Home | History | Annotate | Download | only in Vectorize
      1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
     11 // and generates target-independent LLVM-IR.
     12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
     13 // of instructions in order to estimate the profitability of vectorization.
     14 //
     15 // The loop vectorizer combines consecutive loop iterations into a single
     16 // 'wide' iteration. After this transformation the index is incremented
     17 // by the SIMD vector width, and not by one.
     18 //
     19 // This pass has three parts:
     20 // 1. The main loop pass that drives the different parts.
     21 // 2. LoopVectorizationLegality - A unit that checks for the legality
     22 //    of the vectorization.
     23 // 3. InnerLoopVectorizer - A unit that performs the actual
     24 //    widening of instructions.
     25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
     26 //    of vectorization. It decides on the optimal vector width, which
     27 //    can be one, if vectorization is not profitable.
     28 //
     29 //===----------------------------------------------------------------------===//
     30 //
     31 // The reduction-variable vectorization is based on the paper:
     32 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
     33 //
     34 // Variable uniformity checks are inspired by:
     35 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
     36 //
     37 // Other ideas/concepts are from:
     38 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
     39 //
     40 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
     41 //  Vectorizing Compilers.
     42 //
     43 //===----------------------------------------------------------------------===//
     44 
     45 #define LV_NAME "loop-vectorize"
     46 #define DEBUG_TYPE LV_NAME
     47 
     48 #include "llvm/Transforms/Vectorize.h"
     49 #include "llvm/ADT/DenseMap.h"
     50 #include "llvm/ADT/EquivalenceClasses.h"
     51 #include "llvm/ADT/MapVector.h"
     52 #include "llvm/ADT/SetVector.h"
     53 #include "llvm/ADT/SmallPtrSet.h"
     54 #include "llvm/ADT/SmallSet.h"
     55 #include "llvm/ADT/SmallVector.h"
     56 #include "llvm/ADT/StringExtras.h"
     57 #include "llvm/Analysis/AliasAnalysis.h"
     58 #include "llvm/Analysis/Dominators.h"
     59 #include "llvm/Analysis/LoopInfo.h"
     60 #include "llvm/Analysis/LoopIterator.h"
     61 #include "llvm/Analysis/LoopPass.h"
     62 #include "llvm/Analysis/ScalarEvolution.h"
     63 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     64 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     65 #include "llvm/Analysis/TargetTransformInfo.h"
     66 #include "llvm/Analysis/ValueTracking.h"
     67 #include "llvm/Analysis/Verifier.h"
     68 #include "llvm/IR/Constants.h"
     69 #include "llvm/IR/DataLayout.h"
     70 #include "llvm/IR/DerivedTypes.h"
     71 #include "llvm/IR/Function.h"
     72 #include "llvm/IR/IRBuilder.h"
     73 #include "llvm/IR/Instructions.h"
     74 #include "llvm/IR/IntrinsicInst.h"
     75 #include "llvm/IR/LLVMContext.h"
     76 #include "llvm/IR/Module.h"
     77 #include "llvm/IR/Type.h"
     78 #include "llvm/IR/Value.h"
     79 #include "llvm/Pass.h"
     80 #include "llvm/Support/CommandLine.h"
     81 #include "llvm/Support/Debug.h"
     82 #include "llvm/Support/PatternMatch.h"
     83 #include "llvm/Support/raw_ostream.h"
     84 #include "llvm/Support/ValueHandle.h"
     85 #include "llvm/Target/TargetLibraryInfo.h"
     86 #include "llvm/Transforms/Scalar.h"
     87 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     88 #include "llvm/Transforms/Utils/Local.h"
     89 #include <algorithm>
     90 #include <map>
     91 
     92 using namespace llvm;
     93 using namespace llvm::PatternMatch;
     94 
     95 static cl::opt<unsigned>
     96 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
     97                     cl::desc("Sets the SIMD width. Zero is autoselect."));
     98 
     99 static cl::opt<unsigned>
    100 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
    101                     cl::desc("Sets the vectorization unroll count. "
    102                              "Zero is autoselect."));
    103 
    104 static cl::opt<bool>
    105 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
    106                    cl::desc("Enable if-conversion during vectorization."));
    107 
    108 /// We don't vectorize loops with a known constant trip count below this number.
    109 static cl::opt<unsigned>
    110 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
    111                              cl::Hidden,
    112                              cl::desc("Don't vectorize loops with a constant "
    113                                       "trip count that is smaller than this "
    114                                       "value."));
    115 
    116 /// We don't unroll loops with a known constant trip count below this number.
    117 static const unsigned TinyTripCountUnrollThreshold = 128;
    118 
    119 /// When performing memory disambiguation checks at runtime do not make more
    120 /// than this number of comparisons.
    121 static const unsigned RuntimeMemoryCheckThreshold = 8;
    122 
    123 /// Maximum simd width.
    124 static const unsigned MaxVectorWidth = 64;
    125 
    126 /// Maximum vectorization unroll count.
    127 static const unsigned MaxUnrollFactor = 16;
    128 
    129 namespace {
    130 
    131 // Forward declarations.
    132 class LoopVectorizationLegality;
    133 class LoopVectorizationCostModel;
    134 
    135 /// InnerLoopVectorizer vectorizes loops which contain only one basic
    136 /// block to a specified vectorization factor (VF).
    137 /// This class performs the widening of scalars into vectors, or multiple
    138 /// scalars. This class also implements the following features:
    139 /// * It inserts an epilogue loop for handling loops that don't have iteration
    140 ///   counts that are known to be a multiple of the vectorization factor.
    141 /// * It handles the code generation for reduction variables.
    142 /// * Scalarization (implementation using scalars) of un-vectorizable
    143 ///   instructions.
    144 /// InnerLoopVectorizer does not perform any vectorization-legality
    145 /// checks, and relies on the caller to check for the different legality
    146 /// aspects. The InnerLoopVectorizer relies on the
    147 /// LoopVectorizationLegality class to provide information about the induction
    148 /// and reduction variables that were found to a given vectorization factor.
    149 class InnerLoopVectorizer {
    150 public:
    151   InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
    152                       DominatorTree *DT, DataLayout *DL,
    153                       const TargetLibraryInfo *TLI, unsigned VecWidth,
    154                       unsigned UnrollFactor)
    155       : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
    156         VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
    157         OldInduction(0), WidenMap(UnrollFactor) {}
    158 
    159   // Perform the actual loop widening (vectorization).
    160   void vectorize(LoopVectorizationLegality *Legal) {
    161     // Create a new empty loop. Unlink the old loop and connect the new one.
    162     createEmptyLoop(Legal);
    163     // Widen each instruction in the old loop to a new one in the new loop.
    164     // Use the Legality module to find the induction and reduction variables.
    165     vectorizeLoop(Legal);
    166     // Register the new loop and update the analysis passes.
    167     updateAnalysis();
    168   }
    169 
    170 private:
    171   /// A small list of PHINodes.
    172   typedef SmallVector<PHINode*, 4> PhiVector;
    173   /// When we unroll loops we have multiple vector values for each scalar.
    174   /// This data structure holds the unrolled and vectorized values that
    175   /// originated from one scalar instruction.
    176   typedef SmallVector<Value*, 2> VectorParts;
    177 
    178   // When we if-convert we need create edge masks. We have to cache values so
    179   // that we don't end up with exponential recursion/IR.
    180   typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
    181                    VectorParts> EdgeMaskCache;
    182 
    183   /// Add code that checks at runtime if the accessed arrays overlap.
    184   /// Returns the comparator value or NULL if no check is needed.
    185   Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
    186                                Instruction *Loc);
    187   /// Create an empty loop, based on the loop ranges of the old loop.
    188   void createEmptyLoop(LoopVectorizationLegality *Legal);
    189   /// Copy and widen the instructions from the old loop.
    190   void vectorizeLoop(LoopVectorizationLegality *Legal);
    191 
    192   /// A helper function that computes the predicate of the block BB, assuming
    193   /// that the header block of the loop is set to True. It returns the *entry*
    194   /// mask for the block BB.
    195   VectorParts createBlockInMask(BasicBlock *BB);
    196   /// A helper function that computes the predicate of the edge between SRC
    197   /// and DST.
    198   VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
    199 
    200   /// A helper function to vectorize a single BB within the innermost loop.
    201   void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
    202                             PhiVector *PV);
    203 
    204   /// Insert the new loop to the loop hierarchy and pass manager
    205   /// and update the analysis passes.
    206   void updateAnalysis();
    207 
    208   /// This instruction is un-vectorizable. Implement it as a sequence
    209   /// of scalars.
    210   void scalarizeInstruction(Instruction *Instr);
    211 
    212   /// Vectorize Load and Store instructions,
    213   void vectorizeMemoryInstruction(Instruction *Instr,
    214                                   LoopVectorizationLegality *Legal);
    215 
    216   /// Create a broadcast instruction. This method generates a broadcast
    217   /// instruction (shuffle) for loop invariant values and for the induction
    218   /// value. If this is the induction variable then we extend it to N, N+1, ...
    219   /// this is needed because each iteration in the loop corresponds to a SIMD
    220   /// element.
    221   Value *getBroadcastInstrs(Value *V);
    222 
    223   /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
    224   /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
    225   /// The sequence starts at StartIndex.
    226   Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
    227 
    228   /// When we go over instructions in the basic block we rely on previous
    229   /// values within the current basic block or on loop invariant values.
    230   /// When we widen (vectorize) values we place them in the map. If the values
    231   /// are not within the map, they have to be loop invariant, so we simply
    232   /// broadcast them into a vector.
    233   VectorParts &getVectorValue(Value *V);
    234 
    235   /// Generate a shuffle sequence that will reverse the vector Vec.
    236   Value *reverseVector(Value *Vec);
    237 
    238   /// This is a helper class that holds the vectorizer state. It maps scalar
    239   /// instructions to vector instructions. When the code is 'unrolled' then
    240   /// then a single scalar value is mapped to multiple vector parts. The parts
    241   /// are stored in the VectorPart type.
    242   struct ValueMap {
    243     /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
    244     /// are mapped.
    245     ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
    246 
    247     /// \return True if 'Key' is saved in the Value Map.
    248     bool has(Value *Key) const { return MapStorage.count(Key); }
    249 
    250     /// Initializes a new entry in the map. Sets all of the vector parts to the
    251     /// save value in 'Val'.
    252     /// \return A reference to a vector with splat values.
    253     VectorParts &splat(Value *Key, Value *Val) {
    254       VectorParts &Entry = MapStorage[Key];
    255       Entry.assign(UF, Val);
    256       return Entry;
    257     }
    258 
    259     ///\return A reference to the value that is stored at 'Key'.
    260     VectorParts &get(Value *Key) {
    261       VectorParts &Entry = MapStorage[Key];
    262       if (Entry.empty())
    263         Entry.resize(UF);
    264       assert(Entry.size() == UF);
    265       return Entry;
    266     }
    267 
    268   private:
    269     /// The unroll factor. Each entry in the map stores this number of vector
    270     /// elements.
    271     unsigned UF;
    272 
    273     /// Map storage. We use std::map and not DenseMap because insertions to a
    274     /// dense map invalidates its iterators.
    275     std::map<Value *, VectorParts> MapStorage;
    276   };
    277 
    278   /// The original loop.
    279   Loop *OrigLoop;
    280   /// Scev analysis to use.
    281   ScalarEvolution *SE;
    282   /// Loop Info.
    283   LoopInfo *LI;
    284   /// Dominator Tree.
    285   DominatorTree *DT;
    286   /// Data Layout.
    287   DataLayout *DL;
    288   /// Target Library Info.
    289   const TargetLibraryInfo *TLI;
    290 
    291   /// The vectorization SIMD factor to use. Each vector will have this many
    292   /// vector elements.
    293   unsigned VF;
    294   /// The vectorization unroll factor to use. Each scalar is vectorized to this
    295   /// many different vector instructions.
    296   unsigned UF;
    297 
    298   /// The builder that we use
    299   IRBuilder<> Builder;
    300 
    301   // --- Vectorization state ---
    302 
    303   /// The vector-loop preheader.
    304   BasicBlock *LoopVectorPreHeader;
    305   /// The scalar-loop preheader.
    306   BasicBlock *LoopScalarPreHeader;
    307   /// Middle Block between the vector and the scalar.
    308   BasicBlock *LoopMiddleBlock;
    309   ///The ExitBlock of the scalar loop.
    310   BasicBlock *LoopExitBlock;
    311   ///The vector loop body.
    312   BasicBlock *LoopVectorBody;
    313   ///The scalar loop body.
    314   BasicBlock *LoopScalarBody;
    315   /// A list of all bypass blocks. The first block is the entry of the loop.
    316   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
    317 
    318   /// The new Induction variable which was added to the new block.
    319   PHINode *Induction;
    320   /// The induction variable of the old basic block.
    321   PHINode *OldInduction;
    322   /// Holds the extended (to the widest induction type) start index.
    323   Value *ExtendedIdx;
    324   /// Maps scalars to widened vectors.
    325   ValueMap WidenMap;
    326   EdgeMaskCache MaskCache;
    327 };
    328 
    329 /// \brief Look for a meaningful debug location on the instruction or it's
    330 /// operands.
    331 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
    332   if (!I)
    333     return I;
    334 
    335   DebugLoc Empty;
    336   if (I->getDebugLoc() != Empty)
    337     return I;
    338 
    339   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
    340     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
    341       if (OpInst->getDebugLoc() != Empty)
    342         return OpInst;
    343   }
    344 
    345   return I;
    346 }
    347 
    348 /// \brief Set the debug location in the builder using the debug location in the
    349 /// instruction.
    350 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
    351   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
    352     B.SetCurrentDebugLocation(Inst->getDebugLoc());
    353   else
    354     B.SetCurrentDebugLocation(DebugLoc());
    355 }
    356 
    357 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
    358 /// to what vectorization factor.
    359 /// This class does not look at the profitability of vectorization, only the
    360 /// legality. This class has two main kinds of checks:
    361 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
    362 ///   will change the order of memory accesses in a way that will change the
    363 ///   correctness of the program.
    364 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
    365 /// checks for a number of different conditions, such as the availability of a
    366 /// single induction variable, that all types are supported and vectorize-able,
    367 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
    368 /// This class is also used by InnerLoopVectorizer for identifying
    369 /// induction variable and the different reduction variables.
    370 class LoopVectorizationLegality {
    371 public:
    372   LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
    373                             DominatorTree *DT, TargetLibraryInfo *TLI)
    374       : TheLoop(L), SE(SE), DL(DL), DT(DT), TLI(TLI),
    375         Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false),
    376         MaxSafeDepDistBytes(-1U) {}
    377 
    378   /// This enum represents the kinds of reductions that we support.
    379   enum ReductionKind {
    380     RK_NoReduction, ///< Not a reduction.
    381     RK_IntegerAdd,  ///< Sum of integers.
    382     RK_IntegerMult, ///< Product of integers.
    383     RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
    384     RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
    385     RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
    386     RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
    387     RK_FloatAdd,    ///< Sum of floats.
    388     RK_FloatMult,   ///< Product of floats.
    389     RK_FloatMinMax  ///< Min/max implemented in terms of select(cmp()).
    390   };
    391 
    392   /// This enum represents the kinds of inductions that we support.
    393   enum InductionKind {
    394     IK_NoInduction,         ///< Not an induction variable.
    395     IK_IntInduction,        ///< Integer induction variable. Step = 1.
    396     IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
    397     IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
    398     IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
    399   };
    400 
    401   // This enum represents the kind of minmax reduction.
    402   enum MinMaxReductionKind {
    403     MRK_Invalid,
    404     MRK_UIntMin,
    405     MRK_UIntMax,
    406     MRK_SIntMin,
    407     MRK_SIntMax,
    408     MRK_FloatMin,
    409     MRK_FloatMax
    410   };
    411 
    412   /// This POD struct holds information about reduction variables.
    413   struct ReductionDescriptor {
    414     ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
    415       Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
    416 
    417     ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
    418                         MinMaxReductionKind MK)
    419         : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
    420 
    421     // The starting value of the reduction.
    422     // It does not have to be zero!
    423     TrackingVH<Value> StartValue;
    424     // The instruction who's value is used outside the loop.
    425     Instruction *LoopExitInstr;
    426     // The kind of the reduction.
    427     ReductionKind Kind;
    428     // If this a min/max reduction the kind of reduction.
    429     MinMaxReductionKind MinMaxKind;
    430   };
    431 
    432   /// This POD struct holds information about a potential reduction operation.
    433   struct ReductionInstDesc {
    434     ReductionInstDesc(bool IsRedux, Instruction *I) :
    435       IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
    436 
    437     ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
    438       IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
    439 
    440     // Is this instruction a reduction candidate.
    441     bool IsReduction;
    442     // The last instruction in a min/max pattern (select of the select(icmp())
    443     // pattern), or the current reduction instruction otherwise.
    444     Instruction *PatternLastInst;
    445     // If this is a min/max pattern the comparison predicate.
    446     MinMaxReductionKind MinMaxKind;
    447   };
    448 
    449   // This POD struct holds information about the memory runtime legality
    450   // check that a group of pointers do not overlap.
    451   struct RuntimePointerCheck {
    452     RuntimePointerCheck() : Need(false) {}
    453 
    454     /// Reset the state of the pointer runtime information.
    455     void reset() {
    456       Need = false;
    457       Pointers.clear();
    458       Starts.clear();
    459       Ends.clear();
    460     }
    461 
    462     /// Insert a pointer and calculate the start and end SCEVs.
    463     void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
    464                 unsigned DepSetId);
    465 
    466     /// This flag indicates if we need to add the runtime check.
    467     bool Need;
    468     /// Holds the pointers that we need to check.
    469     SmallVector<TrackingVH<Value>, 2> Pointers;
    470     /// Holds the pointer value at the beginning of the loop.
    471     SmallVector<const SCEV*, 2> Starts;
    472     /// Holds the pointer value at the end of the loop.
    473     SmallVector<const SCEV*, 2> Ends;
    474     /// Holds the information if this pointer is used for writing to memory.
    475     SmallVector<bool, 2> IsWritePtr;
    476     /// Holds the id of the set of pointers that could be dependent because of a
    477     /// shared underlying object.
    478     SmallVector<unsigned, 2> DependencySetId;
    479   };
    480 
    481   /// A POD for saving information about induction variables.
    482   struct InductionInfo {
    483     InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
    484     InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
    485     /// Start value.
    486     TrackingVH<Value> StartValue;
    487     /// Induction kind.
    488     InductionKind IK;
    489   };
    490 
    491   /// ReductionList contains the reduction descriptors for all
    492   /// of the reductions that were found in the loop.
    493   typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
    494 
    495   /// InductionList saves induction variables and maps them to the
    496   /// induction descriptor.
    497   typedef MapVector<PHINode*, InductionInfo> InductionList;
    498 
    499   /// Returns true if it is legal to vectorize this loop.
    500   /// This does not mean that it is profitable to vectorize this
    501   /// loop, only that it is legal to do so.
    502   bool canVectorize();
    503 
    504   /// Returns the Induction variable.
    505   PHINode *getInduction() { return Induction; }
    506 
    507   /// Returns the reduction variables found in the loop.
    508   ReductionList *getReductionVars() { return &Reductions; }
    509 
    510   /// Returns the induction variables found in the loop.
    511   InductionList *getInductionVars() { return &Inductions; }
    512 
    513   /// Returns the widest induction type.
    514   Type *getWidestInductionType() { return WidestIndTy; }
    515 
    516   /// Returns True if V is an induction variable in this loop.
    517   bool isInductionVariable(const Value *V);
    518 
    519   /// Return true if the block BB needs to be predicated in order for the loop
    520   /// to be vectorized.
    521   bool blockNeedsPredication(BasicBlock *BB);
    522 
    523   /// Check if this  pointer is consecutive when vectorizing. This happens
    524   /// when the last index of the GEP is the induction variable, or that the
    525   /// pointer itself is an induction variable.
    526   /// This check allows us to vectorize A[idx] into a wide load/store.
    527   /// Returns:
    528   /// 0 - Stride is unknown or non consecutive.
    529   /// 1 - Address is consecutive.
    530   /// -1 - Address is consecutive, and decreasing.
