Home | History | Annotate | Download | only in Core
      1 // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines BugReporter, a utility class for generating
     11 //  PathDiagnostics.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "BugReporter"
     16 
     17 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/DeclObjC.h"
     20 #include "clang/AST/Expr.h"
     21 #include "clang/AST/ExprCXX.h"
     22 #include "clang/AST/ParentMap.h"
     23 #include "clang/AST/StmtObjC.h"
     24 #include "clang/AST/StmtCXX.h"
     25 #include "clang/Analysis/CFG.h"
     26 #include "clang/Analysis/ProgramPoint.h"
     27 #include "clang/Basic/SourceManager.h"
     28 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
     29 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
     30 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
     31 #include "llvm/ADT/DenseMap.h"
     32 #include "llvm/ADT/IntrusiveRefCntPtr.h"
     33 #include "llvm/ADT/OwningPtr.h"
     34 #include "llvm/ADT/STLExtras.h"
     35 #include "llvm/ADT/SmallString.h"
     36 #include "llvm/ADT/Statistic.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #include <queue>
     39 
     40 using namespace clang;
     41 using namespace ento;
     42 
     43 STATISTIC(MaxBugClassSize,
     44           "The maximum number of bug reports in the same equivalence class");
     45 STATISTIC(MaxValidBugClassSize,
     46           "The maximum number of bug reports in the same equivalence class "
     47           "where at least one report is valid (not suppressed)");
     48 
     49 BugReporterVisitor::~BugReporterVisitor() {}
     50 
     51 void BugReporterContext::anchor() {}
     52 
     53 //===----------------------------------------------------------------------===//
     54 // Helper routines for walking the ExplodedGraph and fetching statements.
     55 //===----------------------------------------------------------------------===//
     56 
     57 static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
     58   for (N = N->getFirstPred(); N; N = N->getFirstPred())
     59     if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
     60       return S;
     61 
     62   return 0;
     63 }
     64 
     65 static inline const Stmt*
     66 GetCurrentOrPreviousStmt(const ExplodedNode *N) {
     67   if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
     68     return S;
     69 
     70   return GetPreviousStmt(N);
     71 }
     72 
     73 //===----------------------------------------------------------------------===//
     74 // Diagnostic cleanup.
     75 //===----------------------------------------------------------------------===//
     76 
     77 static PathDiagnosticEventPiece *
     78 eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
     79                             PathDiagnosticEventPiece *Y) {
     80   // Prefer diagnostics that come from ConditionBRVisitor over
     81   // those that came from TrackConstraintBRVisitor.
     82   const void *tagPreferred = ConditionBRVisitor::getTag();
     83   const void *tagLesser = TrackConstraintBRVisitor::getTag();
     84 
     85   if (X->getLocation() != Y->getLocation())
     86     return 0;
     87 
     88   if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
     89     return X;
     90 
     91   if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
     92     return Y;
     93 
     94   return 0;
     95 }
     96 
     97 /// An optimization pass over PathPieces that removes redundant diagnostics
     98 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
     99 /// BugReporterVisitors use different methods to generate diagnostics, with
    100 /// one capable of emitting diagnostics in some cases but not in others.  This
    101 /// can lead to redundant diagnostic pieces at the same point in a path.
    102 static void removeRedundantMsgs(PathPieces &path) {
    103   unsigned N = path.size();
    104   if (N < 2)
    105     return;
    106   // NOTE: this loop intentionally is not using an iterator.  Instead, we
    107   // are streaming the path and modifying it in place.  This is done by
    108   // grabbing the front, processing it, and if we decide to keep it append
    109   // it to the end of the path.  The entire path is processed in this way.
    110   for (unsigned i = 0; i < N; ++i) {
    111     IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front());
    112     path.pop_front();
    113 
    114     switch (piece->getKind()) {
    115       case clang::ento::PathDiagnosticPiece::Call:
    116         removeRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path);
    117         break;
    118       case clang::ento::PathDiagnosticPiece::Macro:
    119         removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces);
    120         break;
    121       case clang::ento::PathDiagnosticPiece::ControlFlow:
    122         break;
    123       case clang::ento::PathDiagnosticPiece::Event: {
    124         if (i == N-1)
    125           break;
    126 
    127         if (PathDiagnosticEventPiece *nextEvent =
    128             dyn_cast<PathDiagnosticEventPiece>(path.front().getPtr())) {
    129           PathDiagnosticEventPiece *event =
    130             cast<PathDiagnosticEventPiece>(piece);
    131           // Check to see if we should keep one of the two pieces.  If we
    132           // come up with a preference, record which piece to keep, and consume
    133           // another piece from the path.
    134           if (PathDiagnosticEventPiece *pieceToKeep =
    135               eventsDescribeSameCondition(event, nextEvent)) {
    136             piece = pieceToKeep;
    137             path.pop_front();
    138             ++i;
    139           }
    140         }
    141         break;
    142       }
    143     }
    144     path.push_back(piece);
    145   }
    146 }
    147 
    148 /// A map from PathDiagnosticPiece to the LocationContext of the inlined
    149 /// function call it represents.
    150 typedef llvm::DenseMap<const PathPieces *, const LocationContext *>
    151         LocationContextMap;
    152 
    153 /// Recursively scan through a path and prune out calls and macros pieces
    154 /// that aren't needed.  Return true if afterwards the path contains
    155 /// "interesting stuff" which means it shouldn't be pruned from the parent path.
    156 static bool removeUnneededCalls(PathPieces &pieces, BugReport *R,
    157                                 LocationContextMap &LCM) {
    158   bool containsSomethingInteresting = false;
    159   const unsigned N = pieces.size();
    160 
    161   for (unsigned i = 0 ; i < N ; ++i) {
    162     // Remove the front piece from the path.  If it is still something we
    163     // want to keep once we are done, we will push it back on the end.
    164     IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
    165     pieces.pop_front();
    166 
    167     switch (piece->getKind()) {
    168       case PathDiagnosticPiece::Call: {
    169         PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
    170         // Check if the location context is interesting.
    171         assert(LCM.count(&call->path));
    172         if (R->isInteresting(LCM[&call->path])) {
    173           containsSomethingInteresting = true;
    174           break;
    175         }
    176 
    177         if (!removeUnneededCalls(call->path, R, LCM))
    178           continue;
    179 
    180         containsSomethingInteresting = true;
    181         break;
    182       }
    183       case PathDiagnosticPiece::Macro: {
    184         PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
    185         if (!removeUnneededCalls(macro->subPieces, R, LCM))
    186           continue;
    187         containsSomethingInteresting = true;
    188         break;
    189       }
    190       case PathDiagnosticPiece::Event: {
    191         PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
    192 
    193         // We never throw away an event, but we do throw it away wholesale
    194         // as part of a path if we throw the entire path away.
    195         containsSomethingInteresting |= !event->isPrunable();
    196         break;
    197       }
    198       case PathDiagnosticPiece::ControlFlow:
    199         break;
    200     }
    201 
    202     pieces.push_back(piece);
    203   }
    204 
    205   return containsSomethingInteresting;
    206 }
    207 
    208 /// Returns true if the given decl has been implicitly given a body, either by
    209 /// the analyzer or by the compiler proper.
    210 static bool hasImplicitBody(const Decl *D) {
    211   assert(D);
    212   return D->isImplicit() || !D->hasBody();
    213 }
    214 
    215 /// Recursively scan through a path and make sure that all call pieces have
    216 /// valid locations.
    217 static void adjustCallLocations(PathPieces &Pieces,
    218                                 PathDiagnosticLocation *LastCallLocation = 0) {
    219   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) {
    220     PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I);
    221 
    222     if (!Call) {
    223       assert((*I)->getLocation().asLocation().isValid());
    224       continue;
    225     }
    226 
    227     if (LastCallLocation) {
    228       bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
    229       if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
    230         Call->callEnter = *LastCallLocation;
    231       if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
    232         Call->callReturn = *LastCallLocation;
    233     }
    234 
    235     // Recursively clean out the subclass.  Keep this call around if
    236     // it contains any informative diagnostics.
    237     PathDiagnosticLocation *ThisCallLocation;
    238     if (Call->callEnterWithin.asLocation().isValid() &&
    239         !hasImplicitBody(Call->getCallee()))
    240       ThisCallLocation = &Call->callEnterWithin;
    241     else
    242       ThisCallLocation = &Call->callEnter;
    243 
    244     assert(ThisCallLocation && "Outermost call has an invalid location");
    245     adjustCallLocations(Call->path, ThisCallLocation);
    246   }
    247 }
    248 
    249 /// Remove all pieces with invalid locations as these cannot be serialized.
    250 /// We might have pieces with invalid locations as a result of inlining Body
    251 /// Farm generated functions.
    252 static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
    253   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
    254     if (PathDiagnosticCallPiece *C = dyn_cast<PathDiagnosticCallPiece>(*I))
    255       removePiecesWithInvalidLocations(C->path);
    256 
    257     if (PathDiagnosticMacroPiece *M = dyn_cast<PathDiagnosticMacroPiece>(*I))
    258       removePiecesWithInvalidLocations(M->subPieces);
    259 
    260     if (!(*I)->getLocation().isValid() ||
    261         !(*I)->getLocation().asLocation().isValid()) {
    262       I = Pieces.erase(I);
    263       continue;
    264     }
    265     I++;
    266   }
    267 }
    268 
    269 //===----------------------------------------------------------------------===//
    270 // PathDiagnosticBuilder and its associated routines and helper objects.
    271 //===----------------------------------------------------------------------===//
    272 
    273 namespace {
    274 class NodeMapClosure : public BugReport::NodeResolver {
    275   InterExplodedGraphMap &M;
    276 public:
    277   NodeMapClosure(InterExplodedGraphMap &m) : M(m) {}
    278 
    279   const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
    280     return M.lookup(N);
    281   }
    282 };
    283 
    284 class PathDiagnosticBuilder : public BugReporterContext {
    285   BugReport *R;
    286   PathDiagnosticConsumer *PDC;
    287   NodeMapClosure NMC;
    288 public:
    289   const LocationContext *LC;
    290 
    291   PathDiagnosticBuilder(GRBugReporter &br,
    292                         BugReport *r, InterExplodedGraphMap &Backmap,
    293                         PathDiagnosticConsumer *pdc)
    294     : BugReporterContext(br),
    295       R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
    296   {}
    297 
    298   PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
    299 
    300   PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
    301                                             const ExplodedNode *N);
    302 
    303   BugReport *getBugReport() { return R; }
    304 
    305   Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
    306 
    307   ParentMap& getParentMap() { return LC->getParentMap(); }
    308 
    309   const Stmt *getParent(const Stmt *S) {
    310     return getParentMap().getParent(S);
    311   }
    312 
    313   virtual NodeMapClosure& getNodeResolver() { return NMC; }
    314 
    315   PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
    316 
    317   PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
    318     return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
    319   }
    320 
    321   bool supportsLogicalOpControlFlow() const {
    322     return PDC ? PDC->supportsLogicalOpControlFlow() : true;
    323   }
    324 };
    325 } // end anonymous namespace
    326 
    327 PathDiagnosticLocation
    328 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
    329   if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N))
    330     return PathDiagnosticLocation(S, getSourceManager(), LC);
    331 
    332   return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
    333                                                getSourceManager());
    334 }
    335 
    336 PathDiagnosticLocation
    337 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
    338                                           const ExplodedNode *N) {
    339 
    340   // Slow, but probably doesn't matter.
    341   if (os.str().empty())
    342     os << ' ';
    343 
    344   const PathDiagnosticLocation &Loc = ExecutionContinues(N);
    345 
    346   if (Loc.asStmt())
    347     os << "Execution continues on line "
    348        << getSourceManager().getExpansionLineNumber(Loc.asLocation())
    349        << '.';
    350   else {
    351     os << "Execution jumps to the end of the ";
    352     const Decl *D = N->getLocationContext()->getDecl();
    353     if (isa<ObjCMethodDecl>(D))
    354       os << "method";
    355     else if (isa<FunctionDecl>(D))
    356       os << "function";
    357     else {
    358       assert(isa<BlockDecl>(D));
    359       os << "anonymous block";
    360     }
    361     os << '.';
    362   }
    363 
    364   return Loc;
    365 }
    366 
    367 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
    368   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
    369     return PM.getParentIgnoreParens(S);
    370 
    371   const Stmt *Parent = PM.getParentIgnoreParens(S);
    372   if (!Parent)
    373     return 0;
    374 
    375   switch (Parent->getStmtClass()) {
    376   case Stmt::ForStmtClass:
    377   case Stmt::DoStmtClass:
    378   case Stmt::WhileStmtClass:
    379   case Stmt::ObjCForCollectionStmtClass:
    380   case Stmt::CXXForRangeStmtClass:
    381     return Parent;
    382   default:
    383     break;
    384   }
    385 
    386   return 0;
    387 }
    388 
    389 static PathDiagnosticLocation
    390 getEnclosingStmtLocation(const Stmt *S, SourceManager &SMgr, const ParentMap &P,
    391                          const LocationContext *LC, bool allowNestedContexts) {
    392   if (!S)
    393     return PathDiagnosticLocation();
    394 
    395   while (const Stmt *Parent = getEnclosingParent(S, P)) {
    396     switch (Parent->getStmtClass()) {
    397       case Stmt::BinaryOperatorClass: {
    398         const BinaryOperator *B = cast<BinaryOperator>(Parent);
    399         if (B->isLogicalOp())
    400           return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
    401         break;
    402       }
    403       case Stmt::CompoundStmtClass:
    404       case Stmt::StmtExprClass:
    405         return PathDiagnosticLocation(S, SMgr, LC);
    406       case Stmt::ChooseExprClass:
    407         // Similar to '?' if we are referring to condition, just have the edge
    408         // point to the entire choose expression.
    409         if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
    410           return PathDiagnosticLocation(Parent, SMgr, LC);
    411         else
    412           return PathDiagnosticLocation(S, SMgr, LC);
    413       case Stmt::BinaryConditionalOperatorClass:
    414       case Stmt::ConditionalOperatorClass:
    415         // For '?', if we are referring to condition, just have the edge point
    416         // to the entire '?' expression.
    417         if (allowNestedContexts ||
    418             cast<AbstractConditionalOperator>(Parent)->getCond() == S)
    419           return PathDiagnosticLocation(Parent, SMgr, LC);
    420         else
    421           return PathDiagnosticLocation(S, SMgr, LC);
    422       case Stmt::CXXForRangeStmtClass:
    423         if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
    424           return PathDiagnosticLocation(S, SMgr, LC);
    425         break;
    426       case Stmt::DoStmtClass:
    427           return PathDiagnosticLocation(S, SMgr, LC);
    428       case Stmt::ForStmtClass:
    429         if (cast<ForStmt>(Parent)->getBody() == S)
    430           return PathDiagnosticLocation(S, SMgr, LC);
    431         break;
    432       case Stmt::IfStmtClass:
    433         if (cast<IfStmt>(Parent)->getCond() != S)
    434           return PathDiagnosticLocation(S, SMgr, LC);
    435         break;
    436       case Stmt::ObjCForCollectionStmtClass:
    437         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
    438           return PathDiagnosticLocation(S, SMgr, LC);
    439         break;
    440       case Stmt::WhileStmtClass:
    441         if (cast<WhileStmt>(Parent)->getCond() != S)
    442           return PathDiagnosticLocation(S, SMgr, LC);
    443         break;
    444       default:
    445         break;
    446     }
    447 
    448     S = Parent;
    449   }
    450 
    451   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
    452 
    453   return PathDiagnosticLocation(S, SMgr, LC);
    454 }
    455 
    456 PathDiagnosticLocation
    457 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
    458   assert(S && "Null Stmt passed to getEnclosingStmtLocation");
    459   return ::getEnclosingStmtLocation(S, getSourceManager(), getParentMap(), LC,
    460                                     /*allowNestedContexts=*/false);
    461 }
    462 
    463 //===----------------------------------------------------------------------===//
    464 // "Visitors only" path diagnostic generation algorithm.
