1(!GA.getName().empty(), 529 "Alias name cannot be empty!", &GA); 530 Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() || 531 GA.hasWeakLinkage(), 532 "Alias should have external or external weak linkage!", &GA); 533 Assert1(GA.getAliasee(), 534 "Aliasee cannot be NULL!", &GA); 535 Assert1(GA.getType() == GA.getAliasee()->getType(), 536 "Alias and aliasee types should match!", &GA); 537 Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA); 538 539 Constant *Aliasee = GA.getAliasee(); 540 541 if (!isa<GlobalValue>(Aliasee)) { 542 ConstantExpr *CE = dyn_cast<ConstantExpr>(Aliasee); 543 Assert1(CE && 544 (CE->getOpcode() == Instruction::BitCast || 545 CE->getOpcode() == Instruction::GetElementPtr) && 546 isa<GlobalValue>(CE->getOperand(0)), 547 "Aliasee should be either GlobalValue or bitcast of GlobalValue", 548 &GA); 549 550 if (CE->getOpcode() == Instruction::BitCast) { 551 unsigned SrcAS = CE->getOperand(0)->getType()->getPointerAddressSpace(); 552 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 553 554 Assert1(SrcAS == DstAS, 555 "Alias bitcasts cannot be between different address spaces", 556 &GA); 557 } 558 } 559 560 const GlobalValue* Resolved = GA.resolveAliasedGlobal(/*stopOnWeak*/ false); 561 Assert1(Resolved, 562 "Aliasing chain should end with function or global variable", &GA); 563 564 visitGlobalValue(GA); 565 } 566 567 void Verifier::visitNamedMDNode(NamedMDNode &NMD) { 568 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) { 569 MDNode *MD = NMD.getOperand(i); 570 if (!MD) 571 continue; 572 573 Assert1(!MD->isFunctionLocal(), 574 "Named metadata operand cannot be function local!", MD); 575 visitMDNode(*MD, 0); 576 } 577 } 578 579 void Verifier::visitMDNode(MDNode &MD, Function *F) { 580 // Only visit each node once. Metadata can be mutually recursive, so this 581 // avoids infinite recursion here, as well as being an optimization. 582 if (!MDNodes.insert(&MD)) 583 return; 584 585 for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) { 586 Value *Op = MD.getOperand(i); 587 if (!Op) 588 continue; 589 if (isa<Constant>(Op) || isa<MDString>(Op)) 590 continue; 591 if (MDNode *N = dyn_cast<MDNode>(Op)) { 592 Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(), 593 "Global metadata operand cannot be function local!", &MD, N); 594 visitMDNode(*N, F); 595 continue; 596 } 597 Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op); 598 599 // If this was an instruction, bb, or argument, verify that it is in the 600 // function that we expect. 601 Function *ActualF = 0; 602 if (Instruction *I = dyn_cast<Instruction>(Op)) 603 ActualF = I->getParent()->getParent(); 604 else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op)) 605 ActualF = BB->getParent(); 606 else if (Argument *A = dyn_cast<Argument>(Op)) 607 ActualF = A->getParent(); 608 assert(ActualF && "Unimplemented function local metadata case!"); 609 610 Assert2(ActualF == F, "function-local metadata used in wrong function", 611 &MD, Op); 612 } 613 } 614 615 void Verifier::visitModuleFlags(Module &M) { 616 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 617 if (!Flags) return; 618 619 // Scan each flag, and track the flags and requirements. 620 DenseMap<MDString*, MDNode*> SeenIDs; 621 SmallVector<MDNode*, 16> Requirements; 622 for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) { 623 visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements); 624 } 625 626 // Validate that the requirements in the module are valid. 627 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { 628 MDNode *Requirement = Requirements[I]; 629 MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 630 Value *ReqValue = Requirement->getOperand(1); 631 632 MDNode *Op = SeenIDs.lookup(Flag); 633 if (!Op) { 634 CheckFailed("invalid requirement on flag, flag is not present in module", 635 Flag); 636 continue; 637 } 638 639 if (Op->getOperand(2) != ReqValue) { 640 CheckFailed(("invalid requirement on flag, " 641 "flag does not have the required value"), 642 Flag); 643 continue; 644 } 645 } 646 } 647 648 void Verifier::visitModuleFlag(MDNode *Op, DenseMap<MDString*, MDNode*>&SeenIDs, 649 SmallVectorImpl<MDNode*> &Requirements) { 650 // Each module flag should have three arguments, the merge behavior (a 651 // constant int), the flag ID (an MDString), and the value. 652 Assert1(Op->getNumOperands() == 3, 653 "incorrect number of operands in module flag", Op); 654 ConstantInt *Behavior = dyn_cast<ConstantInt>(Op->getOperand(0)); 655 MDString *ID = dyn_cast<MDString>(Op->getOperand(1)); 656 Assert1(Behavior, 657 "invalid behavior operand in module flag (expected constant integer)", 658 Op->getOperand(0)); 659 unsigned BehaviorValue = Behavior->getZExtValue(); 660 Assert1(ID, 661 "invalid ID operand in module flag (expected metadata string)", 662 Op->getOperand(1)); 663 664 // Sanity check the values for behaviors with additional requirements. 665 switch (BehaviorValue) { 666 default: 667 Assert1(false, 668 "invalid behavior operand in module flag (unexpected constant)", 669 Op->getOperand(0)); 670 break; 671 672 case Module::Error: 673 case Module::Warning: 674 case Module::Override: 675 // These behavior types accept any value. 676 break; 677 678 case Module::Require: { 679 // The value should itself be an MDNode with two operands, a flag ID (an 680 // MDString), and a value. 681 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 682 Assert1(Value && Value->getNumOperands() == 2, 683 "invalid value for 'require' module flag (expected metadata pair)", 684 Op->getOperand(2)); 685 Assert1(isa<MDString>(Value->getOperand(0)), 686 ("invalid value for 'require' module flag " 687 "(first value operand should be a string)"), 688 Value->getOperand(0)); 689 690 // Append it to the list of requirements, to check once all module flags are 691 // scanned. 692 Requirements.push_back(Value); 693 break; 694 } 695 696 case Module::Append: 697 case Module::AppendUnique: { 698 // These behavior types require the operand be an MDNode. 699 Assert1(isa<MDNode>(Op->getOperand(2)), 700 "invalid value for 'append'-type module flag " 701 "(expected a metadata node)", Op->getOperand(2)); 702 break; 703 } 704 } 705 706 // Unless this is a "requires" flag, check the ID is unique. 707 if (BehaviorValue != Module::Require) { 708 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 709 Assert1(Inserted, 710 "module flag identifiers must be unique (or of 'require' type)", 711 ID); 712 } 713 } 714 715 void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, 716 bool isFunction, const Value *V) { 717 unsigned Slot = ~0U; 718 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I) 719 if (Attrs.getSlotIndex(I) == Idx) { 720 Slot = I; 721 break; 722 } 723 724 assert(Slot != ~0U && "Attribute set inconsistency!"); 725 726 for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot); 727 I != E; ++I) { 728 if (I->isStringAttribute()) 729 continue; 730 731 if (I->getKindAsEnum() == Attribute::NoReturn || 732 I->getKindAsEnum() == Attribute::NoUnwind || 733 I->getKindAsEnum() == Attribute::NoInline || 734 I->getKindAsEnum() == Attribute::AlwaysInline || 735 I->getKindAsEnum() == Attribute::OptimizeForSize || 736 I->getKindAsEnum() == Attribute::StackProtect || 737 I->getKindAsEnum() == Attribute::StackProtectReq || 738 I->getKindAsEnum() == Attribute::StackProtectStrong || 739 I->getKindAsEnum() == Attribute::NoRedZone || 740 I->getKindAsEnum() == Attribute::NoImplicitFloat || 741 I->getKindAsEnum() == Attribute::Naked || 742 I->getKindAsEnum() == Attribute::InlineHint || 743 I->getKindAsEnum() == Attribute::StackAlignment || 744 I->getKindAsEnum() == Attribute::UWTable || 745 I->getKindAsEnum() == Attribute::NonLazyBind || 746 I->getKindAsEnum() == Attribute::ReturnsTwice || 747 I->getKindAsEnum() == Attribute::SanitizeAddress || 748 I->getKindAsEnum() == Attribute::SanitizeThread || 749 I->getKindAsEnum() == Attribute::SanitizeMemory || 750 I->getKindAsEnum() == Attribute::MinSize || 751 I->getKindAsEnum() == Attribute::NoDuplicate || 752 I->getKindAsEnum() == Attribute::Builtin || 753 I->getKindAsEnum() == Attribute::NoBuiltin || 754 I->getKindAsEnum() == Attribute::Cold) { 755 if (!isFunction) { 756 CheckFailed("Attribute '" + I->getAsString() + 757 "' only applies to functions!", V); 758 return; 759 } 760 } else if (I->getKindAsEnum() == Attribute::ReadOnly || 761 I->getKindAsEnum() == Attribute::ReadNone) { 762 if (Idx == 0) { 763 CheckFailed("Attribute '" + I->getAsString() + 764 "' does not apply to function returns"); 765 return; 766 } 767 } else if (isFunction) { 768 CheckFailed("Attribute '" + I->getAsString() + 769 "' does not apply to functions!", V); 770 return; 771 } 772 } 773 } 774 775 // VerifyParameterAttrs - Check the given attributes for an argument or return 776 // value of the specified type. The value V is printed in error messages. 