    531   int isConsecutivePtr(Value *Ptr);
    532 
    533   /// Returns true if the value V is uniform within the loop.
    534   bool isUniform(Value *V);
    535 
    536   /// Returns true if this instruction will remain scalar after vectorization.
    537   bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
    538 
    539   /// Returns the information that we collected about runtime memory check.
    540   RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
    541 
    542   /// This function returns the identity element (or neutral element) for
    543   /// the operation K.
    544   static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
    545 
    546   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
    547 
    548 private:
    549   /// Check if a single basic block loop is vectorizable.
    550   /// At this point we know that this is a loop with a constant trip count
    551   /// and we only need to check individual instructions.
    552   bool canVectorizeInstrs();
    553 
    554   /// When we vectorize loops we may change the order in which
    555   /// we read and write from memory. This method checks if it is
    556   /// legal to vectorize the code, considering only memory constrains.
    557   /// Returns true if the loop is vectorizable
    558   bool canVectorizeMemory();
    559 
    560   /// Return true if we can vectorize this loop using the IF-conversion
    561   /// transformation.
    562   bool canVectorizeWithIfConvert();
    563 
    564   /// Collect the variables that need to stay uniform after vectorization.
    565   void collectLoopUniforms();
    566 
    567   /// Return true if all of the instructions in the block can be speculatively
    568   /// executed. \p SafePtrs is a list of addresses that are known to be legal
    569   /// and we know that we can read from them without segfault.
    570   bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs);
    571 
    572   /// Returns True, if 'Phi' is the kind of reduction variable for type
    573   /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
    574   bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
    575   /// Returns a struct describing if the instruction 'I' can be a reduction
    576   /// variable of type 'Kind'. If the reduction is a min/max pattern of
    577   /// select(icmp()) this function advances the instruction pointer 'I' from the
    578   /// compare instruction to the select instruction and stores this pointer in
    579   /// 'PatternLastInst' member of the returned struct.
    580   ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
    581                                      ReductionInstDesc &Desc);
    582   /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
    583   /// pattern corresponding to a min(X, Y) or max(X, Y).
    584   static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
    585                                                     ReductionInstDesc &Prev);
    586   /// Returns the induction kind of Phi. This function may return NoInduction
    587   /// if the PHI is not an induction variable.
    588   InductionKind isInductionVariable(PHINode *Phi);
    589 
    590   /// The loop that we evaluate.
    591   Loop *TheLoop;
    592   /// Scev analysis.
    593   ScalarEvolution *SE;
    594   /// DataLayout analysis.
    595   DataLayout *DL;
    596   /// Dominators.
    597   DominatorTree *DT;
    598   /// Target Library Info.
    599   TargetLibraryInfo *TLI;
    600 
    601   //  ---  vectorization state --- //
    602 
    603   /// Holds the integer induction variable. This is the counter of the
    604   /// loop.
    605   PHINode *Induction;
    606   /// Holds the reduction variables.
    607   ReductionList Reductions;
    608   /// Holds all of the induction variables that we found in the loop.
    609   /// Notice that inductions don't need to start at zero and that induction
    610   /// variables can be pointers.
    611   InductionList Inductions;
    612   /// Holds the widest induction type encountered.
    613   Type *WidestIndTy;
    614 
    615   /// Allowed outside users. This holds the reduction
    616   /// vars which can be accessed from outside the loop.
    617   SmallPtrSet<Value*, 4> AllowedExit;
    618   /// This set holds the variables which are known to be uniform after
    619   /// vectorization.
    620   SmallPtrSet<Instruction*, 4> Uniforms;
    621   /// We need to check that all of the pointers in this list are disjoint
    622   /// at runtime.
    623   RuntimePointerCheck PtrRtCheck;
    624   /// Can we assume the absence of NaNs.
    625   bool HasFunNoNaNAttr;
    626 
    627   unsigned MaxSafeDepDistBytes;
    628 };
    629 
    630 /// LoopVectorizationCostModel - estimates the expected speedups due to
    631 /// vectorization.
    632 /// In many cases vectorization is not profitable. This can happen because of
    633 /// a number of reasons. In this class we mainly attempt to predict the
    634 /// expected speedup/slowdowns due to the supported instruction set. We use the
    635 /// TargetTransformInfo to query the different backends for the cost of
    636 /// different operations.
    637 class LoopVectorizationCostModel {
    638 public:
    639   LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
    640                              LoopVectorizationLegality *Legal,
    641                              const TargetTransformInfo &TTI,
    642                              DataLayout *DL, const TargetLibraryInfo *TLI)
    643       : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
    644 
    645   /// Information about vectorization costs
    646   struct VectorizationFactor {
    647     unsigned Width; // Vector width with best cost
    648     unsigned Cost; // Cost of the loop with that width
    649   };
    650   /// \return The most profitable vectorization factor and the cost of that VF.
    651   /// This method checks every power of two up to VF. If UserVF is not ZERO
    652   /// then this vectorization factor will be selected if vectorization is
    653   /// possible.
    654   VectorizationFactor selectVectorizationFactor(bool OptForSize,
    655                                                 unsigned UserVF);
    656 
    657   /// \return The size (in bits) of the widest type in the code that
    658   /// needs to be vectorized. We ignore values that remain scalar such as
    659   /// 64 bit loop indices.
    660   unsigned getWidestType();
    661 
    662   /// \return The most profitable unroll factor.
    663   /// If UserUF is non-zero then this method finds the best unroll-factor
    664   /// based on register pressure and other parameters.
    665   /// VF and LoopCost are the selected vectorization factor and the cost of the
    666   /// selected VF.
    667   unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
    668                               unsigned LoopCost);
    669 
    670   /// \brief A struct that represents some properties of the register usage
    671   /// of a loop.
    672   struct RegisterUsage {
    673     /// Holds the number of loop invariant values that are used in the loop.
    674     unsigned LoopInvariantRegs;
    675     /// Holds the maximum number of concurrent live intervals in the loop.
    676     unsigned MaxLocalUsers;
    677     /// Holds the number of instructions in the loop.
    678     unsigned NumInstructions;
    679   };
    680 
    681   /// \return  information about the register usage of the loop.
    682   RegisterUsage calculateRegisterUsage();
    683 
    684 private:
    685   /// Returns the expected execution cost. The unit of the cost does
    686   /// not matter because we use the 'cost' units to compare different
    687   /// vector widths. The cost that is returned is *not* normalized by
    688   /// the factor width.
    689   unsigned expectedCost(unsigned VF);
    690 
    691   /// Returns the execution time cost of an instruction for a given vector
    692   /// width. Vector width of one means scalar.
    693   unsigned getInstructionCost(Instruction *I, unsigned VF);
    694 
    695   /// A helper function for converting Scalar types to vector types.
    696   /// If the incoming type is void, we return void. If the VF is 1, we return
    697   /// the scalar type.
    698   static Type* ToVectorTy(Type *Scalar, unsigned VF);
    699 
    700   /// Returns whether the instruction is a load or store and will be a emitted
    701   /// as a vector operation.
    702   bool isConsecutiveLoadOrStore(Instruction *I);
    703 
    704   /// The loop that we evaluate.
    705   Loop *TheLoop;
    706   /// Scev analysis.
    707   ScalarEvolution *SE;
    708   /// Loop Info analysis.
    709   LoopInfo *LI;
    710   /// Vectorization legality.
    711   LoopVectorizationLegality *Legal;
    712   /// Vector target information.
    713   const TargetTransformInfo &TTI;
    714   /// Target data layout information.
    715   DataLayout *DL;
    716   /// Target Library Info.
    717   const TargetLibraryInfo *TLI;
    718 };
    719 
    720 /// Utility class for getting and setting loop vectorizer hints in the form
    721 /// of loop metadata.
    722 struct LoopVectorizeHints {
    723   /// Vectorization width.
    724   unsigned Width;
    725   /// Vectorization unroll factor.
    726   unsigned Unroll;
    727 
    728   LoopVectorizeHints(const Loop *L)
    729   : Width(VectorizationFactor)
    730   , Unroll(VectorizationUnroll)
    731   , LoopID(L->getLoopID()) {
    732     getHints(L);
    733     // The command line options override any loop metadata except for when
    734     // width == 1 which is used to indicate the loop is already vectorized.
    735     if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1)
    736       Width = VectorizationFactor;
    737     if (VectorizationUnroll.getNumOccurrences() > 0)
    738       Unroll = VectorizationUnroll;
    739   }
    740 
    741   /// Return the loop vectorizer metadata prefix.
    742   static StringRef Prefix() { return "llvm.vectorizer."; }
    743 
    744   MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) {
    745     SmallVector<Value*, 2> Vals;
    746     Vals.push_back(MDString::get(Context, Name));
    747     Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
    748     return MDNode::get(Context, Vals);
    749   }
    750 
    751   /// Mark the loop L as already vectorized by setting the width to 1.
    752   void setAlreadyVectorized(Loop *L) {
    753     LLVMContext &Context = L->getHeader()->getContext();
    754 
    755     Width = 1;
    756 
    757     // Create a new loop id with one more operand for the already_vectorized
    758     // hint. If the loop already has a loop id then copy the existing operands.
    759     SmallVector<Value*, 4> Vals(1);
    760     if (LoopID)
    761       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
    762         Vals.push_back(LoopID->getOperand(i));
    763 
    764     Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width));
    765 
    766     MDNode *NewLoopID = MDNode::get(Context, Vals);
    767     // Set operand 0 to refer to the loop id itself.
    768     NewLoopID->replaceOperandWith(0, NewLoopID);
    769 
    770     L->setLoopID(NewLoopID);
    771     if (LoopID)
    772       LoopID->replaceAllUsesWith(NewLoopID);
    773 
    774     LoopID = NewLoopID;
    775   }
    776 
    777 private:
    778   MDNode *LoopID;
    779 
    780   /// Find hints specified in the loop metadata.
    781   void getHints(const Loop *L) {
    782     if (!LoopID)
    783       return;
    784 
    785     // First operand should refer to the loop id itself.
    786     assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
    787     assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
    788 
    789     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
    790       const MDString *S = 0;
    791       SmallVector<Value*, 4> Args;
    792 
    793       // The expected hint is either a MDString or a MDNode with the first
    794       // operand a MDString.
    795       if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
    796         if (!MD || MD->getNumOperands() == 0)
    797           continue;
    798         S = dyn_cast<MDString>(MD->getOperand(0));
    799         for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
    800           Args.push_back(MD->getOperand(i));
    801       } else {
    802         S = dyn_cast<MDString>(LoopID->getOperand(i));
    803         assert(Args.size() == 0 && "too many arguments for MDString");
    804       }
    805 
    806       if (!S)
    807         continue;
    808 
    809       // Check if the hint starts with the vectorizer prefix.
    810       StringRef Hint = S->getString();
    811       if (!Hint.startswith(Prefix()))
    812         continue;
    813       // Remove the prefix.
    814       Hint = Hint.substr(Prefix().size(), StringRef::npos);
    815 
    816       if (Args.size() == 1)
    817         getHint(Hint, Args[0]);
    818     }
    819   }
    820 
    821   // Check string hint with one operand.
    822   void getHint(StringRef Hint, Value *Arg) {
    823     const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
    824     if (!C) return;
    825     unsigned Val = C->getZExtValue();
    826 
    827     if (Hint == "width") {
    828       assert(isPowerOf2_32(Val) && Val <= MaxVectorWidth &&
    829              "Invalid width metadata");
    830       Width = Val;
    831     } else if (Hint == "unroll") {
    832       assert(isPowerOf2_32(Val) && Val <= MaxUnrollFactor &&
    833              "Invalid unroll metadata");
    834       Unroll = Val;
    835     } else
    836       DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint);
    837   }
    838 };
    839 
    840 /// The LoopVectorize Pass.
    841 struct LoopVectorize : public LoopPass {
    842   /// Pass identification, replacement for typeid
    843   static char ID;
    844 
    845   explicit LoopVectorize() : LoopPass(ID) {
    846     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
    847   }
    848 
    849   ScalarEvolution *SE;
    850   DataLayout *DL;
    851   LoopInfo *LI;
    852   TargetTransformInfo *TTI;
    853   DominatorTree *DT;
    854   TargetLibraryInfo *TLI;
    855 
    856   virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
    857     // We only vectorize innermost loops.
    858     if (!L->empty())
    859       return false;
    860 
    861     SE = &getAnalysis<ScalarEvolution>();
    862     DL = getAnalysisIfAvailable<DataLayout>();
    863     LI = &getAnalysis<LoopInfo>();
    864     TTI = &getAnalysis<TargetTransformInfo>();
    865     DT = &getAnalysis<DominatorTree>();
    866     TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
    867 
    868     if (DL == NULL) {
    869       DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout");
    870       return false;
    871     }
    872 
    873     DEBUG(dbgs() << "LV: Checking a loop in \"" <<
    874           L->getHeader()->getParent()->getName() << "\"\n");
    875 
    876     LoopVectorizeHints Hints(L);
    877 
    878     if (Hints.Width == 1) {
    879       DEBUG(dbgs() << "LV: Not vectorizing.\n");
    880       return false;
    881     }
    882 
    883     // Check if it is legal to vectorize the loop.
    884     LoopVectorizationLegality LVL(L, SE, DL, DT, TLI);
    885     if (!LVL.canVectorize()) {
    886       DEBUG(dbgs() << "LV: Not vectorizing.\n");
    887       return false;
    888     }
    889 
    890     // Use the cost model.
    891     LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
    892 
    893     // Check the function attributes to find out if this function should be
    894     // optimized for size.
    895     Function *F = L->getHeader()->getParent();
    896     Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
    897     Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
    898     unsigned FnIndex = AttributeSet::FunctionIndex;
    899     bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
    900     bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
    901 
    902     if (NoFloat) {
    903       DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
    904             "attribute is used.\n");
    905       return false;
    906     }
    907 
    908     // Select the optimal vectorization factor.
    909     LoopVectorizationCostModel::VectorizationFactor VF;
    910     VF = CM.selectVectorizationFactor(OptForSize, Hints.Width);
    911     // Select the unroll factor.
    912     unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width,
    913                                         VF.Cost);
    914 
    915     if (VF.Width == 1) {
    916       DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
    917       return false;
    918     }
    919 
    920     DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
    921           F->getParent()->getModuleIdentifier()<<"\n");
    922     DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
    923 
    924     // If we decided that it is *legal* to vectorize the loop then do it.
    925     InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
    926     LB.vectorize(&LVL);
    927 
    928     // Mark the loop as already vectorized to avoid vectorizing again.
    929     Hints.setAlreadyVectorized(L);
    930 
    931     DEBUG(verifyFunction(*L->getHeader()->getParent()));
    932     return true;
    933   }
    934 
    935   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    936     LoopPass::getAnalysisUsage(AU);
    937     AU.addRequiredID(LoopSimplifyID);
    938     AU.addRequiredID(LCSSAID);
    939     AU.addRequired<DominatorTree>();
    940     AU.addRequired<LoopInfo>();
    941     AU.addRequired<ScalarEvolution>();
    942     AU.addRequired<TargetTransformInfo>();
    943     AU.addPreserved<LoopInfo>();
    944     AU.addPreserved<DominatorTree>();
    945   }
    946 
    947 };
    948 
    949 } // end anonymous namespace
    950 
    951 //===----------------------------------------------------------------------===//
    952 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
    953 // LoopVectorizationCostModel.
    954 //===----------------------------------------------------------------------===//
    955 
    956 void
    957 LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
    958                                                        Loop *Lp, Value *Ptr,
    959                                                        bool WritePtr,
    960                                                        unsigned DepSetId) {
    961   const SCEV *Sc = SE->getSCEV(Ptr);
    962   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
    963   assert(AR && "Invalid addrec expression");
    964   const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
    965   const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
    966   Pointers.push_back(Ptr);
    967   Starts.push_back(AR->getStart());
    968   Ends.push_back(ScEnd);
    969   IsWritePtr.push_back(WritePtr);
    970   DependencySetId.push_back(DepSetId);
    971 }
    972 
    973 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
    974   // Save the current insertion location.
    975   Instruction *Loc = Builder.GetInsertPoint();
    976 
    977   // We need to place the broadcast of invariant variables outside the loop.
    978   Instruction *Instr = dyn_cast<Instruction>(V);
    979   bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
    980   bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
    981 
    982   // Place the code for broadcasting invariant variables in the new preheader.
    983   if (Invariant)
    984     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
    985 
    986   // Broadcast the scalar into all locations in the vector.
    987   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
    988 
    989   // Restore the builder insertion point.
    990   if (Invariant)
    991     Builder.SetInsertPoint(Loc);
    992 
    993   return Shuf;
    994 }
    995 
    996 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
    997                                                  bool Negate) {
    998   assert(Val->getType()->isVectorTy() && "Must be a vector");
    999   assert(Val->getType()->getScalarType()->isIntegerTy() &&
   1000          "Elem must be an integer");
   1001   // Create the types.
   1002   Type *ITy = Val->getType()->getScalarType();
   1003   VectorType *Ty = cast<VectorType>(Val->getType());
   1004   int VLen = Ty->getNumElements();
   1005   SmallVector<Constant*, 8> Indices;
   1006 
   1007   // Create a vector of consecutive numbers from zero to VF.
   1008   for (int i = 0; i < VLen; ++i) {
   1009     int64_t Idx = Negate ? (-i) : i;
   1010     Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
   1011   }
   1012 
   1013   // Add the consecutive indices to the vector value.
   1014   Constant *Cv = ConstantVector::get(Indices);
   1015   assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
   1016   return Builder.CreateAdd(Val, Cv, "induction");
   1017 }
   1018 
   1019 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
   1020   assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
   1021   // Make sure that the pointer does not point to structs.
   1022   if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType())
   1023     return 0;
   1024 
   1025   // If this value is a pointer induction variable we know it is consecutive.
   1026   PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
   1027   if (Phi && Inductions.count(Phi)) {
   1028     InductionInfo II = Inductions[Phi];
   1029     if (IK_PtrInduction == II.IK)
   1030       return 1;
   1031     else if (IK_ReversePtrInduction == II.IK)
   1032       return -1;
   1033   }
   1034 
   1035   GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
   1036   if (!Gep)
   1037     return 0;
   1038 
   1039   unsigned NumOperands = Gep->getNumOperands();
   1040   Value *LastIndex = Gep->getOperand(NumOperands - 1);
   1041 
   1042   Value *GpPtr = Gep->getPointerOperand();
   1043   // If this GEP value is a consecutive pointer induction variable and all of
   1044   // the indices are constant then we know it is consecutive. We can
   1045   Phi = dyn_cast<PHINode>(GpPtr);
   1046   if (Phi && Inductions.count(Phi)) {
   1047 
   1048     // Make sure that the pointer does not point to structs.
   1049     PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
   1050     if (GepPtrType->getElementType()->isAggregateType())
   1051       return 0;
   1052 
   1053     // Make sure that all of the index operands are loop invariant.
   1054     for (unsigned i = 1; i < NumOperands; ++i)
   1055       if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
   1056         return 0;
   1057 
   1058     InductionInfo II = Inductions[Phi];
   1059     if (IK_PtrInduction == II.IK)
   1060       return 1;
   1061     else if (IK_ReversePtrInduction == II.IK)
   1062       return -1;
   1063   }
   1064 
   1065   // Check that all of the gep indices are uniform except for the last.
   1066   for (unsigned i = 0; i < NumOperands - 1; ++i)
   1067     if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
   1068       return 0;
   1069 
   1070   // We can emit wide load/stores only if the last index is the induction
   1071   // variable.
   1072   const SCEV *Last = SE->getSCEV(LastIndex);
   1073   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
   1074     const SCEV *Step = AR->getStepRecurrence(*SE);
   1075 
   1076     // The memory is consecutive because the last index is consecutive
   1077     // and all other indices are loop invariant.
   1078     if (Step->isOne())
   1079       return 1;
   1080     if (Step->isAllOnesValue())
   1081       return -1;
   1082   }
   1083 
   1084   return 0;
   1085 }
   1086 
   1087 bool LoopVectorizationLegality::isUniform(Value *V) {
   1088   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
   1089 }
   1090 
   1091 InnerLoopVectorizer::VectorParts&
   1092 InnerLoopVectorizer::getVectorValue(Value *V) {
   1093   assert(V != Induction && "The new induction variable should not be used.");
   1094   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
   1095 
   1096   // If we have this scalar in the map, return it.