    465 //===----------------------------------------------------------------------===//
    466 static bool GenerateVisitorsOnlyPathDiagnostic(PathDiagnostic &PD,
    467                                                PathDiagnosticBuilder &PDB,
    468                                                const ExplodedNode *N,
    469                                       ArrayRef<BugReporterVisitor *> visitors) {
    470   // All path generation skips the very first node (the error node).
    471   // This is because there is special handling for the end-of-path note.
    472   N = N->getFirstPred();
    473   if (!N)
    474     return true;
    475 
    476   BugReport *R = PDB.getBugReport();
    477   while (const ExplodedNode *Pred = N->getFirstPred()) {
    478     for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
    479                                                   E = visitors.end();
    480          I != E; ++I) {
    481       // Visit all the node pairs, but throw the path pieces away.
    482       PathDiagnosticPiece *Piece = (*I)->VisitNode(N, Pred, PDB, *R);
    483       delete Piece;
    484     }
    485 
    486     N = Pred;
    487   }
    488 
    489   return R->isValid();
    490 }
    491 
    492 //===----------------------------------------------------------------------===//
    493 // "Minimal" path diagnostic generation algorithm.
    494 //===----------------------------------------------------------------------===//
    495 typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
    496 typedef SmallVector<StackDiagPair, 6> StackDiagVector;
    497 
    498 static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
    499                                          StackDiagVector &CallStack) {
    500   // If the piece contains a special message, add it to all the call
    501   // pieces on the active stack.
    502   if (PathDiagnosticEventPiece *ep =
    503         dyn_cast<PathDiagnosticEventPiece>(P)) {
    504 
    505     if (ep->hasCallStackHint())
    506       for (StackDiagVector::iterator I = CallStack.begin(),
    507                                      E = CallStack.end(); I != E; ++I) {
    508         PathDiagnosticCallPiece *CP = I->first;
    509         const ExplodedNode *N = I->second;
    510         std::string stackMsg = ep->getCallStackMessage(N);
    511 
    512         // The last message on the path to final bug is the most important
    513         // one. Since we traverse the path backwards, do not add the message
    514         // if one has been previously added.
    515         if  (!CP->hasCallStackMessage())
    516           CP->setCallStackMessage(stackMsg);
    517       }
    518   }
    519 }
    520 
    521 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
    522 
    523 static bool GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
    524                                           PathDiagnosticBuilder &PDB,
    525                                           const ExplodedNode *N,
    526                                           LocationContextMap &LCM,
    527                                       ArrayRef<BugReporterVisitor *> visitors) {
    528 
    529   SourceManager& SMgr = PDB.getSourceManager();
    530   const LocationContext *LC = PDB.LC;
    531   const ExplodedNode *NextNode = N->pred_empty()
    532                                         ? NULL : *(N->pred_begin());
    533 
    534   StackDiagVector CallStack;
    535 
    536   while (NextNode) {
    537     N = NextNode;
    538     PDB.LC = N->getLocationContext();
    539     NextNode = N->getFirstPred();
    540 
    541     ProgramPoint P = N->getLocation();
    542 
    543     do {
    544       if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
    545         PathDiagnosticCallPiece *C =
    546             PathDiagnosticCallPiece::construct(N, *CE, SMgr);
    547         // Record the mapping from call piece to LocationContext.
    548         LCM[&C->path] = CE->getCalleeContext();
    549         PD.getActivePath().push_front(C);
    550         PD.pushActivePath(&C->path);
    551         CallStack.push_back(StackDiagPair(C, N));
    552         break;
    553       }
    554 
    555       if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
    556         // Flush all locations, and pop the active path.
    557         bool VisitedEntireCall = PD.isWithinCall();
    558         PD.popActivePath();
    559 
    560         // Either we just added a bunch of stuff to the top-level path, or
    561         // we have a previous CallExitEnd.  If the former, it means that the
    562         // path terminated within a function call.  We must then take the
    563         // current contents of the active path and place it within
    564         // a new PathDiagnosticCallPiece.
    565         PathDiagnosticCallPiece *C;
    566         if (VisitedEntireCall) {
    567           C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
    568         } else {
    569           const Decl *Caller = CE->getLocationContext()->getDecl();
    570           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
    571           // Record the mapping from call piece to LocationContext.
    572           LCM[&C->path] = CE->getCalleeContext();
    573         }
    574 
    575         C->setCallee(*CE, SMgr);
    576         if (!CallStack.empty()) {
    577           assert(CallStack.back().first == C);
    578           CallStack.pop_back();
    579         }
    580         break;
    581       }
    582 
    583       if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
    584         const CFGBlock *Src = BE->getSrc();
    585         const CFGBlock *Dst = BE->getDst();
    586         const Stmt *T = Src->getTerminator();
    587 
    588         if (!T)
    589           break;
    590 
    591         PathDiagnosticLocation Start =
    592             PathDiagnosticLocation::createBegin(T, SMgr,
    593                 N->getLocationContext());
    594 
    595         switch (T->getStmtClass()) {
    596         default:
    597           break;
    598 
    599         case Stmt::GotoStmtClass:
    600         case Stmt::IndirectGotoStmtClass: {
    601           const Stmt *S = PathDiagnosticLocation::getNextStmt(N);
    602 
    603           if (!S)
    604             break;
    605 
    606           std::string sbuf;
    607           llvm::raw_string_ostream os(sbuf);
    608           const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
    609 
    610           os << "Control jumps to line "
    611               << End.asLocation().getExpansionLineNumber();
    612           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    613               Start, End, os.str()));
    614           break;
    615         }
    616 
    617         case Stmt::SwitchStmtClass: {
    618           // Figure out what case arm we took.
    619           std::string sbuf;
    620           llvm::raw_string_ostream os(sbuf);
    621 
    622           if (const Stmt *S = Dst->getLabel()) {
    623             PathDiagnosticLocation End(S, SMgr, LC);
    624 
    625             switch (S->getStmtClass()) {
    626             default:
    627               os << "No cases match in the switch statement. "
    628               "Control jumps to line "
    629               << End.asLocation().getExpansionLineNumber();
    630               break;
    631             case Stmt::DefaultStmtClass:
    632               os << "Control jumps to the 'default' case at line "
    633               << End.asLocation().getExpansionLineNumber();
    634               break;
    635 
    636             case Stmt::CaseStmtClass: {
    637               os << "Control jumps to 'case ";
    638               const CaseStmt *Case = cast<CaseStmt>(S);
    639               const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
    640 
    641               // Determine if it is an enum.
    642               bool GetRawInt = true;
    643 
    644               if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
    645                 // FIXME: Maybe this should be an assertion.  Are there cases
    646                 // were it is not an EnumConstantDecl?
    647                 const EnumConstantDecl *D =
    648                     dyn_cast<EnumConstantDecl>(DR->getDecl());
    649 
    650                 if (D) {
    651                   GetRawInt = false;
    652                   os << *D;
    653                 }
    654               }
    655 
    656               if (GetRawInt)
    657                 os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
    658 
    659               os << ":'  at line "
    660                   << End.asLocation().getExpansionLineNumber();
    661               break;
    662             }
    663             }
    664             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    665                 Start, End, os.str()));
    666           }
    667           else {
    668             os << "'Default' branch taken. ";
    669             const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
    670             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    671                 Start, End, os.str()));
    672           }
    673 
    674           break;
    675         }
    676 
    677         case Stmt::BreakStmtClass:
    678         case Stmt::ContinueStmtClass: {
    679           std::string sbuf;
    680           llvm::raw_string_ostream os(sbuf);
    681           PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
    682           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    683               Start, End, os.str()));
    684           break;
    685         }
    686 
    687         // Determine control-flow for ternary '?'.
    688         case Stmt::BinaryConditionalOperatorClass:
    689         case Stmt::ConditionalOperatorClass: {
    690           std::string sbuf;
    691           llvm::raw_string_ostream os(sbuf);
    692           os << "'?' condition is ";
    693 
    694           if (*(Src->succ_begin()+1) == Dst)
    695             os << "false";
    696           else
    697             os << "true";
    698 
    699           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    700 
    701           if (const Stmt *S = End.asStmt())
    702             End = PDB.getEnclosingStmtLocation(S);
    703 
    704           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    705               Start, End, os.str()));
    706           break;
    707         }
    708 
    709         // Determine control-flow for short-circuited '&&' and '||'.
    710         case Stmt::BinaryOperatorClass: {
    711           if (!PDB.supportsLogicalOpControlFlow())
    712             break;
    713 
    714           const BinaryOperator *B = cast<BinaryOperator>(T);
    715           std::string sbuf;
    716           llvm::raw_string_ostream os(sbuf);
    717           os << "Left side of '";
    718 
    719           if (B->getOpcode() == BO_LAnd) {
    720             os << "&&" << "' is ";
    721 
    722             if (*(Src->succ_begin()+1) == Dst) {
    723               os << "false";
    724               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
    725               PathDiagnosticLocation Start =
    726                   PathDiagnosticLocation::createOperatorLoc(B, SMgr);
    727               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    728                   Start, End, os.str()));
    729             }
    730             else {
    731               os << "true";
    732               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
    733               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    734               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    735                   Start, End, os.str()));
    736             }
    737           }
    738           else {
    739             assert(B->getOpcode() == BO_LOr);
    740             os << "||" << "' is ";
    741 
    742             if (*(Src->succ_begin()+1) == Dst) {
    743               os << "false";
    744               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
    745               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    746               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    747                   Start, End, os.str()));
    748             }
    749             else {
    750               os << "true";
    751               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
    752               PathDiagnosticLocation Start =
    753                   PathDiagnosticLocation::createOperatorLoc(B, SMgr);
    754               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    755                   Start, End, os.str()));
    756             }
    757           }
    758 
    759           break;
    760         }
    761 
    762         case Stmt::DoStmtClass:  {
    763           if (*(Src->succ_begin()) == Dst) {
    764             std::string sbuf;
    765             llvm::raw_string_ostream os(sbuf);
    766 
    767             os << "Loop condition is true. ";
    768             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
    769 
    770             if (const Stmt *S = End.asStmt())
    771               End = PDB.getEnclosingStmtLocation(S);
    772 
    773             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    774                 Start, End, os.str()));
    775           }
    776           else {
    777             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    778 
    779             if (const Stmt *S = End.asStmt())
    780               End = PDB.getEnclosingStmtLocation(S);
    781 
    782             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    783                 Start, End, "Loop condition is false.  Exiting loop"));
    784           }
    785 
    786           break;
    787         }
    788 
    789         case Stmt::WhileStmtClass:
    790         case Stmt::ForStmtClass: {
    791           if (*(Src->succ_begin()+1) == Dst) {
    792             std::string sbuf;
    793             llvm::raw_string_ostream os(sbuf);
    794 
    795             os << "Loop condition is false. ";
    796             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
    797             if (const Stmt *S = End.asStmt())
    798               End = PDB.getEnclosingStmtLocation(S);
    799 
    800             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    801                 Start, End, os.str()));
    802           }
    803           else {
    804             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    805             if (const Stmt *S = End.asStmt())
    806               End = PDB.getEnclosingStmtLocation(S);
    807 
    808             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    809                 Start, End, "Loop condition is true.  Entering loop body"));
    810           }
    811 
    812           break;
    813         }
    814 
    815         case Stmt::IfStmtClass: {
    816           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    817 
    818           if (const Stmt *S = End.asStmt())
    819             End = PDB.getEnclosingStmtLocation(S);
    820 
    821           if (*(Src->succ_begin()+1) == Dst)
    822             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    823                 Start, End, "Taking false branch"));
    824           else
    825             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    826                 Start, End, "Taking true branch"));
    827 
    828           break;
    829         }
    830         }
    831       }
    832     } while(0);
    833 
    834     if (NextNode) {
    835       // Add diagnostic pieces from custom visitors.
    836       BugReport *R = PDB.getBugReport();
    837       for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
    838                                                     E = visitors.end();
    839            I != E; ++I) {
    840         if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
    841           PD.getActivePath().push_front(p);
    842           updateStackPiecesWithMessage(p, CallStack);
    843         }
    844       }
    845     }
    846   }
    847 
    848   if (!PDB.getBugReport()->isValid())
    849     return false;
    850 
    851   // After constructing the full PathDiagnostic, do a pass over it to compact
    852   // PathDiagnosticPieces that occur within a macro.
    853   CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
    854   return true;
    855 }
    856 
    857 //===----------------------------------------------------------------------===//
    858 // "Extensive" PathDiagnostic generation.
    859 //===----------------------------------------------------------------------===//
    860 
    861 static bool IsControlFlowExpr(const Stmt *S) {
    862   const Expr *E = dyn_cast<Expr>(S);
    863 
    864   if (!E)
    865     return false;
    866 
    867   E = E->IgnoreParenCasts();
    868 
    869   if (isa<AbstractConditionalOperator>(E))
    870     return true;
    871 
    872   if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
    873     if (B->isLogicalOp())
    874       return true;
    875 
    876   return false;
    877 }
    878 
    879 namespace {
    880 class ContextLocation : public PathDiagnosticLocation {
    881   bool IsDead;
    882 public:
    883   ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
    884     : PathDiagnosticLocation(L), IsDead(isdead) {}
    885 
    886   void markDead() { IsDead = true; }
    887   bool isDead() const { return IsDead; }
    888 };
    889 
    890 static PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
    891                                               const LocationContext *LC,
    892                                               bool firstCharOnly = false) {
    893   if (const Stmt *S = L.asStmt()) {
    894     const Stmt *Original = S;
    895     while (1) {
    896       // Adjust the location for some expressions that are best referenced
    897       // by one of their subexpressions.
    898       switch (S->getStmtClass()) {
    899         default:
    900           break;
    901         case Stmt::ParenExprClass:
    902         case Stmt::GenericSelectionExprClass:
    903           S = cast<Expr>(S)->IgnoreParens();
    904           firstCharOnly = true;
    905           continue;
    906         case Stmt::BinaryConditionalOperatorClass:
    907         case Stmt::ConditionalOperatorClass:
    908           S = cast<AbstractConditionalOperator>(S)->getCond();
    909           firstCharOnly = true;
    910           continue;
    911         case Stmt::ChooseExprClass:
    912           S = cast<ChooseExpr>(S)->getCond();
    913           firstCharOnly = true;
    914           continue;
    915         case Stmt::BinaryOperatorClass:
    916           S = cast<BinaryOperator>(S)->getLHS();
    917           firstCharOnly = true;
    918           continue;
    919       }
    920 
    921       break;
    922     }
    923 
    924     if (S != Original)
    925       L = PathDiagnosticLocation(S, L.getManager(), LC);
    926   }
    927 
    928   if (firstCharOnly)
    929     L  = PathDiagnosticLocation::createSingleLocation(L);
    930 
    931   return L;
    932 }
    933 
    934 class EdgeBuilder {
    935   std::vector<ContextLocation> CLocs;
    936   typedef std::vector<ContextLocation>::iterator iterator;
    937   PathDiagnostic &PD;
    938   PathDiagnosticBuilder &PDB;
    939   PathDiagnosticLocation PrevLoc;
    940 
    941   bool IsConsumedExpr(const PathDiagnosticLocation &L);
    942 
    943   bool containsLocation(const PathDiagnosticLocation &Container,
    944                         const PathDiagnosticLocation &Containee);
    945 
    946   PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
    947 
    948 
    949 
    950   void popLocation() {
    951     if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
    952       // For contexts, we only one the first character as the range.
