Home | History | Annotate | Download | only in fixed
      1 /***********************************************************************
      2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
      3 Redistribution and use in source and binary forms, with or without
      4 modification, are permitted provided that the following conditions
      5 are met:
      6 - Redistributions of source code must retain the above copyright notice,
      7 this list of conditions and the following disclaimer.
      8 - Redistributions in binary form must reproduce the above copyright
      9 notice, this list of conditions and the following disclaimer in the
     10 documentation and/or other materials provided with the distribution.
     11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
     12 names of specific contributors, may be used to endorse or promote
     13 products derived from this software without specific prior written
     14 permission.
     15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     25 POSSIBILITY OF SUCH DAMAGE.
     26 ***********************************************************************/
     27 
     28 #ifdef HAVE_CONFIG_H
     29 #include "config.h"
     30 #endif
     31 
     32 #include "main_FIX.h"
     33 #include "stack_alloc.h"
     34 #include "tuning_parameters.h"
     35 
     36 /* Compute gain to make warped filter coefficients have a zero mean log frequency response on a   */
     37 /* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */
     38 /* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */
     39 /* coefficient in an array of coefficients, for monic filters.                                    */
     40 static inline opus_int32 warped_gain( /* gain in Q16*/
     41     const opus_int32     *coefs_Q24,
     42     opus_int             lambda_Q16,
     43     opus_int             order
     44 ) {
     45     opus_int   i;
     46     opus_int32 gain_Q24;
     47 
     48     lambda_Q16 = -lambda_Q16;
     49     gain_Q24 = coefs_Q24[ order - 1 ];
     50     for( i = order - 2; i >= 0; i-- ) {
     51         gain_Q24 = silk_SMLAWB( coefs_Q24[ i ], gain_Q24, lambda_Q16 );
     52     }
     53     gain_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), gain_Q24, -lambda_Q16 );
     54     return silk_INVERSE32_varQ( gain_Q24, 40 );
     55 }
     56 
     57 /* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum     */
     58 /* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */
     59 static inline void limit_warped_coefs(
     60     opus_int32           *coefs_syn_Q24,
     61     opus_int32           *coefs_ana_Q24,
     62     opus_int             lambda_Q16,
     63     opus_int32           limit_Q24,
     64     opus_int             order
     65 ) {
     66     opus_int   i, iter, ind = 0;
     67     opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_syn_Q16, gain_ana_Q16;
     68     opus_int32 nom_Q16, den_Q24;
     69 
     70     /* Convert to monic coefficients */
     71     lambda_Q16 = -lambda_Q16;
     72     for( i = order - 1; i > 0; i-- ) {
     73         coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
     74         coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
     75     }
     76     lambda_Q16 = -lambda_Q16;
     77     nom_Q16  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16,        lambda_Q16 );
     78     den_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 );
     79     gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
     80     den_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 );
     81     gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
     82     for( i = 0; i < order; i++ ) {
     83         coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
     84         coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
     85     }
     86 
     87     for( iter = 0; iter < 10; iter++ ) {
     88         /* Find maximum absolute value */
     89         maxabs_Q24 = -1;
     90         for( i = 0; i < order; i++ ) {
     91             tmp = silk_max( silk_abs_int32( coefs_syn_Q24[ i ] ), silk_abs_int32( coefs_ana_Q24[ i ] ) );
     92             if( tmp > maxabs_Q24 ) {
     93                 maxabs_Q24 = tmp;
     94                 ind = i;
     95             }
     96         }
     97         if( maxabs_Q24 <= limit_Q24 ) {
     98             /* Coefficients are within range - done */
     99             return;
    100         }
    101 
    102         /* Convert back to true warped coefficients */
    103         for( i = 1; i < order; i++ ) {
    104             coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
    105             coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
    106         }
    107         gain_syn_Q16 = silk_INVERSE32_varQ( gain_syn_Q16, 32 );
    108         gain_ana_Q16 = silk_INVERSE32_varQ( gain_ana_Q16, 32 );
    109         for( i = 0; i < order; i++ ) {
    110             coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
    111             coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
    112         }
    113 
    114         /* Apply bandwidth expansion */
    115         chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ(
    116             silk_SMULWB( maxabs_Q24 - limit_Q24, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ),
    117             silk_MUL( maxabs_Q24, ind + 1 ), 22 );
    118         silk_bwexpander_32( coefs_syn_Q24, order, chirp_Q16 );
    119         silk_bwexpander_32( coefs_ana_Q24, order, chirp_Q16 );
    120 
    121         /* Convert to monic warped coefficients */
    122         lambda_Q16 = -lambda_Q16;
    123         for( i = order - 1; i > 0; i-- ) {
    124             coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
    125             coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
    126         }
    127         lambda_Q16 = -lambda_Q16;
    128         nom_Q16  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16,        lambda_Q16 );
    129         den_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 );