   1097   if (WidenMap.has(V))
   1098     return WidenMap.get(V);
   1099 
   1100   // If this scalar is unknown, assume that it is a constant or that it is
   1101   // loop invariant. Broadcast V and save the value for future uses.
   1102   Value *B = getBroadcastInstrs(V);
   1103   return WidenMap.splat(V, B);
   1104 }
   1105 
   1106 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
   1107   assert(Vec->getType()->isVectorTy() && "Invalid type");
   1108   SmallVector<Constant*, 8> ShuffleMask;
   1109   for (unsigned i = 0; i < VF; ++i)
   1110     ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
   1111 
   1112   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
   1113                                      ConstantVector::get(ShuffleMask),
   1114                                      "reverse");
   1115 }
   1116 
   1117 
   1118 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
   1119                                              LoopVectorizationLegality *Legal) {
   1120   // Attempt to issue a wide load.
   1121   LoadInst *LI = dyn_cast<LoadInst>(Instr);
   1122   StoreInst *SI = dyn_cast<StoreInst>(Instr);
   1123 
   1124   assert((LI || SI) && "Invalid Load/Store instruction");
   1125 
   1126   Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
   1127   Type *DataTy = VectorType::get(ScalarDataTy, VF);
   1128   Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
   1129   unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
   1130   unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
   1131   unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
   1132   unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
   1133 
   1134   if (ScalarAllocatedSize != VectorElementSize)
   1135     return scalarizeInstruction(Instr);
   1136 
   1137   // If the pointer is loop invariant or if it is non consecutive,
   1138   // scalarize the load.
   1139   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
   1140   bool Reverse = ConsecutiveStride < 0;
   1141   bool UniformLoad = LI && Legal->isUniform(Ptr);
   1142   if (!ConsecutiveStride || UniformLoad)
   1143     return scalarizeInstruction(Instr);
   1144 
   1145   Constant *Zero = Builder.getInt32(0);
   1146   VectorParts &Entry = WidenMap.get(Instr);
   1147 
   1148   // Handle consecutive loads/stores.
   1149   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
   1150   if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
   1151     setDebugLocFromInst(Builder, Gep);
   1152     Value *PtrOperand = Gep->getPointerOperand();
   1153     Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
   1154     FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
   1155 
   1156     // Create the new GEP with the new induction variable.
   1157     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
   1158     Gep2->setOperand(0, FirstBasePtr);
   1159     Gep2->setName("gep.indvar.base");
   1160     Ptr = Builder.Insert(Gep2);
   1161   } else if (Gep) {
   1162     setDebugLocFromInst(Builder, Gep);
   1163     assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
   1164                                OrigLoop) && "Base ptr must be invariant");
   1165 
   1166     // The last index does not have to be the induction. It can be
   1167     // consecutive and be a function of the index. For example A[I+1];
   1168     unsigned NumOperands = Gep->getNumOperands();
   1169     unsigned LastOperand = NumOperands - 1;
   1170     // Create the new GEP with the new induction variable.
   1171     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
   1172 
   1173     for (unsigned i = 0; i < NumOperands; ++i) {
   1174       Value *GepOperand = Gep->getOperand(i);
   1175       Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
   1176 
   1177       // Update last index or loop invariant instruction anchored in loop.
   1178       if (i == LastOperand ||
   1179           (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
   1180         assert((i == LastOperand ||
   1181                SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
   1182                "Must be last index or loop invariant");
   1183 
   1184         VectorParts &GEPParts = getVectorValue(GepOperand);
   1185         Value *Index = GEPParts[0];
   1186         Index = Builder.CreateExtractElement(Index, Zero);
   1187         Gep2->setOperand(i, Index);
   1188         Gep2->setName("gep.indvar.idx");
   1189       }
   1190     }
   1191     Ptr = Builder.Insert(Gep2);
   1192   } else {
   1193     // Use the induction element ptr.
   1194     assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
   1195     setDebugLocFromInst(Builder, Ptr);
   1196     VectorParts &PtrVal = getVectorValue(Ptr);
   1197     Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
   1198   }
   1199 
   1200   // Handle Stores:
   1201   if (SI) {
   1202     assert(!Legal->isUniform(SI->getPointerOperand()) &&
   1203            "We do not allow storing to uniform addresses");
   1204     setDebugLocFromInst(Builder, SI);
   1205     // We don't want to update the value in the map as it might be used in
   1206     // another expression. So don't use a reference type for "StoredVal".
   1207     VectorParts StoredVal = getVectorValue(SI->getValueOperand());
   1208 
   1209     for (unsigned Part = 0; Part < UF; ++Part) {
   1210       // Calculate the pointer for the specific unroll-part.
   1211       Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
   1212 
   1213       if (Reverse) {
   1214         // If we store to reverse consecutive memory locations then we need
   1215         // to reverse the order of elements in the stored value.
   1216         StoredVal[Part] = reverseVector(StoredVal[Part]);
   1217         // If the address is consecutive but reversed, then the
   1218         // wide store needs to start at the last vector element.
   1219         PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
   1220         PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
   1221       }
   1222 
   1223       Value *VecPtr = Builder.CreateBitCast(PartPtr,
   1224                                             DataTy->getPointerTo(AddressSpace));
   1225       Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
   1226     }
   1227     return;
   1228   }
   1229 
   1230   // Handle loads.
   1231   assert(LI && "Must have a load instruction");
   1232   setDebugLocFromInst(Builder, LI);
   1233   for (unsigned Part = 0; Part < UF; ++Part) {
   1234     // Calculate the pointer for the specific unroll-part.
   1235     Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
   1236 
   1237     if (Reverse) {
   1238       // If the address is consecutive but reversed, then the
   1239       // wide store needs to start at the last vector element.
   1240       PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
   1241       PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
   1242     }
   1243 
   1244     Value *VecPtr = Builder.CreateBitCast(PartPtr,
   1245                                           DataTy->getPointerTo(AddressSpace));
   1246     Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
   1247     cast<LoadInst>(LI)->setAlignment(Alignment);
   1248     Entry[Part] = Reverse ? reverseVector(LI) :  LI;
   1249   }
   1250 }
   1251 
   1252 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
   1253   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
   1254   // Holds vector parameters or scalars, in case of uniform vals.
   1255   SmallVector<VectorParts, 4> Params;
   1256 
   1257   setDebugLocFromInst(Builder, Instr);
   1258 
   1259   // Find all of the vectorized parameters.
   1260   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
   1261     Value *SrcOp = Instr->getOperand(op);
   1262 
   1263     // If we are accessing the old induction variable, use the new one.
   1264     if (SrcOp == OldInduction) {
   1265       Params.push_back(getVectorValue(SrcOp));
   1266       continue;
   1267     }
   1268 
   1269     // Try using previously calculated values.
   1270     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
   1271 
   1272     // If the src is an instruction that appeared earlier in the basic block
   1273     // then it should already be vectorized.
   1274     if (SrcInst && OrigLoop->contains(SrcInst)) {
   1275       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
   1276       // The parameter is a vector value from earlier.
   1277       Params.push_back(WidenMap.get(SrcInst));
   1278     } else {
   1279       // The parameter is a scalar from outside the loop. Maybe even a constant.
   1280       VectorParts Scalars;
   1281       Scalars.append(UF, SrcOp);
   1282       Params.push_back(Scalars);
   1283     }
   1284   }
   1285 
   1286   assert(Params.size() == Instr->getNumOperands() &&
   1287          "Invalid number of operands");
   1288 
   1289   // Does this instruction return a value ?
   1290   bool IsVoidRetTy = Instr->getType()->isVoidTy();
   1291 
   1292   Value *UndefVec = IsVoidRetTy ? 0 :
   1293     UndefValue::get(VectorType::get(Instr->getType(), VF));
   1294   // Create a new entry in the WidenMap and initialize it to Undef or Null.
   1295   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
   1296 
   1297   // For each vector unroll 'part':
   1298   for (unsigned Part = 0; Part < UF; ++Part) {
   1299     // For each scalar that we create:
   1300     for (unsigned Width = 0; Width < VF; ++Width) {
   1301       Instruction *Cloned = Instr->clone();
   1302       if (!IsVoidRetTy)
   1303         Cloned->setName(Instr->getName() + ".cloned");
   1304       // Replace the operands of the cloned instrucions with extracted scalars.
   1305       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
   1306         Value *Op = Params[op][Part];
   1307         // Param is a vector. Need to extract the right lane.
   1308         if (Op->getType()->isVectorTy())
   1309           Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
   1310         Cloned->setOperand(op, Op);
   1311       }
   1312 
   1313       // Place the cloned scalar in the new loop.
   1314       Builder.Insert(Cloned);
   1315 
   1316       // If the original scalar returns a value we need to place it in a vector
   1317       // so that future users will be able to use it.
   1318       if (!IsVoidRetTy)
   1319         VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
   1320                                                        Builder.getInt32(Width));
   1321     }
   1322   }
   1323 }
   1324 
   1325 Instruction *
   1326 InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
   1327                                      Instruction *Loc) {
   1328   LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
   1329   Legal->getRuntimePointerCheck();
   1330 
   1331   if (!PtrRtCheck->Need)
   1332     return NULL;
   1333 
   1334   unsigned NumPointers = PtrRtCheck->Pointers.size();
   1335   SmallVector<TrackingVH<Value> , 2> Starts;
   1336   SmallVector<TrackingVH<Value> , 2> Ends;
   1337 
   1338   SCEVExpander Exp(*SE, "induction");
   1339 
   1340   // Use this type for pointer arithmetic.
   1341   Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0);
   1342 
   1343   for (unsigned i = 0; i < NumPointers; ++i) {
   1344     Value *Ptr = PtrRtCheck->Pointers[i];
   1345     const SCEV *Sc = SE->getSCEV(Ptr);
   1346 
   1347     if (SE->isLoopInvariant(Sc, OrigLoop)) {
   1348       DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
   1349             *Ptr <<"\n");
   1350       Starts.push_back(Ptr);
   1351       Ends.push_back(Ptr);
   1352     } else {
   1353       DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
   1354 
   1355       Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
   1356       Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
   1357       Starts.push_back(Start);
   1358       Ends.push_back(End);
   1359     }
   1360   }
   1361 
   1362   IRBuilder<> ChkBuilder(Loc);
   1363   // Our instructions might fold to a constant.
   1364   Value *MemoryRuntimeCheck = 0;
   1365   for (unsigned i = 0; i < NumPointers; ++i) {
   1366     for (unsigned j = i+1; j < NumPointers; ++j) {
   1367       // No need to check if two readonly pointers intersect.
   1368       if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
   1369         continue;
   1370 
   1371       // Only need to check pointers between two different dependency sets.
   1372       if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
   1373        continue;
   1374 
   1375       Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy, "bc");
   1376       Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy, "bc");
   1377       Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy, "bc");
   1378       Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy, "bc");
   1379 
   1380       Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
   1381       Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
   1382       Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
   1383       if (MemoryRuntimeCheck)
   1384         IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
   1385                                          "conflict.rdx");
   1386       MemoryRuntimeCheck = IsConflict;
   1387     }
   1388   }
   1389 
   1390   // We have to do this trickery because the IRBuilder might fold the check to a
   1391   // constant expression in which case there is no Instruction anchored in a
   1392   // the block.
   1393   LLVMContext &Ctx = Loc->getContext();
   1394   Instruction * Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
   1395                                                   ConstantInt::getTrue(Ctx));
   1396   ChkBuilder.Insert(Check, "memcheck.conflict");
   1397   return Check;
   1398 }
   1399 
   1400 void
   1401 InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
   1402   /*
   1403    In this function we generate a new loop. The new loop will contain
   1404    the vectorized instructions while the old loop will continue to run the
   1405    scalar remainder.
   1406 
   1407        [ ] <-- vector loop bypass (may consist of multiple blocks).
   1408      /  |
   1409     /   v
   1410    |   [ ]     <-- vector pre header.
   1411    |    |
   1412    |    v
   1413    |   [  ] \
   1414    |   [  ]_|   <-- vector loop.
   1415    |    |
   1416     \   v
   1417       >[ ]   <--- middle-block.
   1418      /  |
   1419     /   v
   1420    |   [ ]     <--- new preheader.
   1421    |    |
   1422    |    v
   1423    |   [ ] \
   1424    |   [ ]_|   <-- old scalar loop to handle remainder.
   1425     \   |
   1426      \  v
   1427       >[ ]     <-- exit block.
   1428    ...
   1429    */
   1430 
   1431   BasicBlock *OldBasicBlock = OrigLoop->getHeader();
   1432   BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
   1433   BasicBlock *ExitBlock = OrigLoop->getExitBlock();
   1434   assert(ExitBlock && "Must have an exit block");
   1435 
   1436   // Some loops have a single integer induction variable, while other loops
   1437   // don't. One example is c++ iterators that often have multiple pointer
   1438   // induction variables. In the code below we also support a case where we
   1439   // don't have a single induction variable.
   1440   OldInduction = Legal->getInduction();
   1441   Type *IdxTy = Legal->getWidestInductionType();
   1442 
   1443   // Find the loop boundaries.
   1444   const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
   1445   assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
   1446 
   1447   // Get the total trip count from the count by adding 1.
   1448   ExitCount = SE->getAddExpr(ExitCount,
   1449                              SE->getConstant(ExitCount->getType(), 1));
   1450 
   1451   // Expand the trip count and place the new instructions in the preheader.
   1452   // Notice that the pre-header does not change, only the loop body.
   1453   SCEVExpander Exp(*SE, "induction");
   1454 
   1455   // Count holds the overall loop count (N).
   1456   Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
   1457                                    BypassBlock->getTerminator());
   1458 
   1459   // The loop index does not have to start at Zero. Find the original start
   1460   // value from the induction PHI node. If we don't have an induction variable
   1461   // then we know that it starts at zero.
   1462   Builder.SetInsertPoint(BypassBlock->getTerminator());
   1463   Value *StartIdx = ExtendedIdx = OldInduction ?
   1464     Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
   1465                        IdxTy):
   1466     ConstantInt::get(IdxTy, 0);
   1467 
   1468   assert(BypassBlock && "Invalid loop structure");
   1469   LoopBypassBlocks.push_back(BypassBlock);
   1470 
   1471   // Split the single block loop into the two loop structure described above.
   1472   BasicBlock *VectorPH =
   1473   BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
   1474   BasicBlock *VecBody =
   1475   VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
   1476   BasicBlock *MiddleBlock =
   1477   VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
   1478   BasicBlock *ScalarPH =
   1479   MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
   1480 
   1481   // Create and register the new vector loop.
   1482   Loop* Lp = new Loop();
   1483   Loop *ParentLoop = OrigLoop->getParentLoop();
   1484 
   1485   // Insert the new loop into the loop nest and register the new basic blocks
   1486   // before calling any utilities such as SCEV that require valid LoopInfo.
   1487   if (ParentLoop) {
   1488     ParentLoop->addChildLoop(Lp);
   1489     ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
   1490     ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
   1491     ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
   1492   } else {
   1493     LI->addTopLevelLoop(Lp);
   1494   }
   1495   Lp->addBasicBlockToLoop(VecBody, LI->getBase());
   1496 
   1497   // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
   1498   // inside the loop.
   1499   Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
   1500 
   1501   // Generate the induction variable.
   1502   setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
   1503   Induction = Builder.CreatePHI(IdxTy, 2, "index");
   1504   // The loop step is equal to the vectorization factor (num of SIMD elements)
   1505   // times the unroll factor (num of SIMD instructions).
   1506   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
   1507 
   1508   // This is the IR builder that we use to add all of the logic for bypassing
   1509   // the new vector loop.
   1510   IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
   1511   setDebugLocFromInst(BypassBuilder,
   1512                       getDebugLocFromInstOrOperands(OldInduction));
   1513 
   1514   // We may need to extend the index in case there is a type mismatch.
   1515   // We know that the count starts at zero and does not overflow.
   1516   if (Count->getType() != IdxTy) {
   1517     // The exit count can be of pointer type. Convert it to the correct
   1518     // integer type.
   1519     if (ExitCount->getType()->isPointerTy())
   1520       Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
   1521     else
   1522       Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
   1523   }
   1524 
   1525   // Add the start index to the loop count to get the new end index.
   1526   Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
   1527 
   1528   // Now we need to generate the expression for N - (N % VF), which is
   1529   // the part that the vectorized body will execute.
   1530   Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
   1531   Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
   1532   Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
   1533                                                      "end.idx.rnd.down");
   1534 
   1535   // Now, compare the new count to zero. If it is zero skip the vector loop and
   1536   // jump to the scalar loop.
   1537   Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
   1538                                           "cmp.zero");
   1539 
   1540   BasicBlock *LastBypassBlock = BypassBlock;
   1541 
   1542   // Generate the code that checks in runtime if arrays overlap. We put the
   1543   // checks into a separate block to make the more common case of few elements
   1544   // faster.
   1545   Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
   1546                                                  BypassBlock->getTerminator());
   1547   if (MemRuntimeCheck) {
   1548     // Create a new block containing the memory check.
   1549     BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
   1550                                                           "vector.memcheck");
   1551     if (ParentLoop)
   1552       ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
   1553     LoopBypassBlocks.push_back(CheckBlock);
   1554 
   1555     // Replace the branch into the memory check block with a conditional branch
   1556     // for the "few elements case".
   1557     Instruction *OldTerm = BypassBlock->getTerminator();
   1558     BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
   1559     OldTerm->eraseFromParent();
   1560 
   1561     Cmp = MemRuntimeCheck;
   1562     LastBypassBlock = CheckBlock;
   1563   }
   1564 
   1565   LastBypassBlock->getTerminator()->eraseFromParent();
   1566   BranchInst::Create(MiddleBlock, VectorPH, Cmp,
   1567                      LastBypassBlock);
   1568 
   1569   // We are going to resume the execution of the scalar loop.
   1570   // Go over all of the induction variables that we found and fix the
   1571   // PHIs that are left in the scalar version of the loop.
   1572   // The starting values of PHI nodes depend on the counter of the last
   1573   // iteration in the vectorized loop.
   1574   // If we come from a bypass edge then we need to start from the original
   1575   // start value.
   1576 
   1577   // This variable saves the new starting index for the scalar loop.
   1578   PHINode *ResumeIndex = 0;
   1579   LoopVectorizationLegality::InductionList::iterator I, E;
   1580   LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
   1581   // Set builder to point to last bypass block.
   1582   BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
   1583   for (I = List->begin(), E = List->end(); I != E; ++I) {
   1584     PHINode *OrigPhi = I->first;
   1585     LoopVectorizationLegality::InductionInfo II = I->second;
   1586 
   1587     Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
   1588     PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
   1589                                          MiddleBlock->getTerminator());
   1590     // We might have extended the type of the induction variable but we need a
   1591     // truncated version for the scalar loop.
   1592     PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
   1593       PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
   1594                       MiddleBlock->getTerminator()) : 0;
   1595 
   1596     Value *EndValue = 0;
   1597     switch (II.IK) {
   1598     case LoopVectorizationLegality::IK_NoInduction:
   1599       llvm_unreachable("Unknown induction");
   1600     case LoopVectorizationLegality::IK_IntInduction: {
   1601       // Handle the integer induction counter.
   1602       assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
   1603 
   1604       // We have the canonical induction variable.
   1605       if (OrigPhi == OldInduction) {
   1606         // Create a truncated version of the resume value for the scalar loop,
   1607         // we might have promoted the type to a larger width.
   1608         EndValue =
   1609           BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
   1610         // The new PHI merges the original incoming value, in case of a bypass,
   1611         // or the value at the end of the vectorized loop.
   1612         for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
   1613           TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
   1614         TruncResumeVal->addIncoming(EndValue, VecBody);
   1615 
   1616         // We know what the end value is.
   1617         EndValue = IdxEndRoundDown;
   1618         // We also know which PHI node holds it.
   1619         ResumeIndex = ResumeVal;
   1620         break;
   1621       }
   1622 
   1623       // Not the canonical induction variable - add the vector loop count to the
   1624       // start value.
   1625       Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
   1626                                                    II.StartValue->getType(),
   1627                                                    "cast.crd");
   1628       EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
   1629       break;
   1630     }
   1631     case LoopVectorizationLegality::IK_ReverseIntInduction: {
   1632       // Convert the CountRoundDown variable to the PHI size.