    953       rawAddEdge(cleanUpLocation(CLocs.back(), PDB.LC, true));
    954     }
    955     CLocs.pop_back();
    956   }
    957 
    958 public:
    959   EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
    960     : PD(pd), PDB(pdb) {
    961 
    962       // If the PathDiagnostic already has pieces, add the enclosing statement
    963       // of the first piece as a context as well.
    964       if (!PD.path.empty()) {
    965         PrevLoc = (*PD.path.begin())->getLocation();
    966 
    967         if (const Stmt *S = PrevLoc.asStmt())
    968           addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
    969       }
    970   }
    971 
    972   ~EdgeBuilder() {
    973     while (!CLocs.empty()) popLocation();
    974 
    975     // Finally, add an initial edge from the start location of the first
    976     // statement (if it doesn't already exist).
    977     PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
    978                                                        PDB.LC,
    979                                                        PDB.getSourceManager());
    980     if (L.isValid())
    981       rawAddEdge(L);
    982   }
    983 
    984   void flushLocations() {
    985     while (!CLocs.empty())
    986       popLocation();
    987     PrevLoc = PathDiagnosticLocation();
    988   }
    989 
    990   void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false,
    991                bool IsPostJump = false);
    992 
    993   void rawAddEdge(PathDiagnosticLocation NewLoc);
    994 
    995   void addContext(const Stmt *S);
    996   void addContext(const PathDiagnosticLocation &L);
    997   void addExtendedContext(const Stmt *S);
    998 };
    999 } // end anonymous namespace
   1000 
   1001 
   1002 PathDiagnosticLocation
   1003 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
   1004   if (const Stmt *S = L.asStmt()) {
   1005     if (IsControlFlowExpr(S))
   1006       return L;
   1007 
   1008     return PDB.getEnclosingStmtLocation(S);
   1009   }
   1010 
   1011   return L;
   1012 }
   1013 
   1014 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
   1015                                    const PathDiagnosticLocation &Containee) {
   1016 
   1017   if (Container == Containee)
   1018     return true;
   1019 
   1020   if (Container.asDecl())
   1021     return true;
   1022 
   1023   if (const Stmt *S = Containee.asStmt())
   1024     if (const Stmt *ContainerS = Container.asStmt()) {
   1025       while (S) {
   1026         if (S == ContainerS)
   1027           return true;
   1028         S = PDB.getParent(S);
   1029       }
   1030       return false;
   1031     }
   1032 
   1033   // Less accurate: compare using source ranges.
   1034   SourceRange ContainerR = Container.asRange();
   1035   SourceRange ContaineeR = Containee.asRange();
   1036 
   1037   SourceManager &SM = PDB.getSourceManager();
   1038   SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
   1039   SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
   1040   SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
   1041   SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
   1042 
   1043   unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
   1044   unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
   1045   unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
   1046   unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
   1047 
   1048   assert(ContainerBegLine <= ContainerEndLine);
   1049   assert(ContaineeBegLine <= ContaineeEndLine);
   1050 
   1051   return (ContainerBegLine <= ContaineeBegLine &&
   1052           ContainerEndLine >= ContaineeEndLine &&
   1053           (ContainerBegLine != ContaineeBegLine ||
   1054            SM.getExpansionColumnNumber(ContainerRBeg) <=
   1055            SM.getExpansionColumnNumber(ContaineeRBeg)) &&
   1056           (ContainerEndLine != ContaineeEndLine ||
   1057            SM.getExpansionColumnNumber(ContainerREnd) >=
   1058            SM.getExpansionColumnNumber(ContaineeREnd)));
   1059 }
   1060 
   1061 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
   1062   if (!PrevLoc.isValid()) {
   1063     PrevLoc = NewLoc;
   1064     return;
   1065   }
   1066 
   1067   const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, PDB.LC);
   1068   const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, PDB.LC);
   1069 
   1070   if (PrevLocClean.asLocation().isInvalid()) {
   1071     PrevLoc = NewLoc;
   1072     return;
   1073   }
   1074 
   1075   if (NewLocClean.asLocation() == PrevLocClean.asLocation())
   1076     return;
   1077 
   1078   // FIXME: Ignore intra-macro edges for now.
   1079   if (NewLocClean.asLocation().getExpansionLoc() ==
   1080       PrevLocClean.asLocation().getExpansionLoc())
   1081     return;
   1082 
   1083   PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
   1084   PrevLoc = NewLoc;
   1085 }
   1086 
   1087 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd,
   1088                           bool IsPostJump) {
   1089 
   1090   if (!alwaysAdd && NewLoc.asLocation().isMacroID())
   1091     return;
   1092 
   1093   const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
   1094 
   1095   while (!CLocs.empty()) {
   1096     ContextLocation &TopContextLoc = CLocs.back();
   1097 
   1098     // Is the top location context the same as the one for the new location?
   1099     if (TopContextLoc == CLoc) {
   1100       if (alwaysAdd) {
   1101         if (IsConsumedExpr(TopContextLoc))
   1102           TopContextLoc.markDead();
   1103 
   1104         rawAddEdge(NewLoc);
   1105       }
   1106 
   1107       if (IsPostJump)
   1108         TopContextLoc.markDead();
   1109       return;
   1110     }
   1111 
   1112     if (containsLocation(TopContextLoc, CLoc)) {
   1113       if (alwaysAdd) {
   1114         rawAddEdge(NewLoc);
   1115 
   1116         if (IsConsumedExpr(CLoc)) {
   1117           CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/true));
   1118           return;
   1119         }
   1120       }
   1121 
   1122       CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/IsPostJump));
   1123       return;
   1124     }
   1125 
   1126     // Context does not contain the location.  Flush it.
   1127     popLocation();
   1128   }
   1129 
   1130   // If we reach here, there is no enclosing context.  Just add the edge.
   1131   rawAddEdge(NewLoc);
   1132 }
   1133 
   1134 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
   1135   if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
   1136     return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
   1137 
   1138   return false;
   1139 }
   1140 
   1141 void EdgeBuilder::addExtendedContext(const Stmt *S) {
   1142   if (!S)
   1143     return;
   1144 
   1145   const Stmt *Parent = PDB.getParent(S);
   1146   while (Parent) {
   1147     if (isa<CompoundStmt>(Parent))
   1148       Parent = PDB.getParent(Parent);
   1149     else
   1150       break;
   1151   }
   1152 
   1153   if (Parent) {
   1154     switch (Parent->getStmtClass()) {
   1155       case Stmt::DoStmtClass:
   1156       case Stmt::ObjCAtSynchronizedStmtClass:
   1157         addContext(Parent);
   1158       default:
   1159         break;
   1160     }
   1161   }
   1162 
   1163   addContext(S);
   1164 }
   1165 
   1166 void EdgeBuilder::addContext(const Stmt *S) {
   1167   if (!S)
   1168     return;
   1169 
   1170   PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
   1171   addContext(L);
   1172 }
   1173 
   1174 void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
   1175   while (!CLocs.empty()) {
   1176     const PathDiagnosticLocation &TopContextLoc = CLocs.back();
   1177 
   1178     // Is the top location context the same as the one for the new location?
   1179     if (TopContextLoc == L)
   1180       return;
   1181 
   1182     if (containsLocation(TopContextLoc, L)) {
   1183       CLocs.push_back(L);
   1184       return;
   1185     }
   1186 
   1187     // Context does not contain the location.  Flush it.
   1188     popLocation();
   1189   }
   1190 
   1191   CLocs.push_back(L);
   1192 }
   1193 
   1194 // Cone-of-influence: support the reverse propagation of "interesting" symbols
   1195 // and values by tracing interesting calculations backwards through evaluated
   1196 // expressions along a path.  This is probably overly complicated, but the idea
   1197 // is that if an expression computed an "interesting" value, the child
   1198 // expressions are are also likely to be "interesting" as well (which then
   1199 // propagates to the values they in turn compute).  This reverse propagation
   1200 // is needed to track interesting correlations across function call boundaries,
   1201 // where formal arguments bind to actual arguments, etc.  This is also needed
   1202 // because the constraint solver sometimes simplifies certain symbolic values
   1203 // into constants when appropriate, and this complicates reasoning about
   1204 // interesting values.
   1205 typedef llvm::DenseSet<const Expr *> InterestingExprs;
   1206 
   1207 static void reversePropagateIntererstingSymbols(BugReport &R,
   1208                                                 InterestingExprs &IE,
   1209                                                 const ProgramState *State,
   1210                                                 const Expr *Ex,
   1211                                                 const LocationContext *LCtx) {
   1212   SVal V = State->getSVal(Ex, LCtx);
   1213   if (!(R.isInteresting(V) || IE.count(Ex)))
   1214     return;
   1215 
   1216   switch (Ex->getStmtClass()) {
   1217     default:
   1218       if (!isa<CastExpr>(Ex))
   1219         break;
   1220       // Fall through.
   1221     case Stmt::BinaryOperatorClass:
   1222     case Stmt::UnaryOperatorClass: {
   1223       for (Stmt::const_child_iterator CI = Ex->child_begin(),
   1224             CE = Ex->child_end();
   1225             CI != CE; ++CI) {
   1226         if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
   1227           IE.insert(child);
   1228           SVal ChildV = State->getSVal(child, LCtx);
   1229           R.markInteresting(ChildV);
   1230         }
   1231         break;
   1232       }
   1233     }
   1234   }
   1235 
   1236   R.markInteresting(V);
   1237 }
   1238 
   1239 static void reversePropagateInterestingSymbols(BugReport &R,
   1240                                                InterestingExprs &IE,
   1241                                                const ProgramState *State,
   1242                                                const LocationContext *CalleeCtx,
   1243                                                const LocationContext *CallerCtx)
   1244 {
   1245   // FIXME: Handle non-CallExpr-based CallEvents.
   1246   const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
   1247   const Stmt *CallSite = Callee->getCallSite();
   1248   if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
   1249     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
   1250       FunctionDecl::param_const_iterator PI = FD->param_begin(),
   1251                                          PE = FD->param_end();
   1252       CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
   1253       for (; AI != AE && PI != PE; ++AI, ++PI) {
   1254         if (const Expr *ArgE = *AI) {
   1255           if (const ParmVarDecl *PD = *PI) {
   1256             Loc LV = State->getLValue(PD, CalleeCtx);
   1257             if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
   1258               IE.insert(ArgE);
   1259           }
   1260         }
   1261       }
   1262     }
   1263   }
   1264 }
   1265 
   1266 //===----------------------------------------------------------------------===//
   1267 // Functions for determining if a loop was executed 0 times.
   1268 //===----------------------------------------------------------------------===//
   1269 
   1270 static bool isLoop(const Stmt *Term) {
   1271   switch (Term->getStmtClass()) {
   1272     case Stmt::ForStmtClass:
   1273     case Stmt::WhileStmtClass:
   1274     case Stmt::ObjCForCollectionStmtClass:
   1275     case Stmt::CXXForRangeStmtClass:
   1276       return true;
   1277     default:
   1278       // Note that we intentionally do not include do..while here.
   1279       return false;
   1280   }
   1281 }
   1282 
   1283 static bool isJumpToFalseBranch(const BlockEdge *BE) {
   1284   const CFGBlock *Src = BE->getSrc();
   1285   assert(Src->succ_size() == 2);
   1286   return (*(Src->succ_begin()+1) == BE->getDst());
   1287 }
   1288 
   1289 /// Return true if the terminator is a loop and the destination is the
   1290 /// false branch.
   1291 static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) {
   1292   if (!isLoop(Term))
   1293     return false;
   1294 
   1295   // Did we take the false branch?
   1296   return isJumpToFalseBranch(BE);
   1297 }
   1298 
   1299 static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) {
   1300   while (SubS) {
   1301     if (SubS == S)
   1302       return true;
   1303     SubS = PM.getParent(SubS);
   1304   }
   1305   return false;
   1306 }
   1307 
   1308 static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term,
   1309                                      const ExplodedNode *N) {
   1310   while (N) {
   1311     Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
   1312     if (SP) {
   1313       const Stmt *S = SP->getStmt();
   1314       if (!isContainedByStmt(PM, Term, S))
   1315         return S;
   1316     }
   1317     N = N->getFirstPred();
   1318   }
   1319   return 0;
   1320 }
   1321 
   1322 static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) {
   1323   const Stmt *LoopBody = 0;
   1324   switch (Term->getStmtClass()) {
   1325     case Stmt::CXXForRangeStmtClass: {
   1326       const CXXForRangeStmt *FR = cast<CXXForRangeStmt>(Term);
   1327       if (isContainedByStmt(PM, FR->getInc(), S))
   1328         return true;
   1329       if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
   1330         return true;
   1331       LoopBody = FR->getBody();
   1332       break;
   1333     }
   1334     case Stmt::ForStmtClass: {
   1335       const ForStmt *FS = cast<ForStmt>(Term);
   1336       if (isContainedByStmt(PM, FS->getInc(), S))
   1337         return true;
   1338       LoopBody = FS->getBody();
   1339       break;
   1340     }
   1341     case Stmt::ObjCForCollectionStmtClass: {
   1342       const ObjCForCollectionStmt *FC = cast<ObjCForCollectionStmt>(Term);
   1343       LoopBody = FC->getBody();
   1344       break;
   1345     }
   1346     case Stmt::WhileStmtClass:
   1347       LoopBody = cast<WhileStmt>(Term)->getBody();
   1348       break;
   1349     default:
   1350       return false;
   1351   }
   1352   return isContainedByStmt(PM, LoopBody, S);
   1353 }
   1354 
   1355 //===----------------------------------------------------------------------===//
   1356 // Top-level logic for generating extensive path diagnostics.
   1357 //===----------------------------------------------------------------------===//
   1358 
   1359 static bool GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
   1360                                             PathDiagnosticBuilder &PDB,
   1361                                             const ExplodedNode *N,
   1362                                             LocationContextMap &LCM,
   1363                                       ArrayRef<BugReporterVisitor *> visitors) {
   1364   EdgeBuilder EB(PD, PDB);
   1365   const SourceManager& SM = PDB.getSourceManager();
   1366   StackDiagVector CallStack;
   1367   InterestingExprs IE;
   1368 
   1369   const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
   1370   while (NextNode) {
   1371     N = NextNode;
   1372     NextNode = N->getFirstPred();
   1373     ProgramPoint P = N->getLocation();
   1374 
   1375     do {
   1376       if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
   1377         if (const Expr *Ex = PS->getStmtAs<Expr>())
   1378           reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
   1379                                               N->getState().getPtr(), Ex,
   1380                                               N->getLocationContext());
   1381       }
   1382 
   1383       if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
   1384         const Stmt *S = CE->getCalleeContext()->getCallSite();
   1385         if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
   1386             reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
   1387                                                 N->getState().getPtr(), Ex,
   1388                                                 N->getLocationContext());
   1389         }
   1390 
   1391         PathDiagnosticCallPiece *C =
   1392           PathDiagnosticCallPiece::construct(N, *CE, SM);
   1393         LCM[&C->path] = CE->getCalleeContext();
   1394 
   1395         EB.addEdge(C->callReturn, /*AlwaysAdd=*/true, /*IsPostJump=*/true);
   1396         EB.flushLocations();
   1397 
   1398         PD.getActivePath().push_front(C);
   1399         PD.pushActivePath(&C->path);
   1400         CallStack.push_back(StackDiagPair(C, N));
   1401         break;
   1402       }
   1403 
   1404       // Pop the call hierarchy if we are done walking the contents
   1405       // of a function call.
   1406       if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
   1407         // Add an edge to the start of the function.
   1408         const Decl *D = CE->getCalleeContext()->getDecl();
   1409         PathDiagnosticLocation pos =
   1410           PathDiagnosticLocation::createBegin(D, SM);
   1411         EB.addEdge(pos);
   1412 
   1413         // Flush all locations, and pop the active path.