    130         gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
    131         den_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 );
    132         gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
    133         for( i = 0; i < order; i++ ) {
    134             coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
    135             coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
    136         }
    137     }
    138     silk_assert( 0 );
    139 }
    140 
    141 /**************************************************************/
    142 /* Compute noise shaping coefficients and initial gain values */
    143 /**************************************************************/
    144 void silk_noise_shape_analysis_FIX(
    145     silk_encoder_state_FIX          *psEnc,                                 /* I/O  Encoder state FIX                                                           */
    146     silk_encoder_control_FIX        *psEncCtrl,                             /* I/O  Encoder control FIX                                                         */
    147     const opus_int16                *pitch_res,                             /* I    LPC residual from pitch analysis                                            */
    148     const opus_int16                *x                                      /* I    Input signal [ frame_length + la_shape ]                                    */
    149 )
    150 {
    151     silk_shape_state_FIX *psShapeSt = &psEnc->sShape;
    152     opus_int     k, i, nSamples, Qnrg, b_Q14, warping_Q16, scale = 0;
    153     opus_int32   SNR_adj_dB_Q7, HarmBoost_Q16, HarmShapeGain_Q16, Tilt_Q16, tmp32;
    154     opus_int32   nrg, pre_nrg_Q30, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7;
    155     opus_int32   delta_Q16, BWExp1_Q16, BWExp2_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8;
    156     opus_int32   auto_corr[     MAX_SHAPE_LPC_ORDER + 1 ];
    157     opus_int32   refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ];
    158     opus_int32   AR1_Q24[       MAX_SHAPE_LPC_ORDER ];
    159     opus_int32   AR2_Q24[       MAX_SHAPE_LPC_ORDER ];
    160     VARDECL( opus_int16, x_windowed );
    161     const opus_int16 *x_ptr, *pitch_res_ptr;
    162     SAVE_STACK;
    163 
    164     /* Point to start of first LPC analysis block */
    165     x_ptr = x - psEnc->sCmn.la_shape;
    166 
    167     /****************/
    168     /* GAIN CONTROL */
    169     /****************/
    170     SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7;
    171 
    172     /* Input quality is the average of the quality in the lowest two VAD bands */
    173     psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ]
    174         + psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 );
    175 
    176     /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */
    177     psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 -
    178         SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 );
    179 
    180     /* Reduce coding SNR during low speech activity */
    181     if( psEnc->sCmn.useCBR == 0 ) {
    182         b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8;
    183         b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 );
    184         SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
    185             silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ),                                       /* Q11*/
    186             silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) );     /* Q12*/
    187     }
    188 
    189     if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
    190         /* Reduce gains for periodic signals */
    191         SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 );
    192     } else {
    193         /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */
    194         SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
    195             silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ),
    196             SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 );
    197     }
    198 
    199     /*************************/
    200     /* SPARSENESS PROCESSING */
    201     /*************************/
    202     /* Set quantizer offset */
    203     if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
    204         /* Initially set to 0; may be overruled in process_gains(..) */
    205         psEnc->sCmn.indices.quantOffsetType = 0;
    206         psEncCtrl->sparseness_Q8 = 0;
    207     } else {
    208         /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */
    209         nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 );
    210         energy_variation_Q7 = 0;
    211         log_energy_prev_Q7  = 0;
    212         pitch_res_ptr = pitch_res;
    213         for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) {
    214             silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples );
    215             nrg += silk_RSHIFT( nSamples, scale );           /* Q(-scale)*/
    216 
    217             log_energy_Q7 = silk_lin2log( nrg );
    218             if( k > 0 ) {
    219                 energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 );
    220             }
    221             log_energy_prev_Q7 = log_energy_Q7;
    222             pitch_res_ptr += nSamples;
    223         }
    224 
    225         psEncCtrl->sparseness_Q8 = silk_RSHIFT( silk_sigm_Q15( silk_SMULWB( energy_variation_Q7 -
    226             SILK_FIX_CONST( 5.0, 7 ), SILK_FIX_CONST( 0.1, 16 ) ) ), 7 );
    227 
    228         /* Set quantization offset depending on sparseness measure */
    229         if( psEncCtrl->sparseness_Q8 > SILK_FIX_CONST( SPARSENESS_THRESHOLD_QNT_OFFSET, 8 ) ) {
    230             psEnc->sCmn.indices.quantOffsetType = 0;
    231         } else {
    232             psEnc->sCmn.indices.quantOffsetType = 1;
    233         }
    234 
    235         /* Increase coding SNR for sparse signals */