   1633       Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
   1634                                                    II.StartValue->getType(),
   1635                                                    "cast.crd");
   1636       // Handle reverse integer induction counter.
   1637       EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
   1638       break;
   1639     }
   1640     case LoopVectorizationLegality::IK_PtrInduction: {
   1641       // For pointer induction variables, calculate the offset using
   1642       // the end index.
   1643       EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
   1644                                          "ptr.ind.end");
   1645       break;
   1646     }
   1647     case LoopVectorizationLegality::IK_ReversePtrInduction: {
   1648       // The value at the end of the loop for the reverse pointer is calculated
   1649       // by creating a GEP with a negative index starting from the start value.
   1650       Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
   1651       Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
   1652                                               "rev.ind.end");
   1653       EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
   1654                                          "rev.ptr.ind.end");
   1655       break;
   1656     }
   1657     }// end of case
   1658 
   1659     // The new PHI merges the original incoming value, in case of a bypass,
   1660     // or the value at the end of the vectorized loop.
   1661     for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) {
   1662       if (OrigPhi == OldInduction)
   1663         ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
   1664       else
   1665         ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
   1666     }
   1667     ResumeVal->addIncoming(EndValue, VecBody);
   1668 
   1669     // Fix the scalar body counter (PHI node).
   1670     unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
   1671     // The old inductions phi node in the scalar body needs the truncated value.
   1672     if (OrigPhi == OldInduction)
   1673       OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal);
   1674     else
   1675       OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
   1676   }
   1677 
   1678   // If we are generating a new induction variable then we also need to
   1679   // generate the code that calculates the exit value. This value is not
   1680   // simply the end of the counter because we may skip the vectorized body
   1681   // in case of a runtime check.
   1682   if (!OldInduction){
   1683     assert(!ResumeIndex && "Unexpected resume value found");
   1684     ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
   1685                                   MiddleBlock->getTerminator());
   1686     for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
   1687       ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
   1688     ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
   1689   }
   1690 
   1691   // Make sure that we found the index where scalar loop needs to continue.
   1692   assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
   1693          "Invalid resume Index");
   1694 
   1695   // Add a check in the middle block to see if we have completed
   1696   // all of the iterations in the first vector loop.
   1697   // If (N - N%VF) == N, then we *don't* need to run the remainder.
   1698   Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
   1699                                 ResumeIndex, "cmp.n",
   1700                                 MiddleBlock->getTerminator());
   1701 
   1702   BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
   1703   // Remove the old terminator.
   1704   MiddleBlock->getTerminator()->eraseFromParent();
   1705 
   1706   // Create i+1 and fill the PHINode.
   1707   Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
   1708   Induction->addIncoming(StartIdx, VectorPH);
   1709   Induction->addIncoming(NextIdx, VecBody);
   1710   // Create the compare.
   1711   Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
   1712   Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
   1713 
   1714   // Now we have two terminators. Remove the old one from the block.
   1715   VecBody->getTerminator()->eraseFromParent();
   1716 
   1717   // Get ready to start creating new instructions into the vectorized body.
   1718   Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
   1719 
   1720   // Save the state.
   1721   LoopVectorPreHeader = VectorPH;
   1722   LoopScalarPreHeader = ScalarPH;
   1723   LoopMiddleBlock = MiddleBlock;
   1724   LoopExitBlock = ExitBlock;
   1725   LoopVectorBody = VecBody;
   1726   LoopScalarBody = OldBasicBlock;
   1727 }
   1728 
   1729 /// This function returns the identity element (or neutral element) for
   1730 /// the operation K.
   1731 Constant*
   1732 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
   1733   switch (K) {
   1734   case RK_IntegerXor:
   1735   case RK_IntegerAdd:
   1736   case RK_IntegerOr:
   1737     // Adding, Xoring, Oring zero to a number does not change it.
   1738     return ConstantInt::get(Tp, 0);
   1739   case RK_IntegerMult:
   1740     // Multiplying a number by 1 does not change it.
   1741     return ConstantInt::get(Tp, 1);
   1742   case RK_IntegerAnd:
   1743     // AND-ing a number with an all-1 value does not change it.
   1744     return ConstantInt::get(Tp, -1, true);
   1745   case  RK_FloatMult:
   1746     // Multiplying a number by 1 does not change it.
   1747     return ConstantFP::get(Tp, 1.0L);
   1748   case  RK_FloatAdd:
   1749     // Adding zero to a number does not change it.
   1750     return ConstantFP::get(Tp, 0.0L);
   1751   default:
   1752     llvm_unreachable("Unknown reduction kind");
   1753   }
   1754 }
   1755 
   1756 static Intrinsic::ID
   1757 getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
   1758   // If we have an intrinsic call, check if it is trivially vectorizable.
   1759   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
   1760     switch (II->getIntrinsicID()) {
   1761     case Intrinsic::sqrt:
   1762     case Intrinsic::sin:
   1763     case Intrinsic::cos:
   1764     case Intrinsic::exp:
   1765     case Intrinsic::exp2:
   1766     case Intrinsic::log:
   1767     case Intrinsic::log10:
   1768     case Intrinsic::log2:
   1769     case Intrinsic::fabs:
   1770     case Intrinsic::floor:
   1771     case Intrinsic::ceil:
   1772     case Intrinsic::trunc:
   1773     case Intrinsic::rint:
   1774     case Intrinsic::nearbyint:
   1775     case Intrinsic::pow:
   1776     case Intrinsic::fma:
   1777     case Intrinsic::fmuladd:
   1778     case Intrinsic::lifetime_start:
   1779     case Intrinsic::lifetime_end:
   1780       return II->getIntrinsicID();
   1781     default:
   1782       return Intrinsic::not_intrinsic;
   1783     }
   1784   }
   1785 
   1786   if (!TLI)
   1787     return Intrinsic::not_intrinsic;
   1788 
   1789   LibFunc::Func Func;
   1790   Function *F = CI->getCalledFunction();
   1791   // We're going to make assumptions on the semantics of the functions, check
   1792   // that the target knows that it's available in this environment.
   1793   if (!F || !TLI->getLibFunc(F->getName(), Func))
   1794     return Intrinsic::not_intrinsic;
   1795 
   1796   // Otherwise check if we have a call to a function that can be turned into a
   1797   // vector intrinsic.
   1798   switch (Func) {
   1799   default:
   1800     break;
   1801   case LibFunc::sin:
   1802   case LibFunc::sinf:
   1803   case LibFunc::sinl:
   1804     return Intrinsic::sin;
   1805   case LibFunc::cos:
   1806   case LibFunc::cosf:
   1807   case LibFunc::cosl:
   1808     return Intrinsic::cos;
   1809   case LibFunc::exp:
   1810   case LibFunc::expf:
   1811   case LibFunc::expl:
   1812     return Intrinsic::exp;
   1813   case LibFunc::exp2:
   1814   case LibFunc::exp2f:
   1815   case LibFunc::exp2l:
   1816     return Intrinsic::exp2;
   1817   case LibFunc::log:
   1818   case LibFunc::logf:
   1819   case LibFunc::logl:
   1820     return Intrinsic::log;
   1821   case LibFunc::log10:
   1822   case LibFunc::log10f:
   1823   case LibFunc::log10l:
   1824     return Intrinsic::log10;
   1825   case LibFunc::log2:
   1826   case LibFunc::log2f:
   1827   case LibFunc::log2l:
   1828     return Intrinsic::log2;
   1829   case LibFunc::fabs:
   1830   case LibFunc::fabsf:
   1831   case LibFunc::fabsl:
   1832     return Intrinsic::fabs;
   1833   case LibFunc::floor:
   1834   case LibFunc::floorf:
   1835   case LibFunc::floorl:
   1836     return Intrinsic::floor;
   1837   case LibFunc::ceil:
   1838   case LibFunc::ceilf:
   1839   case LibFunc::ceill:
   1840     return Intrinsic::ceil;
   1841   case LibFunc::trunc:
   1842   case LibFunc::truncf:
   1843   case LibFunc::truncl:
   1844     return Intrinsic::trunc;
   1845   case LibFunc::rint:
   1846   case LibFunc::rintf:
   1847   case LibFunc::rintl:
   1848     return Intrinsic::rint;
   1849   case LibFunc::nearbyint:
   1850   case LibFunc::nearbyintf:
   1851   case LibFunc::nearbyintl:
   1852     return Intrinsic::nearbyint;
   1853   case LibFunc::pow:
   1854   case LibFunc::powf:
   1855   case LibFunc::powl:
   1856     return Intrinsic::pow;
   1857   }
   1858 
   1859   return Intrinsic::not_intrinsic;
   1860 }
   1861 
   1862 /// This function translates the reduction kind to an LLVM binary operator.
   1863 static unsigned
   1864 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
   1865   switch (Kind) {
   1866     case LoopVectorizationLegality::RK_IntegerAdd:
   1867       return Instruction::Add;
   1868     case LoopVectorizationLegality::RK_IntegerMult:
   1869       return Instruction::Mul;
   1870     case LoopVectorizationLegality::RK_IntegerOr:
   1871       return Instruction::Or;
   1872     case LoopVectorizationLegality::RK_IntegerAnd:
   1873       return Instruction::And;
   1874     case LoopVectorizationLegality::RK_IntegerXor:
   1875       return Instruction::Xor;
   1876     case LoopVectorizationLegality::RK_FloatMult:
   1877       return Instruction::FMul;
   1878     case LoopVectorizationLegality::RK_FloatAdd:
   1879       return Instruction::FAdd;
   1880     case LoopVectorizationLegality::RK_IntegerMinMax:
   1881       return Instruction::ICmp;
   1882     case LoopVectorizationLegality::RK_FloatMinMax:
   1883       return Instruction::FCmp;
   1884     default:
   1885       llvm_unreachable("Unknown reduction operation");
   1886   }
   1887 }
   1888 
   1889 Value *createMinMaxOp(IRBuilder<> &Builder,
   1890                       LoopVectorizationLegality::MinMaxReductionKind RK,
   1891                       Value *Left,
   1892                       Value *Right) {
   1893   CmpInst::Predicate P = CmpInst::ICMP_NE;
   1894   switch (RK) {
   1895   default:
   1896     llvm_unreachable("Unknown min/max reduction kind");
   1897   case LoopVectorizationLegality::MRK_UIntMin:
   1898     P = CmpInst::ICMP_ULT;
   1899     break;
   1900   case LoopVectorizationLegality::MRK_UIntMax:
   1901     P = CmpInst::ICMP_UGT;
   1902     break;
   1903   case LoopVectorizationLegality::MRK_SIntMin:
   1904     P = CmpInst::ICMP_SLT;
   1905     break;
   1906   case LoopVectorizationLegality::MRK_SIntMax:
   1907     P = CmpInst::ICMP_SGT;
   1908     break;
   1909   case LoopVectorizationLegality::MRK_FloatMin:
   1910     P = CmpInst::FCMP_OLT;
   1911     break;
   1912   case LoopVectorizationLegality::MRK_FloatMax:
   1913     P = CmpInst::FCMP_OGT;
   1914     break;
   1915   }
   1916 
   1917   Value *Cmp;
   1918   if (RK == LoopVectorizationLegality::MRK_FloatMin ||
   1919       RK == LoopVectorizationLegality::MRK_FloatMax)
   1920     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
   1921   else
   1922     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
   1923 
   1924   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
   1925   return Select;
   1926 }
   1927 
   1928 void
   1929 InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
   1930   //===------------------------------------------------===//
   1931   //
   1932   // Notice: any optimization or new instruction that go
   1933   // into the code below should be also be implemented in
   1934   // the cost-model.
   1935   //
   1936   //===------------------------------------------------===//
   1937   Constant *Zero = Builder.getInt32(0);
   1938 
   1939   // In order to support reduction variables we need to be able to vectorize
   1940   // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
   1941   // stages. First, we create a new vector PHI node with no incoming edges.
   1942   // We use this value when we vectorize all of the instructions that use the
   1943   // PHI. Next, after all of the instructions in the block are complete we
   1944   // add the new incoming edges to the PHI. At this point all of the
   1945   // instructions in the basic block are vectorized, so we can use them to
   1946   // construct the PHI.
   1947   PhiVector RdxPHIsToFix;
   1948 
   1949   // Scan the loop in a topological order to ensure that defs are vectorized
   1950   // before users.
   1951   LoopBlocksDFS DFS(OrigLoop);
   1952   DFS.perform(LI);
   1953 
   1954   // Vectorize all of the blocks in the original loop.
   1955   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
   1956        be = DFS.endRPO(); bb != be; ++bb)
   1957     vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
   1958 
   1959   // At this point every instruction in the original loop is widened to
   1960   // a vector form. We are almost done. Now, we need to fix the PHI nodes
   1961   // that we vectorized. The PHI nodes are currently empty because we did
   1962   // not want to introduce cycles. Notice that the remaining PHI nodes
   1963   // that we need to fix are reduction variables.
   1964 
   1965   // Create the 'reduced' values for each of the induction vars.
   1966   // The reduced values are the vector values that we scalarize and combine
   1967   // after the loop is finished.
   1968   for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
   1969        it != e; ++it) {
   1970     PHINode *RdxPhi = *it;
   1971     assert(RdxPhi && "Unable to recover vectorized PHI");
   1972 
   1973     // Find the reduction variable descriptor.
   1974     assert(Legal->getReductionVars()->count(RdxPhi) &&
   1975            "Unable to find the reduction variable");
   1976     LoopVectorizationLegality::ReductionDescriptor RdxDesc =
   1977     (*Legal->getReductionVars())[RdxPhi];
   1978 
   1979     setDebugLocFromInst(Builder, RdxDesc.StartValue);
   1980 
   1981     // We need to generate a reduction vector from the incoming scalar.
   1982     // To do so, we need to generate the 'identity' vector and overide
   1983     // one of the elements with the incoming scalar reduction. We need
   1984     // to do it in the vector-loop preheader.
   1985     Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
   1986 
   1987     // This is the vector-clone of the value that leaves the loop.
   1988     VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
   1989     Type *VecTy = VectorExit[0]->getType();
   1990 
   1991     // Find the reduction identity variable. Zero for addition, or, xor,
   1992     // one for multiplication, -1 for And.
   1993     Value *Identity;
   1994     Value *VectorStart;
   1995     if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
   1996         RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
   1997       // MinMax reduction have the start value as their identify.
   1998       VectorStart = Identity = Builder.CreateVectorSplat(VF, RdxDesc.StartValue,
   1999                                                          "minmax.ident");
   2000     } else {
   2001       Constant *Iden =
   2002         LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
   2003                                                         VecTy->getScalarType());
   2004       Identity = ConstantVector::getSplat(VF, Iden);
   2005 
   2006       // This vector is the Identity vector where the first element is the
   2007       // incoming scalar reduction.
   2008       VectorStart = Builder.CreateInsertElement(Identity,
   2009                                                 RdxDesc.StartValue, Zero);
   2010     }
   2011 
   2012     // Fix the vector-loop phi.
   2013     // We created the induction variable so we know that the
   2014     // preheader is the first entry.
   2015     BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
   2016 
   2017     // Reductions do not have to start at zero. They can start with
   2018     // any loop invariant values.
   2019     VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
   2020     BasicBlock *Latch = OrigLoop->getLoopLatch();
   2021     Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
   2022     VectorParts &Val = getVectorValue(LoopVal);
   2023     for (unsigned part = 0; part < UF; ++part) {
   2024       // Make sure to add the reduction stat value only to the
   2025       // first unroll part.
   2026       Value *StartVal = (part == 0) ? VectorStart : Identity;
   2027       cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
   2028       cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
   2029     }
   2030 
   2031     // Before each round, move the insertion point right between
   2032     // the PHIs and the values we are going to write.
   2033     // This allows us to write both PHINodes and the extractelement
   2034     // instructions.
   2035     Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
   2036 
   2037     VectorParts RdxParts;
   2038     setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
   2039     for (unsigned part = 0; part < UF; ++part) {
   2040       // This PHINode contains the vectorized reduction variable, or
   2041       // the initial value vector, if we bypass the vector loop.
   2042       VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
   2043       PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
   2044       Value *StartVal = (part == 0) ? VectorStart : Identity;
   2045       for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
   2046         NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
   2047       NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
   2048       RdxParts.push_back(NewPhi);
   2049     }
   2050 
   2051     // Reduce all of the unrolled parts into a single vector.
   2052     Value *ReducedPartRdx = RdxParts[0];
   2053     unsigned Op = getReductionBinOp(RdxDesc.Kind);
   2054     setDebugLocFromInst(Builder, ReducedPartRdx);
   2055     for (unsigned part = 1; part < UF; ++part) {
   2056       if (Op != Instruction::ICmp && Op != Instruction::FCmp)
   2057         ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op,
   2058                                              RdxParts[part], ReducedPartRdx,
   2059                                              "bin.rdx");
   2060       else
   2061         ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
   2062                                         ReducedPartRdx, RdxParts[part]);
   2063     }
   2064 
   2065     // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
   2066     // and vector ops, reducing the set of values being computed by half each
   2067     // round.
   2068     assert(isPowerOf2_32(VF) &&
   2069            "Reduction emission only supported for pow2 vectors!");
   2070     Value *TmpVec = ReducedPartRdx;
   2071     SmallVector<Constant*, 32> ShuffleMask(VF, 0);
   2072     for (unsigned i = VF; i != 1; i >>= 1) {
   2073       // Move the upper half of the vector to the lower half.
   2074       for (unsigned j = 0; j != i/2; ++j)
   2075         ShuffleMask[j] = Builder.getInt32(i/2 + j);
   2076 
   2077       // Fill the rest of the mask with undef.
   2078       std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
   2079                 UndefValue::get(Builder.getInt32Ty()));
   2080 
   2081       Value *Shuf =
   2082         Builder.CreateShuffleVector(TmpVec,
   2083                                     UndefValue::get(TmpVec->getType()),
   2084                                     ConstantVector::get(ShuffleMask),
   2085                                     "rdx.shuf");
   2086 
   2087       if (Op != Instruction::ICmp && Op != Instruction::FCmp)
   2088         TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
   2089                                      "bin.rdx");
   2090       else
   2091         TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
   2092     }
   2093 
   2094     // The result is in the first element of the vector.
   2095     Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
   2096 
   2097     // Now, we need to fix the users of the reduction variable
   2098     // inside and outside of the scalar remainder loop.
   2099     // We know that the loop is in LCSSA form. We need to update the
   2100     // PHI nodes in the exit blocks.
   2101     for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
   2102          LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
   2103       PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
   2104       if (!LCSSAPhi) continue;
   2105 
   2106       // All PHINodes need to have a single entry edge, or two if
   2107       // we already fixed them.
   2108       assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
   2109 
   2110       // We found our reduction value exit-PHI. Update it with the
   2111       // incoming bypass edge.
   2112       if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
   2113         // Add an edge coming from the bypass.
   2114         LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
   2115         break;
   2116       }
   2117     }// end of the LCSSA phi scan.
   2118 
   2119     // Fix the scalar loop reduction variable with the incoming reduction sum
   2120     // from the vector body and from the backedge value.
   2121     int IncomingEdgeBlockIdx =
   2122     (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
   2123     assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
   2124     // Pick the other block.
   2125     int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
   2126     (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
   2127     (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
   2128   }// end of for each redux variable.
   2129 
   2130   // The Loop exit block may have single value PHI nodes where the incoming
   2131   // value is 'undef'. While vectorizing we only handled real values that
   2132   // were defined inside the loop. Here we handle the 'undef case'.
   2133   // See PR14725.
   2134   for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
   2135        LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
   2136     PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
   2137     if (!LCSSAPhi) continue;
   2138     if (LCSSAPhi->getNumIncomingValues() == 1)
   2139       LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
   2140                             LoopMiddleBlock);
   2141   }
   2142 }
   2143 
   2144 InnerLoopVectorizer::VectorParts
   2145 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
   2146   assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
   2147          "Invalid edge");
   2148 
   2149   // Look for cached value.
   2150   std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
   2151   EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
   2152   if (ECEntryIt != MaskCache.end())
   2153     return ECEntryIt->second;
   2154 
   2155   VectorParts SrcMask = createBlockInMask(Src);
   2156 
   2157   // The terminator has to be a branch inst!