777 void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, 778 bool isReturnValue, const Value *V) { 779 if (!Attrs.hasAttributes(Idx)) 780 return; 781 782 VerifyAttributeTypes(Attrs, Idx, false, V); 783 784 if (isReturnValue) 785 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) && 786 !Attrs.hasAttribute(Idx, Attribute::Nest) && 787 !Attrs.hasAttribute(Idx, Attribute::StructRet) && 788 !Attrs.hasAttribute(Idx, Attribute::NoCapture) && 789 !Attrs.hasAttribute(Idx, Attribute::Returned), 790 "Attribute 'byval', 'nest', 'sret', 'nocapture', and 'returned' " 791 "do not apply to return values!", V); 792 793 // Check for mutually incompatible attributes. 794 Assert1(!((Attrs.hasAttribute(Idx, Attribute::ByVal) && 795 Attrs.hasAttribute(Idx, Attribute::Nest)) || 796 (Attrs.hasAttribute(Idx, Attribute::ByVal) && 797 Attrs.hasAttribute(Idx, Attribute::StructRet)) || 798 (Attrs.hasAttribute(Idx, Attribute::Nest) && 799 Attrs.hasAttribute(Idx, Attribute::StructRet))), "Attributes " 800 "'byval, nest, and sret' are incompatible!", V); 801 802 Assert1(!((Attrs.hasAttribute(Idx, Attribute::ByVal) && 803 Attrs.hasAttribute(Idx, Attribute::Nest)) || 804 (Attrs.hasAttribute(Idx, Attribute::ByVal) && 805 Attrs.hasAttribute(Idx, Attribute::InReg)) || 806 (Attrs.hasAttribute(Idx, Attribute::Nest) && 807 Attrs.hasAttribute(Idx, Attribute::InReg))), "Attributes " 808 "'byval, nest, and inreg' are incompatible!", V); 809 810 Assert1(!(Attrs.hasAttribute(Idx, Attribute::StructRet) && 811 Attrs.hasAttribute(Idx, Attribute::Returned)), "Attributes " 812 "'sret and returned' are incompatible!", V); 813 814 Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) && 815 Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes " 816 "'zeroext and signext' are incompatible!", V); 817 818 Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) && 819 Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes " 820 "'readnone and readonly' are incompatible!", V); 821 822 Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) && 823 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes " 824 "'noinline and alwaysinline' are incompatible!", V); 825 826 Assert1(!AttrBuilder(Attrs, Idx). 827 hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx), 828 "Wrong types for attribute: " + 829 AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V); 830 831 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 832 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) || 833 PTy->getElementType()->isSized(), 834 "Attribute 'byval' does not support unsized types!", V); 835 else 836 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal), 837 "Attribute 'byval' only applies to parameters with pointer type!", 838 V); 839 } 840 841 // VerifyFunctionAttrs - Check parameter attributes against a function type. 842 // The value V is printed in error messages. 843 void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, 844 const Value *V) { 845 if (Attrs.isEmpty()) 846 return; 847 848 bool SawNest = false; 849 bool SawReturned = false; 850 851 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 852 unsigned Idx = Attrs.getSlotIndex(i); 853 854 Type *Ty; 855 if (Idx == 0) 856 Ty = FT->getReturnType(); 857 else if (Idx-1 < FT->getNumParams()) 858 Ty = FT->getParamType(Idx-1); 859 else 860 break; // VarArgs attributes, verified elsewhere. 861 862 VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V); 863 864 if (Idx == 0) 865 continue; 866 867 if (Attrs.hasAttribute(Idx, Attribute::Nest)) { 868 Assert1(!SawNest, "More than one parameter has attribute nest!", V); 869 SawNest = true; 870 } 871 872 if (Attrs.hasAttribute(Idx, Attribute::Returned)) { 873 Assert1(!SawReturned, "More than one parameter has attribute returned!", 874 V); 875 Assert1(Ty->canLosslesslyBitCastTo(FT->getReturnType()), "Incompatible " 876 "argument and return types for 'returned' attribute", V); 877 SawReturned = true; 878 } 879 880 if (Attrs.hasAttribute(Idx, Attribute::StructRet)) 881 Assert1(Idx == 1, "Attribute sret is not on first parameter!", V); 882 } 883 884 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex)) 885 return; 886 887 VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V); 888 889 Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, 890 Attribute::ReadNone) && 891 Attrs.hasAttribute(AttributeSet::FunctionIndex, 892 Attribute::ReadOnly)), 893 "Attributes 'readnone and readonly' are incompatible!", V); 894 895 Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, 896 Attribute::NoInline) && 897 Attrs.hasAttribute(AttributeSet::FunctionIndex, 898 Attribute::AlwaysInline)), 899 "Attributes 'noinline and alwaysinline' are incompatible!", V); 900 } 901 902 void Verifier::VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy) { 903 // Get the size of the types in bits, we'll need this later 904 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); 905 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); 906 907 // BitCast implies a no-op cast of type only. No bits change. 908 // However, you can't cast pointers to anything but pointers. 909 Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(), 910 "Bitcast requires both operands to be pointer or neither", V); 911 Assert1(SrcBitSize == DestBitSize, 912 "Bitcast requires types of same width", V); 913 914 // Disallow aggregates. 915 Assert1(!SrcTy->isAggregateType(), 916 "Bitcast operand must not be aggregate", V); 917 Assert1(!DestTy->isAggregateType(), 918 "Bitcast type must not be aggregate", V); 919 920 // Without datalayout, assume all address spaces are the same size. 921 // Don't check if both types are not pointers. 922 // Skip casts between scalars and vectors. 923 if (!DL || 924 !SrcTy->isPtrOrPtrVectorTy() || 925 !DestTy->isPtrOrPtrVectorTy() || 926 SrcTy->isVectorTy() != DestTy->isVectorTy()) { 927 return; 928 } 929 930 unsigned SrcAS = SrcTy->getPointerAddressSpace(); 931 unsigned DstAS = DestTy->getPointerAddressSpace(); 932 933 unsigned SrcASSize = DL->getPointerSizeInBits(SrcAS); 934 unsigned DstASSize = DL->getPointerSizeInBits(DstAS); 935 Assert1(SrcASSize == DstASSize, 936 "Bitcasts between pointers of different address spaces must have " 937 "the same size pointers, otherwise use PtrToInt/IntToPtr.", V); 938 } 939 940 void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) { 941 if (CE->getOpcode() == Instruction::BitCast) { 942 Type *SrcTy = CE->getOperand(0)->getType(); 943 Type *DstTy = CE->getType(); 944 VerifyBitcastType(CE, DstTy, SrcTy); 945 } 946 } 947 948 bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) { 949 if (Attrs.getNumSlots() == 0) 950 return true; 951 952 unsigned LastSlot = Attrs.getNumSlots() - 1; 953 unsigned LastIndex = Attrs.getSlotIndex(LastSlot); 954 if (LastIndex <= Params 955 || (LastIndex == AttributeSet::FunctionIndex 956 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params))) 957 return true; 958 959 return false; 960 } 961 962 // visitFunction - Verify that a function is ok. 963 // 964 void Verifier::visitFunction(Function &F) { 965 // Check function arguments. 966 FunctionType *FT = F.getFunctionType(); 967 unsigned NumArgs = F.arg_size(); 968 969 Assert1(Context == &F.getContext(), 970 "Function context does not match Module context!", &F); 971 972 Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 973 Assert2(FT->getNumParams() == NumArgs, 974 "# formal arguments must match # of arguments for function type!", 975 &F, FT); 976 Assert1(F.getReturnType()->isFirstClassType() || 977 F.getReturnType()->isVoidTy() || 978 F.getReturnType()->isStructTy(), 979 "Functions cannot return aggregate values!", &F); 980 981 Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 982 "Invalid struct return type!", &F); 983 984 AttributeSet Attrs = F.getAttributes(); 985 986 Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()), 987 "Attribute after last parameter!", &F); 988 989 // Check function attributes. 990 VerifyFunctionAttrs(FT, Attrs, &F); 991 992 // On function declarations/definitions, we do not support the builtin 993 // attribute. We do not check this in VerifyFunctionAttrs since that is 994 // checking for Attributes that can/can not ever be on functions. 995 Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex, 996 Attribute::Builtin), 997 "Attribute 'builtin' can only be applied to a callsite.", &F); 998 999 // Check that this function meets the restrictions on this calling convention. 1000 switch (F.getCallingConv()) { 1001 default: 1002 break; 1003 case CallingConv::C: 1004 break; 1005 case CallingConv::Fast: 1006 case CallingConv::Cold: 1007 case CallingConv::X86_FastCall: 1008 case CallingConv::X86_ThisCall: 1009 case CallingConv::Intel_OCL_BI: 1010 case CallingConv::PTX_Kernel: 1011 case CallingConv::PTX_Device: 1012 Assert1(!F.isVarArg(), 1013 "Varargs functions must have C calling conventions!", &F); 1014 break; 1015 } 1016 1017 bool isLLVMdotName = F.getName().size() >= 5 && 1018 F.getName().substr(0, 5) == "llvm."; 1019 1020 // Check that the argument values match the function type for this function... 