    236         SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( SPARSE_SNR_INCR_dB, 15 ), psEncCtrl->sparseness_Q8 - SILK_FIX_CONST( 0.5, 8 ) );
    237     }
    238 
    239     /*******************************/
    240     /* Control bandwidth expansion */
    241     /*******************************/
    242     /* More BWE for signals with high prediction gain */
    243     strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) );
    244     BWExp1_Q16 = BWExp2_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ),
    245         silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 );
    246     delta_Q16  = silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - silk_SMULBB( 3, psEncCtrl->coding_quality_Q14 ),
    247         SILK_FIX_CONST( LOW_RATE_BANDWIDTH_EXPANSION_DELTA, 16 ) );
    248     BWExp1_Q16 = silk_SUB32( BWExp1_Q16, delta_Q16 );
    249     BWExp2_Q16 = silk_ADD32( BWExp2_Q16, delta_Q16 );
    250     /* BWExp1 will be applied after BWExp2, so make it relative */
    251     BWExp1_Q16 = silk_DIV32_16( silk_LSHIFT( BWExp1_Q16, 14 ), silk_RSHIFT( BWExp2_Q16, 2 ) );
    252 
    253     if( psEnc->sCmn.warping_Q16 > 0 ) {
    254         /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
    255         warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) );
    256     } else {
    257         warping_Q16 = 0;
    258     }
    259 
    260     /********************************************/
    261     /* Compute noise shaping AR coefs and gains */
    262     /********************************************/
    263     ALLOC( x_windowed, psEnc->sCmn.shapeWinLength, opus_int16 );
    264     for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
    265         /* Apply window: sine slope followed by flat part followed by cosine slope */
    266         opus_int shift, slope_part, flat_part;
    267         flat_part = psEnc->sCmn.fs_kHz * 3;
    268         slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 );
    269 
    270         silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part );
    271         shift = slope_part;
    272         silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) );
    273         shift += flat_part;
    274         silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part );
    275 
    276         /* Update pointer: next LPC analysis block */
    277         x_ptr += psEnc->sCmn.subfr_length;
    278 
    279         if( psEnc->sCmn.warping_Q16 > 0 ) {
    280             /* Calculate warped auto correlation */
    281             silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder );
    282         } else {
    283             /* Calculate regular auto correlation */
    284             silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1 );
    285         }
    286 
    287         /* Add white noise, as a fraction of energy */
    288         auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ),
    289             SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) );
    290 
    291         /* Calculate the reflection coefficients using schur */
    292         nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder );
    293         silk_assert( nrg >= 0 );
    294 
    295         /* Convert reflection coefficients to prediction coefficients */
    296         silk_k2a_Q16( AR2_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder );
    297 
    298         Qnrg = -scale;          /* range: -12...30*/
    299         silk_assert( Qnrg >= -12 );
    300         silk_assert( Qnrg <=  30 );
    301 
    302         /* Make sure that Qnrg is an even number */
    303         if( Qnrg & 1 ) {
    304             Qnrg -= 1;
    305             nrg >>= 1;
    306         }
    307 
    308         tmp32 = silk_SQRT_APPROX( nrg );
    309         Qnrg >>= 1;             /* range: -6...15*/
    310 
    311         psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( tmp32, 16 - Qnrg );
    312 
    313         if( psEnc->sCmn.warping_Q16 > 0 ) {
    314             /* Adjust gain for warping */
    315             gain_mult_Q16 = warped_gain( AR2_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder );
    316             silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
    317             if ( silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 ) >= ( silk_int32_MAX >> 1 ) ) {
    318                psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX;
    319             } else {
    320                psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
    321             }
    322         }
    323 
    324         /* Bandwidth expansion for synthesis filter shaping */
    325         silk_bwexpander_32( AR2_Q24, psEnc->sCmn.shapingLPCOrder, BWExp2_Q16 );
    326 
    327         /* Compute noise shaping filter coefficients */
    328         silk_memcpy( AR1_Q24, AR2_Q24, psEnc->sCmn.shapingLPCOrder * sizeof( opus_int32 ) );
    329 
    330         /* Bandwidth expansion for analysis filter shaping */
    331         silk_assert( BWExp1_Q16 <= SILK_FIX_CONST( 1.0, 16 ) );
    332         silk_bwexpander_32( AR1_Q24, psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 );
    333 
    334         /* Ratio of prediction gains, in energy domain */
    335         pre_nrg_Q30 = silk_LPC_inverse_pred_gain_Q24( AR2_Q24, psEnc->sCmn.shapingLPCOrder );
    336         nrg         = silk_LPC_inverse_pred_gain_Q24( AR1_Q24, psEnc->sCmn.shapingLPCOrder );
    337 
    338         /*psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ) = 0.3f + 0.7f * pre_nrg / nrg;*/
    339         pre_nrg_Q30 = silk_LSHIFT32( silk_SMULWB( pre_nrg_Q30, SILK_FIX_CONST( 0.7, 15 ) ), 1 );
    340         psEncCtrl->GainsPre_Q14[ k ] = ( opus_int ) SILK_FIX_CONST( 0.3, 14 ) + silk_DIV32_varQ( pre_nrg_Q30, nrg, 14 );
    341 
    342         /* Convert to monic warped prediction coefficients and limit absolute values */
    343         limit_warped_coefs( AR2_Q24, AR1_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder );
    344 
    345         /* Convert from Q24 to Q13 and store in int16 */
    346         for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) {