   2158   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
   2159   assert(BI && "Unexpected terminator found");
   2160 
   2161   if (BI->isConditional()) {
   2162     VectorParts EdgeMask = getVectorValue(BI->getCondition());
   2163 
   2164     if (BI->getSuccessor(0) != Dst)
   2165       for (unsigned part = 0; part < UF; ++part)
   2166         EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
   2167 
   2168     for (unsigned part = 0; part < UF; ++part)
   2169       EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
   2170 
   2171     MaskCache[Edge] = EdgeMask;
   2172     return EdgeMask;
   2173   }
   2174 
   2175   MaskCache[Edge] = SrcMask;
   2176   return SrcMask;
   2177 }
   2178 
   2179 InnerLoopVectorizer::VectorParts
   2180 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
   2181   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
   2182 
   2183   // Loop incoming mask is all-one.
   2184   if (OrigLoop->getHeader() == BB) {
   2185     Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
   2186     return getVectorValue(C);
   2187   }
   2188 
   2189   // This is the block mask. We OR all incoming edges, and with zero.
   2190   Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
   2191   VectorParts BlockMask = getVectorValue(Zero);
   2192 
   2193   // For each pred:
   2194   for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
   2195     VectorParts EM = createEdgeMask(*it, BB);
   2196     for (unsigned part = 0; part < UF; ++part)
   2197       BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
   2198   }
   2199 
   2200   return BlockMask;
   2201 }
   2202 
   2203 void
   2204 InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
   2205                                           BasicBlock *BB, PhiVector *PV) {
   2206   // For each instruction in the old loop.
   2207   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
   2208     VectorParts &Entry = WidenMap.get(it);
   2209     switch (it->getOpcode()) {
   2210     case Instruction::Br:
   2211       // Nothing to do for PHIs and BR, since we already took care of the
   2212       // loop control flow instructions.
   2213       continue;
   2214     case Instruction::PHI:{
   2215       PHINode* P = cast<PHINode>(it);
   2216       // Handle reduction variables:
   2217       if (Legal->getReductionVars()->count(P)) {
   2218         for (unsigned part = 0; part < UF; ++part) {
   2219           // This is phase one of vectorizing PHIs.
   2220           Type *VecTy = VectorType::get(it->getType(), VF);
   2221           Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
   2222                                         LoopVectorBody-> getFirstInsertionPt());
   2223         }
   2224         PV->push_back(P);
   2225         continue;
   2226       }
   2227 
   2228       setDebugLocFromInst(Builder, P);
   2229       // Check for PHI nodes that are lowered to vector selects.
   2230       if (P->getParent() != OrigLoop->getHeader()) {
   2231         // We know that all PHIs in non header blocks are converted into
   2232         // selects, so we don't have to worry about the insertion order and we
   2233         // can just use the builder.
   2234         // At this point we generate the predication tree. There may be
   2235         // duplications since this is a simple recursive scan, but future
   2236         // optimizations will clean it up.
   2237 
   2238         unsigned NumIncoming = P->getNumIncomingValues();
   2239 
   2240         // Generate a sequence of selects of the form:
   2241         // SELECT(Mask3, In3,
   2242         //      SELECT(Mask2, In2,
   2243         //                   ( ...)))
   2244         for (unsigned In = 0; In < NumIncoming; In++) {
   2245           VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
   2246                                             P->getParent());
   2247           VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
   2248 
   2249           for (unsigned part = 0; part < UF; ++part) {
   2250             // We might have single edge PHIs (blocks) - use an identity
   2251             // 'select' for the first PHI operand.
   2252             if (In == 0)
   2253               Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
   2254                                                  In0[part]);
   2255             else
   2256               // Select between the current value and the previous incoming edge
   2257               // based on the incoming mask.
   2258               Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
   2259                                                  Entry[part], "predphi");
   2260           }
   2261         }
   2262         continue;
   2263       }
   2264 
   2265       // This PHINode must be an induction variable.
   2266       // Make sure that we know about it.
   2267       assert(Legal->getInductionVars()->count(P) &&
   2268              "Not an induction variable");
   2269 
   2270       LoopVectorizationLegality::InductionInfo II =
   2271         Legal->getInductionVars()->lookup(P);
   2272 
   2273       switch (II.IK) {
   2274       case LoopVectorizationLegality::IK_NoInduction:
   2275         llvm_unreachable("Unknown induction");
   2276       case LoopVectorizationLegality::IK_IntInduction: {
   2277         assert(P->getType() == II.StartValue->getType() && "Types must match");
   2278         Type *PhiTy = P->getType();
   2279         Value *Broadcasted;
   2280         if (P == OldInduction) {
   2281           // Handle the canonical induction variable. We might have had to
   2282           // extend the type.
   2283           Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
   2284         } else {
   2285           // Handle other induction variables that are now based on the
   2286           // canonical one.
   2287           Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
   2288                                                    "normalized.idx");
   2289           NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
   2290           Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
   2291                                           "offset.idx");
   2292         }
   2293         Broadcasted = getBroadcastInstrs(Broadcasted);
   2294         // After broadcasting the induction variable we need to make the vector
   2295         // consecutive by adding 0, 1, 2, etc.
   2296         for (unsigned part = 0; part < UF; ++part)
   2297           Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
   2298         continue;
   2299       }
   2300       case LoopVectorizationLegality::IK_ReverseIntInduction:
   2301       case LoopVectorizationLegality::IK_PtrInduction:
   2302       case LoopVectorizationLegality::IK_ReversePtrInduction:
   2303         // Handle reverse integer and pointer inductions.
   2304         Value *StartIdx = ExtendedIdx;
   2305         // This is the normalized GEP that starts counting at zero.
   2306         Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
   2307                                                  "normalized.idx");
   2308 
   2309         // Handle the reverse integer induction variable case.
   2310         if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
   2311           IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
   2312           Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
   2313                                                  "resize.norm.idx");
   2314           Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
   2315                                                  "reverse.idx");
   2316 
   2317           // This is a new value so do not hoist it out.
   2318           Value *Broadcasted = getBroadcastInstrs(ReverseInd);
   2319           // After broadcasting the induction variable we need to make the
   2320           // vector consecutive by adding  ... -3, -2, -1, 0.
   2321           for (unsigned part = 0; part < UF; ++part)
   2322             Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
   2323                                                true);
   2324           continue;
   2325         }
   2326 
   2327         // Handle the pointer induction variable case.
   2328         assert(P->getType()->isPointerTy() && "Unexpected type.");
   2329 
   2330         // Is this a reverse induction ptr or a consecutive induction ptr.
   2331         bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
   2332                         II.IK);
   2333 
   2334         // This is the vector of results. Notice that we don't generate
   2335         // vector geps because scalar geps result in better code.
   2336         for (unsigned part = 0; part < UF; ++part) {
   2337           Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
   2338           for (unsigned int i = 0; i < VF; ++i) {
   2339             int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
   2340             Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
   2341             Value *GlobalIdx;
   2342             if (!Reverse)
   2343               GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
   2344             else
   2345               GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
   2346 
   2347             Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
   2348                                                "next.gep");
   2349             VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
   2350                                                  Builder.getInt32(i),
   2351                                                  "insert.gep");
   2352           }
   2353           Entry[part] = VecVal;
   2354         }
   2355         continue;
   2356       }
   2357 
   2358     }// End of PHI.
   2359 
   2360     case Instruction::Add:
   2361     case Instruction::FAdd:
   2362     case Instruction::Sub:
   2363     case Instruction::FSub:
   2364     case Instruction::Mul:
   2365     case Instruction::FMul:
   2366     case Instruction::UDiv:
   2367     case Instruction::SDiv:
   2368     case Instruction::FDiv:
   2369     case Instruction::URem:
   2370     case Instruction::SRem:
   2371     case Instruction::FRem:
   2372     case Instruction::Shl:
   2373     case Instruction::LShr:
   2374     case Instruction::AShr:
   2375     case Instruction::And:
   2376     case Instruction::Or:
   2377     case Instruction::Xor: {
   2378       // Just widen binops.
   2379       BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
   2380       setDebugLocFromInst(Builder, BinOp);
   2381       VectorParts &A = getVectorValue(it->getOperand(0));
   2382       VectorParts &B = getVectorValue(it->getOperand(1));
   2383 
   2384       // Use this vector value for all users of the original instruction.
   2385       for (unsigned Part = 0; Part < UF; ++Part) {
   2386         Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
   2387 
   2388         // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
   2389         BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
   2390         if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
   2391           VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
   2392           VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
   2393         }
   2394         if (VecOp && isa<PossiblyExactOperator>(VecOp))
   2395           VecOp->setIsExact(BinOp->isExact());
   2396 
   2397         Entry[Part] = V;
   2398       }
   2399       break;
   2400     }
   2401     case Instruction::Select: {
   2402       // Widen selects.
   2403       // If the selector is loop invariant we can create a select
   2404       // instruction with a scalar condition. Otherwise, use vector-select.
   2405       bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
   2406                                                OrigLoop);
   2407       setDebugLocFromInst(Builder, it);
   2408 
   2409       // The condition can be loop invariant  but still defined inside the
   2410       // loop. This means that we can't just use the original 'cond' value.
   2411       // We have to take the 'vectorized' value and pick the first lane.
   2412       // Instcombine will make this a no-op.
   2413       VectorParts &Cond = getVectorValue(it->getOperand(0));
   2414       VectorParts &Op0  = getVectorValue(it->getOperand(1));
   2415       VectorParts &Op1  = getVectorValue(it->getOperand(2));
   2416       Value *ScalarCond = Builder.CreateExtractElement(Cond[0],
   2417                                                        Builder.getInt32(0));
   2418       for (unsigned Part = 0; Part < UF; ++Part) {
   2419         Entry[Part] = Builder.CreateSelect(
   2420           InvariantCond ? ScalarCond : Cond[Part],
   2421           Op0[Part],
   2422           Op1[Part]);
   2423       }
   2424       break;
   2425     }
   2426 
   2427     case Instruction::ICmp:
   2428     case Instruction::FCmp: {
   2429       // Widen compares. Generate vector compares.
   2430       bool FCmp = (it->getOpcode() == Instruction::FCmp);
   2431       CmpInst *Cmp = dyn_cast<CmpInst>(it);
   2432       setDebugLocFromInst(Builder, it);
   2433       VectorParts &A = getVectorValue(it->getOperand(0));
   2434       VectorParts &B = getVectorValue(it->getOperand(1));
   2435       for (unsigned Part = 0; Part < UF; ++Part) {
   2436         Value *C = 0;
   2437         if (FCmp)
   2438           C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
   2439         else
   2440           C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
   2441         Entry[Part] = C;
   2442       }
   2443       break;
   2444     }
   2445 
   2446     case Instruction::Store:
   2447     case Instruction::Load:
   2448         vectorizeMemoryInstruction(it, Legal);
   2449         break;
   2450     case Instruction::ZExt:
   2451     case Instruction::SExt:
   2452     case Instruction::FPToUI:
   2453     case Instruction::FPToSI:
   2454     case Instruction::FPExt:
   2455     case Instruction::PtrToInt:
   2456     case Instruction::IntToPtr:
   2457     case Instruction::SIToFP:
   2458     case Instruction::UIToFP:
   2459     case Instruction::Trunc:
   2460     case Instruction::FPTrunc:
   2461     case Instruction::BitCast: {
   2462       CastInst *CI = dyn_cast<CastInst>(it);
   2463       setDebugLocFromInst(Builder, it);
   2464       /// Optimize the special case where the source is the induction
   2465       /// variable. Notice that we can only optimize the 'trunc' case
   2466       /// because: a. FP conversions lose precision, b. sext/zext may wrap,
   2467       /// c. other casts depend on pointer size.
   2468       if (CI->getOperand(0) == OldInduction &&
   2469           it->getOpcode() == Instruction::Trunc) {
   2470         Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
   2471                                                CI->getType());
   2472         Value *Broadcasted = getBroadcastInstrs(ScalarCast);
   2473         for (unsigned Part = 0; Part < UF; ++Part)
   2474           Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
   2475         break;
   2476       }
   2477       /// Vectorize casts.
   2478       Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
   2479 
   2480       VectorParts &A = getVectorValue(it->getOperand(0));
   2481       for (unsigned Part = 0; Part < UF; ++Part)
   2482         Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
   2483       break;
   2484     }
   2485 
   2486     case Instruction::Call: {
   2487       // Ignore dbg intrinsics.
   2488       if (isa<DbgInfoIntrinsic>(it))
   2489         break;
   2490       setDebugLocFromInst(Builder, it);
   2491 
   2492       Module *M = BB->getParent()->getParent();
   2493       CallInst *CI = cast<CallInst>(it);
   2494       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
   2495       assert(ID && "Not an intrinsic call!");
   2496       switch (ID) {
   2497       case Intrinsic::lifetime_end:
   2498       case Intrinsic::lifetime_start:
   2499         scalarizeInstruction(it);
   2500         break;
   2501       default:
   2502         for (unsigned Part = 0; Part < UF; ++Part) {
   2503           SmallVector<Value *, 4> Args;
   2504           for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
   2505             VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
   2506             Args.push_back(Arg[Part]);
   2507           }
   2508           Type *Tys[] = { VectorType::get(CI->getType()->getScalarType(), VF) };
   2509           Function *F = Intrinsic::getDeclaration(M, ID, Tys);
   2510           Entry[Part] = Builder.CreateCall(F, Args);
   2511         }
   2512         break;
   2513       }
   2514       break;
   2515     }
   2516 
   2517     default:
   2518       // All other instructions are unsupported. Scalarize them.
   2519       scalarizeInstruction(it);
   2520       break;
   2521     }// end of switch.
   2522   }// end of for_each instr.
   2523 }
   2524 
   2525 void InnerLoopVectorizer::updateAnalysis() {
   2526   // Forget the original basic block.
   2527   SE->forgetLoop(OrigLoop);
   2528 
   2529   // Update the dominator tree information.
   2530   assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
   2531          "Entry does not dominate exit.");
   2532 
   2533   for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
   2534     DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
   2535   DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
   2536   DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
   2537   DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
   2538   DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
   2539   DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
   2540   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
   2541 
   2542   DEBUG(DT->verifyAnalysis());
   2543 }
   2544 
   2545 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
   2546   if (!EnableIfConversion)
   2547     return false;
   2548 
   2549   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
   2550   std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
   2551 
   2552   // A list of pointers that we can safely read and write to.
   2553   SmallPtrSet<Value *, 8> SafePointes;
   2554 
   2555   // Collect safe addresses.
   2556   for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
   2557     BasicBlock *BB = LoopBlocks[i];
   2558 
   2559     if (blockNeedsPredication(BB))
   2560       continue;
   2561 
   2562     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   2563       if (LoadInst *LI = dyn_cast<LoadInst>(I))
   2564         SafePointes.insert(LI->getPointerOperand());
   2565       else if (StoreInst *SI = dyn_cast<StoreInst>(I))
   2566         SafePointes.insert(SI->getPointerOperand());
   2567     }
   2568   }
   2569 
   2570   // Collect the blocks that need predication.
   2571   for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
   2572     BasicBlock *BB = LoopBlocks[i];
   2573 
   2574     // We don't support switch statements inside loops.
   2575     if (!isa<BranchInst>(BB->getTerminator()))
   2576       return false;
   2577 
   2578     // We must be able to predicate all blocks that need to be predicated.
   2579     if (blockNeedsPredication(BB) && !blockCanBePredicated(BB, SafePointes))
   2580       return false;
   2581   }
   2582 
   2583   // We can if-convert this loop.
   2584   return true;
   2585 }
   2586 
   2587 bool LoopVectorizationLegality::canVectorize() {
   2588   // We must have a loop in canonical form. Loops with indirectbr in them cannot
   2589   // be canonicalized.
   2590   if (!TheLoop->getLoopPreheader())
   2591     return false;
   2592 
   2593   // We can only vectorize innermost loops.
   2594   if (TheLoop->getSubLoopsVector().size())
   2595     return false;
   2596 
   2597   // We must have a single backedge.
   2598   if (TheLoop->getNumBackEdges() != 1)
   2599     return false;
   2600 
   2601   // We must have a single exiting block.
   2602   if (!TheLoop->getExitingBlock())
   2603     return false;
   2604 
   2605   unsigned NumBlocks = TheLoop->getNumBlocks();
   2606 
   2607   // Check if we can if-convert non single-bb loops.
   2608   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
   2609     DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
   2610     return false;
   2611   }
   2612 
   2613   // We need to have a loop header.
   2614   BasicBlock *Latch = TheLoop->getLoopLatch();
   2615   DEBUG(dbgs() << "LV: Found a loop: " <<
   2616         TheLoop->getHeader()->getName() << "\n");
   2617 
   2618   // ScalarEvolution needs to be able to find the exit count.
   2619   const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
   2620   if (ExitCount == SE->getCouldNotCompute()) {
   2621     DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
   2622     return false;
   2623   }
   2624 
   2625   // Do not loop-vectorize loops with a tiny trip count.
   2626   unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
   2627   if (TC > 0u && TC < TinyTripCountVectorThreshold) {
   2628     DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
   2629           "This loop is not worth vectorizing.\n");
   2630     return false;
   2631   }
   2632 
   2633   // Check if we can vectorize the instructions and CFG in this loop.
   2634   if (!canVectorizeInstrs()) {
   2635     DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
   2636     return false;
   2637   }
   2638 
   2639   // Go over each instruction and look at memory deps.
   2640   if (!canVectorizeMemory()) {
   2641     DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
   2642     return false;
   2643   }
   2644 
   2645   // Collect all of the variables that remain uniform after vectorization.
   2646   collectLoopUniforms();
   2647 
   2648   DEBUG(dbgs() << "LV: We can vectorize this loop" <<
   2649         (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
   2650         <<"!\n");
   2651 
   2652   // Okay! We can vectorize. At this point we don't have any other mem analysis
   2653   // which may limit our maximum vectorization factor, so just return true with
   2654   // no restrictions.
   2655   return true;
   2656 }
   2657 
   2658 static Type *convertPointerToIntegerType(DataLayout &DL, Type *Ty) {
   2659   if (Ty->isPointerTy())
   2660     return DL.getIntPtrType(Ty->getContext());
   2661   return Ty;
   2662 }
   2663 
   2664 static Type* getWiderType(DataLayout &DL, Type *Ty0, Type *Ty1) {
   2665   Ty0 = convertPointerToIntegerType(DL, Ty0);
   2666   Ty1 = convertPointerToIntegerType(DL, Ty1);
   2667   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
   2668     return Ty0;
   2669   return Ty1;
   2670 }
   2671 
   2672 /// \brief Check that the instruction has outside loop users and is not an
   2673 /// identified reduction variable.
   2674 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
   2675                                SmallPtrSet<Value *, 4> &Reductions) {
   2676   // Reduction instructions are allowed to have exit users. All other
   2677   // instructions must not have external users.
   2678   if (!Reductions.count(Inst))
   2679     //Check that all of the users of the loop are inside the BB.
   2680     for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
   2681          I != E; ++I) {
   2682       Instruction *U = cast<Instruction>(*I);
   2683       // This user may be a reduction exit value.
   2684       if (!TheLoop->contains(U)) {
   2685         DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
   2686         return true;
   2687       }
   2688     }
   2689   return false;
   2690 }
   2691 
   2692 bool LoopVectorizationLegality::canVectorizeInstrs() {
   2693   BasicBlock *PreHeader = TheLoop->getLoopPreheader();
   2694   BasicBlock *Header = TheLoop->getHeader();
   2695 
   2696   // Look for the attribute signaling the absence of NaNs.
   2697   Function &F = *Header->getParent();
   2698   if (F.hasFnAttribute("no-nans-fp-math"))
   2699     HasFunNoNaNAttr = F.getAttributes().getAttribute(
   2700       AttributeSet::FunctionIndex,
   2701       "no-nans-fp-math").getValueAsString() == "true";
   2702 
   2703   // For each block in the loop.
   2704   for (Loop::block_iterator bb = TheLoop->block_begin(),
   2705        be = TheLoop->block_end(); bb != be; ++bb) {
   2706 
   2707     // Scan the instructions in the block and look for hazards.