1021 unsigned i = 0; 1022 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); 1023 I != E; ++I, ++i) { 1024 Assert2(I->getType() == FT->getParamType(i), 1025 "Argument value does not match function argument type!", 1026 I, FT->getParamType(i)); 1027 Assert1(I->getType()->isFirstClassType(), 1028 "Function arguments must have first-class types!", I); 1029 if (!isLLVMdotName) 1030 Assert2(!I->getType()->isMetadataTy(), 1031 "Function takes metadata but isn't an intrinsic", I, &F); 1032 } 1033 1034 if (F.isMaterializable()) { 1035 // Function has a body somewhere we can't see. 1036 } else if (F.isDeclaration()) { 1037 Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() || 1038 F.hasExternalWeakLinkage(), 1039 "invalid linkage type for function declaration", &F); 1040 } else { 1041 // Verify that this function (which has a body) is not named "llvm.*". It 1042 // is not legal to define intrinsics. 1043 Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 1044 1045 // Check the entry node 1046 BasicBlock *Entry = &F.getEntryBlock(); 1047 Assert1(pred_begin(Entry) == pred_end(Entry), 1048 "Entry block to function must not have predecessors!", Entry); 1049 1050 // The address of the entry block cannot be taken, unless it is dead. 1051 if (Entry->hasAddressTaken()) { 1052 Assert1(!BlockAddress::get(Entry)->isConstantUsed(), 1053 "blockaddress may not be used with the entry block!", Entry); 1054 } 1055 } 1056 1057 // If this function is actually an intrinsic, verify that it is only used in 1058 // direct call/invokes, never having its "address taken". 1059 if (F.getIntrinsicID()) { 1060 const User *U; 1061 if (F.hasAddressTaken(&U)) 1062 Assert1(0, "Invalid user of intrinsic instruction!", U); 1063 } 1064 } 1065 1066 // verifyBasicBlock - Verify that a basic block is well formed... 1067 // 1068 void Verifier::visitBasicBlock(BasicBlock &BB) { 1069 InstsInThisBlock.clear(); 1070 1071 // Ensure that basic blocks have terminators! 1072 Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 1073 1074 // Check constraints that this basic block imposes on all of the PHI nodes in 1075 // it. 1076 if (isa<PHINode>(BB.front())) { 1077 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 1078 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 1079 std::sort(Preds.begin(), Preds.end()); 1080 PHINode *PN; 1081 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) { 1082 // Ensure that PHI nodes have at least one entry! 1083 Assert1(PN->getNumIncomingValues() != 0, 1084 "PHI nodes must have at least one entry. If the block is dead, " 1085 "the PHI should be removed!", PN); 1086 Assert1(PN->getNumIncomingValues() == Preds.size(), 1087 "PHINode should have one entry for each predecessor of its " 1088 "parent basic block!", PN); 1089 1090 // Get and sort all incoming values in the PHI node... 1091 Values.clear(); 1092 Values.reserve(PN->getNumIncomingValues()); 1093 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1094 Values.push_back(std::make_pair(PN->getIncomingBlock(i), 1095 PN->getIncomingValue(i))); 1096 std::sort(Values.begin(), Values.end()); 1097 1098 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 1099 // Check to make sure that if there is more than one entry for a 1100 // particular basic block in this PHI node, that the incoming values are 1101 // all identical. 1102 // 1103 Assert4(i == 0 || Values[i].first != Values[i-1].first || 1104 Values[i].second == Values[i-1].second, 1105 "PHI node has multiple entries for the same basic block with " 1106 "different incoming values!", PN, Values[i].first, 1107 Values[i].second, Values[i-1].second); 1108 1109 // Check to make sure that the predecessors and PHI node entries are 1110 // matched up. 1111 Assert3(Values[i].first == Preds[i], 1112 "PHI node entries do not match predecessors!", PN, 1113 Values[i].first, Preds[i]); 1114 } 1115 } 1116 } 1117 } 1118 1119 void Verifier::visitTerminatorInst(TerminatorInst &I) { 1120 // Ensure that terminators only exist at the end of the basic block. 1121 Assert1(&I == I.getParent()->getTerminator(), 1122 "Terminator found in the middle of a basic block!", I.getParent()); 1123 visitInstruction(I); 1124 } 1125 1126 void Verifier::visitBranchInst(BranchInst &BI) { 1127 if (BI.isConditional()) { 1128 Assert2(BI.getCondition()->getType()->isIntegerTy(1), 1129 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 1130 } 1131 visitTerminatorInst(BI); 1132 } 1133 1134 void Verifier::visitReturnInst(ReturnInst &RI) { 1135 Function *F = RI.getParent()->getParent(); 1136 unsigned N = RI.getNumOperands(); 1137 if (F->getReturnType()->isVoidTy()) 1138 Assert2(N == 0, 1139 "Found return instr that returns non-void in Function of void " 1140 "return type!", &RI, F->getReturnType()); 1141 else 1142 Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 1143 "Function return type does not match operand " 1144 "type of return inst!", &RI, F->getReturnType()); 1145 1146 // Check to make sure that the return value has necessary properties for 1147 // terminators... 1148 visitTerminatorInst(RI); 1149 } 1150 1151 void Verifier::visitSwitchInst(SwitchInst &SI) { 1152 // Check to make sure that all of the constants in the switch instruction 1153 // have the same type as the switched-on value. 1154 Type *SwitchTy = SI.getCondition()->getType(); 1155 IntegerType *IntTy = cast<IntegerType>(SwitchTy); 1156 IntegersSubsetToBB Mapping; 1157 std::map<IntegersSubset::Range, unsigned> RangeSetMap; 1158 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) { 1159 IntegersSubset CaseRanges = i.getCaseValueEx(); 1160 for (unsigned ri = 0, rie = CaseRanges.getNumItems(); ri < rie; ++ri) { 1161 IntegersSubset::Range r = CaseRanges.getItem(ri); 1162 Assert1(((const APInt&)r.getLow()).getBitWidth() == IntTy->getBitWidth(), 1163 "Switch constants must all be same type as switch value!", &SI); 1164 Assert1(((const APInt&)r.getHigh()).getBitWidth() == IntTy->getBitWidth(), 1165 "Switch constants must all be same type as switch value!", &SI); 1166 Mapping.add(r); 1167 RangeSetMap[r] = i.getCaseIndex(); 1168 } 1169 } 1170 1171 IntegersSubsetToBB::RangeIterator errItem; 1172 if (!Mapping.verify(errItem)) { 1173 unsigned CaseIndex = RangeSetMap[errItem->first]; 1174 SwitchInst::CaseIt i(&SI, CaseIndex); 1175 Assert2(false, "Duplicate integer as switch case", &SI, i.getCaseValueEx()); 1176 } 1177 1178 visitTerminatorInst(SI); 1179 } 1180 1181 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 1182 Assert1(BI.getAddress()->getType()->isPointerTy(), 1183 "Indirectbr operand must have pointer type!", &BI); 1184 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 1185 Assert1(BI.getDestination(i)->getType()->isLabelTy(), 1186 "Indirectbr destinations must all have pointer type!", &BI); 1187 1188 visitTerminatorInst(BI); 1189 } 1190 1191 void Verifier::visitSelectInst(SelectInst &SI) { 1192 Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 1193 SI.getOperand(2)), 1194 "Invalid operands for select instruction!", &SI); 1195 1196 Assert1(SI.getTrueValue()->getType() == SI.getType(), 1197 "Select values must have same type as select instruction!", &SI); 1198 visitInstruction(SI); 1199 } 1200 1201 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 1202 /// a pass, if any exist, it's an error. 1203 /// 1204 void Verifier::visitUserOp1(Instruction &I) { 1205 Assert1(0, "User-defined operators should not live outside of a pass!", &I); 1206 } 1207 1208 void Verifier::visitTruncInst(TruncInst &I) { 1209 // Get the source and destination types 1210 Type *SrcTy = I.getOperand(0)->getType(); 1211 Type *DestTy = I.getType(); 1212 1213 // Get the size of the types in bits, we'll need this later 1214 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1215 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1216 1217 Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 1218 Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 1219 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1220 "trunc source and destination must both be a vector or neither", &I); 1221 Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I); 1222 1223 visitInstruction(I); 1224 } 1225 1226 void Verifier::visitZExtInst(ZExtInst &I) { 1227 // Get the source and destination types 1228 Type *SrcTy = I.getOperand(0)->getType(); 1229 Type *DestTy = I.getType(); 1230 1231 // Get the size of the types in bits, we'll need this later 1232 Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 1233 Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 1234 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1235 "zext source and destination must both be a vector or neither", &I); 1236 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1237 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1238 1239 Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I); 1240 1241 visitInstruction(I); 1242 } 1243 1244 void Verifier::visitSExtInst(SExtInst &I) { 1245 // Get the source and destination types 1246 Type *SrcTy = I.getOperand(0)->getType(); 1247 Type *DestTy = I.getType(); 1248 1249 // Get the size of the types in bits, we'll need this later 1250 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1251 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1252 1253 Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 1254 Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 1255 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1256 "sext source and destination must both be a vector or neither", &I); 1257 Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I); 1258 1259 visitInstruction(I); 1260 } 1261 1262 void Verifier::visitFPTruncInst(FPTruncInst &I) { 1263 // Get the source and destination types 1264 Type *SrcTy = I.getOperand(0)->getType(); 1265 Type *DestTy = I.getType(); 1266 // Get the size of the types in bits, we'll need this later 1267 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1268 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1269 1270 Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I); 1271 Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I); 1272 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1273 "fptrunc source and destination must both be a vector or neither",&I); 1274 Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I); 1275 1276 visitInstruction(I); 1277 } 1278 1279 void Verifier::visitFPExtInst(FPExtInst &I) { 1280 // Get the source and destination types 1281 Type *SrcTy = I.getOperand(0)->getType(); 1282 Type *DestTy = I.getType(); 1283 1284 // Get the size of the types in bits, we'll need this later 1285 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1286 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1287 1288 Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I); 1289 Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I); 1290 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1291 "fpext source and destination must both be a vector or neither", &I); 1292 Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I); 1293 1294 visitInstruction(I); 1295 } 1296 1297 void Verifier::visitUIToFPInst(UIToFPInst &I) { 1298 // Get the source and destination types 1299 Type *SrcTy = I.getOperand(0)->getType(); 1300 Type *DestTy = I.getType(); 1301 1302 bool SrcVec = SrcTy->isVectorTy(); 1303 bool DstVec = DestTy->isVectorTy(); 1304 1305 Assert1(SrcVec == DstVec, 1306 "UIToFP source and dest must both be vector or scalar", &I); 1307 Assert1(SrcTy->isIntOrIntVectorTy(), 1308 "UIToFP source must be integer or integer vector", &I); 1309 Assert1(DestTy->isFPOrFPVectorTy(), 1310 "UIToFP result must be FP or FP vector", &I); 1311 1312 if (SrcVec && DstVec) 1313 Assert1(cast<VectorType>(SrcTy)->getNumElements() == 1314 cast<VectorType>(DestTy)->getNumElements(), 1315 "UIToFP source and dest vector length mismatch", &I); 1316 1317 visitInstruction(I); 1318 } 1319 1320 void Verifier::visitSIToFPInst(SIToFPInst &I) { 1321 // Get the source and destination types 1322 Type *SrcTy = I.getOperand(0)->getType(); 1323 Type *DestTy = I.getType(); 1324 1325 bool SrcVec = SrcTy->isVectorTy(); 1326 bool DstVec = DestTy->isVectorTy(); 1327 1328 Assert1(SrcVec == DstVec, 1329 "SIToFP source and dest must both be vector or scalar", &I); 1330 Assert1(SrcTy->isIntOrIntVectorTy(), 1331 "SIToFP source must be integer or integer vector", &I); 1332 Assert1(DestTy->isFPOrFPVectorTy(), 1333 "SIToFP result must be FP or FP vector", &I); 1334 1335 if (SrcVec && DstVec) 1336 Assert1(cast<VectorType>(SrcTy)->getNumElements() == 1337 cast<VectorType>(DestTy)->getNumElements(), 1338 "SIToFP source and dest vector length mismatch", &I); 1339 1340 visitInstruction(I); 1341 } 1342 1343 void Verifier::visitFPToUIInst(FPToUIInst &I) { 1344 // Get the source and destination types 1345 Type *SrcTy = I.getOperand(0)->getType(); 1346 Type *DestTy = I.getType(); 1347 1348 bool SrcVec = SrcTy->isVectorTy(); 1349 bool DstVec = DestTy->isVectorTy(); 1350 1351 Assert1(SrcVec == DstVec, 1352 "FPToUI source and dest must both be vector or scalar", &I); 1353 Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 1354 &I); 1355 Assert1(DestTy->isIntOrIntVectorTy(), 1356 "FPToUI result must be integer or integer vector", &I); 1357 1358 if (SrcVec && DstVec) 1359 Assert1(cast<VectorType>(SrcTy)->getNumElements() == 1360 cast<VectorType>(DestTy)->getNumElements(), 1361 "FPToUI source and dest vector length mismatch", &I); 1362 1363 visitInstruction(I); 1364 } 1365 1366 void Verifier::visitFPToSIInst(FPToSIInst &I) { 1367 // Get the source and destination types 1368 Type *SrcTy = I.getOperand(0)->getType(); 1369 Type *DestTy = I.getType(); 1370 1371 bool SrcVec = SrcTy->isVectorTy(); 1372 bool DstVec = DestTy->isVectorTy(); 1373 1374 Assert1(SrcVec == DstVec, 1375 "FPToSI source and dest must both be vector or scalar", &I); 1376 Assert1(SrcTy->isFPOrFPVectorTy(), 1377 "FPToSI source must be FP or FP vector", &I); 1378 Assert1(DestTy->isIntOrIntVectorTy(), 1379 "FPToSI result must be integer or integer vector", &I); 1380 1381 if (SrcVec && DstVec) 1382 Assert1(cast<VectorType>(SrcTy)->getNumElements() == 1383 cast<VectorType>(DestTy)->getNumElements(), 1384 "FPToSI source and dest vector length mismatch", &I); 1385 1386 visitInstruction(I); 1387 } 1388 1389 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 1390 // Get the source and destination types 1391 Type *SrcTy = I.getOperand(0)->getType(); 1392 Type *DestTy = I.getType(); 1393 1394 Assert1(SrcTy->getScalarType()->isPointerTy(), 1395 "PtrToInt source must be pointer", &I); 1396 Assert1(DestTy->getScalarType()->isIntegerTy(), 1397 "PtrToInt result must be integral", &I); 1398 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1399 "PtrToInt type mismatch", &I); 1400 1401 if (SrcTy->isVectorTy()) { 1402 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 1403 VectorType *VDest = dyn_cast<VectorType>(DestTy); 1404 Assert1(VSrc->getNumElements() == VDest->getNumElements(), 1405 "PtrToInt Vector width mismatch", &I); 1406 } 1407 1408 visitInstruction(I); 1409 } 1410 1411 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 1412 // Get the source and destination types 1413 Type *SrcTy = I.getOperand(0)->getType(); 1414 Type *DestTy = I.getType(); 1415 1416 Assert1(SrcTy->getScalarType()->isIntegerTy(), 1417 "IntToPtr source must be an integral", &I); 1418 Assert1(DestTy->getScalarType()->isPointerTy(), 1419 "IntToPtr result must be a pointer",&I); 1420 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), 1421 "IntToPtr type mismatch", &I); 1422 if (SrcTy->isVectorTy()) { 1423 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 1424 VectorType *VDest = dyn_cast<VectorType>(DestTy); 1425 Assert1(VSrc->getNumElements() == VDest->getNumElements(), 1426 "IntToPtr Vector width mismatch", &I); 1427 } 1428 visitInstruction(I); 1429 } 1430 1431 void Verifier::visitBitCastInst(BitCastInst &I) { 1432 Type *SrcTy = I.getOperand(0)->getType(); 1433 Type *DestTy = I.getType(); 1434 VerifyBitcastType(&I, DestTy, SrcTy); 1435 visitInstruction(I); 1436 } 1437 1438 /// visitPHINode - Ensure that a PHI node is well formed. 1439 /// 1440 void Verifier::visitPHINode(PHINode &PN) { 1441 // Ensure that the PHI nodes are all grouped together at the top of the block. 1442 // This can be tested by checking whether the instruction before this is 1443 // either nonexistent (because this is begin()) or is a PHI node. If not, 1444 // then there is some other instruction before a PHI. 1445 Assert2(&PN == &PN.getParent()->front() || 1446 isa<PHINode>(--BasicBlock::iterator(&PN)), 1447 "PHI nodes not grouped at top of basic block!", 1448 &PN, PN.getParent()); 1449 1450 // Check that all of the values of the PHI node have the same type as the 1451 // result, and that the incoming blocks are really basic blocks. 1452 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1453 Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), 1454 "PHI node operands are not the same type as the result!", &PN); 1455 } 1456 1457 // All other PHI node constraints are checked in the visitBasicBlock method. 