    347             psEncCtrl->AR1_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR1_Q24[ i ], 11 ) );
    348             psEncCtrl->AR2_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR2_Q24[ i ], 11 ) );
    349         }
    350     }
    351 
    352     /*****************/
    353     /* Gain tweaking */
    354     /*****************/
    355     /* Increase gains during low speech activity and put lower limit on gains */
    356     gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) );
    357     gain_add_Q16  = silk_log2lin(  silk_SMLAWB(  SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) );
    358     silk_assert( gain_mult_Q16 > 0 );
    359     for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
    360         psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
    361         silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
    362         psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 );
    363     }
    364 
    365     gain_mult_Q16 = SILK_FIX_CONST( 1.0, 16 ) + silk_RSHIFT_ROUND( silk_MLA( SILK_FIX_CONST( INPUT_TILT, 26 ),
    366         psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( HIGH_RATE_INPUT_TILT, 12 ) ), 10 );
    367     for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
    368         psEncCtrl->GainsPre_Q14[ k ] = silk_SMULWB( gain_mult_Q16, psEncCtrl->GainsPre_Q14[ k ] );
    369     }
    370 
    371     /************************************************/
    372     /* Control low-frequency shaping and noise tilt */
    373     /************************************************/
    374     /* Less low frequency shaping for noisy inputs */
    375     strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ),
    376         SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) );
    377     strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 );
    378     if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
    379         /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */
    380         /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/
    381         opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz );
    382         for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
    383             b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] );
    384             /* Pack two coefficients in one int32 */
    385             psEncCtrl->LF_shp_Q14[ k ]  = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 );
    386             psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
    387         }
    388         silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/
    389         Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) -
    390             silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ),
    391                 silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) );
    392     } else {
    393         b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/
    394         /* Pack two coefficients in one int32 */
    395         psEncCtrl->LF_shp_Q14[ 0 ]  = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 -
    396             silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 );
    397         psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
    398         for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) {
    399             psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ];
    400         }
    401         Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 );
    402     }
    403 
    404     /****************************/
    405     /* HARMONIC SHAPING CONTROL */
    406     /****************************/
    407     /* Control boosting of harmonic frequencies */
    408     HarmBoost_Q16 = silk_SMULWB( silk_SMULWB( SILK_FIX_CONST( 1.0, 17 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 3 ),
    409         psEnc->LTPCorr_Q15 ), SILK_FIX_CONST( LOW_RATE_HARMONIC_BOOST, 16 ) );
    410 
    411     /* More harmonic boost for noisy input signals */
    412     HarmBoost_Q16 = silk_SMLAWB( HarmBoost_Q16,
    413         SILK_FIX_CONST( 1.0, 16 ) - silk_LSHIFT( psEncCtrl->input_quality_Q14, 2 ), SILK_FIX_CONST( LOW_INPUT_QUALITY_HARMONIC_BOOST, 16 ) );
    414 
    415     if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
    416         /* More harmonic noise shaping for high bitrates or noisy input */
    417         HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ),
    418                 SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ),
    419                 psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) );
    420 
    421         /* Less harmonic noise shaping for less periodic signals */
    422         HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ),
    423             silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) );
    424     } else {
    425         HarmShapeGain_Q16 = 0;
    426     }
    427 
    428     /*************************/
    429     /* Smooth over subframes */
    430     /*************************/
    431     for( k = 0; k < MAX_NB_SUBFR; k++ ) {
    432         psShapeSt->HarmBoost_smth_Q16 =
    433             silk_SMLAWB( psShapeSt->HarmBoost_smth_Q16,     HarmBoost_Q16     - psShapeSt->HarmBoost_smth_Q16,     SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
    434         psShapeSt->HarmShapeGain_smth_Q16 =
    435             silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
    436         psShapeSt->Tilt_smth_Q16 =
    437             silk_SMLAWB( psShapeSt->Tilt_smth_Q16,          Tilt_Q16          - psShapeSt->Tilt_smth_Q16,          SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
    438 
    439         psEncCtrl->HarmBoost_Q14[ k ]     = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmBoost_smth_Q16,     2 );
    440         psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 );
    441         psEncCtrl->Tilt_Q14[ k ]          = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16,          2 );
    442     }
    443     RESTORE_STACK;
    444 }
    445