   2708     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
   2709          ++it) {
   2710 
   2711       if (PHINode *Phi = dyn_cast<PHINode>(it)) {
   2712         Type *PhiTy = Phi->getType();
   2713         // Check that this PHI type is allowed.
   2714         if (!PhiTy->isIntegerTy() &&
   2715             !PhiTy->isFloatingPointTy() &&
   2716             !PhiTy->isPointerTy()) {
   2717           DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
   2718           return false;
   2719         }
   2720 
   2721         // If this PHINode is not in the header block, then we know that we
   2722         // can convert it to select during if-conversion. No need to check if
   2723         // the PHIs in this block are induction or reduction variables.
   2724         if (*bb != Header) {
   2725           // Check that this instruction has no outside users or is an
   2726           // identified reduction value with an outside user.
   2727           if(!hasOutsideLoopUser(TheLoop, it, AllowedExit))
   2728             continue;
   2729           return false;
   2730         }
   2731 
   2732         // We only allow if-converted PHIs with more than two incoming values.
   2733         if (Phi->getNumIncomingValues() != 2) {
   2734           DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
   2735           return false;
   2736         }
   2737 
   2738         // This is the value coming from the preheader.
   2739         Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
   2740         // Check if this is an induction variable.
   2741         InductionKind IK = isInductionVariable(Phi);
   2742 
   2743         if (IK_NoInduction != IK) {
   2744           // Get the widest type.
   2745           if (!WidestIndTy)
   2746             WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
   2747           else
   2748             WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
   2749 
   2750           // Int inductions are special because we only allow one IV.
   2751           if (IK == IK_IntInduction) {
   2752             // Use the phi node with the widest type as induction. Use the last
   2753             // one if there are multiple (no good reason for doing this other
   2754             // than it is expedient).
   2755             if (!Induction || PhiTy == WidestIndTy)
   2756               Induction = Phi;
   2757           }
   2758 
   2759           DEBUG(dbgs() << "LV: Found an induction variable.\n");
   2760           Inductions[Phi] = InductionInfo(StartValue, IK);
   2761           continue;
   2762         }
   2763 
   2764         if (AddReductionVar(Phi, RK_IntegerAdd)) {
   2765           DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
   2766           continue;
   2767         }
   2768         if (AddReductionVar(Phi, RK_IntegerMult)) {
   2769           DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
   2770           continue;
   2771         }
   2772         if (AddReductionVar(Phi, RK_IntegerOr)) {
   2773           DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
   2774           continue;
   2775         }
   2776         if (AddReductionVar(Phi, RK_IntegerAnd)) {
   2777           DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
   2778           continue;
   2779         }
   2780         if (AddReductionVar(Phi, RK_IntegerXor)) {
   2781           DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
   2782           continue;
   2783         }
   2784         if (AddReductionVar(Phi, RK_IntegerMinMax)) {
   2785           DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
   2786           continue;
   2787         }
   2788         if (AddReductionVar(Phi, RK_FloatMult)) {
   2789           DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
   2790           continue;
   2791         }
   2792         if (AddReductionVar(Phi, RK_FloatAdd)) {
   2793           DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
   2794           continue;
   2795         }
   2796         if (AddReductionVar(Phi, RK_FloatMinMax)) {
   2797           DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
   2798                 "\n");
   2799           continue;
   2800         }
   2801 
   2802         DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
   2803         return false;
   2804       }// end of PHI handling
   2805 
   2806       // We still don't handle functions. However, we can ignore dbg intrinsic
   2807       // calls and we do handle certain intrinsic and libm functions.
   2808       CallInst *CI = dyn_cast<CallInst>(it);
   2809       if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
   2810         DEBUG(dbgs() << "LV: Found a call site.\n");
   2811         return false;
   2812       }
   2813 
   2814       // Check that the instruction return type is vectorizable.
   2815       if (!VectorType::isValidElementType(it->getType()) &&
   2816           !it->getType()->isVoidTy()) {
   2817         DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
   2818         return false;
   2819       }
   2820 
   2821       // Check that the stored type is vectorizable.
   2822       if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
   2823         Type *T = ST->getValueOperand()->getType();
   2824         if (!VectorType::isValidElementType(T))
   2825           return false;
   2826       }
   2827 
   2828       // Reduction instructions are allowed to have exit users.
   2829       // All other instructions must not have external users.
   2830       if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
   2831         return false;
   2832 
   2833     } // next instr.
   2834 
   2835   }
   2836 
   2837   if (!Induction) {
   2838     DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
   2839     if (Inductions.empty())
   2840       return false;
   2841   }
   2842 
   2843   return true;
   2844 }
   2845 
   2846 void LoopVectorizationLegality::collectLoopUniforms() {
   2847   // We now know that the loop is vectorizable!
   2848   // Collect variables that will remain uniform after vectorization.
   2849   std::vector<Value*> Worklist;
   2850   BasicBlock *Latch = TheLoop->getLoopLatch();
   2851 
   2852   // Start with the conditional branch and walk up the block.
   2853   Worklist.push_back(Latch->getTerminator()->getOperand(0));
   2854 
   2855   while (Worklist.size()) {
   2856     Instruction *I = dyn_cast<Instruction>(Worklist.back());
   2857     Worklist.pop_back();
   2858 
   2859     // Look at instructions inside this loop.
   2860     // Stop when reaching PHI nodes.
   2861     // TODO: we need to follow values all over the loop, not only in this block.
   2862     if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
   2863       continue;
   2864 
   2865     // This is a known uniform.
   2866     Uniforms.insert(I);
   2867 
   2868     // Insert all operands.
   2869     Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
   2870   }
   2871 }
   2872 
   2873 namespace {
   2874 /// \brief Analyses memory accesses in a loop.
   2875 ///
   2876 /// Checks whether run time pointer checks are needed and builds sets for data
   2877 /// dependence checking.
   2878 class AccessAnalysis {
   2879 public:
   2880   /// \brief Read or write access location.
   2881   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
   2882   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
   2883 
   2884   /// \brief Set of potential dependent memory accesses.
   2885   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
   2886 
   2887   AccessAnalysis(DataLayout *Dl, DepCandidates &DA) :
   2888     DL(Dl), DepCands(DA), AreAllWritesIdentified(true),
   2889     AreAllReadsIdentified(true), IsRTCheckNeeded(false) {}
   2890 
   2891   /// \brief Register a load  and whether it is only read from.
   2892   void addLoad(Value *Ptr, bool IsReadOnly) {
   2893     Accesses.insert(MemAccessInfo(Ptr, false));
   2894     if (IsReadOnly)
   2895       ReadOnlyPtr.insert(Ptr);
   2896   }
   2897 
   2898   /// \brief Register a store.
   2899   void addStore(Value *Ptr) {
   2900     Accesses.insert(MemAccessInfo(Ptr, true));
   2901   }
   2902 
   2903   /// \brief Check whether we can check the pointers at runtime for
   2904   /// non-intersection.
   2905   bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
   2906                        unsigned &NumComparisons, ScalarEvolution *SE,
   2907                        Loop *TheLoop);
   2908 
   2909   /// \brief Goes over all memory accesses, checks whether a RT check is needed
   2910   /// and builds sets of dependent accesses.
   2911   void buildDependenceSets() {
   2912     // Process read-write pointers first.
   2913     processMemAccesses(false);
   2914     // Next, process read pointers.
   2915     processMemAccesses(true);
   2916   }
   2917 
   2918   bool isRTCheckNeeded() { return IsRTCheckNeeded; }
   2919 
   2920   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
   2921 
   2922   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
   2923 
   2924 private:
   2925   typedef SetVector<MemAccessInfo> PtrAccessSet;
   2926   typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
   2927 
   2928   /// \brief Go over all memory access or only the deferred ones if
   2929   /// \p UseDeferred is true and check whether runtime pointer checks are needed
   2930   /// and build sets of dependency check candidates.
   2931   void processMemAccesses(bool UseDeferred);
   2932 
   2933   /// Set of all accesses.
   2934   PtrAccessSet Accesses;
   2935 
   2936   /// Set of access to check after all writes have been processed.
   2937   PtrAccessSet DeferredAccesses;
   2938 
   2939   /// Map of pointers to last access encountered.
   2940   UnderlyingObjToAccessMap ObjToLastAccess;
   2941 
   2942   /// Set of accesses that need a further dependence check.
   2943   MemAccessInfoSet CheckDeps;
   2944 
   2945   /// Set of pointers that are read only.
   2946   SmallPtrSet<Value*, 16> ReadOnlyPtr;
   2947 
   2948   /// Set of underlying objects already written to.
   2949   SmallPtrSet<Value*, 16> WriteObjects;
   2950 
   2951   DataLayout *DL;
   2952 
   2953   /// Sets of potentially dependent accesses - members of one set share an
   2954   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
   2955   /// dependence check.
   2956   DepCandidates &DepCands;
   2957 
   2958   bool AreAllWritesIdentified;
   2959   bool AreAllReadsIdentified;
   2960   bool IsRTCheckNeeded;
   2961 };
   2962 
   2963 } // end anonymous namespace
   2964 
   2965 /// \brief Check whether a pointer can participate in a runtime bounds check.
   2966 static bool hasComputableBounds(ScalarEvolution *SE, Value *Ptr) {
   2967   const SCEV *PtrScev = SE->getSCEV(Ptr);
   2968   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
   2969   if (!AR)
   2970     return false;
   2971 
   2972   return AR->isAffine();
   2973 }
   2974 
   2975 bool AccessAnalysis::canCheckPtrAtRT(
   2976                        LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
   2977                         unsigned &NumComparisons, ScalarEvolution *SE,
   2978                         Loop *TheLoop) {
   2979   // Find pointers with computable bounds. We are going to use this information
   2980   // to place a runtime bound check.
   2981   unsigned NumReadPtrChecks = 0;
   2982   unsigned NumWritePtrChecks = 0;
   2983   bool CanDoRT = true;
   2984 
   2985   bool IsDepCheckNeeded = isDependencyCheckNeeded();
   2986   // We assign consecutive id to access from different dependence sets.
   2987   // Accesses within the same set don't need a runtime check.
   2988   unsigned RunningDepId = 1;
   2989   DenseMap<Value *, unsigned> DepSetId;
   2990 
   2991   for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end();
   2992        AI != AE; ++AI) {
   2993     const MemAccessInfo &Access = *AI;
   2994     Value *Ptr = Access.getPointer();
   2995     bool IsWrite = Access.getInt();
   2996 
   2997     // Just add write checks if we have both.
   2998     if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true)))
   2999       continue;
   3000 
   3001     if (IsWrite)
   3002       ++NumWritePtrChecks;
   3003     else
   3004       ++NumReadPtrChecks;
   3005 
   3006     if (hasComputableBounds(SE, Ptr)) {
   3007       // The id of the dependence set.
   3008       unsigned DepId;
   3009 
   3010       if (IsDepCheckNeeded) {
   3011         Value *Leader = DepCands.getLeaderValue(Access).getPointer();
   3012         unsigned &LeaderId = DepSetId[Leader];
   3013         if (!LeaderId)
   3014           LeaderId = RunningDepId++;
   3015         DepId = LeaderId;
   3016       } else
   3017         // Each access has its own dependence set.
   3018         DepId = RunningDepId++;
   3019 
   3020       RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId);
   3021 
   3022       DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr <<"\n");
   3023     } else {
   3024       CanDoRT = false;
   3025     }
   3026   }
   3027 
   3028   if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
   3029     NumComparisons = 0; // Only one dependence set.
   3030   else
   3031     NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks +
   3032                                            NumWritePtrChecks - 1));
   3033   return CanDoRT;
   3034 }
   3035 
   3036 static bool isFunctionScopeIdentifiedObject(Value *Ptr) {
   3037   return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr);
   3038 }
   3039 
   3040 void AccessAnalysis::processMemAccesses(bool UseDeferred) {
   3041   // We process the set twice: first we process read-write pointers, last we
   3042   // process read-only pointers. This allows us to skip dependence tests for
   3043   // read-only pointers.
   3044 
   3045   PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
   3046   for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) {
   3047     const MemAccessInfo &Access = *AI;
   3048     Value *Ptr = Access.getPointer();
   3049     bool IsWrite = Access.getInt();
   3050 
   3051     DepCands.insert(Access);
   3052 
   3053     // Memorize read-only pointers for later processing and skip them in the
   3054     // first round (they need to be checked after we have seen all write
   3055     // pointers). Note: we also mark pointer that are not consecutive as
   3056     // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the
   3057     // second check for "!IsWrite".
   3058     bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
   3059     if (!UseDeferred && IsReadOnlyPtr) {
   3060       DeferredAccesses.insert(Access);
   3061       continue;
   3062     }
   3063 
   3064     bool NeedDepCheck = false;
   3065     // Check whether there is the possiblity of dependency because of underlying
   3066     // objects being the same.
   3067     typedef SmallVector<Value*, 16> ValueVector;
   3068     ValueVector TempObjects;
   3069     GetUnderlyingObjects(Ptr, TempObjects, DL);
   3070     for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end();
   3071          UI != UE; ++UI) {
   3072       Value *UnderlyingObj = *UI;
   3073 
   3074       // If this is a write then it needs to be an identified object.  If this a
   3075       // read and all writes (so far) are identified function scope objects we
   3076       // don't need an identified underlying object but only an Argument (the
   3077       // next write is going to invalidate this assumption if it is
   3078       // unidentified).
   3079       // This is a micro-optimization for the case where all writes are
   3080       // identified and we have one argument pointer.
   3081       // Otherwise, we do need a runtime check.
   3082       if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) ||
   3083           (!IsWrite && (!AreAllWritesIdentified ||
   3084                         !isa<Argument>(UnderlyingObj)) &&
   3085            !isIdentifiedObject(UnderlyingObj))) {
   3086         DEBUG(dbgs() << "LV: Found an unidentified " <<
   3087               (IsWrite ?  "write" : "read" ) << " ptr:" << *UnderlyingObj <<
   3088               "\n");
   3089         IsRTCheckNeeded = (IsRTCheckNeeded ||
   3090                            !isIdentifiedObject(UnderlyingObj) ||
   3091                            !AreAllReadsIdentified);
   3092 
   3093         if (IsWrite)
   3094           AreAllWritesIdentified = false;
   3095         if (!IsWrite)
   3096           AreAllReadsIdentified = false;
   3097       }
   3098 
   3099       // If this is a write - check other reads and writes for conflicts.  If
   3100       // this is a read only check other writes for conflicts (but only if there
   3101       // is no other write to the ptr - this is an optimization to catch "a[i] =
   3102       // a[i] + " without having to do a dependence check).
   3103       if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj))
   3104         NeedDepCheck = true;
   3105 
   3106       if (IsWrite)
   3107         WriteObjects.insert(UnderlyingObj);
   3108 
   3109       // Create sets of pointers connected by shared underlying objects.
   3110       UnderlyingObjToAccessMap::iterator Prev =
   3111         ObjToLastAccess.find(UnderlyingObj);
   3112       if (Prev != ObjToLastAccess.end())
   3113         DepCands.unionSets(Access, Prev->second);
   3114 
   3115       ObjToLastAccess[UnderlyingObj] = Access;
   3116     }
   3117 
   3118     if (NeedDepCheck)
   3119       CheckDeps.insert(Access);
   3120   }
   3121 }
   3122 
   3123 namespace {
   3124 /// \brief Checks memory dependences among accesses to the same underlying
   3125 /// object to determine whether there vectorization is legal or not (and at
   3126 /// which vectorization factor).
   3127 ///
   3128 /// This class works under the assumption that we already checked that memory
   3129 /// locations with different underlying pointers are "must-not alias".
   3130 /// We use the ScalarEvolution framework to symbolically evalutate access
   3131 /// functions pairs. Since we currently don't restructure the loop we can rely
   3132 /// on the program order of memory accesses to determine their safety.
   3133 /// At the moment we will only deem accesses as safe for:
   3134 ///  * A negative constant distance assuming program order.
   3135 ///
   3136 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
   3137 ///            a[i] = tmp;                y = a[i];
   3138 ///
   3139 ///   The latter case is safe because later checks guarantuee that there can't
   3140 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
   3141 ///   the same variable: a header phi can only be an induction or a reduction, a
   3142 ///   reduction can't have a memory sink, an induction can't have a memory
   3143 ///   source). This is important and must not be violated (or we have to
   3144 ///   resort to checking for cycles through memory).
   3145 ///
   3146 ///  * A positive constant distance assuming program order that is bigger
   3147 ///    than the biggest memory access.
   3148 ///
   3149 ///     tmp = a[i]        OR              b[i] = x
   3150 ///     a[i+2] = tmp                      y = b[i+2];
   3151 ///
   3152 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
   3153 ///
   3154 ///  * Zero distances and all accesses have the same size.
   3155 ///
   3156 class MemoryDepChecker {
   3157 public:
   3158   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
   3159   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
   3160 
   3161   MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L) :
   3162     SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0) {}
   3163 
   3164   /// \brief Register the location (instructions are given increasing numbers)
   3165   /// of a write access.
   3166   void addAccess(StoreInst *SI) {
   3167     Value *Ptr = SI->getPointerOperand();
   3168     Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
   3169     InstMap.push_back(SI);
   3170     ++AccessIdx;
   3171   }
   3172 
   3173   /// \brief Register the location (instructions are given increasing numbers)
   3174   /// of a write access.
   3175   void addAccess(LoadInst *LI) {
   3176     Value *Ptr = LI->getPointerOperand();
   3177     Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
   3178     InstMap.push_back(LI);
   3179     ++AccessIdx;
   3180   }
   3181 
   3182   /// \brief Check whether the dependencies between the accesses are safe.
   3183   ///
   3184   /// Only checks sets with elements in \p CheckDeps.
   3185   bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
   3186                    MemAccessInfoSet &CheckDeps);
   3187 
   3188   /// \brief The maximum number of bytes of a vector register we can vectorize
   3189   /// the accesses safely with.
   3190   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
   3191 
   3192 private:
   3193   ScalarEvolution *SE;
   3194   DataLayout *DL;
   3195   const Loop *InnermostLoop;
   3196 
   3197   /// \brief Maps access locations (ptr, read/write) to program order.
   3198   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
   3199 
   3200   /// \brief Memory access instructions in program order.
   3201   SmallVector<Instruction *, 16> InstMap;
   3202 
   3203   /// \brief The program order index to be used for the next instruction.
   3204   unsigned AccessIdx;
   3205 
   3206   // We can access this many bytes in parallel safely.
   3207   unsigned MaxSafeDepDistBytes;
   3208 
   3209   /// \brief Check whether there is a plausible dependence between the two
   3210   /// accesses.
   3211   ///
   3212   /// Access \p A must happen before \p B in program order. The two indices
   3213   /// identify the index into the program order map.
   3214   ///
   3215   /// This function checks  whether there is a plausible dependence (or the
   3216   /// absence of such can't be proved) between the two accesses. If there is a
   3217   /// plausible dependence but the dependence distance is bigger than one
   3218   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
   3219   /// distance is smaller than any other distance encountered so far).
   3220   /// Otherwise, this function returns true signaling a possible dependence.
   3221   bool isDependent(const MemAccessInfo &A, unsigned AIdx,
   3222                    const MemAccessInfo &B, unsigned BIdx);
   3223 
   3224   /// \brief Check whether the data dependence could prevent store-load
   3225   /// forwarding.
   3226   bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
   3227 };
   3228 
   3229 } // end anonymous namespace
   3230 
   3231 static bool isInBoundsGep(Value *Ptr) {
   3232   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
   3233     return GEP->isInBounds();
   3234   return false;
   3235 }
   3236 
   3237 /// \brief Check whether the access through \p Ptr has a constant stride.
   3238 static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
   3239                         const Loop *Lp) {
   3240   const Type *Ty = Ptr->getType();
   3241   assert(Ty->isPointerTy() && "Unexpected non ptr");
   3242 
   3243   // Make sure that the pointer does not point to aggregate types.
   3244   const PointerType *PtrTy = cast<PointerType>(Ty);
   3245   if (PtrTy->getElementType()->isAggregateType()) {
   3246     DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
   3247           "\n");
   3248     return 0;
   3249   }
   3250 
   3251   const SCEV *PtrScev = SE->getSCEV(Ptr);
   3252   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
   3253   if (!AR) {
   3254     DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
   3255           << *Ptr << " SCEV: " << *PtrScev << "\n");
   3256     return 0;
   3257   }
   3258 
   3259   // The accesss function must stride over the innermost loop.