   1414         bool VisitedEntireCall = PD.isWithinCall();
   1415         EB.flushLocations();
   1416         PD.popActivePath();
   1417         PDB.LC = N->getLocationContext();
   1418 
   1419         // Either we just added a bunch of stuff to the top-level path, or
   1420         // we have a previous CallExitEnd.  If the former, it means that the
   1421         // path terminated within a function call.  We must then take the
   1422         // current contents of the active path and place it within
   1423         // a new PathDiagnosticCallPiece.
   1424         PathDiagnosticCallPiece *C;
   1425         if (VisitedEntireCall) {
   1426           C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
   1427         } else {
   1428           const Decl *Caller = CE->getLocationContext()->getDecl();
   1429           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
   1430           LCM[&C->path] = CE->getCalleeContext();
   1431         }
   1432 
   1433         C->setCallee(*CE, SM);
   1434         EB.addContext(C->getLocation());
   1435 
   1436         if (!CallStack.empty()) {
   1437           assert(CallStack.back().first == C);
   1438           CallStack.pop_back();
   1439         }
   1440         break;
   1441       }
   1442 
   1443       // Note that is important that we update the LocationContext
   1444       // after looking at CallExits.  CallExit basically adds an
   1445       // edge in the *caller*, so we don't want to update the LocationContext
   1446       // too soon.
   1447       PDB.LC = N->getLocationContext();
   1448 
   1449       // Block edges.
   1450       if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
   1451         // Does this represent entering a call?  If so, look at propagating
   1452         // interesting symbols across call boundaries.
   1453         if (NextNode) {
   1454           const LocationContext *CallerCtx = NextNode->getLocationContext();
   1455           const LocationContext *CalleeCtx = PDB.LC;
   1456           if (CallerCtx != CalleeCtx) {
   1457             reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
   1458                                                N->getState().getPtr(),
   1459                                                CalleeCtx, CallerCtx);
   1460           }
   1461         }
   1462 
   1463         // Are we jumping to the head of a loop?  Add a special diagnostic.
   1464         if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
   1465           PathDiagnosticLocation L(Loop, SM, PDB.LC);
   1466           const CompoundStmt *CS = NULL;
   1467 
   1468           if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
   1469             CS = dyn_cast<CompoundStmt>(FS->getBody());
   1470           else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
   1471             CS = dyn_cast<CompoundStmt>(WS->getBody());
   1472 
   1473           PathDiagnosticEventPiece *p =
   1474             new PathDiagnosticEventPiece(L,
   1475                                         "Looping back to the head of the loop");
   1476           p->setPrunable(true);
   1477 
   1478           EB.addEdge(p->getLocation(), true);
   1479           PD.getActivePath().push_front(p);
   1480 
   1481           if (CS) {
   1482             PathDiagnosticLocation BL =
   1483               PathDiagnosticLocation::createEndBrace(CS, SM);
   1484             EB.addEdge(BL);
   1485           }
   1486         }
   1487 
   1488         const CFGBlock *BSrc = BE->getSrc();
   1489         ParentMap &PM = PDB.getParentMap();
   1490 
   1491         if (const Stmt *Term = BSrc->getTerminator()) {
   1492           // Are we jumping past the loop body without ever executing the
   1493           // loop (because the condition was false)?
   1494           if (isLoopJumpPastBody(Term, &*BE) &&
   1495               !isInLoopBody(PM,
   1496                             getStmtBeforeCond(PM,
   1497                                               BSrc->getTerminatorCondition(),
   1498                                               N),
   1499                             Term)) {
   1500             PathDiagnosticLocation L(Term, SM, PDB.LC);
   1501             PathDiagnosticEventPiece *PE =
   1502                 new PathDiagnosticEventPiece(L, "Loop body executed 0 times");
   1503             PE->setPrunable(true);
   1504 
   1505             EB.addEdge(PE->getLocation(), true);
   1506             PD.getActivePath().push_front(PE);
   1507           }
   1508 
   1509           // In any case, add the terminator as the current statement
   1510           // context for control edges.
   1511           EB.addContext(Term);
   1512         }
   1513 
   1514         break;
   1515       }
   1516 
   1517       if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) {
   1518         Optional<CFGElement> First = BE->getFirstElement();
   1519         if (Optional<CFGStmt> S = First ? First->getAs<CFGStmt>() : None) {
   1520           const Stmt *stmt = S->getStmt();
   1521           if (IsControlFlowExpr(stmt)) {
   1522             // Add the proper context for '&&', '||', and '?'.
   1523             EB.addContext(stmt);
   1524           }
   1525           else
   1526             EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
   1527         }
   1528 
   1529         break;
   1530       }
   1531 
   1532 
   1533     } while (0);
   1534 
   1535     if (!NextNode)
   1536       continue;
   1537 
   1538     // Add pieces from custom visitors.
   1539     BugReport *R = PDB.getBugReport();
   1540     for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
   1541                                                   E = visitors.end();
   1542          I != E; ++I) {
   1543       if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
   1544         const PathDiagnosticLocation &Loc = p->getLocation();
   1545         EB.addEdge(Loc, true);
   1546         PD.getActivePath().push_front(p);
   1547         updateStackPiecesWithMessage(p, CallStack);
   1548 
   1549         if (const Stmt *S = Loc.asStmt())
   1550           EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
   1551       }
   1552     }
   1553   }
   1554 
   1555   return PDB.getBugReport()->isValid();
   1556 }
   1557 
   1558 /// \brief Adds a sanitized control-flow diagnostic edge to a path.
   1559 static void addEdgeToPath(PathPieces &path,
   1560                           PathDiagnosticLocation &PrevLoc,
   1561                           PathDiagnosticLocation NewLoc,
   1562                           const LocationContext *LC) {
   1563   if (!NewLoc.isValid())
   1564     return;
   1565 
   1566   SourceLocation NewLocL = NewLoc.asLocation();
   1567   if (NewLocL.isInvalid())
   1568     return;
   1569 
   1570   if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
   1571     PrevLoc = NewLoc;
   1572     return;
   1573   }
   1574 
   1575   // Ignore self-edges, which occur when there are multiple nodes at the same
   1576   // statement.
   1577   if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
   1578     return;
   1579 
   1580   path.push_front(new PathDiagnosticControlFlowPiece(NewLoc,
   1581                                                      PrevLoc));
   1582   PrevLoc = NewLoc;
   1583 }
   1584 
   1585 /// A customized wrapper for CFGBlock::getTerminatorCondition()
   1586 /// which returns the element for ObjCForCollectionStmts.
   1587 static const Stmt *getTerminatorCondition(const CFGBlock *B) {
   1588   const Stmt *S = B->getTerminatorCondition();
   1589   if (const ObjCForCollectionStmt *FS =
   1590       dyn_cast_or_null<ObjCForCollectionStmt>(S))
   1591     return FS->getElement();
   1592   return S;
   1593 }
   1594 
   1595 static const char StrEnteringLoop[] = "Entering loop body";
   1596 static const char StrLoopBodyZero[] = "Loop body executed 0 times";
   1597 
   1598 static bool
   1599 GenerateAlternateExtensivePathDiagnostic(PathDiagnostic& PD,
   1600                                          PathDiagnosticBuilder &PDB,
   1601                                          const ExplodedNode *N,
   1602                                          LocationContextMap &LCM,
   1603                                       ArrayRef<BugReporterVisitor *> visitors) {
   1604 
   1605   BugReport *report = PDB.getBugReport();
   1606   const SourceManager& SM = PDB.getSourceManager();
   1607   StackDiagVector CallStack;
   1608   InterestingExprs IE;
   1609 
   1610   PathDiagnosticLocation PrevLoc = PD.getLocation();
   1611 
   1612   const ExplodedNode *NextNode = N->getFirstPred();
   1613   while (NextNode) {
   1614     N = NextNode;
   1615     NextNode = N->getFirstPred();
   1616     ProgramPoint P = N->getLocation();
   1617 
   1618     do {
   1619       // Have we encountered an entrance to a call?  It may be
   1620       // the case that we have not encountered a matching
   1621       // call exit before this point.  This means that the path
   1622       // terminated within the call itself.
   1623       if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
   1624         // Add an edge to the start of the function.
   1625         const StackFrameContext *CalleeLC = CE->getCalleeContext();
   1626         const Decl *D = CalleeLC->getDecl();
   1627         addEdgeToPath(PD.getActivePath(), PrevLoc,
   1628                       PathDiagnosticLocation::createBegin(D, SM),
   1629                       CalleeLC);
   1630 
   1631         // Did we visit an entire call?
   1632         bool VisitedEntireCall = PD.isWithinCall();
   1633         PD.popActivePath();
   1634 
   1635         PathDiagnosticCallPiece *C;
   1636         if (VisitedEntireCall) {
   1637           PathDiagnosticPiece *P = PD.getActivePath().front().getPtr();
   1638           C = cast<PathDiagnosticCallPiece>(P);
   1639         } else {
   1640           const Decl *Caller = CE->getLocationContext()->getDecl();
   1641           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
   1642 
   1643           // Since we just transferred the path over to the call piece,
   1644           // reset the mapping from active to location context.
   1645           assert(PD.getActivePath().size() == 1 &&
   1646                  PD.getActivePath().front() == C);
   1647           LCM[&PD.getActivePath()] = 0;
   1648 
   1649           // Record the location context mapping for the path within
   1650           // the call.
   1651           assert(LCM[&C->path] == 0 ||
   1652                  LCM[&C->path] == CE->getCalleeContext());
   1653           LCM[&C->path] = CE->getCalleeContext();
   1654 
   1655           // If this is the first item in the active path, record
   1656           // the new mapping from active path to location context.
   1657           const LocationContext *&NewLC = LCM[&PD.getActivePath()];
   1658           if (!NewLC)
   1659             NewLC = N->getLocationContext();
   1660 
   1661           PDB.LC = NewLC;
   1662         }
   1663         C->setCallee(*CE, SM);
   1664 
   1665         // Update the previous location in the active path.
   1666         PrevLoc = C->getLocation();
   1667 
   1668         if (!CallStack.empty()) {
   1669           assert(CallStack.back().first == C);
   1670           CallStack.pop_back();
   1671         }
   1672         break;
   1673       }
   1674 
   1675       // Query the location context here and the previous location
   1676       // as processing CallEnter may change the active path.
   1677       PDB.LC = N->getLocationContext();
   1678 
   1679       // Record the mapping from the active path to the location
   1680       // context.
   1681       assert(!LCM[&PD.getActivePath()] ||
   1682              LCM[&PD.getActivePath()] == PDB.LC);
   1683       LCM[&PD.getActivePath()] = PDB.LC;
   1684 
   1685       // Have we encountered an exit from a function call?
   1686       if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
   1687         const Stmt *S = CE->getCalleeContext()->getCallSite();
   1688         // Propagate the interesting symbols accordingly.
   1689         if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
   1690           reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
   1691                                               N->getState().getPtr(), Ex,
   1692                                               N->getLocationContext());
   1693         }
   1694 
   1695         // We are descending into a call (backwards).  Construct
   1696         // a new call piece to contain the path pieces for that call.
   1697         PathDiagnosticCallPiece *C =
   1698           PathDiagnosticCallPiece::construct(N, *CE, SM);
   1699 
   1700         // Record the location context for this call piece.
   1701         LCM[&C->path] = CE->getCalleeContext();
   1702 
   1703         // Add the edge to the return site.
   1704         addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, PDB.LC);
   1705         PD.getActivePath().push_front(C);
   1706         PrevLoc.invalidate();
   1707 
   1708         // Make the contents of the call the active path for now.
   1709         PD.pushActivePath(&C->path);
   1710         CallStack.push_back(StackDiagPair(C, N));
   1711         break;
   1712       }
   1713 
   1714       if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
   1715         // For expressions, make sure we propagate the
   1716         // interesting symbols correctly.
   1717         if (const Expr *Ex = PS->getStmtAs<Expr>())
   1718           reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
   1719                                               N->getState().getPtr(), Ex,
   1720                                               N->getLocationContext());
   1721 
   1722         // Add an edge.  If this is an ObjCForCollectionStmt do
   1723         // not add an edge here as it appears in the CFG both
   1724         // as a terminator and as a terminator condition.
   1725         if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
   1726           PathDiagnosticLocation L =
   1727             PathDiagnosticLocation(PS->getStmt(), SM, PDB.LC);
   1728           addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
   1729         }
   1730         break;
   1731       }
   1732 
   1733       // Block edges.
   1734       if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
   1735         // Does this represent entering a call?  If so, look at propagating
   1736         // interesting symbols across call boundaries.
   1737         if (NextNode) {
   1738           const LocationContext *CallerCtx = NextNode->getLocationContext();
   1739           const LocationContext *CalleeCtx = PDB.LC;
   1740           if (CallerCtx != CalleeCtx) {
   1741             reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
   1742                                                N->getState().getPtr(),
   1743                                                CalleeCtx, CallerCtx);
   1744           }
   1745         }
   1746 
   1747         // Are we jumping to the head of a loop?  Add a special diagnostic.
   1748         if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
   1749           PathDiagnosticLocation L(Loop, SM, PDB.LC);
   1750           const Stmt *Body = NULL;
   1751 
   1752           if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
   1753             Body = FS->getBody();
   1754           else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
   1755             Body = WS->getBody();
   1756           else if (const ObjCForCollectionStmt *OFS =
   1757                      dyn_cast<ObjCForCollectionStmt>(Loop)) {
   1758             Body = OFS->getBody();
   1759           } else if (const CXXForRangeStmt *FRS =
   1760                        dyn_cast<CXXForRangeStmt>(Loop)) {
   1761             Body = FRS->getBody();
   1762           }
   1763           // do-while statements are explicitly excluded here
   1764 
   1765           PathDiagnosticEventPiece *p =
   1766             new PathDiagnosticEventPiece(L, "Looping back to the head "
   1767                                             "of the loop");
   1768           p->setPrunable(true);
   1769 
   1770           addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
   1771           PD.getActivePath().push_front(p);
   1772 
   1773           if (const CompoundStmt *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
   1774             addEdgeToPath(PD.getActivePath(), PrevLoc,
   1775                           PathDiagnosticLocation::createEndBrace(CS, SM),
   1776                           PDB.LC);
   1777           }
   1778         }
   1779 
   1780         const CFGBlock *BSrc = BE->getSrc();
   1781         ParentMap &PM = PDB.getParentMap();
   1782 
   1783         if (const Stmt *Term = BSrc->getTerminator()) {
   1784           // Are we jumping past the loop body without ever executing the
   1785           // loop (because the condition was false)?
   1786           if (isLoop(Term)) {
   1787             const Stmt *TermCond = getTerminatorCondition(BSrc);
   1788             bool IsInLoopBody =
   1789               isInLoopBody(PM, getStmtBeforeCond(PM, TermCond, N), Term);
   1790 
   1791             const char *str = 0;
   1792 
   1793             if (isJumpToFalseBranch(&*BE)) {
   1794               if (!IsInLoopBody) {
   1795                 str = StrLoopBodyZero;
   1796               }
   1797             } else {
   1798               str = StrEnteringLoop;
   1799             }
   1800 
   1801             if (str) {
   1802               PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, PDB.LC);
   1803               PathDiagnosticEventPiece *PE =
   1804                 new PathDiagnosticEventPiece(L, str);
   1805               PE->setPrunable(true);
   1806               addEdgeToPath(PD.getActivePath(), PrevLoc,
   1807                             PE->getLocation(), PDB.LC);
   1808               PD.getActivePath().push_front(PE);
   1809             }
   1810           } else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) ||
   1811                      isa<GotoStmt>(Term)) {
   1812             PathDiagnosticLocation L(Term, SM, PDB.LC);
   1813             addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
   1814           }
   1815         }
   1816         break;
   1817       }
   1818     } while (0);
   1819 
   1820     if (!NextNode)
   1821       continue;
   1822 
   1823     // Add pieces from custom visitors.