1458 1459 visitInstruction(PN); 1460 } 1461 1462 void Verifier::VerifyCallSite(CallSite CS) { 1463 Instruction *I = CS.getInstruction(); 1464 1465 Assert1(CS.getCalledValue()->getType()->isPointerTy(), 1466 "Called function must be a pointer!", I); 1467 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType()); 1468 1469 Assert1(FPTy->getElementType()->isFunctionTy(), 1470 "Called function is not pointer to function type!", I); 1471 FunctionType *FTy = cast<FunctionType>(FPTy->getElementType()); 1472 1473 // Verify that the correct number of arguments are being passed 1474 if (FTy->isVarArg()) 1475 Assert1(CS.arg_size() >= FTy->getNumParams(), 1476 "Called function requires more parameters than were provided!",I); 1477 else 1478 Assert1(CS.arg_size() == FTy->getNumParams(), 1479 "Incorrect number of arguments passed to called function!", I); 1480 1481 // Verify that all arguments to the call match the function type. 1482 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1483 Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i), 1484 "Call parameter type does not match function signature!", 1485 CS.getArgument(i), FTy->getParamType(i), I); 1486 1487 AttributeSet Attrs = CS.getAttributes(); 1488 1489 Assert1(VerifyAttributeCount(Attrs, CS.arg_size()), 1490 "Attribute after last parameter!", I); 1491 1492 // Verify call attributes. 1493 VerifyFunctionAttrs(FTy, Attrs, I); 1494 1495 if (FTy->isVarArg()) { 1496 // FIXME? is 'nest' even legal here? 1497 bool SawNest = false; 1498 bool SawReturned = false; 1499 1500 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) { 1501 if (Attrs.hasAttribute(Idx, Attribute::Nest)) 1502 SawNest = true; 1503 if (Attrs.hasAttribute(Idx, Attribute::Returned)) 1504 SawReturned = true; 1505 } 1506 1507 // Check attributes on the varargs part. 1508 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) { 1509 Type *Ty = CS.getArgument(Idx-1)->getType(); 1510 VerifyParameterAttrs(Attrs, Idx, Ty, false, I); 1511 1512 if (Attrs.hasAttribute(Idx, Attribute::Nest)) { 1513 Assert1(!SawNest, "More than one parameter has attribute nest!", I); 1514 SawNest = true; 1515 } 1516 1517 if (Attrs.hasAttribute(Idx, Attribute::Returned)) { 1518 Assert1(!SawReturned, "More than one parameter has attribute returned!", 1519 I); 1520 Assert1(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 1521 "Incompatible argument and return types for 'returned' " 1522 "attribute", I); 1523 SawReturned = true; 1524 } 1525 1526 Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet), 1527 "Attribute 'sret' cannot be used for vararg call arguments!", I); 1528 } 1529 } 1530 1531 // Verify that there's no metadata unless it's a direct call to an intrinsic. 1532 if (CS.getCalledFunction() == 0 || 1533 !CS.getCalledFunction()->getName().startswith("llvm.")) { 1534 for (FunctionType::param_iterator PI = FTy->param_begin(), 1535 PE = FTy->param_end(); PI != PE; ++PI) 1536 Assert1(!(*PI)->isMetadataTy(), 1537 "Function has metadata parameter but isn't an intrinsic", I); 1538 } 1539 1540 // If the call site has the 'builtin' attribute, verify that it's applied to a 1541 // direct call to a function with the 'nobuiltin' attribute. 1542 if (CS.hasFnAttr(Attribute::Builtin)) 1543 Assert1(CS.getCalledFunction() && 1544 CS.getCalledFunction()->hasFnAttribute(Attribute::NoBuiltin), 1545 "Attribute 'builtin' can only be used in a call to a function with " 1546 "the 'nobuiltin' attribute.", I); 1547 1548 visitInstruction(*I); 1549 } 1550 1551 void Verifier::visitCallInst(CallInst &CI) { 1552 VerifyCallSite(&CI); 1553 1554 if (Function *F = CI.getCalledFunction()) 1555 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 1556 visitIntrinsicFunctionCall(ID, CI); 1557 } 1558 1559 void Verifier::visitInvokeInst(InvokeInst &II) { 1560 VerifyCallSite(&II); 1561 1562 // Verify that there is a landingpad instruction as the first non-PHI 1563 // instruction of the 'unwind' destination. 1564 Assert1(II.getUnwindDest()->isLandingPad(), 1565 "The unwind destination does not have a landingpad instruction!",&II); 1566 1567 visitTerminatorInst(II); 1568 } 1569 1570 /// visitBinaryOperator - Check that both arguments to the binary operator are 1571 /// of the same type! 1572 /// 1573 void Verifier::visitBinaryOperator(BinaryOperator &B) { 1574 Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 1575 "Both operands to a binary operator are not of the same type!", &B); 1576 1577 switch (B.getOpcode()) { 1578 // Check that integer arithmetic operators are only used with 1579 // integral operands. 1580 case Instruction::Add: 1581 case Instruction::Sub: 1582 case Instruction::Mul: 1583 case Instruction::SDiv: 1584 case Instruction::UDiv: 1585 case Instruction::SRem: 1586 case Instruction::URem: 1587 Assert1(B.getType()->isIntOrIntVectorTy(), 1588 "Integer arithmetic operators only work with integral types!", &B); 1589 Assert1(B.getType() == B.getOperand(0)->getType(), 1590 "Integer arithmetic operators must have same type " 1591 "for operands and result!", &B); 1592 break; 1593 // Check that floating-point arithmetic operators are only used with 1594 // floating-point operands. 1595 case Instruction::FAdd: 1596 case Instruction::FSub: 1597 case Instruction::FMul: 1598 case Instruction::FDiv: 1599 case Instruction::FRem: 1600 Assert1(B.getType()->isFPOrFPVectorTy(), 1601 "Floating-point arithmetic operators only work with " 1602 "floating-point types!", &B); 1603 Assert1(B.getType() == B.getOperand(0)->getType(), 1604 "Floating-point arithmetic operators must have same type " 1605 "for operands and result!", &B); 1606 break; 1607 // Check that logical operators are only used with integral operands. 1608 case Instruction::And: 1609 case Instruction::Or: 1610 case Instruction::Xor: 1611 Assert1(B.getType()->isIntOrIntVectorTy(), 1612 "Logical operators only work with integral types!", &B); 1613 Assert1(B.getType() == B.getOperand(0)->getType(), 1614 "Logical operators must have same type for operands and result!", 1615 &B); 1616 break; 1617 case Instruction::Shl: 1618 case Instruction::LShr: 1619 case Instruction::AShr: 1620 Assert1(B.getType()->isIntOrIntVectorTy(), 1621 "Shifts only work with integral types!", &B); 1622 Assert1(B.getType() == B.getOperand(0)->getType(), 1623 "Shift return type must be same as operands!", &B); 1624 break; 1625 default: 1626 llvm_unreachable("Unknown BinaryOperator opcode!"); 1627 } 1628 1629 visitInstruction(B); 1630 } 1631 1632 void Verifier::visitICmpInst(ICmpInst &IC) { 1633 // Check that the operands are the same type 1634 Type *Op0Ty = IC.getOperand(0)->getType(); 1635 Type *Op1Ty = IC.getOperand(1)->getType(); 1636 Assert1(Op0Ty == Op1Ty, 1637 "Both operands to ICmp instruction are not of the same type!", &IC); 1638 // Check that the operands are the right type 1639 Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(), 1640 "Invalid operand types for ICmp instruction", &IC); 1641 // Check that the predicate is valid. 1642 Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE && 1643 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE, 1644 "Invalid predicate in ICmp instruction!", &IC); 1645 1646 visitInstruction(IC); 1647 } 1648 1649 void Verifier::visitFCmpInst(FCmpInst &FC) { 1650 // Check that the operands are the same type 1651 Type *Op0Ty = FC.getOperand(0)->getType(); 1652 Type *Op1Ty = FC.getOperand(1)->getType(); 1653 Assert1(Op0Ty == Op1Ty, 1654 "Both operands to FCmp instruction are not of the same type!", &FC); 1655 // Check that the operands are the right type 1656 Assert1(Op0Ty->isFPOrFPVectorTy(), 1657 "Invalid operand types for FCmp instruction", &FC); 1658 // Check that the predicate is valid. 1659 Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE && 1660 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE, 1661 "Invalid predicate in FCmp instruction!", &FC); 1662 1663 visitInstruction(FC); 1664 } 1665 1666 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 1667 Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0), 1668 EI.getOperand(1)), 1669 "Invalid extractelement operands!", &EI); 1670 visitInstruction(EI); 1671 } 1672 1673 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 1674 Assert1(InsertElementInst::isValidOperands(IE.getOperand(0), 1675 IE.getOperand(1), 1676 IE.getOperand(2)), 1677 "Invalid insertelement operands!", &IE); 1678 visitInstruction(IE); 1679 } 1680 1681 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 1682 Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 1683 SV.getOperand(2)), 1684 "Invalid shufflevector operands!", &SV); 1685 visitInstruction(SV); 1686 } 1687 1688 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1689 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 1690 1691 Assert1(isa<PointerType>(TargetTy), 1692 "GEP base pointer is not a vector or a vector of pointers", &GEP); 1693 Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(), 1694 "GEP into unsized type!", &GEP); 1695 Assert1(GEP.getPointerOperandType()->isVectorTy() == 1696 GEP.getType()->isVectorTy(), "Vector GEP must return a vector value", 1697 &GEP); 1698 1699 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 1700 Type *ElTy = 1701 GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs); 1702 Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); 1703 1704 Assert2(GEP.getType()->getScalarType()->isPointerTy() && 1705 cast<PointerType>(GEP.getType()->getScalarType())->getElementType() 1706 == ElTy, "GEP is not of right type for indices!", &GEP, ElTy); 1707 1708 if (GEP.getPointerOperandType()->isVectorTy()) { 1709 // Additional checks for vector GEPs. 1710 unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements(); 1711 Assert1(GepWidth == GEP.getType()->getVectorNumElements(), 1712 "Vector GEP result width doesn't match operand's", &GEP); 1713 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { 1714 Type *IndexTy = Idxs[i]->getType(); 1715 Assert1(IndexTy->isVectorTy(), 1716 "Vector GEP must have vector indices!", &GEP); 1717 unsigned IndexWidth = IndexTy->getVectorNumElements(); 1718 Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP); 1719 } 1720 } 1721 visitInstruction(GEP); 1722 } 1723 1724 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 1725 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 1726 } 1727 1728 void Verifier::visitLoadInst(LoadInst &LI) { 1729 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 1730 Assert1(PTy, "Load operand must be a pointer.", &LI); 1731 Type *ElTy = PTy->getElementType(); 1732 Assert2(ElTy == LI.getType(), 1733 "Load result type does not match pointer operand type!", &LI, ElTy); 1734 if (LI.isAtomic()) { 1735 Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease, 1736 "Load cannot have Release ordering", &LI); 1737 Assert1(LI.getAlignment() != 0, 1738 "Atomic load must specify explicit alignment", &LI); 1739 if (!ElTy->isPointerTy()) { 1740 Assert2(ElTy->isIntegerTy(), 1741 "atomic store operand must have integer type!", 1742 &LI, ElTy); 1743 unsigned Size = ElTy->getPrimitiveSizeInBits(); 1744 Assert2(Size >= 8 && !(Size & (Size - 1)), 1745 "atomic store operand must be power-of-two byte-sized integer", 1746 &LI, ElTy); 1747 } 1748 } else { 1749 Assert1(LI.getSynchScope() == CrossThread, 1750 "Non-atomic load cannot have SynchronizationScope specified", &LI); 1751 } 1752 1753 if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) { 1754 unsigned NumOperands = Range->getNumOperands(); 1755 Assert1(NumOperands % 2 == 0, "Unfinished range!", Range); 1756 unsigned NumRanges = NumOperands / 2; 1757 Assert1(NumRanges >= 1, "It should have at least one range!", Range); 1758 1759 ConstantRange LastRange(1); // Dummy initial value 1760 for (unsigned i = 0; i < NumRanges; ++i) { 1761 ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i)); 1762 Assert1(Low, "The lower limit must be an integer!", Low); 1763 ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1)); 1764 Assert1(High, "The upper limit must be an integer!", High); 1765 Assert1(High->getType() == Low->getType() && 1766 High->getType() == ElTy, "Range types must match load type!", 1767 &LI); 1768 1769 APInt HighV = High->getValue(); 1770 APInt LowV = Low->getValue(); 1771 ConstantRange CurRange(LowV, HighV); 1772 Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(), 1773 "Range must not be empty!", Range); 1774 if (i != 0) { 1775 Assert1(CurRange.intersectWith(LastRange).isEmptySet(), 1776 "Intervals are overlapping", Range); 1777 Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 1778 Range); 1779 Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 1780 Range); 1781 } 1782 LastRange = ConstantRange(LowV, HighV); 1783 } 1784 if (NumRanges > 2) { 1785 APInt FirstLow = 1786 dyn_cast<ConstantInt>(Range->getOperand(0))->getValue(); 1787 APInt FirstHigh = 1788 dyn_cast<ConstantInt>(Range->getOperand(1))->getValue(); 1789 ConstantRange FirstRange(FirstLow, FirstHigh); 1790 Assert1(FirstRange.intersectWith(LastRange).isEmptySet(), 1791 "Intervals are overlapping", Range); 1792 Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 1793 Range); 1794 } 1795 1796 1797 } 1798 1799 visitInstruction(LI); 1800 } 1801 1802 void Verifier::visitStoreInst(StoreInst &SI) { 1803 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 1804 Assert1(PTy, "Store operand must be a pointer.", &SI); 1805 Type *ElTy = PTy->getElementType(); 1806 Assert2(ElTy == SI.getOperand(0)->getType(), 1807 "Stored value type does not match pointer operand type!", 1808 &SI, ElTy); 1809 if (SI.isAtomic()) { 1810 Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease, 1811 "Store cannot have Acquire ordering", &SI); 1812 Assert1(SI.getAlignment() != 0, 1813 "Atomic store must specify explicit alignment", &SI); 1814 if (!ElTy->isPointerTy()) { 1815 Assert2(ElTy->isIntegerTy(), 1816 "atomic store operand must have integer type!", 1817 &SI, ElTy); 1818 unsigned Size = ElTy->getPrimitiveSizeInBits(); 1819 Assert2(Size >= 8 && !(Size & (Size - 1)), 1820 "atomic store operand must be power-of-two byte-sized integer", 1821 &SI, ElTy); 1822 } 1823 } else { 1824 Assert1(SI.getSynchScope() == CrossThread, 1825 "Non-atomic store cannot have SynchronizationScope specified", &SI); 1826 } 1827 visitInstruction(SI); 1828 } 1829 1830 void Verifier::visitAllocaInst(AllocaInst &AI) { 1831 PointerType *PTy = AI.getType(); 1832 Assert1(PTy->getAddressSpace() == 0, 1833 "Allocation instruction pointer not in the generic address space!", 1834 &AI); 1835 Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type", 1836 &AI); 1837 Assert1(AI.getArraySize()->getType()->isIntegerTy(), 1838 "Alloca array size must have integer type", &AI); 1839 visitInstruction(AI); 1840 } 1841 1842 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 1843 Assert1(CXI.getOrdering() != NotAtomic, 1844 "cmpxchg instructions must be atomic.", &CXI); 1845 Assert1(CXI.getOrdering() != Unordered, 1846 "cmpxchg instructions cannot be unordered.", &CXI); 1847 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 1848 Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI); 1849 Type *ElTy = PTy->getElementType(); 1850 Assert2(ElTy->isIntegerTy(), 1851 "cmpxchg operand must have integer type!", 1852 &CXI, ElTy); 1853 unsigned Size = ElTy->getPrimitiveSizeInBits(); 1854 Assert2(Size >= 8 && !(Size & (Size - 1)), 1855 "cmpxchg operand must be power-of-two byte-sized integer", 1856 &CXI, ElTy); 1857 Assert2(ElTy == CXI.getOperand(1)->getType(), 1858 "Expected value type does not match pointer operand type!", 1859 &CXI, ElTy); 1860 Assert2(ElTy == CXI.getOperand(2)->getType(), 1861 "Stored value type does not match pointer operand type!", 1862 &CXI, ElTy); 1863 visitInstruction(CXI); 1864 } 1865 1866 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 1867 Assert1(RMWI.getOrdering() != NotAtomic, 1868 "atomicrmw instructions must be atomic.", &RMWI); 1869 Assert1(RMWI.getOrdering() != Unordered, 1870 "atomicrmw instructions cannot be unordered.", &RMWI); 1871 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 1872 Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 1873 Type *ElTy = PTy->getElementType(); 1874 Assert2(ElTy->isIntegerTy(), 1875 "atomicrmw operand must have integer type!", 1876 &RMWI, ElTy); 1877 unsigned Size = ElTy->getPrimitiveSizeInBits(); 1878 Assert2(Size >= 8 && !(Size & (Size - 1)), 1879 "atomicrmw operand must be power-of-two byte-sized integer", 1880 &RMWI, ElTy); 1881 Assert2(ElTy == RMWI.getOperand(1)->getType(), 1882 "Argument value type does not match pointer operand type!", 1883 &RMWI, ElTy); 1884 Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() && 1885 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP, 1886 "Invalid binary operation!", &RMWI); 1887 visitInstruction(RMWI); 1888 } 1889 1890 void Verifier::visitFenceInst(FenceInst &FI) { 1891 const AtomicOrdering Ordering = FI.getOrdering(); 1892 Assert1(Ordering == Acquire || Ordering == Release || 1893 Ordering == AcquireRelease || Ordering == SequentiallyConsistent, 1894 "fence instructions may only have " 1895 "acquire, release, acq_rel, or seq_cst ordering.", &FI); 1896 visitInstruction(FI); 1897 } 1898 1899 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 1900 Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 1901 EVI.getIndices()) == 1902 EVI.getType(), 1903 "Invalid ExtractValueInst operands!", &EVI); 1904 1905 visitInstruction(EVI); 1906 } 1907 1908 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 1909 Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 1910 IVI.getIndices()) == 1911 IVI.getOperand(1)->getType(), 1912 "Invalid InsertValueInst operands!", &IVI); 1913 1914 visitInstruction(IVI); 1915 } 1916 1917 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 1918 BasicBlock *BB = LPI.getParent(); 1919 1920 // The landingpad instruction is ill-formed if it doesn't have any clauses and 1921 // isn't a cleanup. 1922 Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(), 1923 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 1924 1925 // The landingpad instruction defines its parent as a landing pad block. The 1926 // landing pad block may be branched to only by the unwind edge of an invoke. 1927 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1928 const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator()); 1929 Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 1930 "Block containing LandingPadInst must be jumped to " 1931 "only by the unwind edge of an invoke.", &LPI); 1932 } 1933 1934 // The landingpad instruction must be the first non-PHI instruction in the 1935 // block. 