   3260   if (Lp != AR->getLoop()) {
   3261     DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
   3262           *Ptr << " SCEV: " << *PtrScev << "\n");
   3263   }
   3264 
   3265   // The address calculation must not wrap. Otherwise, a dependence could be
   3266   // inverted.
   3267   // An inbounds getelementptr that is a AddRec with a unit stride
   3268   // cannot wrap per definition. The unit stride requirement is checked later.
   3269   // An getelementptr without an inbounds attribute and unit stride would have
   3270   // to access the pointer value "0" which is undefined behavior in address
   3271   // space 0, therefore we can also vectorize this case.
   3272   bool IsInBoundsGEP = isInBoundsGep(Ptr);
   3273   bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
   3274   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
   3275   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
   3276     DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
   3277           << *Ptr << " SCEV: " << *PtrScev << "\n");
   3278     return 0;
   3279   }
   3280 
   3281   // Check the step is constant.
   3282   const SCEV *Step = AR->getStepRecurrence(*SE);
   3283 
   3284   // Calculate the pointer stride and check if it is consecutive.
   3285   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
   3286   if (!C) {
   3287     DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
   3288           " SCEV: " << *PtrScev << "\n");
   3289     return 0;
   3290   }
   3291 
   3292   int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
   3293   const APInt &APStepVal = C->getValue()->getValue();
   3294 
   3295   // Huge step value - give up.
   3296   if (APStepVal.getBitWidth() > 64)
   3297     return 0;
   3298 
   3299   int64_t StepVal = APStepVal.getSExtValue();
   3300 
   3301   // Strided access.
   3302   int64_t Stride = StepVal / Size;
   3303   int64_t Rem = StepVal % Size;
   3304   if (Rem)
   3305     return 0;
   3306 
   3307   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
   3308   // know we can't "wrap around the address space". In case of address space
   3309   // zero we know that this won't happen without triggering undefined behavior.
   3310   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
   3311       Stride != 1 && Stride != -1)
   3312     return 0;
   3313 
   3314   return Stride;
   3315 }
   3316 
   3317 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
   3318                                                     unsigned TypeByteSize) {
   3319   // If loads occur at a distance that is not a multiple of a feasible vector
   3320   // factor store-load forwarding does not take place.
   3321   // Positive dependences might cause troubles because vectorizing them might
   3322   // prevent store-load forwarding making vectorized code run a lot slower.
   3323   //   a[i] = a[i-3] ^ a[i-8];
   3324   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
   3325   //   hence on your typical architecture store-load forwarding does not take
   3326   //   place. Vectorizing in such cases does not make sense.
   3327   // Store-load forwarding distance.
   3328   const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
   3329   // Maximum vector factor.
   3330   unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
   3331   if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
   3332     MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
   3333 
   3334   for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
   3335        vf *= 2) {
   3336     if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
   3337       MaxVFWithoutSLForwardIssues = (vf >>=1);
   3338       break;
   3339     }
   3340   }
   3341 
   3342   if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
   3343     DEBUG(dbgs() << "LV: Distance " << Distance <<
   3344           " that could cause a store-load forwarding conflict\n");
   3345     return true;
   3346   }
   3347 
   3348   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
   3349       MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
   3350     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
   3351   return false;
   3352 }
   3353 
   3354 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
   3355                                    const MemAccessInfo &B, unsigned BIdx) {
   3356   assert (AIdx < BIdx && "Must pass arguments in program order");
   3357 
   3358   Value *APtr = A.getPointer();
   3359   Value *BPtr = B.getPointer();
   3360   bool AIsWrite = A.getInt();
   3361   bool BIsWrite = B.getInt();
   3362 
   3363   // Two reads are independent.
   3364   if (!AIsWrite && !BIsWrite)
   3365     return false;
   3366 
   3367   const SCEV *AScev = SE->getSCEV(APtr);
   3368   const SCEV *BScev = SE->getSCEV(BPtr);
   3369 
   3370   int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop);
   3371   int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop);
   3372 
   3373   const SCEV *Src = AScev;
   3374   const SCEV *Sink = BScev;
   3375 
   3376   // If the induction step is negative we have to invert source and sink of the
   3377   // dependence.
   3378   if (StrideAPtr < 0) {
   3379     //Src = BScev;
   3380     //Sink = AScev;
   3381     std::swap(APtr, BPtr);
   3382     std::swap(Src, Sink);
   3383     std::swap(AIsWrite, BIsWrite);
   3384     std::swap(AIdx, BIdx);
   3385     std::swap(StrideAPtr, StrideBPtr);
   3386   }
   3387 
   3388   const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
   3389 
   3390   DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
   3391         << "(Induction step: " << StrideAPtr <<  ")\n");
   3392   DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
   3393         << *InstMap[BIdx] << ": " << *Dist << "\n");
   3394 
   3395   // Need consecutive accesses. We don't want to vectorize
   3396   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
   3397   // the address space.
   3398   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
   3399     DEBUG(dbgs() << "Non-consecutive pointer access\n");
   3400     return true;
   3401   }
   3402 
   3403   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
   3404   if (!C) {
   3405     DEBUG(dbgs() << "LV: Dependence because of non constant distance\n");
   3406     return true;
   3407   }
   3408 
   3409   Type *ATy = APtr->getType()->getPointerElementType();
   3410   Type *BTy = BPtr->getType()->getPointerElementType();
   3411   unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
   3412 
   3413   // Negative distances are not plausible dependencies.
   3414   const APInt &Val = C->getValue()->getValue();
   3415   if (Val.isNegative()) {
   3416     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
   3417     if (IsTrueDataDependence &&
   3418         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
   3419          ATy != BTy))
   3420       return true;
   3421 
   3422     DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
   3423     return false;
   3424   }
   3425 
   3426   // Write to the same location with the same size.
   3427   // Could be improved to assert type sizes are the same (i32 == float, etc).
   3428   if (Val == 0) {
   3429     if (ATy == BTy)
   3430       return false;
   3431     DEBUG(dbgs() << "LV: Zero dependence difference but different types");
   3432     return true;
   3433   }
   3434 
   3435   assert(Val.isStrictlyPositive() && "Expect a positive value");
   3436 
   3437   // Positive distance bigger than max vectorization factor.
   3438   if (ATy != BTy) {
   3439     DEBUG(dbgs() <<
   3440           "LV: ReadWrite-Write positive dependency with different types");
   3441     return false;
   3442   }
   3443 
   3444   unsigned Distance = (unsigned) Val.getZExtValue();
   3445 
   3446   // Bail out early if passed-in parameters make vectorization not feasible.
   3447   unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
   3448   unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1;
   3449 
   3450   // The distance must be bigger than the size needed for a vectorized version
   3451   // of the operation and the size of the vectorized operation must not be
   3452   // bigger than the currrent maximum size.
   3453   if (Distance < 2*TypeByteSize ||
   3454       2*TypeByteSize > MaxSafeDepDistBytes ||
   3455       Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
   3456     DEBUG(dbgs() << "LV: Failure because of Positive distance "
   3457         << Val.getSExtValue() << "\n");
   3458     return true;
   3459   }
   3460 
   3461   MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
   3462     Distance : MaxSafeDepDistBytes;
   3463 
   3464   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
   3465   if (IsTrueDataDependence &&
   3466       couldPreventStoreLoadForward(Distance, TypeByteSize))
   3467      return true;
   3468 
   3469   DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
   3470         " with max VF=" << MaxSafeDepDistBytes/TypeByteSize << "\n");
   3471 
   3472   return false;
   3473 }
   3474 
   3475 bool
   3476 MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
   3477                               MemAccessInfoSet &CheckDeps) {
   3478 
   3479   MaxSafeDepDistBytes = -1U;
   3480   while (!CheckDeps.empty()) {
   3481     MemAccessInfo CurAccess = *CheckDeps.begin();
   3482 
   3483     // Get the relevant memory access set.
   3484     EquivalenceClasses<MemAccessInfo>::iterator I =
   3485       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
   3486 
   3487     // Check accesses within this set.
   3488     EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
   3489     AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
   3490 
   3491     // Check every access pair.
   3492     while (AI != AE) {
   3493       CheckDeps.erase(*AI);
   3494       EquivalenceClasses<MemAccessInfo>::member_iterator OI = llvm::next(AI);
   3495       while (OI != AE) {
   3496         // Check every accessing instruction pair in program order.
   3497         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
   3498              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
   3499           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
   3500                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
   3501             if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2))
   3502               return false;
   3503             if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1))
   3504               return false;
   3505           }
   3506         ++OI;
   3507       }
   3508       AI++;
   3509     }
   3510   }
   3511   return true;
   3512 }
   3513 
   3514 bool LoopVectorizationLegality::canVectorizeMemory() {
   3515 
   3516   typedef SmallVector<Value*, 16> ValueVector;
   3517   typedef SmallPtrSet<Value*, 16> ValueSet;
   3518 
   3519   // Holds the Load and Store *instructions*.
   3520   ValueVector Loads;
   3521   ValueVector Stores;
   3522 
   3523   // Holds all the different accesses in the loop.
   3524   unsigned NumReads = 0;
   3525   unsigned NumReadWrites = 0;
   3526 
   3527   PtrRtCheck.Pointers.clear();
   3528   PtrRtCheck.Need = false;
   3529 
   3530   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
   3531   MemoryDepChecker DepChecker(SE, DL, TheLoop);
   3532 
   3533   // For each block.
   3534   for (Loop::block_iterator bb = TheLoop->block_begin(),
   3535        be = TheLoop->block_end(); bb != be; ++bb) {
   3536 
   3537     // Scan the BB and collect legal loads and stores.
   3538     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
   3539          ++it) {
   3540 
   3541       // If this is a load, save it. If this instruction can read from memory
   3542       // but is not a load, then we quit. Notice that we don't handle function
   3543       // calls that read or write.
   3544       if (it->mayReadFromMemory()) {
   3545         // Many math library functions read the rounding mode. We will only
   3546         // vectorize a loop if it contains known function calls that don't set
   3547         // the flag. Therefore, it is safe to ignore this read from memory.
   3548         CallInst *Call = dyn_cast<CallInst>(it);
   3549         if (Call && getIntrinsicIDForCall(Call, TLI))
   3550           continue;
   3551 
   3552         LoadInst *Ld = dyn_cast<LoadInst>(it);
   3553         if (!Ld) return false;
   3554         if (!Ld->isSimple() && !IsAnnotatedParallel) {
   3555           DEBUG(dbgs() << "LV: Found a non-simple load.\n");
   3556           return false;
   3557         }
   3558         Loads.push_back(Ld);
   3559         DepChecker.addAccess(Ld);
   3560         continue;
   3561       }
   3562 
   3563       // Save 'store' instructions. Abort if other instructions write to memory.
   3564       if (it->mayWriteToMemory()) {
   3565         StoreInst *St = dyn_cast<StoreInst>(it);
   3566         if (!St) return false;
   3567         if (!St->isSimple() && !IsAnnotatedParallel) {
   3568           DEBUG(dbgs() << "LV: Found a non-simple store.\n");
   3569           return false;
   3570         }
   3571         Stores.push_back(St);
   3572         DepChecker.addAccess(St);
   3573       }
   3574     } // next instr.
   3575   } // next block.
   3576 
   3577   // Now we have two lists that hold the loads and the stores.
   3578   // Next, we find the pointers that they use.
   3579 
   3580   // Check if we see any stores. If there are no stores, then we don't
   3581   // care if the pointers are *restrict*.
   3582   if (!Stores.size()) {
   3583     DEBUG(dbgs() << "LV: Found a read-only loop!\n");
   3584     return true;
   3585   }
   3586 
   3587   AccessAnalysis::DepCandidates DependentAccesses;
   3588   AccessAnalysis Accesses(DL, DependentAccesses);
   3589 
   3590   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
   3591   // multiple times on the same object. If the ptr is accessed twice, once
   3592   // for read and once for write, it will only appear once (on the write
   3593   // list). This is okay, since we are going to check for conflicts between
   3594   // writes and between reads and writes, but not between reads and reads.
   3595   ValueSet Seen;
   3596 
   3597   ValueVector::iterator I, IE;
   3598   for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
   3599     StoreInst *ST = cast<StoreInst>(*I);
   3600     Value* Ptr = ST->getPointerOperand();
   3601 
   3602     if (isUniform(Ptr)) {
   3603       DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
   3604       return false;
   3605     }
   3606 
   3607     // If we did *not* see this pointer before, insert it to  the read-write
   3608     // list. At this phase it is only a 'write' list.
   3609     if (Seen.insert(Ptr)) {
   3610       ++NumReadWrites;
   3611       Accesses.addStore(Ptr);
   3612     }
   3613   }
   3614 
   3615   if (IsAnnotatedParallel) {
   3616     DEBUG(dbgs()
   3617           << "LV: A loop annotated parallel, ignore memory dependency "
   3618           << "checks.\n");
   3619     return true;
   3620   }
   3621 
   3622   SmallPtrSet<Value *, 16> ReadOnlyPtr;
   3623   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
   3624     LoadInst *LD = cast<LoadInst>(*I);
   3625     Value* Ptr = LD->getPointerOperand();
   3626     // If we did *not* see this pointer before, insert it to the
   3627     // read list. If we *did* see it before, then it is already in
   3628     // the read-write list. This allows us to vectorize expressions
   3629     // such as A[i] += x;  Because the address of A[i] is a read-write
   3630     // pointer. This only works if the index of A[i] is consecutive.
   3631     // If the address of i is unknown (for example A[B[i]]) then we may
   3632     // read a few words, modify, and write a few words, and some of the
   3633     // words may be written to the same address.
   3634     bool IsReadOnlyPtr = false;
   3635     if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop)) {
   3636       ++NumReads;
   3637       IsReadOnlyPtr = true;
   3638     }
   3639     Accesses.addLoad(Ptr, IsReadOnlyPtr);
   3640   }
   3641 
   3642   // If we write (or read-write) to a single destination and there are no
   3643   // other reads in this loop then is it safe to vectorize.
   3644   if (NumReadWrites == 1 && NumReads == 0) {
   3645     DEBUG(dbgs() << "LV: Found a write-only loop!\n");
   3646     return true;
   3647   }
   3648 
   3649   // Build dependence sets and check whether we need a runtime pointer bounds
   3650   // check.
   3651   Accesses.buildDependenceSets();
   3652   bool NeedRTCheck = Accesses.isRTCheckNeeded();
   3653 
   3654   // Find pointers with computable bounds. We are going to use this information
   3655   // to place a runtime bound check.
   3656   unsigned NumComparisons = 0;
   3657   bool CanDoRT = false;
   3658   if (NeedRTCheck)
   3659     CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop);
   3660 
   3661 
   3662   DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
   3663         " pointer comparisons.\n");
   3664 
   3665   // If we only have one set of dependences to check pointers among we don't
   3666   // need a runtime check.
   3667   if (NumComparisons == 0 && NeedRTCheck)
   3668     NeedRTCheck = false;
   3669 
   3670   // Check that we did not collect too many pointers or found a unsizeable
   3671   // pointer.
   3672   if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
   3673     PtrRtCheck.reset();
   3674     CanDoRT = false;
   3675   }
   3676 
   3677   if (CanDoRT) {
   3678     DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
   3679   }
   3680 
   3681   if (NeedRTCheck && !CanDoRT) {
   3682     DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
   3683           "the array bounds.\n");
   3684     PtrRtCheck.reset();
   3685     return false;
   3686   }
   3687 
   3688   PtrRtCheck.Need = NeedRTCheck;
   3689 
   3690   bool CanVecMem = true;
   3691   if (Accesses.isDependencyCheckNeeded()) {
   3692     DEBUG(dbgs() << "LV: Checking memory dependencies\n");
   3693     CanVecMem = DepChecker.areDepsSafe(DependentAccesses,
   3694                                        Accesses.getDependenciesToCheck());
   3695     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
   3696   }
   3697 
   3698   DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") <<
   3699         " need a runtime memory check.\n");
   3700 
   3701   return CanVecMem;
   3702 }
   3703 
   3704 static bool hasMultipleUsesOf(Instruction *I,
   3705                               SmallPtrSet<Instruction *, 8> &Insts) {
   3706   unsigned NumUses = 0;
   3707   for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
   3708     if (Insts.count(dyn_cast<Instruction>(*Use)))
   3709       ++NumUses;
   3710     if (NumUses > 1)
   3711       return true;
   3712   }
   3713 
   3714   return false;
   3715 }
   3716 
   3717 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) {
   3718   for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
   3719     if (!Set.count(dyn_cast<Instruction>(*Use)))
   3720       return false;
   3721   return true;
   3722 }
   3723 
   3724 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
   3725                                                 ReductionKind Kind) {
   3726   if (Phi->getNumIncomingValues() != 2)
   3727     return false;
   3728 
   3729   // Reduction variables are only found in the loop header block.
   3730   if (Phi->getParent() != TheLoop->getHeader())
   3731     return false;
   3732 
   3733   // Obtain the reduction start value from the value that comes from the loop
   3734   // preheader.
   3735   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
   3736 
   3737   // ExitInstruction is the single value which is used outside the loop.
   3738   // We only allow for a single reduction value to be used outside the loop.
   3739   // This includes users of the reduction, variables (which form a cycle
   3740   // which ends in the phi node).
   3741   Instruction *ExitInstruction = 0;
   3742   // Indicates that we found a reduction operation in our scan.
   3743   bool FoundReduxOp = false;
   3744 
   3745   // We start with the PHI node and scan for all of the users of this
   3746   // instruction. All users must be instructions that can be used as reduction
   3747   // variables (such as ADD). We must have a single out-of-block user. The cycle
   3748   // must include the original PHI.
   3749   bool FoundStartPHI = false;
   3750 
   3751   // To recognize min/max patterns formed by a icmp select sequence, we store
   3752   // the number of instruction we saw from the recognized min/max pattern,
   3753   //  to make sure we only see exactly the two instructions.
   3754   unsigned NumCmpSelectPatternInst = 0;
   3755   ReductionInstDesc ReduxDesc(false, 0);
   3756 
   3757   SmallPtrSet<Instruction *, 8> VisitedInsts;
   3758   SmallVector<Instruction *, 8> Worklist;
   3759   Worklist.push_back(Phi);
   3760   VisitedInsts.insert(Phi);
   3761 
   3762   // A value in the reduction can be used:
   3763   //  - By the reduction:
   3764   //      - Reduction operation:
   3765   //        - One use of reduction value (safe).
   3766   //        - Multiple use of reduction value (not safe).
   3767   //      - PHI:
   3768   //        - All uses of the PHI must be the reduction (safe).
   3769   //        - Otherwise, not safe.
   3770   //  - By one instruction outside of the loop (safe).
   3771   //  - By further instructions outside of the loop (not safe).
   3772   //  - By an instruction that is not part of the reduction (not safe).
   3773   //    This is either:
   3774   //      * An instruction type other than PHI or the reduction operation.
   3775   //      * A PHI in the header other than the initial PHI.
   3776   while (!Worklist.empty()) {
   3777     Instruction *Cur = Worklist.back();
   3778     Worklist.pop_back();
   3779 
   3780     // No Users.
   3781     // If the instruction has no users then this is a broken chain and can't be
   3782     // a reduction variable.
   3783     if (Cur->use_empty())
   3784       return false;
   3785 
   3786     bool IsAPhi = isa<PHINode>(Cur);
   3787 
   3788     // A header PHI use other than the original PHI.
   3789     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
   3790       return false;
   3791 
   3792     // Reductions of instructions such as Div, and Sub is only possible if the
   3793     // LHS is the reduction variable.
   3794     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
   3795         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
   3796         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
   3797       return false;
   3798 
   3799     // Any reduction instruction must be of one of the allowed kinds.
   3800     ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
   3801     if (!ReduxDesc.IsReduction)
   3802       return false;
   3803 
   3804     // A reduction operation must only have one use of the reduction value.
   3805     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
   3806         hasMultipleUsesOf(Cur, VisitedInsts))
   3807       return false;
   3808 
   3809     // All inputs to a PHI node must be a reduction value.