   1824     for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
   1825          E = visitors.end();
   1826          I != E; ++I) {
   1827       if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *report)) {
   1828         addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
   1829         PD.getActivePath().push_front(p);
   1830         updateStackPiecesWithMessage(p, CallStack);
   1831       }
   1832     }
   1833   }
   1834 
   1835   // Add an edge to the start of the function.
   1836   // We'll prune it out later, but it helps make diagnostics more uniform.
   1837   const StackFrameContext *CalleeLC = PDB.LC->getCurrentStackFrame();
   1838   const Decl *D = CalleeLC->getDecl();
   1839   addEdgeToPath(PD.getActivePath(), PrevLoc,
   1840                 PathDiagnosticLocation::createBegin(D, SM),
   1841                 CalleeLC);
   1842 
   1843   return report->isValid();
   1844 }
   1845 
   1846 static const Stmt *getLocStmt(PathDiagnosticLocation L) {
   1847   if (!L.isValid())
   1848     return 0;
   1849   return L.asStmt();
   1850 }
   1851 
   1852 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
   1853   if (!S)
   1854     return 0;
   1855 
   1856   while (true) {
   1857     S = PM.getParentIgnoreParens(S);
   1858 
   1859     if (!S)
   1860       break;
   1861 
   1862     if (isa<ExprWithCleanups>(S) ||
   1863         isa<CXXBindTemporaryExpr>(S) ||
   1864         isa<SubstNonTypeTemplateParmExpr>(S))
   1865       continue;
   1866 
   1867     break;
   1868   }
   1869 
   1870   return S;
   1871 }
   1872 
   1873 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
   1874   switch (S->getStmtClass()) {
   1875     case Stmt::BinaryOperatorClass: {
   1876       const BinaryOperator *BO = cast<BinaryOperator>(S);
   1877       if (!BO->isLogicalOp())
   1878         return false;
   1879       return BO->getLHS() == Cond || BO->getRHS() == Cond;
   1880     }
   1881     case Stmt::IfStmtClass:
   1882       return cast<IfStmt>(S)->getCond() == Cond;
   1883     case Stmt::ForStmtClass:
   1884       return cast<ForStmt>(S)->getCond() == Cond;
   1885     case Stmt::WhileStmtClass:
   1886       return cast<WhileStmt>(S)->getCond() == Cond;
   1887     case Stmt::DoStmtClass:
   1888       return cast<DoStmt>(S)->getCond() == Cond;
   1889     case Stmt::ChooseExprClass:
   1890       return cast<ChooseExpr>(S)->getCond() == Cond;
   1891     case Stmt::IndirectGotoStmtClass:
   1892       return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
   1893     case Stmt::SwitchStmtClass:
   1894       return cast<SwitchStmt>(S)->getCond() == Cond;
   1895     case Stmt::BinaryConditionalOperatorClass:
   1896       return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
   1897     case Stmt::ConditionalOperatorClass: {
   1898       const ConditionalOperator *CO = cast<ConditionalOperator>(S);
   1899       return CO->getCond() == Cond ||
   1900              CO->getLHS() == Cond ||
   1901              CO->getRHS() == Cond;
   1902     }
   1903     case Stmt::ObjCForCollectionStmtClass:
   1904       return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
   1905     case Stmt::CXXForRangeStmtClass: {
   1906       const CXXForRangeStmt *FRS = cast<CXXForRangeStmt>(S);
   1907       return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
   1908     }
   1909     default:
   1910       return false;
   1911   }
   1912 }
   1913 
   1914 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
   1915   if (const ForStmt *FS = dyn_cast<ForStmt>(FL))
   1916     return FS->getInc() == S || FS->getInit() == S;
   1917   if (const CXXForRangeStmt *FRS = dyn_cast<CXXForRangeStmt>(FL))
   1918     return FRS->getInc() == S || FRS->getRangeStmt() == S ||
   1919            FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
   1920   return false;
   1921 }
   1922 
   1923 typedef llvm::DenseSet<const PathDiagnosticCallPiece *>
   1924         OptimizedCallsSet;
   1925 
   1926 /// Adds synthetic edges from top-level statements to their subexpressions.
   1927 ///
   1928 /// This avoids a "swoosh" effect, where an edge from a top-level statement A
   1929 /// points to a sub-expression B.1 that's not at the start of B. In these cases,
   1930 /// we'd like to see an edge from A to B, then another one from B to B.1.
   1931 static void addContextEdges(PathPieces &pieces, SourceManager &SM,
   1932                             const ParentMap &PM, const LocationContext *LCtx) {
   1933   PathPieces::iterator Prev = pieces.end();
   1934   for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
   1935        Prev = I, ++I) {
   1936     PathDiagnosticControlFlowPiece *Piece =
   1937       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
   1938 
   1939     if (!Piece)
   1940       continue;
   1941 
   1942     PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
   1943     SmallVector<PathDiagnosticLocation, 4> SrcContexts;
   1944 
   1945     PathDiagnosticLocation NextSrcContext = SrcLoc;
   1946     const Stmt *InnerStmt = 0;
   1947     while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
   1948       SrcContexts.push_back(NextSrcContext);
   1949       InnerStmt = NextSrcContext.asStmt();
   1950       NextSrcContext = getEnclosingStmtLocation(InnerStmt, SM, PM, LCtx,
   1951                                                 /*allowNested=*/true);
   1952     }
   1953 
   1954     // Repeatedly split the edge as necessary.
   1955     // This is important for nested logical expressions (||, &&, ?:) where we
   1956     // want to show all the levels of context.
   1957     while (true) {
   1958       const Stmt *Dst = getLocStmt(Piece->getEndLocation());
   1959 
   1960       // We are looking at an edge. Is the destination within a larger
   1961       // expression?
   1962       PathDiagnosticLocation DstContext =
   1963         getEnclosingStmtLocation(Dst, SM, PM, LCtx, /*allowNested=*/true);
   1964       if (!DstContext.isValid() || DstContext.asStmt() == Dst)
   1965         break;
   1966 
   1967       // If the source is in the same context, we're already good.
   1968       if (std::find(SrcContexts.begin(), SrcContexts.end(), DstContext) !=
   1969           SrcContexts.end())
   1970         break;
   1971 
   1972       // Update the subexpression node to point to the context edge.
   1973       Piece->setStartLocation(DstContext);
   1974 
   1975       // Try to extend the previous edge if it's at the same level as the source
   1976       // context.
   1977       if (Prev != E) {
   1978         PathDiagnosticControlFlowPiece *PrevPiece =
   1979           dyn_cast<PathDiagnosticControlFlowPiece>(*Prev);
   1980 
   1981         if (PrevPiece) {
   1982           if (const Stmt *PrevSrc = getLocStmt(PrevPiece->getStartLocation())) {
   1983             const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
   1984             if (PrevSrcParent == getStmtParent(getLocStmt(DstContext), PM)) {
   1985               PrevPiece->setEndLocation(DstContext);
   1986               break;
   1987             }
   1988           }
   1989         }
   1990       }
   1991 
   1992       // Otherwise, split the current edge into a context edge and a
   1993       // subexpression edge. Note that the context statement may itself have
   1994       // context.
   1995       Piece = new PathDiagnosticControlFlowPiece(SrcLoc, DstContext);
   1996       I = pieces.insert(I, Piece);
   1997     }
   1998   }
   1999 }
   2000 
   2001 /// \brief Move edges from a branch condition to a branch target
   2002 ///        when the condition is simple.
   2003 ///
   2004 /// This restructures some of the work of addContextEdges.  That function
   2005 /// creates edges this may destroy, but they work together to create a more
   2006 /// aesthetically set of edges around branches.  After the call to
   2007 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
   2008 /// the branch to the branch condition, and (3) an edge from the branch
   2009 /// condition to the branch target.  We keep (1), but may wish to remove (2)
   2010 /// and move the source of (3) to the branch if the branch condition is simple.
   2011 ///
   2012 static void simplifySimpleBranches(PathPieces &pieces) {
   2013   for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
   2014 
   2015     PathDiagnosticControlFlowPiece *PieceI =
   2016       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
   2017 
   2018     if (!PieceI)
   2019       continue;
   2020 
   2021     const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
   2022     const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
   2023 
   2024     if (!s1Start || !s1End)
   2025       continue;
   2026 
   2027     PathPieces::iterator NextI = I; ++NextI;
   2028     if (NextI == E)
   2029       break;
   2030 
   2031     PathDiagnosticControlFlowPiece *PieceNextI = 0;
   2032 
   2033     while (true) {
   2034       if (NextI == E)
   2035         break;
   2036 
   2037       PathDiagnosticEventPiece *EV = dyn_cast<PathDiagnosticEventPiece>(*NextI);
   2038       if (EV) {
   2039         StringRef S = EV->getString();
   2040         if (S == StrEnteringLoop || S == StrLoopBodyZero) {
   2041           ++NextI;
   2042           continue;
   2043         }
   2044         break;
   2045       }
   2046 
   2047       PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
   2048       break;
   2049     }
   2050 
   2051     if (!PieceNextI)
   2052       continue;
   2053 
   2054     const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
   2055     const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
   2056 
   2057     if (!s2Start || !s2End || s1End != s2Start)
   2058       continue;
   2059 
   2060     // We only perform this transformation for specific branch kinds.
   2061     // We don't want to do this for do..while, for example.
   2062     if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) ||
   2063           isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) ||
   2064           isa<CXXForRangeStmt>(s1Start)))
   2065       continue;
   2066 
   2067     // Is s1End the branch condition?
   2068     if (!isConditionForTerminator(s1Start, s1End))
   2069       continue;
   2070 
   2071     // Perform the hoisting by eliminating (2) and changing the start
   2072     // location of (3).
   2073     PieceNextI->setStartLocation(PieceI->getStartLocation());
   2074     I = pieces.erase(I);
   2075   }
   2076 }
   2077 
   2078 /// Returns the number of bytes in the given (character-based) SourceRange.
   2079 ///
   2080 /// If the locations in the range are not on the same line, returns None.
   2081 ///
   2082 /// Note that this does not do a precise user-visible character or column count.
   2083 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
   2084                                               SourceRange Range) {
   2085   SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
   2086                              SM.getExpansionRange(Range.getEnd()).second);
   2087 
   2088   FileID FID = SM.getFileID(ExpansionRange.getBegin());
   2089   if (FID != SM.getFileID(ExpansionRange.getEnd()))
   2090     return None;
   2091 
   2092   bool Invalid;
   2093   const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid);
   2094   if (Invalid)
   2095     return None;
   2096 
   2097   unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
   2098   unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
   2099   StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
   2100 
   2101   // We're searching the raw bytes of the buffer here, which might include
   2102   // escaped newlines and such. That's okay; we're trying to decide whether the
   2103   // SourceRange is covering a large or small amount of space in the user's
   2104   // editor.
   2105   if (Snippet.find_first_of("\r\n") != StringRef::npos)
   2106     return None;
   2107 
   2108   // This isn't Unicode-aware, but it doesn't need to be.
   2109   return Snippet.size();
   2110 }
   2111 
   2112 /// \sa getLengthOnSingleLine(SourceManager, SourceRange)
   2113 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
   2114                                               const Stmt *S) {
   2115   return getLengthOnSingleLine(SM, S->getSourceRange());
   2116 }
   2117 
   2118 /// Eliminate two-edge cycles created by addContextEdges().
   2119 ///
   2120 /// Once all the context edges are in place, there are plenty of cases where
   2121 /// there's a single edge from a top-level statement to a subexpression,
   2122 /// followed by a single path note, and then a reverse edge to get back out to
   2123 /// the top level. If the statement is simple enough, the subexpression edges
   2124 /// just add noise and make it harder to understand what's going on.
   2125 ///
   2126 /// This function only removes edges in pairs, because removing only one edge
   2127 /// might leave other edges dangling.
   2128 ///
   2129 /// This will not remove edges in more complicated situations:
   2130 /// - if there is more than one "hop" leading to or from a subexpression.
   2131 /// - if there is an inlined call between the edges instead of a single event.
   2132 /// - if the whole statement is large enough that having subexpression arrows
   2133 ///   might be helpful.
   2134 static void removeContextCycles(PathPieces &Path, SourceManager &SM,
   2135                                 ParentMap &PM) {
   2136   for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
   2137     // Pattern match the current piece and its successor.
   2138     PathDiagnosticControlFlowPiece *PieceI =
   2139       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
   2140 
   2141     if (!PieceI) {
   2142       ++I;
   2143       continue;
   2144     }
   2145 
   2146     const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
   2147     const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
   2148 
   2149     PathPieces::iterator NextI = I; ++NextI;
   2150     if (NextI == E)
   2151       break;
   2152 
   2153     PathDiagnosticControlFlowPiece *PieceNextI =
   2154       dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
   2155 
   2156     if (!PieceNextI) {
   2157       if (isa<PathDiagnosticEventPiece>(*NextI)) {
   2158         ++NextI;
   2159         if (NextI == E)
   2160           break;
   2161         PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
   2162       }
   2163 
   2164       if (!PieceNextI) {
   2165         ++I;
   2166         continue;
   2167       }
   2168     }
   2169 
   2170     const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
   2171     const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
   2172 
   2173     if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
   2174       const size_t MAX_SHORT_LINE_LENGTH = 80;
   2175       Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
   2176       if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
   2177         Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
   2178         if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
   2179           Path.erase(I);
   2180           I = Path.erase(NextI);
   2181           continue;
   2182         }
   2183       }
   2184     }
   2185 
   2186     ++I;
   2187   }
   2188 }
   2189 
   2190 /// \brief Return true if X is contained by Y.
   2191 static bool lexicalContains(ParentMap &PM,
   2192                             const Stmt *X,
   2193                             const Stmt *Y) {
   2194   while (X) {
   2195     if (X == Y)
   2196       return true;
   2197     X = PM.getParent(X);
   2198   }
   2199   return false;
   2200 }
   2201 
   2202 // Remove short edges on the same line less than 3 columns in difference.
   2203 static void removePunyEdges(PathPieces &path,
   2204                             SourceManager &SM,
   2205                             ParentMap &PM) {
   2206 
   2207   bool erased = false;
   2208 
   2209   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
   2210        erased ? I : ++I) {
   2211 
   2212     erased = false;
   2213 
   2214     PathDiagnosticControlFlowPiece *PieceI =
   2215       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
   2216 
   2217     if (!PieceI)
   2218       continue;
   2219 
   2220     const Stmt *start = getLocStmt(PieceI->getStartLocation());
   2221     const Stmt *end   = getLocStmt(PieceI->getEndLocation());
   2222 
   2223     if (!start || !end)
   2224       continue;
   2225 
   2226     const Stmt *endParent = PM.getParent(end);
   2227     if (!endParent)
   2228       continue;
   2229 
   2230     if (isConditionForTerminator(end, endParent))
   2231       continue;
   2232 
   2233     SourceLocation FirstLoc = start->getLocStart();
   2234     SourceLocation SecondLoc = end->getLocStart();
   2235 
   2236     if (!SM.isFromSameFile(FirstLoc, SecondLoc))
   2237       continue;
   2238     if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
   2239       std::swap(SecondLoc, FirstLoc);
   2240 
   2241     SourceRange EdgeRange(FirstLoc, SecondLoc);
   2242     Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
   2243 
   2244     // If the statements are on different lines, continue.
   2245     if (!ByteWidth)
   2246       continue;
   2247 
   2248     const size_t MAX_PUNY_EDGE_LENGTH = 2;
   2249     if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
   2250       // FIXME: There are enough /bytes/ between the endpoints of the edge, but
   2251       // there might not be enough /columns/. A proper user-visible column count
   2252       // is probably too expensive, though.