1936 Assert1(LPI.getParent()->getLandingPadInst() == &LPI, 1937 "LandingPadInst not the first non-PHI instruction in the block.", 1938 &LPI); 1939 1940 // The personality functions for all landingpad instructions within the same 1941 // function should match. 1942 if (PersonalityFn) 1943 Assert1(LPI.getPersonalityFn() == PersonalityFn, 1944 "Personality function doesn't match others in function", &LPI); 1945 PersonalityFn = LPI.getPersonalityFn(); 1946 1947 // All operands must be constants. 1948 Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!", 1949 &LPI); 1950 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 1951 Value *Clause = LPI.getClause(i); 1952 Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI); 1953 if (LPI.isCatch(i)) { 1954 Assert1(isa<PointerType>(Clause->getType()), 1955 "Catch operand does not have pointer type!", &LPI); 1956 } else { 1957 Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 1958 Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 1959 "Filter operand is not an array of constants!", &LPI); 1960 } 1961 } 1962 1963 visitInstruction(LPI); 1964 } 1965 1966 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 1967 Instruction *Op = cast<Instruction>(I.getOperand(i)); 1968 // If the we have an invalid invoke, don't try to compute the dominance. 1969 // We already reject it in the invoke specific checks and the dominance 1970 // computation doesn't handle multiple edges. 1971 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 1972 if (II->getNormalDest() == II->getUnwindDest()) 1973 return; 1974 } 1975 1976 const Use &U = I.getOperandUse(i); 1977 Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, U), 1978 "Instruction does not dominate all uses!", Op, &I); 1979 } 1980 1981 /// verifyInstruction - Verify that an instruction is well formed. 1982 /// 1983 void Verifier::visitInstruction(Instruction &I) { 1984 BasicBlock *BB = I.getParent(); 1985 Assert1(BB, "Instruction not embedded in basic block!", &I); 1986 1987 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 1988 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); 1989 UI != UE; ++UI) 1990 Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB), 1991 "Only PHI nodes may reference their own value!", &I); 1992 } 1993 1994 // Check that void typed values don't have names 1995 Assert1(!I.getType()->isVoidTy() || !I.hasName(), 1996 "Instruction has a name, but provides a void value!", &I); 1997 1998 // Check that the return value of the instruction is either void or a legal 1999 // value type. 2000 Assert1(I.getType()->isVoidTy() || 2001 I.getType()->isFirstClassType(), 2002 "Instruction returns a non-scalar type!", &I); 2003 2004 // Check that the instruction doesn't produce metadata. Calls are already 2005 // checked against the callee type. 2006 Assert1(!I.getType()->isMetadataTy() || 2007 isa<CallInst>(I) || isa<InvokeInst>(I), 2008 "Invalid use of metadata!", &I); 2009 2010 // Check that all uses of the instruction, if they are instructions 2011 // themselves, actually have parent basic blocks. If the use is not an 2012 // instruction, it is an error! 2013 for (User::use_iterator UI = I.use_begin(), UE = I.use_end(); 2014 UI != UE; ++UI) { 2015 if (Instruction *Used = dyn_cast<Instruction>(*UI)) 2016 Assert2(Used->getParent() != 0, "Instruction referencing instruction not" 2017 " embedded in a basic block!", &I, Used); 2018 else { 2019 CheckFailed("Use of instruction is not an instruction!", *UI); 2020 return; 2021 } 2022 } 2023 2024 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 2025 Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I); 2026 2027 // Check to make sure that only first-class-values are operands to 2028 // instructions. 2029 if (!I.getOperand(i)->getType()->isFirstClassType()) { 2030 Assert1(0, "Instruction operands must be first-class values!", &I); 2031 } 2032 2033 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 2034 // Check to make sure that the "address of" an intrinsic function is never 2035 // taken. 2036 Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0), 2037 "Cannot take the address of an intrinsic!", &I); 2038 Assert1(!F->isIntrinsic() || isa<CallInst>(I) || 2039 F->getIntrinsicID() == Intrinsic::donothing, 2040 "Cannot invoke an intrinsinc other than donothing", &I); 2041 Assert1(F->getParent() == Mod, "Referencing function in another module!", 2042 &I); 2043 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 2044 Assert1(OpBB->getParent() == BB->getParent(), 2045 "Referring to a basic block in another function!", &I); 2046 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 2047 Assert1(OpArg->getParent() == BB->getParent(), 2048 "Referring to an argument in another function!", &I); 2049 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 2050 Assert1(GV->getParent() == Mod, "Referencing global in another module!", 2051 &I); 2052 } else if (isa<Instruction>(I.getOperand(i))) { 2053 verifyDominatesUse(I, i); 2054 } else if (isa<InlineAsm>(I.getOperand(i))) { 2055 Assert1((i + 1 == e && isa<CallInst>(I)) || 2056 (i + 3 == e && isa<InvokeInst>(I)), 2057 "Cannot take the address of an inline asm!", &I); 2058 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 2059 if (CE->getType()->isPtrOrPtrVectorTy()) { 2060 // If we have a ConstantExpr pointer, we need to see if it came from an 2061 // illegal bitcast (inttoptr <constant int> ) 2062 SmallVector<const ConstantExpr *, 4> Stack; 2063 SmallPtrSet<const ConstantExpr *, 4> Visited; 2064 Stack.push_back(CE); 2065 2066 while (!Stack.empty()) { 2067 const ConstantExpr *V = Stack.pop_back_val(); 2068 if (!Visited.insert(V)) 2069 continue; 2070 2071 VerifyConstantExprBitcastType(V); 2072 2073 for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) { 2074 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I))) 2075 Stack.push_back(Op); 2076 } 2077 } 2078 } 2079 } 2080 } 2081 2082 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 2083 Assert1(I.getType()->isFPOrFPVectorTy(), 2084 "fpmath requires a floating point result!", &I); 2085 Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 2086 Value *Op0 = MD->getOperand(0); 2087 if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) { 2088 APFloat Accuracy = CFP0->getValueAPF(); 2089 Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 2090 "fpmath accuracy not a positive number!", &I); 2091 } else { 2092 Assert1(false, "invalid fpmath accuracy!", &I); 2093 } 2094 } 2095 2096 MDNode *MD = I.getMetadata(LLVMContext::MD_range); 2097 Assert1(!MD || isa<LoadInst>(I), "Ranges are only for loads!", &I); 2098 2099 if (!DisableDebugInfoVerifier) { 2100 MD = I.getMetadata(LLVMContext::MD_dbg); 2101 Finder.processLocation(DILocation(MD)); 2102 } 2103 2104 InstsInThisBlock.insert(&I); 2105 } 2106 2107 /// VerifyIntrinsicType - Verify that the specified type (which comes from an 2108 /// intrinsic argument or return value) matches the type constraints specified 2109 /// by the .td file (e.g. an "any integer" argument really is an integer). 2110 /// 2111 /// This return true on error but does not print a message. 2112 bool Verifier::VerifyIntrinsicType(Type *Ty, 2113 ArrayRef<Intrinsic::IITDescriptor> &Infos, 2114 SmallVectorImpl<Type*> &ArgTys) { 2115 using namespace Intrinsic; 2116 2117 // If we ran out of descriptors, there are too many arguments. 2118 if (Infos.empty()) return true; 2119 IITDescriptor D = Infos.front(); 2120 Infos = Infos.slice(1); 2121 2122 switch (D.Kind) { 2123 case IITDescriptor::Void: return !Ty->isVoidTy(); 2124 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 2125 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 2126 case IITDescriptor::Half: return !Ty->isHalfTy(); 2127 case IITDescriptor::Float: return !Ty->isFloatTy(); 2128 case IITDescriptor::Double: return !Ty->isDoubleTy(); 2129 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 2130 case IITDescriptor::Vector: { 2131 VectorType *VT = dyn_cast<VectorType>(Ty); 2132 return VT == 0 || VT->getNumElements() != D.Vector_Width || 2133 VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys); 2134 } 2135 case IITDescriptor::Pointer: { 2136 PointerType *PT = dyn_cast<PointerType>(Ty); 2137 return PT == 0 || PT->getAddressSpace() != D.Pointer_AddressSpace || 2138 VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys); 2139 } 2140 2141 case IITDescriptor::Struct: { 2142 StructType *ST = dyn_cast<StructType>(Ty); 2143 if (ST == 0 || ST->getNumElements() != D.Struct_NumElements) 2144 return true; 2145 2146 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 2147 if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 2148 return true; 2149 return false; 2150 } 2151 2152 case IITDescriptor::Argument: 2153 // Two cases here - If this is the second occurrence of an argument, verify 2154 // that the later instance matches the previous instance. 2155 if (D.getArgumentNumber() < ArgTys.size()) 2156 return Ty != ArgTys[D.getArgumentNumber()]; 2157 2158 // Otherwise, if this is the first instance of an argument, record it and 2159 // verify the "Any" kind. 2160 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 2161 ArgTys.push_back(Ty); 2162 2163 switch (D.getArgumentKind()) { 2164 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 2165 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 2166 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 2167 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 2168 } 2169 llvm_unreachable("all argument kinds not covered"); 2170 2171 case IITDescriptor::ExtendVecArgument: 2172 // This may only be used when referring to a previous vector argument. 2173 return D.getArgumentNumber() >= ArgTys.size() || 2174 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 2175 VectorType::getExtendedElementVectorType( 2176 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 2177 2178 case IITDescriptor::TruncVecArgument: 2179 // This may only be used when referring to a previous vector argument. 2180 return D.getArgumentNumber() >= ArgTys.size() || 2181 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 2182 VectorType::getTruncatedElementVectorType( 2183 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 2184 } 2185 llvm_unreachable("unhandled"); 2186 } 2187 2188 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways. 2189 /// 2190 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { 2191 Function *IF = CI.getCalledFunction(); 2192 Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!", 2193 IF); 2194 2195 // Verify that the intrinsic prototype lines up with what the .td files 2196 // describe. 2197 FunctionType *IFTy = IF->getFunctionType(); 2198 Assert1(!IFTy->isVarArg(), "Intrinsic prototypes are not varargs", IF); 2199 2200 SmallVector<Intrinsic::IITDescriptor, 8> Table; 2201 getIntrinsicInfoTableEntries(ID, Table); 2202 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 2203 2204 SmallVector<Type *, 4> ArgTys; 2205 Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys), 2206 "Intrinsic has incorrect return type!", IF); 2207 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i) 2208 Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys), 2209 "Intrinsic has incorrect argument type!", IF); 2210 Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF); 2211 2212 // Now that we have the intrinsic ID and the actual argument types (and we 2213 // know they are legal for the intrinsic!) get the intrinsic name through the 2214 // usual means. This allows us to verify the mangling of argument types into 2215 // the name. 2216 Assert1(Intrinsic::getName(ID, ArgTys) == IF->getName(), 2217 "Intrinsic name not mangled correctly for type arguments!", IF); 2218 2219 // If the intrinsic takes MDNode arguments, verify that they are either global 2220 // or are local to *this* function. 2221 for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i) 2222 if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i))) 2223 visitMDNode(*MD, CI.getParent()->getParent()); 2224 2225 switch (ID) { 2226 default: 2227 break; 2228 case Intrinsic::ctlz: // llvm.ctlz 2229 case Intrinsic::cttz: // llvm.cttz 2230 Assert1(isa<ConstantInt>(CI.getArgOperand(1)), 2231 "is_zero_undef argument of bit counting intrinsics must be a " 2232 "constant int", &CI); 2233 break; 2234 case Intrinsic::dbg_declare: { // llvm.dbg.declare 2235 Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)), 2236 "invalid llvm.dbg.declare intrinsic call 1", &CI); 2237 MDNode *MD = cast<MDNode>(CI.getArgOperand(0)); 2238 Assert1(MD->getNumOperands() == 1, 2239 "invalid llvm.dbg.declare intrinsic call 2", &CI); 2240 if (!DisableDebugInfoVerifier) 2241 Finder.processDeclare(cast<DbgDeclareInst>(&CI)); 2242 } break; 2243 case Intrinsic::dbg_value: { //llvm.dbg.value 2244 if (!DisableDebugInfoVerifier) { 2245 Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)), 2246 "invalid llvm.dbg.value intrinsic call 1", &CI); 2247 Finder.processValue(cast<DbgValueInst>(&CI)); 2248 } 2249 break; 2250 } 2251 case Intrinsic::memcpy: 2252 case Intrinsic::memmove: 2253 case Intrinsic::memset: 2254 Assert1(isa<ConstantInt>(CI.getArgOperand(3)), 2255 "alignment argument of memory intrinsics must be a constant int", 2256 &CI); 2257 Assert1(isa<ConstantInt>(CI.getArgOperand(4)), 2258 "isvolatile argument of memory intrinsics must be a constant int", 2259 &CI); 2260 break; 2261 case Intrinsic::gcroot: 2262 case Intrinsic::gcwrite: 2263 case Intrinsic::gcread: 2264 if (ID == Intrinsic::gcroot) { 2265 AllocaInst *AI = 2266 dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts()); 2267 Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI); 2268 Assert1(isa<Constant>(CI.getArgOperand(1)), 2269 "llvm.gcroot parameter #2 must be a constant.", &CI); 2270 if (!AI->getType()->getElementType()->isPointerTy()) { 2271 Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)), 2272 "llvm.gcroot parameter #1 must either be a pointer alloca, " 2273 "or argument #2 must be a non-null constant.", &CI); 2274 } 2275 } 2276 2277 Assert1(CI.getParent()->getParent()->hasGC(), 2278 "Enclosing function does not use GC.", &CI); 2279 break; 2280 case Intrinsic::init_trampoline: 2281 Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()), 2282 "llvm.init_trampoline parameter #2 must resolve to a function.", 2283 &CI); 2284 break; 2285 case Intrinsic::prefetch: 2286 Assert1(isa<ConstantInt>(CI.getArgOperand(1)) && 2287 isa<ConstantInt>(CI.getArgOperand(2)) && 2288 cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 && 2289 cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4, 2290 "invalid arguments to llvm.prefetch", 2291 &CI); 2292 break; 2293 case Intrinsic::stackprotector: 2294 Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()), 2295 "llvm.stackprotector parameter #2 must resolve to an alloca.", 2296 &CI); 2297 break; 2298 case Intrinsic::lifetime_start: 2299 case Intrinsic::lifetime_end: 2300 case Intrinsic::invariant_start: 2301 Assert1(isa<ConstantInt>(CI.getArgOperand(0)), 2302 "size argument of memory use markers must be a constant integer", 2303 &CI); 2304 break; 2305 case Intrinsic::invariant_end: 2306 Assert1(isa<ConstantInt>(CI.getArgOperand(1)), 2307 "llvm.invariant.end parameter #2 must be a constant integer", &CI); 2308 break; 2309 } 2310 } 2311 2312 void Verifier::verifyDebugInfo(Module &M) { 2313 // Verify Debug Info. 2314 if (!DisableDebugInfoVerifier) { 2315 Finder.processModule(M); 2316 2317 for (DebugInfoFinder::iterator I = Finder.compile_unit_begin(), 2318 E = Finder.compile_unit_end(); I != E; ++I) 2319 Assert1(DICompileUnit(*I).Verify(), "DICompileUnit does not Verify!", *I); 2320 for (DebugInfoFinder::iterator I = Finder.subprogram_begin(), 2321 E = Finder.subprogram_end(); I != E; ++I) 2322 Assert1(DISubprogram(*I).Verify(), "DISubprogram does not Verify!", *I); 2323 for (DebugInfoFinder::iterator I = Finder.global_variable_begin(), 2324 E = Finder.global_variable_end(); I != E; ++I) 2325 Assert1(DIGlobalVariable(*I).Verify(), 2326 "DIGlobalVariable does not Verify!", *I); 2327 for (DebugInfoFinder::iterator I = Finder.type_begin(), 2328 E = Finder.type_end(); I != E; ++I) 2329 Assert1(DIType(*I).Verify(), "DIType does not Verify!", *I); 2330 for (DebugInfoFinder::iterator I = Finder.scope_begin(), 2331 E = Finder.scope_end(); I != E; ++I) 2332 Assert1(DIScope(*I).Verify(), "DIScope does not Verify!", *I); 2333 } 2334 } 2335 2336 //===----------------------------------------------------------------------===// 2337 // Implement the public interfaces to this file... 2338 //===----------------------------------------------------------------------===// 2339 2340 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) { 2341 return new Verifier(action); 2342 } 2343 2344 2345 /// verifyFunction - Check a function for errors, printing messages on stderr. 2346 /// Return true if the function is corrupt. 2347 /// 2348 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) { 2349 Function &F = const_cast<Function&>(f); 2350 assert(!F.isDeclaration() && "Cannot verify external functions"); 2351 2352 FunctionPassManager FPM(F.getParent()); 2353 Verifier *V = new Verifier(action); 2354 FPM.add(V); 2355 FPM.run(F); 2356 return V->Broken; 2357 } 2358 2359 /// verifyModule - Check a module for errors, printing messages on stderr. 2360 /// Return true if the module is corrupt. 2361 /// 2362 bool llvm::verifyModule(const Module &M, VerifierFailureAction action, 2363 std::string *ErrorInfo) { 2364 PassManager PM; 2365 Verifier *V = new Verifier(action); 2366 PM.add(V); 2367 PM.run(const_cast<Module&>(M)); 2368 2369 if (ErrorInfo && V->Broken) 2370 *ErrorInfo = V->MessagesStr.str(); 2371 return V->Broken; 2372 } 2373