   2253       I = path.erase(I);
   2254       erased = true;
   2255       continue;
   2256     }
   2257   }
   2258 }
   2259 
   2260 static void removeIdenticalEvents(PathPieces &path) {
   2261   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
   2262     PathDiagnosticEventPiece *PieceI =
   2263       dyn_cast<PathDiagnosticEventPiece>(*I);
   2264 
   2265     if (!PieceI)
   2266       continue;
   2267 
   2268     PathPieces::iterator NextI = I; ++NextI;
   2269     if (NextI == E)
   2270       return;
   2271 
   2272     PathDiagnosticEventPiece *PieceNextI =
   2273       dyn_cast<PathDiagnosticEventPiece>(*NextI);
   2274 
   2275     if (!PieceNextI)
   2276       continue;
   2277 
   2278     // Erase the second piece if it has the same exact message text.
   2279     if (PieceI->getString() == PieceNextI->getString()) {
   2280       path.erase(NextI);
   2281     }
   2282   }
   2283 }
   2284 
   2285 static bool optimizeEdges(PathPieces &path, SourceManager &SM,
   2286                           OptimizedCallsSet &OCS,
   2287                           LocationContextMap &LCM) {
   2288   bool hasChanges = false;
   2289   const LocationContext *LC = LCM[&path];
   2290   assert(LC);
   2291   ParentMap &PM = LC->getParentMap();
   2292 
   2293   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
   2294     // Optimize subpaths.
   2295     if (PathDiagnosticCallPiece *CallI = dyn_cast<PathDiagnosticCallPiece>(*I)){
   2296       // Record the fact that a call has been optimized so we only do the
   2297       // effort once.
   2298       if (!OCS.count(CallI)) {
   2299         while (optimizeEdges(CallI->path, SM, OCS, LCM)) {}
   2300         OCS.insert(CallI);
   2301       }
   2302       ++I;
   2303       continue;
   2304     }
   2305 
   2306     // Pattern match the current piece and its successor.
   2307     PathDiagnosticControlFlowPiece *PieceI =
   2308       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
   2309 
   2310     if (!PieceI) {
   2311       ++I;
   2312       continue;
   2313     }
   2314 
   2315     const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
   2316     const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
   2317     const Stmt *level1 = getStmtParent(s1Start, PM);
   2318     const Stmt *level2 = getStmtParent(s1End, PM);
   2319 
   2320     PathPieces::iterator NextI = I; ++NextI;
   2321     if (NextI == E)
   2322       break;
   2323 
   2324     PathDiagnosticControlFlowPiece *PieceNextI =
   2325       dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
   2326 
   2327     if (!PieceNextI) {
   2328       ++I;
   2329       continue;
   2330     }
   2331 
   2332     const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
   2333     const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
   2334     const Stmt *level3 = getStmtParent(s2Start, PM);
   2335     const Stmt *level4 = getStmtParent(s2End, PM);
   2336 
   2337     // Rule I.
   2338     //
   2339     // If we have two consecutive control edges whose end/begin locations
   2340     // are at the same level (e.g. statements or top-level expressions within
   2341     // a compound statement, or siblings share a single ancestor expression),
   2342     // then merge them if they have no interesting intermediate event.
   2343     //
   2344     // For example:
   2345     //
   2346     // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
   2347     // parent is '1'.  Here 'x.y.z' represents the hierarchy of statements.
   2348     //
   2349     // NOTE: this will be limited later in cases where we add barriers
   2350     // to prevent this optimization.
   2351     //
   2352     if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
   2353       PieceI->setEndLocation(PieceNextI->getEndLocation());
   2354       path.erase(NextI);
   2355       hasChanges = true;
   2356       continue;
   2357     }
   2358 
   2359     // Rule II.
   2360     //
   2361     // Eliminate edges between subexpressions and parent expressions
   2362     // when the subexpression is consumed.
   2363     //
   2364     // NOTE: this will be limited later in cases where we add barriers
   2365     // to prevent this optimization.
   2366     //
   2367     if (s1End && s1End == s2Start && level2) {
   2368       bool removeEdge = false;
   2369       // Remove edges into the increment or initialization of a
   2370       // loop that have no interleaving event.  This means that
   2371       // they aren't interesting.
   2372       if (isIncrementOrInitInForLoop(s1End, level2))
   2373         removeEdge = true;
   2374       // Next only consider edges that are not anchored on
   2375       // the condition of a terminator.  This are intermediate edges
   2376       // that we might want to trim.
   2377       else if (!isConditionForTerminator(level2, s1End)) {
   2378         // Trim edges on expressions that are consumed by
   2379         // the parent expression.
   2380         if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
   2381           removeEdge = true;
   2382         }
   2383         // Trim edges where a lexical containment doesn't exist.
   2384         // For example:
   2385         //
   2386         //  X -> Y -> Z
   2387         //
   2388         // If 'Z' lexically contains Y (it is an ancestor) and
   2389         // 'X' does not lexically contain Y (it is a descendant OR
   2390         // it has no lexical relationship at all) then trim.
   2391         //
   2392         // This can eliminate edges where we dive into a subexpression
   2393         // and then pop back out, etc.
   2394         else if (s1Start && s2End &&
   2395                  lexicalContains(PM, s2Start, s2End) &&
   2396                  !lexicalContains(PM, s1End, s1Start)) {
   2397           removeEdge = true;
   2398         }
   2399         // Trim edges from a subexpression back to the top level if the
   2400         // subexpression is on a different line.
   2401         //
   2402         // A.1 -> A -> B
   2403         // becomes
   2404         // A.1 -> B
   2405         //
   2406         // These edges just look ugly and don't usually add anything.
   2407         else if (s1Start && s2End &&
   2408                  lexicalContains(PM, s1Start, s1End)) {
   2409           SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
   2410                                 PieceI->getStartLocation().asLocation());
   2411           if (!getLengthOnSingleLine(SM, EdgeRange).hasValue())
   2412             removeEdge = true;
   2413         }
   2414       }
   2415 
   2416       if (removeEdge) {
   2417         PieceI->setEndLocation(PieceNextI->getEndLocation());
   2418         path.erase(NextI);
   2419         hasChanges = true;
   2420         continue;
   2421       }
   2422     }
   2423 
   2424     // Optimize edges for ObjC fast-enumeration loops.
   2425     //
   2426     // (X -> collection) -> (collection -> element)
   2427     //
   2428     // becomes:
   2429     //
   2430     // (X -> element)
   2431     if (s1End == s2Start) {
   2432       const ObjCForCollectionStmt *FS =
   2433         dyn_cast_or_null<ObjCForCollectionStmt>(level3);
   2434       if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
   2435           s2End == FS->getElement()) {
   2436         PieceI->setEndLocation(PieceNextI->getEndLocation());
   2437         path.erase(NextI);
   2438         hasChanges = true;
   2439         continue;
   2440       }
   2441     }
   2442 
   2443     // No changes at this index?  Move to the next one.
   2444     ++I;
   2445   }
   2446 
   2447   if (!hasChanges) {
   2448     // Adjust edges into subexpressions to make them more uniform
   2449     // and aesthetically pleasing.
   2450     addContextEdges(path, SM, PM, LC);
   2451     // Remove "cyclical" edges that include one or more context edges.
   2452     removeContextCycles(path, SM, PM);
   2453     // Hoist edges originating from branch conditions to branches
   2454     // for simple branches.
   2455     simplifySimpleBranches(path);
   2456     // Remove any puny edges left over after primary optimization pass.
   2457     removePunyEdges(path, SM, PM);
   2458     // Remove identical events.
   2459     removeIdenticalEvents(path);
   2460   }
   2461 
   2462   return hasChanges;
   2463 }
   2464 
   2465 /// Drop the very first edge in a path, which should be a function entry edge.
   2466 ///
   2467 /// If the first edge is not a function entry edge (say, because the first
   2468 /// statement had an invalid source location), this function does nothing.
   2469 // FIXME: We should just generate invalid edges anyway and have the optimizer
   2470 // deal with them.
   2471 static void dropFunctionEntryEdge(PathPieces &Path,
   2472                                   LocationContextMap &LCM,
   2473                                   SourceManager &SM) {
   2474   const PathDiagnosticControlFlowPiece *FirstEdge =
   2475     dyn_cast<PathDiagnosticControlFlowPiece>(Path.front());
   2476   if (!FirstEdge)
   2477     return;
   2478 
   2479   const Decl *D = LCM[&Path]->getDecl();
   2480   PathDiagnosticLocation EntryLoc = PathDiagnosticLocation::createBegin(D, SM);
   2481   if (FirstEdge->getStartLocation() != EntryLoc)
   2482     return;
   2483 
   2484   Path.pop_front();
   2485 }
   2486 
   2487 
   2488 //===----------------------------------------------------------------------===//
   2489 // Methods for BugType and subclasses.
   2490 //===----------------------------------------------------------------------===//
   2491 BugType::~BugType() { }
   2492 
   2493 void BugType::FlushReports(BugReporter &BR) {}
   2494 
   2495 void BuiltinBug::anchor() {}
   2496 
   2497 //===----------------------------------------------------------------------===//
   2498 // Methods for BugReport and subclasses.
   2499 //===----------------------------------------------------------------------===//
   2500 
   2501 void BugReport::NodeResolver::anchor() {}
   2502 
   2503 void BugReport::addVisitor(BugReporterVisitor* visitor) {
   2504   if (!visitor)
   2505     return;
   2506 
   2507   llvm::FoldingSetNodeID ID;
   2508   visitor->Profile(ID);
   2509   void *InsertPos;
   2510 
   2511   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
   2512     delete visitor;
   2513     return;
   2514   }
   2515 
   2516   CallbacksSet.InsertNode(visitor, InsertPos);
   2517   Callbacks.push_back(visitor);
   2518   ++ConfigurationChangeToken;
   2519 }
   2520 
   2521 BugReport::~BugReport() {
   2522   for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
   2523     delete *I;
   2524   }
   2525   while (!interestingSymbols.empty()) {
   2526     popInterestingSymbolsAndRegions();
   2527   }
   2528 }
   2529 
   2530 const Decl *BugReport::getDeclWithIssue() const {
   2531   if (DeclWithIssue)
   2532     return DeclWithIssue;
   2533 
   2534   const ExplodedNode *N = getErrorNode();
   2535   if (!N)
   2536     return 0;
   2537 
   2538   const LocationContext *LC = N->getLocationContext();
   2539   return LC->getCurrentStackFrame()->getDecl();
   2540 }
   2541 
   2542 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
   2543   hash.AddPointer(&BT);
   2544   hash.AddString(Description);
   2545   PathDiagnosticLocation UL = getUniqueingLocation();
   2546   if (UL.isValid()) {
   2547     UL.Profile(hash);
   2548   } else if (Location.isValid()) {
   2549     Location.Profile(hash);
   2550   } else {
   2551     assert(ErrorNode);
   2552     hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
   2553   }
   2554 
   2555   for (SmallVectorImpl<SourceRange>::const_iterator I =
   2556       Ranges.begin(), E = Ranges.end(); I != E; ++I) {
   2557     const SourceRange range = *I;
   2558     if (!range.isValid())
   2559       continue;
   2560     hash.AddInteger(range.getBegin().getRawEncoding());
   2561     hash.AddInteger(range.getEnd().getRawEncoding());
   2562   }
   2563 }
   2564 
   2565 void BugReport::markInteresting(SymbolRef sym) {
   2566   if (!sym)
   2567     return;
   2568 
   2569   // If the symbol wasn't already in our set, note a configuration change.
   2570   if (getInterestingSymbols().insert(sym).second)
   2571     ++ConfigurationChangeToken;
   2572 
   2573   if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
   2574     getInterestingRegions().insert(meta->getRegion());
   2575 }
   2576 
   2577 void BugReport::markInteresting(const MemRegion *R) {
   2578   if (!R)
   2579     return;
   2580 
   2581   // If the base region wasn't already in our set, note a configuration change.
   2582   R = R->getBaseRegion();
   2583   if (getInterestingRegions().insert(R).second)
   2584     ++ConfigurationChangeToken;
   2585 
   2586   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
   2587     getInterestingSymbols().insert(SR->getSymbol());
   2588 }
   2589 
   2590 void BugReport::markInteresting(SVal V) {
   2591   markInteresting(V.getAsRegion());
   2592   markInteresting(V.getAsSymbol());
   2593 }
   2594 
   2595 void BugReport::markInteresting(const LocationContext *LC) {
   2596   if (!LC)
   2597     return;
   2598   InterestingLocationContexts.insert(LC);
   2599 }
   2600 
   2601 bool BugReport::isInteresting(SVal V) {
   2602   return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
   2603 }
   2604 
   2605 bool BugReport::isInteresting(SymbolRef sym) {
   2606   if (!sym)
   2607     return false;
   2608   // We don't currently consider metadata symbols to be interesting
   2609   // even if we know their region is interesting. Is that correct behavior?
   2610   return getInterestingSymbols().count(sym);
   2611 }
   2612 
   2613 bool BugReport::isInteresting(const MemRegion *R) {
   2614   if (!R)
   2615     return false;
   2616   R = R->getBaseRegion();
   2617   bool b = getInterestingRegions().count(R);
   2618   if (b)
   2619     return true;
   2620   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
   2621     return getInterestingSymbols().count(SR->getSymbol());
   2622   return false;
   2623 }
   2624 
   2625 bool BugReport::isInteresting(const LocationContext *LC) {
   2626   if (!LC)
   2627     return false;
   2628   return InterestingLocationContexts.count(LC);
   2629 }
   2630 
   2631 void BugReport::lazyInitializeInterestingSets() {
   2632   if (interestingSymbols.empty()) {
   2633     interestingSymbols.push_back(new Symbols());
   2634     interestingRegions.push_back(new Regions());
   2635   }
   2636 }
   2637 
   2638 BugReport::Symbols &BugReport::getInterestingSymbols() {
   2639   lazyInitializeInterestingSets();
   2640   return *interestingSymbols.back();
   2641 }
   2642 
   2643 BugReport::Regions &BugReport::getInterestingRegions() {
   2644   lazyInitializeInterestingSets();
   2645   return *interestingRegions.back();
   2646 }
   2647 
   2648 void BugReport::pushInterestingSymbolsAndRegions() {
   2649   interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
   2650   interestingRegions.push_back(new Regions(getInterestingRegions()));
   2651 }
   2652 
   2653 void BugReport::popInterestingSymbolsAndRegions() {
   2654   delete interestingSymbols.back();
   2655   interestingSymbols.pop_back();
   2656   delete interestingRegions.back();
   2657   interestingRegions.pop_back();
   2658 }
   2659 
   2660 const Stmt *BugReport::getStmt() const {
   2661   if (!ErrorNode)
   2662     return 0;
   2663 
   2664   ProgramPoint ProgP = ErrorNode->getLocation();
   2665   const Stmt *S = NULL;
   2666 
   2667   if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
   2668     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
   2669     if (BE->getBlock() == &Exit)
   2670       S = GetPreviousStmt(ErrorNode);
   2671   }
   2672   if (!S)
   2673     S = PathDiagnosticLocation::getStmt(ErrorNode);
   2674 
   2675   return S;
   2676 }
   2677 
   2678 std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
   2679 BugReport::getRanges() {
   2680     // If no custom ranges, add the range of the statement corresponding to
   2681     // the error node.
   2682     if (Ranges.empty()) {
   2683       if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
   2684         addRange(E->getSourceRange());
   2685       else
   2686         return std::make_pair(ranges_iterator(), ranges_iterator());
   2687     }
   2688 
   2689     // User-specified absence of range info.
   2690     if (Ranges.size() == 1 && !Ranges.begin()->isValid())
   2691       return std::make_pair(ranges_iterator(), ranges_iterator());
   2692 
   2693     return std::make_pair(Ranges.begin(), Ranges.end());
   2694 }
   2695 
   2696 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
   2697   if (ErrorNode) {
   2698     assert(!Location.isValid() &&
   2699      "Either Location or ErrorNode should be specified but not both.");
   2700     return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM);
   2701   } else {
   2702     assert(Location.isValid());
   2703     return Location;
   2704   }
   2705 
   2706   return PathDiagnosticLocation();
   2707 }
   2708 
   2709 //===----------------------------------------------------------------------===//
   2710 // Methods for BugReporter and subclasses.
   2711 //===----------------------------------------------------------------------===//
   2712 
   2713 BugReportEquivClass::~BugReportEquivClass() { }
   2714 GRBugReporter::~GRBugReporter() { }
   2715 BugReporterData::~BugReporterData() {}
   2716 
   2717 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
   2718 
   2719 ProgramStateManager&
   2720 GRBugReporter::getStateManager() { return Eng.getStateManager(); }
   2721 
   2722 BugReporter::~BugReporter() {
   2723   FlushReports();
   2724 
   2725   // Free the bug reports we are tracking.
   2726   typedef std::vector<BugReportEquivClass *> ContTy;
   2727   for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
   2728        I != E; ++I) {
   2729     delete *I;
   2730   }
   2731 }
   2732 
   2733 void BugReporter::FlushReports() {
   2734   if (BugTypes.isEmpty())
   2735     return;
   2736 
   2737   // First flush the warnings for each BugType.  This may end up creating new
   2738   // warnings and new BugTypes.
   2739   // FIXME: Only NSErrorChecker needs BugType's FlushReports.
   2740   // Turn NSErrorChecker into a proper checker and remove this.
   2741   SmallVector<const BugType*, 16> bugTypes;
   2742   for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
   2743     bugTypes.push_back(*I);
   2744   for (SmallVectorImpl<const BugType *>::iterator
   2745          I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
   2746     const_cast<BugType*>(*I)->FlushReports(*this);
   2747 
   2748   // We need to flush reports in deterministic order to ensure the order
   2749   // of the reports is consistent between runs.
   2750   typedef std::vector<BugReportEquivClass *> ContVecTy;
   2751   for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
   2752        EI != EE; ++EI){
   2753     BugReportEquivClass& EQ = **EI;
   2754     FlushReport(EQ);
   2755   }
   2756 
   2757   // BugReporter owns and deletes only BugTypes created implicitly through
   2758   // EmitBasicReport.
   2759   // FIXME: There are leaks from checkers that assume that the BugTypes they
   2760   // create will be destroyed by the BugReporter.
   2761   for (llvm::StringMap<BugType*>::iterator
   2762          I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
   2763     delete I->second;
   2764 
   2765   // Remove all references to the BugType objects.
   2766   BugTypes = F.getEmptySet();
   2767 }
   2768 
   2769 //===----------------------------------------------------------------------===//
   2770 // PathDiagnostics generation.
   2771 //===----------------------------------------------------------------------===//
   2772 
   2773 namespace {
   2774 /// A wrapper around a report graph, which contains only a single path, and its
   2775 /// node maps.
   2776 class ReportGraph {
   2777 public:
   2778   InterExplodedGraphMap BackMap;
   2779   OwningPtr<ExplodedGraph> Graph;
   2780   const ExplodedNode *ErrorNode;
   2781   size_t Index;
   2782 };
   2783 
   2784 /// A wrapper around a trimmed graph and its node maps.
   2785 class TrimmedGraph {
   2786   InterExplodedGraphMap InverseMap;
   2787 
   2788   typedef llvm::DenseMap<const ExplodedNode *, unsigned> PriorityMapTy;
   2789   PriorityMapTy PriorityMap;
   2790 
   2791   typedef std::pair<const ExplodedNode *, size_t> NodeIndexPair;
   2792   SmallVector<NodeIndexPair, 32> ReportNodes;
   2793 
   2794   OwningPtr<ExplodedGraph> G;
   2795 
   2796   /// A helper class for sorting ExplodedNodes by priority.
   2797   template <bool Descending>
   2798   class PriorityCompare {
   2799     const PriorityMapTy &PriorityMap;
   2800 
   2801   public:
   2802     PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
   2803 
   2804     bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
   2805       PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
   2806       PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
   2807       PriorityMapTy::const_iterator E = PriorityMap.end();
   2808 
   2809       if (LI == E)
   2810         return Descending;
   2811       if (RI == E)
   2812         return !Descending;
   2813 
   2814       return Descending ? LI->second > RI->second
   2815                         : LI->second < RI->second;
   2816     }
   2817 
   2818     bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const {
   2819       return (*this)(LHS.first, RHS.first);
   2820     }
   2821   };
   2822 
   2823 public:
   2824   TrimmedGraph(const ExplodedGraph *OriginalGraph,
   2825                ArrayRef<const ExplodedNode *> Nodes);
   2826 
   2827   bool popNextReportGraph(ReportGraph &GraphWrapper);
   2828 };
   2829 }
   2830 
   2831 TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph,
   2832                            ArrayRef<const ExplodedNode *> Nodes) {
   2833   // The trimmed graph is created in the body of the constructor to ensure
   2834   // that the DenseMaps have been initialized already.
   2835   InterExplodedGraphMap ForwardMap;
   2836   G.reset(OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap));
   2837 
   2838   // Find the (first) error node in the trimmed graph.  We just need to consult
   2839   // the node map which maps from nodes in the original graph to nodes
   2840   // in the new graph.
   2841   llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
   2842 
   2843   for (unsigned i = 0, count = Nodes.size(); i < count; ++i) {
   2844     if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) {
   2845       ReportNodes.push_back(std::make_pair(NewNode, i));
   2846       RemainingNodes.insert(NewNode);
   2847     }
   2848   }
   2849 
   2850   assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
   2851 
   2852   // Perform a forward BFS to find all the shortest paths.
   2853   std::queue<const ExplodedNode *> WS;
   2854 
   2855   assert(G->num_roots() == 1);
   2856   WS.push(*G->roots_begin());
   2857   unsigned Priority = 0;
   2858 
   2859   while (!WS.empty()) {
   2860     const ExplodedNode *Node = WS.front();
   2861     WS.pop();
   2862 
   2863     PriorityMapTy::iterator PriorityEntry;
   2864     bool IsNew;
   2865     llvm::tie(PriorityEntry, IsNew) =
   2866       PriorityMap.insert(std::make_pair(Node, Priority));
   2867     ++Priority;
   2868 
   2869     if (!IsNew) {
   2870       assert(PriorityEntry->second <= Priority);
   2871       continue;
   2872     }
   2873 
   2874     if (RemainingNodes.erase(Node))
   2875       if (RemainingNodes.empty())
   2876         break;
   2877 
   2878     for (ExplodedNode::const_pred_iterator I = Node->succ_begin(),
   2879                                            E = Node->succ_end();
   2880          I != E; ++I)
   2881       WS.push(*I);
   2882   }
   2883 
   2884   // Sort the error paths from longest to shortest.
   2885   std::sort(ReportNodes.begin(), ReportNodes.end(),
   2886             PriorityCompare<true>(PriorityMap));
   2887 }
   2888 
   2889 bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) {
   2890   if (ReportNodes.empty())
   2891     return false;
   2892 
   2893   const ExplodedNode *OrigN;
   2894   llvm::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val();
   2895   assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
   2896          "error node not accessible from root");
   2897 
   2898   // Create a new graph with a single path.  This is the graph
   2899   // that will be returned to the caller.
   2900   ExplodedGraph *GNew = new ExplodedGraph();
   2901   GraphWrapper.Graph.reset(GNew);
   2902   GraphWrapper.BackMap.clear();
   2903 
   2904   // Now walk from the error node up the BFS path, always taking the
   2905   // predeccessor with the lowest number.
   2906   ExplodedNode *Succ = 0;
   2907   while (true) {
   2908     // Create the equivalent node in the new graph with the same state
   2909     // and location.
   2910     ExplodedNode *NewN = GNew->getNode(OrigN->getLocation(), OrigN->getState(),
   2911                                        OrigN->isSink());
   2912 
   2913     // Store the mapping to the original node.
   2914     InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN);
   2915     assert(IMitr != InverseMap.end() && "No mapping to original node.");
   2916     GraphWrapper.BackMap[NewN] = IMitr->second;
   2917 
   2918     // Link up the new node with the previous node.
   2919     if (Succ)
   2920       Succ->addPredecessor(NewN, *GNew);
   2921     else
   2922       GraphWrapper.ErrorNode = NewN;
   2923 
   2924     Succ = NewN;
   2925 
   2926     // Are we at the final node?
   2927     if (OrigN->pred_empty()) {
   2928       GNew->addRoot(NewN);
   2929       break;
   2930     }
   2931 
   2932     // Find the next predeccessor node.  We choose the node that is marked
   2933     // with the lowest BFS number.
   2934     OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
   2935                           PriorityCompare<false>(PriorityMap));
   2936   }
   2937 
   2938   return true;
   2939 }
   2940 
   2941 
   2942 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
   2943 ///  and collapses PathDiagosticPieces that are expanded by macros.
   2944 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
   2945   typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
   2946                                 SourceLocation> > MacroStackTy;
   2947 
   2948   typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
   2949           PiecesTy;
   2950 
   2951   MacroStackTy MacroStack;
   2952   PiecesTy Pieces;
   2953 
   2954   for (PathPieces::const_iterator I = path.begin(), E = path.end();
   2955        I!=E; ++I) {
   2956 
   2957     PathDiagnosticPiece *piece = I->getPtr();
   2958 
   2959     // Recursively compact calls.
   2960     if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
   2961       CompactPathDiagnostic(call->path, SM);
   2962     }
   2963 
   2964     // Get the location of the PathDiagnosticPiece.
   2965     const FullSourceLoc Loc = piece->getLocation().asLocation();
   2966 
   2967     // Determine the instantiation location, which is the location we group
   2968     // related PathDiagnosticPieces.
   2969     SourceLocation InstantiationLoc = Loc.isMacroID() ?
   2970                                       SM.getExpansionLoc(Loc) :
   2971                                       SourceLocation();
   2972 
   2973     if (Loc.isFileID()) {
   2974       MacroStack.clear();
   2975       Pieces.push_back(piece);
   2976       continue;
   2977     }
   2978 
   2979     assert(Loc.isMacroID());
   2980 
   2981     // Is the PathDiagnosticPiece within the same macro group?
   2982     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
   2983       MacroStack.back().first->subPieces.push_back(piece);
   2984       continue;
   2985     }
   2986 
   2987     // We aren't in the same group.  Are we descending into a new macro
   2988     // or are part of an old one?
   2989     IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
   2990 
   2991     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
   2992                                           SM.getExpansionLoc(Loc) :
   2993                                           SourceLocation();
   2994 
   2995     // Walk the entire macro stack.
   2996     while (!MacroStack.empty()) {
   2997       if (InstantiationLoc == MacroStack.back().second) {
   2998         MacroGroup = MacroStack.back().first;
   2999         break;
   3000       }
   3001 
   3002       if (ParentInstantiationLoc == MacroStack.back().second) {
   3003         MacroGroup = MacroStack.back().first;
   3004         break;
   3005       }
   3006 
   3007       MacroStack.pop_back();
   3008     }
   3009 
   3010     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
   3011       // Create a new macro group and add it to the stack.
   3012       PathDiagnosticMacroPiece *NewGroup =
   3013         new PathDiagnosticMacroPiece(
   3014           PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
   3015 
   3016       if (MacroGroup)
   3017         MacroGroup->subPieces.push_back(NewGroup);
   3018       else {
   3019         assert(InstantiationLoc.isFileID());
   3020         Pieces.push_back(NewGroup);
   3021       }
   3022 
   3023       MacroGroup = NewGroup;
   3024       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
   3025     }
   3026 
   3027     // Finally, add the PathDiagnosticPiece to the group.
   3028     MacroGroup->subPieces.push_back(piece);
   3029   }
   3030 
   3031   // Now take the pieces and construct a new PathDiagnostic.
   3032   path.clear();
   3033 
   3034   for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
   3035     path.push_back(*I);
   3036 }
   3037 
   3038 bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
   3039                                            PathDiagnosticConsumer &PC,
   3040                                            ArrayRef<BugReport *> &bugReports) {
   3041   assert(!bugReports.empty());
   3042 
   3043   bool HasValid = false;
   3044   bool HasInvalid = false;
   3045   SmallVector<const ExplodedNode *, 32> errorNodes;
   3046   for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
   3047                                       E = bugReports.end(); I != E; ++I) {
   3048     if ((*I)->isValid()) {
   3049       HasValid = true;
   3050       errorNodes.push_back((*I)->getErrorNode());
   3051     } else {
   3052       // Keep the errorNodes list in sync with the bugReports list.
   3053       HasInvalid = true;
   3054       errorNodes.push_back(0);
   3055     }
   3056   }
   3057 
   3058   // If all the reports have been marked invalid by a previous path generation,
   3059   // we're done.
   3060   if (!HasValid)
   3061     return false;
   3062 
   3063   typedef PathDiagnosticConsumer::PathGenerationScheme PathGenerationScheme;
   3064   PathGenerationScheme ActiveScheme = PC.getGenerationScheme();
   3065 
   3066   if (ActiveScheme == PathDiagnosticConsumer::Extensive) {
   3067     AnalyzerOptions &options = getAnalyzerOptions();
   3068     if (options.getBooleanOption("path-diagnostics-alternate", true)) {
   3069       ActiveScheme = PathDiagnosticConsumer::AlternateExtensive;
   3070     }
   3071   }
   3072 
   3073   TrimmedGraph TrimG(&getGraph(), errorNodes);
   3074   ReportGraph ErrorGraph;
   3075 
   3076   while (TrimG.popNextReportGraph(ErrorGraph)) {
   3077     // Find the BugReport with the original location.
   3078     assert(ErrorGraph.Index < bugReports.size());
   3079     BugReport *R = bugReports[ErrorGraph.Index];
   3080     assert(R && "No original report found for sliced graph.");
   3081     assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
   3082 
   3083     // Start building the path diagnostic...
   3084     PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, &PC);
   3085     const ExplodedNode *N = ErrorGraph.ErrorNode;
   3086 
   3087     // Register additional node visitors.
   3088     R->addVisitor(new NilReceiverBRVisitor());
   3089     R->addVisitor(new ConditionBRVisitor());
   3090     R->addVisitor(new LikelyFalsePositiveSuppressionBRVisitor());
   3091 
   3092     BugReport::VisitorList visitors;
   3093     unsigned origReportConfigToken, finalReportConfigToken;
   3094     LocationContextMap LCM;
   3095 
   3096     // While generating diagnostics, it's possible the visitors will decide
   3097     // new symbols and regions are interesting, or add other visitors based on
   3098     // the information they find. If they do, we need to regenerate the path
   3099     // based on our new report configuration.
   3100     do {
   3101       // Get a clean copy of all the visitors.
   3102       for (BugReport::visitor_iterator I = R->visitor_begin(),
   3103                                        E = R->visitor_end(); I != E; ++I)
   3104         visitors.push_back((*I)->clone());
   3105 
   3106       // Clear out the active path from any previous work.
   3107       PD.resetPath();
   3108       origReportConfigToken = R->getConfigurationChangeToken();
   3109 
   3110       // Generate the very last diagnostic piece - the piece is visible before
   3111       // the trace is expanded.
   3112       PathDiagnosticPiece *LastPiece = 0;
   3113       for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
   3114           I != E; ++I) {
   3115         if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
   3116           assert (!LastPiece &&
   3117               "There can only be one final piece in a diagnostic.");
   3118           LastPiece = Piece;
   3119         }
   3120       }
   3121 
   3122       if (ActiveScheme != PathDiagnosticConsumer::None) {
   3123         if (!LastPiece)
   3124           LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
   3125         assert(LastPiece);
   3126         PD.setEndOfPath(LastPiece);
   3127       }
   3128 
   3129       // Make sure we get a clean location context map so we don't
   3130       // hold onto old mappings.
   3131       LCM.clear();
   3132 
   3133       switch (ActiveScheme) {
   3134       case PathDiagnosticConsumer::AlternateExtensive:
   3135         GenerateAlternateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
   3136         break;
   3137       case PathDiagnosticConsumer::Extensive:
   3138         GenerateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
   3139         break;
   3140       case PathDiagnosticConsumer::Minimal:
   3141         GenerateMinimalPathDiagnostic(PD, PDB, N, LCM, visitors);
   3142         break;
   3143       case PathDiagnosticConsumer::None:
   3144         GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors);
   3145         break;
   3146       }
   3147 
   3148       // Clean up the visitors we used.
   3149       llvm::DeleteContainerPointers(visitors);
   3150 
   3151       // Did anything change while generating this path?
   3152       finalReportConfigToken = R->getConfigurationChangeToken();
   3153     } while (finalReportConfigToken != origReportConfigToken);
   3154 
   3155     if (!R->isValid())
   3156       continue;
   3157 
   3158     // Finally, prune the diagnostic path of uninteresting stuff.
   3159     if (!PD.path.empty()) {
   3160       if (R->shouldPrunePath() && getAnalyzerOptions().shouldPrunePaths()) {
   3161         bool stillHasNotes = removeUnneededCalls(PD.getMutablePieces(), R, LCM);
   3162         assert(stillHasNotes);
   3163         (void)stillHasNotes;
   3164       }
   3165 
   3166       // Redirect all call pieces to have valid locations.
   3167       adjustCallLocations(PD.getMutablePieces());
   3168 
   3169       removePiecesWithInvalidLocations(PD.getMutablePieces());
   3170 
   3171       if (ActiveScheme == PathDiagnosticConsumer::AlternateExtensive) {
   3172         SourceManager &SM = getSourceManager();
   3173 
   3174         // Reduce the number of edges from a very conservative set
   3175         // to an aesthetically pleasing subset that conveys the
   3176         // necessary information.
   3177         OptimizedCallsSet OCS;
   3178         while (optimizeEdges(PD.getMutablePieces(), SM, OCS, LCM)) {}
   3179 
   3180         // Drop the very first function-entry edge. It's not really necessary
   3181         // for top-level functions.
   3182         dropFunctionEntryEdge(PD.getMutablePieces(), LCM, SM);
   3183       }
   3184 
   3185       // Remove messages that are basically the same.
   3186       // We have to do this after edge optimization in the Extensive mode.
   3187       removeRedundantMsgs(PD.getMutablePieces());
   3188     }
   3189 
   3190     // We found a report and didn't suppress it.
   3191     return true;
   3192   }
   3193 
   3194   // We suppressed all the reports in this equivalence class.
   3195   assert(!HasInvalid && "Inconsistent suppression");
   3196   (void)HasInvalid;
   3197   return false;
   3198 }
   3199 
   3200 void BugReporter::Register(BugType *BT) {
   3201   BugTypes = F.add(BugTypes, BT);
   3202 }
   3203 
   3204 void BugReporter::emitReport(BugReport* R) {
   3205   // Defensive checking: throw the bug away if it comes from a BodyFarm-
   3206   // generated body. We do this very early because report processing relies
   3207   // on the report's location being valid.
   3208   // FIXME: Valid bugs can occur in BodyFarm-generated bodies, so really we
   3209   // need to just find a reasonable location like we do later on with the path
   3210   // pieces.
   3211   if (const ExplodedNode *E = R->getErrorNode()) {
   3212     const LocationContext *LCtx = E->getLocationContext();
   3213     if (LCtx->getAnalysisDeclContext()->isBodyAutosynthesized())
   3214       return;
   3215   }
   3216 
   3217   bool ValidSourceLoc = R->getLocation(getSourceManager()).isValid();
   3218   assert(ValidSourceLoc);
   3219   // If we mess up in a release build, we'd still prefer to just drop the bug
   3220   // instead of trying to go on.
   3221   if (!ValidSourceLoc)
   3222     return;
   3223 
   3224   // Compute the bug report's hash to determine its equivalence class.
   3225   llvm::FoldingSetNodeID ID;
   3226   R->Profile(ID);
   3227 
   3228   // Lookup the equivance class.  If there isn't one, create it.
   3229   BugType& BT = R->getBugType();
   3230   Register(&BT);
   3231   void *InsertPos;
   3232   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
   3233 
   3234   if (!EQ) {
   3235     EQ = new BugReportEquivClass(R);
   3236     EQClasses.InsertNode(EQ, InsertPos);
   3237     EQClassesVector.push_back(EQ);
   3238   }
   3239   else
   3240     EQ->AddReport(R);
   3241 }
   3242 
   3243 
   3244 //===----------------------------------------------------------------------===//
   3245 // Emitting reports in equivalence classes.
   3246 //===----------------------------------------------------------------------===//
   3247 
   3248 namespace {
   3249 struct FRIEC_WLItem {
   3250   const ExplodedNode *N;
   3251   ExplodedNode::const_succ_iterator I, E;
   3252 
   3253   FRIEC_WLItem(const ExplodedNode *n)
   3254   : N(n), I(N->succ_begin()), E(N->succ_end()) {}
   3255 };
   3256 }
   3257 
   3258 static BugReport *
   3259 FindReportInEquivalenceClass(BugReportEquivClass& EQ,
   3260                              SmallVectorImpl<BugReport*> &bugReports) {
   3261 
   3262   BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
   3263   assert(I != E);
   3264   BugType& BT = I->getBugType();
   3265 
   3266   // If we don't need to suppress any of the nodes because they are
   3267   // post-dominated by a sink, simply add all the nodes in the equivalence class
   3268   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
   3269   if (!BT.isSuppressOnSink()) {
   3270     BugReport *R = I;
   3271     for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
   3272       const ExplodedNode *N = I->getErrorNode();
   3273       if (N) {
   3274         R = I;
   3275         bugReports.push_back(R);
   3276       }
   3277     }
   3278     return R;
   3279   }
   3280 
   3281   // For bug reports that should be suppressed when all paths are post-dominated
   3282   // by a sink node, iterate through the reports in the equivalence class
   3283   // until we find one that isn't post-dominated (if one exists).  We use a
   3284   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
   3285   // this as a recursive function, but we don't want to risk blowing out the
   3286   // stack for very long paths.
   3287   BugReport *exampleReport = 0;
   3288 
   3289   for (; I != E; ++I) {
   3290     const ExplodedNode *errorNode = I->getErrorNode();
   3291 
   3292     if (!errorNode)
   3293       continue;
   3294     if (errorNode->isSink()) {
   3295       llvm_unreachable(
   3296            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
   3297     }
   3298     // No successors?  By definition this nodes isn't post-dominated by a sink.
   3299     if (errorNode->succ_empty()) {
   3300       bugReports.push_back(I);
   3301       if (!exampleReport)
   3302         exampleReport = I;
   3303       continue;
   3304     }
   3305 
   3306     // At this point we know that 'N' is not a sink and it has at least one
   3307     // successor.  Use a DFS worklist to find a non-sink end-of-path node.
   3308     typedef FRIEC_WLItem WLItem;
   3309     typedef SmallVector<WLItem, 10> DFSWorkList;
   3310     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
   3311 
   3312     DFSWorkList WL;
   3313     WL.push_back(errorNode);
   3314     Visited[errorNode] = 1;
   3315 
   3316     while (!WL.empty()) {
   3317       WLItem &WI = WL.back();
   3318       assert(!WI.N->succ_empty());
   3319 
   3320       for (; WI.I != WI.E; ++WI.I) {
   3321         const ExplodedNode *Succ = *WI.I;
   3322         // End-of-path node?
   3323         if (Succ->succ_empty()) {
   3324           // If we found an end-of-path node that is not a sink.
   3325           if (!Succ->isSink()) {
   3326             bugReports.push_back(I);
   3327             if (!exampleReport)
   3328               exampleReport = I;
   3329             WL.clear();
   3330             break;
   3331           }
   3332           // Found a sink?  Continue on to the next successor.
   3333           continue;
   3334         }
   3335         // Mark the successor as visited.  If it hasn't been explored,
   3336         // enqueue it to the DFS worklist.
   3337         unsigned &mark = Visited[Succ];
   3338         if (!mark) {
   3339           mark = 1;
   3340           WL.push_back(Succ);
   3341           break;
   3342         }
   3343       }
   3344 
   3345       // The worklist may have been cleared at this point.  First
   3346       // check if it is empty before checking the last item.
   3347       if (!WL.empty() && &WL.back() == &WI)
   3348         WL.pop_back();
   3349     }
   3350   }
   3351 
   3352   // ExampleReport will be NULL if all the nodes in the equivalence class
   3353   // were post-dominated by sinks.
   3354   return exampleReport;
   3355 }
   3356 
   3357 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
   3358   SmallVector<BugReport*, 10> bugReports;
   3359   BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
   3360   if (exampleReport) {
   3361     const PathDiagnosticConsumers &C = getPathDiagnosticConsumers();
   3362     for (PathDiagnosticConsumers::const_iterator I=C.begin(),
   3363                                                  E=C.end(); I != E; ++I) {
   3364       FlushReport(exampleReport, **I, bugReports);
   3365     }
   3366   }
   3367 }
   3368 
   3369 void BugReporter::FlushReport(BugReport *exampleReport,
   3370                               PathDiagnosticConsumer &PD,
   3371                               ArrayRef<BugReport*> bugReports) {
   3372 
   3373   // FIXME: Make sure we use the 'R' for the path that was actually used.
   3374   // Probably doesn't make a difference in practice.
   3375   BugType& BT = exampleReport->getBugType();
   3376 
   3377   OwningPtr<PathDiagnostic>
   3378     D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
   3379                          exampleReport->getBugType().getName(),
   3380                          exampleReport->getDescription(),
   3381                          exampleReport->getShortDescription(/*Fallback=*/false),
   3382                          BT.getCategory(),
   3383                          exampleReport->getUniqueingLocation(),
   3384                          exampleReport->getUniqueingDecl()));
   3385 
   3386   MaxBugClassSize = std::max(bugReports.size(),
   3387                              static_cast<size_t>(MaxBugClassSize));
   3388 
   3389   // Generate the full path diagnostic, using the generation scheme
   3390   // specified by the PathDiagnosticConsumer. Note that we have to generate
   3391   // path diagnostics even for consumers which do not support paths, because
   3392   // the BugReporterVisitors may mark this bug as a false positive.
   3393   if (!bugReports.empty())
   3394     if (!generatePathDiagnostic(*D.get(), PD, bugReports))
   3395       return;
   3396 
   3397   MaxValidBugClassSize = std::max(bugReports.size(),
   3398                                   static_cast<size_t>(MaxValidBugClassSize));
   3399 
   3400   // Examine the report and see if the last piece is in a header. Reset the
   3401   // report location to the last piece in the main source file.
   3402   AnalyzerOptions& Opts = getAnalyzerOptions();
   3403   if (Opts.shouldReportIssuesInMainSourceFile() && !Opts.AnalyzeAll)
   3404     D->resetDiagnosticLocationToMainFile();
   3405 
   3406   // If the path is empty, generate a single step path with the location
   3407   // of the issue.
   3408   if (D->path.empty()) {
   3409     PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
   3410     PathDiagnosticPiece *piece =
   3411       new PathDiagnosticEventPiece(L, exampleReport->getDescription());
   3412     BugReport::ranges_iterator Beg, End;
   3413     llvm::tie(Beg, End) = exampleReport->getRanges();
   3414     for ( ; Beg != End; ++Beg)
   3415       piece->addRange(*Beg);
   3416     D->setEndOfPath(piece);
   3417   }
   3418 
   3419   // Get the meta data.
   3420   const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
   3421   for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
   3422                                                 e = Meta.end(); i != e; ++i) {
   3423     D->addMeta(*i);
   3424   }
   3425 
   3426   PD.HandlePathDiagnostic(D.take());
   3427 }
   3428 
   3429 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
   3430                                   StringRef name,
   3431                                   StringRef category,
   3432                                   StringRef str, PathDiagnosticLocation Loc,
   3433                                   SourceRange* RBeg, unsigned NumRanges) {
   3434 
   3435   // 'BT' is owned by BugReporter.
   3436   BugType *BT = getBugTypeForName(name, category);
   3437   BugReport *R = new BugReport(*BT, str, Loc);
   3438   R->setDeclWithIssue(DeclWithIssue);
   3439   for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
   3440   emitReport(R);
   3441 }
   3442 
   3443 BugType *BugReporter::getBugTypeForName(StringRef name,
   3444                                         StringRef category) {
   3445   SmallString<136> fullDesc;
   3446   llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
   3447   llvm::StringMapEntry<BugType *> &
   3448       entry = StrBugTypes.GetOrCreateValue(fullDesc);
   3449   BugType *BT = entry.getValue();
   3450   if (!BT) {
   3451     BT = new BugType(name, category);
   3452     entry.setValue(BT);
   3453   }
   3454   return BT;
   3455 }
   3456 
   3457 
   3458 void PathPieces::dump() const {
   3459   unsigned index = 0;
   3460   for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I) {
   3461     llvm::errs() << "[" << index++ << "]  ";
   3462     (*I)->dump();
   3463     llvm::errs() << "\n";
   3464   }
   3465 }
   3466 
   3467 void PathDiagnosticCallPiece::dump() const {
   3468   llvm::errs() << "CALL\n--------------\n";
   3469 
   3470   if (const Stmt *SLoc = getLocStmt(getLocation()))
   3471     SLoc->dump();
   3472   else if (const NamedDecl *ND = dyn_cast<NamedDecl>(getCallee()))
   3473     llvm::errs() << *ND << "\n";
   3474   else
   3475     getLocation().dump();
   3476 }
   3477 
   3478 void PathDiagnosticEventPiece::dump() const {
   3479   llvm::errs() << "EVENT\n--------------\n";
   3480   llvm::errs() << getString() << "\n";
   3481   llvm::errs() << " ---- at ----\n";
   3482   getLocation().dump();
   3483 }
   3484 
   3485 void PathDiagnosticControlFlowPiece::dump() const {
   3486   llvm::errs() << "CONTROL\n--------------\n";
   3487   getStartLocation().dump();
   3488   llvm::errs() << " ---- to ----\n";
   3489   getEndLocation().dump();
   3490 }
   3491 
   3492 void PathDiagnosticMacroPiece::dump() const {
   3493   llvm::errs() << "MACRO\n--------------\n";
   3494   // FIXME: Print which macro is being invoked.
   3495 }
   3496 
   3497 void PathDiagnosticLocation::dump() const {
   3498   if (!isValid()) {
   3499     llvm::errs() << "<INVALID>\n";
   3500     return;
   3501   }
   3502 
   3503   switch (K) {
   3504   case RangeK:
   3505     // FIXME: actually print the range.
   3506     llvm::errs() << "<range>\n";
   3507     break;
   3508   case SingleLocK:
   3509     asLocation().dump();
   3510     llvm::errs() << "\n";
   3511     break;
   3512   case StmtK:
   3513     if (S)
   3514       S->dump();
   3515     else
   3516       llvm::errs() << "<NULL STMT>\n";
   3517     break;
   3518   case DeclK:
   3519     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(D))
   3520       llvm::errs() << *ND << "\n";
   3521     else if (isa<BlockDecl>(D))
   3522       // FIXME: Make this nicer.
   3523       llvm::errs() << "<block>\n";
   3524     else if (D)
   3525       llvm::errs() << "<unknown decl>\n";
   3526     else
   3527       llvm::errs() << "<NULL DECL>\n";
   3528     break;
   3529   }
   3530 }
   3531