   3810     if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
   3811       return false;
   3812 
   3813     if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
   3814                                      isa<SelectInst>(Cur)))
   3815       ++NumCmpSelectPatternInst;
   3816     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
   3817                                    isa<SelectInst>(Cur)))
   3818       ++NumCmpSelectPatternInst;
   3819 
   3820     // Check  whether we found a reduction operator.
   3821     FoundReduxOp |= !IsAPhi;
   3822 
   3823     // Process users of current instruction. Push non PHI nodes after PHI nodes
   3824     // onto the stack. This way we are going to have seen all inputs to PHI
   3825     // nodes once we get to them.
   3826     SmallVector<Instruction *, 8> NonPHIs;
   3827     SmallVector<Instruction *, 8> PHIs;
   3828     for (Value::use_iterator UI = Cur->use_begin(), E = Cur->use_end(); UI != E;
   3829          ++UI) {
   3830       Instruction *Usr = cast<Instruction>(*UI);
   3831 
   3832       // Check if we found the exit user.
   3833       BasicBlock *Parent = Usr->getParent();
   3834       if (!TheLoop->contains(Parent)) {
   3835         // Exit if you find multiple outside users or if the header phi node is
   3836         // being used. In this case the user uses the value of the previous
   3837         // iteration, in which case we would loose "VF-1" iterations of the
   3838         // reduction operation if we vectorize.
   3839         if (ExitInstruction != 0 || Cur == Phi)
   3840           return false;
   3841 
   3842         ExitInstruction = Cur;
   3843         continue;
   3844       }
   3845 
   3846       // Process instructions only once (termination).
   3847       if (VisitedInsts.insert(Usr)) {
   3848         if (isa<PHINode>(Usr))
   3849           PHIs.push_back(Usr);
   3850         else
   3851           NonPHIs.push_back(Usr);
   3852       }
   3853       // Remember that we completed the cycle.
   3854       if (Usr == Phi)
   3855         FoundStartPHI = true;
   3856     }
   3857     Worklist.append(PHIs.begin(), PHIs.end());
   3858     Worklist.append(NonPHIs.begin(), NonPHIs.end());
   3859   }
   3860 
   3861   // This means we have seen one but not the other instruction of the
   3862   // pattern or more than just a select and cmp.
   3863   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
   3864       NumCmpSelectPatternInst != 2)
   3865     return false;
   3866 
   3867   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
   3868     return false;
   3869 
   3870   // We found a reduction var if we have reached the original phi node and we
   3871   // only have a single instruction with out-of-loop users.
   3872 
   3873   // This instruction is allowed to have out-of-loop users.
   3874   AllowedExit.insert(ExitInstruction);
   3875 
   3876   // Save the description of this reduction variable.
   3877   ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
   3878                          ReduxDesc.MinMaxKind);
   3879   Reductions[Phi] = RD;
   3880   // We've ended the cycle. This is a reduction variable if we have an
   3881   // outside user and it has a binary op.
   3882 
   3883   return true;
   3884 }
   3885 
   3886 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
   3887 /// pattern corresponding to a min(X, Y) or max(X, Y).
   3888 LoopVectorizationLegality::ReductionInstDesc
   3889 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
   3890                                                     ReductionInstDesc &Prev) {
   3891 
   3892   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
   3893          "Expect a select instruction");
   3894   Instruction *Cmp = 0;
   3895   SelectInst *Select = 0;
   3896 
   3897   // We must handle the select(cmp()) as a single instruction. Advance to the
   3898   // select.
   3899   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
   3900     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin())))
   3901       return ReductionInstDesc(false, I);
   3902     return ReductionInstDesc(Select, Prev.MinMaxKind);
   3903   }
   3904 
   3905   // Only handle single use cases for now.
   3906   if (!(Select = dyn_cast<SelectInst>(I)))
   3907     return ReductionInstDesc(false, I);
   3908   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
   3909       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
   3910     return ReductionInstDesc(false, I);
   3911   if (!Cmp->hasOneUse())
   3912     return ReductionInstDesc(false, I);
   3913 
   3914   Value *CmpLeft;
   3915   Value *CmpRight;
   3916 
   3917   // Look for a min/max pattern.
   3918   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   3919     return ReductionInstDesc(Select, MRK_UIntMin);
   3920   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   3921     return ReductionInstDesc(Select, MRK_UIntMax);
   3922   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   3923     return ReductionInstDesc(Select, MRK_SIntMax);
   3924   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   3925     return ReductionInstDesc(Select, MRK_SIntMin);
   3926   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   3927     return ReductionInstDesc(Select, MRK_FloatMin);
   3928   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   3929     return ReductionInstDesc(Select, MRK_FloatMax);
   3930   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   3931     return ReductionInstDesc(Select, MRK_FloatMin);
   3932   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   3933     return ReductionInstDesc(Select, MRK_FloatMax);
   3934 
   3935   return ReductionInstDesc(false, I);
   3936 }
   3937 
   3938 LoopVectorizationLegality::ReductionInstDesc
   3939 LoopVectorizationLegality::isReductionInstr(Instruction *I,
   3940                                             ReductionKind Kind,
   3941                                             ReductionInstDesc &Prev) {
   3942   bool FP = I->getType()->isFloatingPointTy();
   3943   bool FastMath = (FP && I->isCommutative() && I->isAssociative());
   3944   switch (I->getOpcode()) {
   3945   default:
   3946     return ReductionInstDesc(false, I);
   3947   case Instruction::PHI:
   3948       if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
   3949                  Kind != RK_FloatMinMax))
   3950         return ReductionInstDesc(false, I);
   3951     return ReductionInstDesc(I, Prev.MinMaxKind);
   3952   case Instruction::Sub:
   3953   case Instruction::Add:
   3954     return ReductionInstDesc(Kind == RK_IntegerAdd, I);
   3955   case Instruction::Mul:
   3956     return ReductionInstDesc(Kind == RK_IntegerMult, I);
   3957   case Instruction::And:
   3958     return ReductionInstDesc(Kind == RK_IntegerAnd, I);
   3959   case Instruction::Or:
   3960     return ReductionInstDesc(Kind == RK_IntegerOr, I);
   3961   case Instruction::Xor:
   3962     return ReductionInstDesc(Kind == RK_IntegerXor, I);
   3963   case Instruction::FMul:
   3964     return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
   3965   case Instruction::FAdd:
   3966     return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
   3967   case Instruction::FCmp:
   3968   case Instruction::ICmp:
   3969   case Instruction::Select:
   3970     if (Kind != RK_IntegerMinMax &&
   3971         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
   3972       return ReductionInstDesc(false, I);
   3973     return isMinMaxSelectCmpPattern(I, Prev);
   3974   }
   3975 }
   3976 
   3977 LoopVectorizationLegality::InductionKind
   3978 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
   3979   Type *PhiTy = Phi->getType();
   3980   // We only handle integer and pointer inductions variables.
   3981   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
   3982     return IK_NoInduction;
   3983 
   3984   // Check that the PHI is consecutive.
   3985   const SCEV *PhiScev = SE->getSCEV(Phi);
   3986   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
   3987   if (!AR) {
   3988     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
   3989     return IK_NoInduction;
   3990   }
   3991   const SCEV *Step = AR->getStepRecurrence(*SE);
   3992 
   3993   // Integer inductions need to have a stride of one.
   3994   if (PhiTy->isIntegerTy()) {
   3995     if (Step->isOne())
   3996       return IK_IntInduction;
   3997     if (Step->isAllOnesValue())
   3998       return IK_ReverseIntInduction;
   3999     return IK_NoInduction;
   4000   }
   4001 
   4002   // Calculate the pointer stride and check if it is consecutive.
   4003   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
   4004   if (!C)
   4005     return IK_NoInduction;
   4006 
   4007   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
   4008   uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
   4009   if (C->getValue()->equalsInt(Size))
   4010     return IK_PtrInduction;
   4011   else if (C->getValue()->equalsInt(0 - Size))
   4012     return IK_ReversePtrInduction;
   4013 
   4014   return IK_NoInduction;
   4015 }
   4016 
   4017 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
   4018   Value *In0 = const_cast<Value*>(V);
   4019   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
   4020   if (!PN)
   4021     return false;
   4022 
   4023   return Inductions.count(PN);
   4024 }
   4025 
   4026 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
   4027   assert(TheLoop->contains(BB) && "Unknown block used");
   4028 
   4029   // Blocks that do not dominate the latch need predication.
   4030   BasicBlock* Latch = TheLoop->getLoopLatch();
   4031   return !DT->dominates(BB, Latch);
   4032 }
   4033 
   4034 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
   4035                                             SmallPtrSet<Value *, 8>& SafePtrs) {
   4036   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
   4037     // We might be able to hoist the load.
   4038     if (it->mayReadFromMemory()) {
   4039       LoadInst *LI = dyn_cast<LoadInst>(it);
   4040       if (!LI || !SafePtrs.count(LI->getPointerOperand()))
   4041         return false;
   4042     }
   4043 
   4044     // We don't predicate stores at the moment.
   4045     if (it->mayWriteToMemory() || it->mayThrow())
   4046       return false;
   4047 
   4048     // The instructions below can trap.
   4049     switch (it->getOpcode()) {
   4050     default: continue;
   4051     case Instruction::UDiv:
   4052     case Instruction::SDiv:
   4053     case Instruction::URem:
   4054     case Instruction::SRem:
   4055              return false;
   4056     }
   4057   }
   4058 
   4059   return true;
   4060 }
   4061 
   4062 LoopVectorizationCostModel::VectorizationFactor
   4063 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
   4064                                                       unsigned UserVF) {
   4065   // Width 1 means no vectorize
   4066   VectorizationFactor Factor = { 1U, 0U };
   4067   if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
   4068     DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
   4069     return Factor;
   4070   }
   4071 
   4072   // Find the trip count.
   4073   unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
   4074   DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
   4075 
   4076   unsigned WidestType = getWidestType();
   4077   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
   4078   unsigned MaxSafeDepDist = -1U;
   4079   if (Legal->getMaxSafeDepDistBytes() != -1U)
   4080     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
   4081   WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
   4082                     WidestRegister : MaxSafeDepDist);
   4083   unsigned MaxVectorSize = WidestRegister / WidestType;
   4084   DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
   4085   DEBUG(dbgs() << "LV: The Widest register is:" << WidestRegister << "bits.\n");
   4086 
   4087   if (MaxVectorSize == 0) {
   4088     DEBUG(dbgs() << "LV: The target has no vector registers.\n");
   4089     MaxVectorSize = 1;
   4090   }
   4091 
   4092   assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
   4093          " into one vector!");
   4094 
   4095   unsigned VF = MaxVectorSize;
   4096 
   4097   // If we optimize the program for size, avoid creating the tail loop.
   4098   if (OptForSize) {
   4099     // If we are unable to calculate the trip count then don't try to vectorize.
   4100     if (TC < 2) {
   4101       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
   4102       return Factor;
   4103     }
   4104 
   4105     // Find the maximum SIMD width that can fit within the trip count.
   4106     VF = TC % MaxVectorSize;
   4107 
   4108     if (VF == 0)
   4109       VF = MaxVectorSize;
   4110 
   4111     // If the trip count that we found modulo the vectorization factor is not
   4112     // zero then we require a tail.
   4113     if (VF < 2) {
   4114       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
   4115       return Factor;
   4116     }
   4117   }
   4118 
   4119   if (UserVF != 0) {
   4120     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
   4121     DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
   4122 
   4123     Factor.Width = UserVF;
   4124     return Factor;
   4125   }
   4126 
   4127   float Cost = expectedCost(1);
   4128   unsigned Width = 1;
   4129   DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
   4130   for (unsigned i=2; i <= VF; i*=2) {
   4131     // Notice that the vector loop needs to be executed less times, so
   4132     // we need to divide the cost of the vector loops by the width of
   4133     // the vector elements.
   4134     float VectorCost = expectedCost(i) / (float)i;
   4135     DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
   4136           (int)VectorCost << ".\n");
   4137     if (VectorCost < Cost) {
   4138       Cost = VectorCost;
   4139       Width = i;
   4140     }
   4141   }
   4142 
   4143   DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
   4144   Factor.Width = Width;
   4145   Factor.Cost = Width * Cost;
   4146   return Factor;
   4147 }
   4148 
   4149 unsigned LoopVectorizationCostModel::getWidestType() {
   4150   unsigned MaxWidth = 8;
   4151 
   4152   // For each block.
   4153   for (Loop::block_iterator bb = TheLoop->block_begin(),
   4154        be = TheLoop->block_end(); bb != be; ++bb) {
   4155     BasicBlock *BB = *bb;
   4156 
   4157     // For each instruction in the loop.
   4158     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
   4159       Type *T = it->getType();
   4160 
   4161       // Only examine Loads, Stores and PHINodes.
   4162       if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
   4163         continue;
   4164 
   4165       // Examine PHI nodes that are reduction variables.
   4166       if (PHINode *PN = dyn_cast<PHINode>(it))
   4167         if (!Legal->getReductionVars()->count(PN))
   4168           continue;
   4169 
   4170       // Examine the stored values.
   4171       if (StoreInst *ST = dyn_cast<StoreInst>(it))
   4172         T = ST->getValueOperand()->getType();
   4173 
   4174       // Ignore loaded pointer types and stored pointer types that are not
   4175       // consecutive. However, we do want to take consecutive stores/loads of
   4176       // pointer vectors into account.
   4177       if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
   4178         continue;
   4179 
   4180       MaxWidth = std::max(MaxWidth,
   4181                           (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
   4182     }
   4183   }
   4184 
   4185   return MaxWidth;
   4186 }
   4187 
   4188 unsigned
   4189 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
   4190                                                unsigned UserUF,
   4191                                                unsigned VF,
   4192                                                unsigned LoopCost) {
   4193 
   4194   // -- The unroll heuristics --
   4195   // We unroll the loop in order to expose ILP and reduce the loop overhead.
   4196   // There are many micro-architectural considerations that we can't predict
   4197   // at this level. For example frontend pressure (on decode or fetch) due to
   4198   // code size, or the number and capabilities of the execution ports.
   4199   //
   4200   // We use the following heuristics to select the unroll factor:
   4201   // 1. If the code has reductions the we unroll in order to break the cross
   4202   // iteration dependency.
   4203   // 2. If the loop is really small then we unroll in order to reduce the loop
   4204   // overhead.
   4205   // 3. We don't unroll if we think that we will spill registers to memory due
   4206   // to the increased register pressure.
   4207 
   4208   // Use the user preference, unless 'auto' is selected.
   4209   if (UserUF != 0)
   4210     return UserUF;
   4211 
   4212   // When we optimize for size we don't unroll.
   4213   if (OptForSize)
   4214     return 1;
   4215 
   4216   // We used the distance for the unroll factor.
   4217   if (Legal->getMaxSafeDepDistBytes() != -1U)
   4218     return 1;
   4219 
   4220   // Do not unroll loops with a relatively small trip count.
   4221   unsigned TC = SE->getSmallConstantTripCount(TheLoop,
   4222                                               TheLoop->getLoopLatch());
   4223   if (TC > 1 && TC < TinyTripCountUnrollThreshold)
   4224     return 1;
   4225 
   4226   unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
   4227   DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
   4228         " vector registers\n");
   4229 
   4230   LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
   4231   // We divide by these constants so assume that we have at least one
   4232   // instruction that uses at least one register.
   4233   R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
   4234   R.NumInstructions = std::max(R.NumInstructions, 1U);
   4235 
   4236   // We calculate the unroll factor using the following formula.
   4237   // Subtract the number of loop invariants from the number of available
   4238   // registers. These registers are used by all of the unrolled instances.
   4239   // Next, divide the remaining registers by the number of registers that is
   4240   // required by the loop, in order to estimate how many parallel instances
   4241   // fit without causing spills.
   4242   unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
   4243 
   4244   // Clamp the unroll factor ranges to reasonable factors.
   4245   unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
   4246 
   4247   // If we did not calculate the cost for VF (because the user selected the VF)
   4248   // then we calculate the cost of VF here.
   4249   if (LoopCost == 0)
   4250     LoopCost = expectedCost(VF);
   4251 
   4252   // Clamp the calculated UF to be between the 1 and the max unroll factor
   4253   // that the target allows.
   4254   if (UF > MaxUnrollSize)
   4255     UF = MaxUnrollSize;
   4256   else if (UF < 1)
   4257     UF = 1;
   4258 
   4259   if (Legal->getReductionVars()->size()) {
   4260     DEBUG(dbgs() << "LV: Unrolling because of reductions. \n");
   4261     return UF;
   4262   }
   4263 
   4264   // We want to unroll tiny loops in order to reduce the loop overhead.
   4265   // We assume that the cost overhead is 1 and we use the cost model
   4266   // to estimate the cost of the loop and unroll until the cost of the
   4267   // loop overhead is about 5% of the cost of the loop.
   4268   DEBUG(dbgs() << "LV: Loop cost is "<< LoopCost <<" \n");
   4269   if (LoopCost < 20) {
   4270     DEBUG(dbgs() << "LV: Unrolling to reduce branch cost. \n");
   4271     unsigned NewUF = 20/LoopCost + 1;
   4272     return std::min(NewUF, UF);
   4273   }
   4274 
   4275   DEBUG(dbgs() << "LV: Not Unrolling. \n");
   4276   return 1;
   4277 }
   4278 
   4279 LoopVectorizationCostModel::RegisterUsage
   4280 LoopVectorizationCostModel::calculateRegisterUsage() {
   4281   // This function calculates the register usage by measuring the highest number
   4282   // of values that are alive at a single location. Obviously, this is a very
   4283   // rough estimation. We scan the loop in a topological order in order and
   4284   // assign a number to each instruction. We use RPO to ensure that defs are
   4285   // met before their users. We assume that each instruction that has in-loop
   4286   // users starts an interval. We record every time that an in-loop value is
   4287   // used, so we have a list of the first and last occurrences of each
   4288   // instruction. Next, we transpose this data structure into a multi map that
   4289   // holds the list of intervals that *end* at a specific location. This multi
   4290   // map allows us to perform a linear search. We scan the instructions linearly
   4291   // and record each time that a new interval starts, by placing it in a set.
   4292   // If we find this value in the multi-map then we remove it from the set.
   4293   // The max register usage is the maximum size of the set.
   4294   // We also search for instructions that are defined outside the loop, but are
   4295   // used inside the loop. We need this number separately from the max-interval
   4296   // usage number because when we unroll, loop-invariant values do not take
   4297   // more register.
   4298   LoopBlocksDFS DFS(TheLoop);
   4299   DFS.perform(LI);
   4300 
   4301   RegisterUsage R;
   4302   R.NumInstructions = 0;
   4303 
   4304   // Each 'key' in the map opens a new interval. The values
   4305   // of the map are the index of the 'last seen' usage of the
   4306   // instruction that is the key.
   4307   typedef DenseMap<Instruction*, unsigned> IntervalMap;
   4308   // Maps instruction to its index.
   4309   DenseMap<unsigned, Instruction*> IdxToInstr;
   4310   // Marks the end of each interval.
   4311   IntervalMap EndPoint;
   4312   // Saves the list of instruction indices that are used in the loop.
   4313   SmallSet<Instruction*, 8> Ends;
   4314   // Saves the list of values that are used in the loop but are
   4315   // defined outside the loop, such as arguments and constants.
   4316   SmallPtrSet<Value*, 8> LoopInvariants;
   4317 
   4318   unsigned Index = 0;
   4319   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
   4320        be = DFS.endRPO(); bb != be; ++bb) {
   4321     R.NumInstructions += (*bb)->size();
   4322     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
   4323          ++it) {
   4324       Instruction *I = it;
   4325       IdxToInstr[Index++] = I;
   4326 
   4327       // Save the end location of each USE.
   4328       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
   4329         Value *U = I->getOperand(i);
   4330         Instruction *Instr = dyn_cast<Instruction>(U);
   4331 
   4332         // Ignore non-instruction values such as arguments, constants, etc.
   4333         if (!Instr) continue;
   4334 
   4335         // If this instruction is outside the loop then record it and continue.
   4336         if (!TheLoop->contains(Instr)) {
   4337           LoopInvariants.insert(Instr);
   4338           continue;
   4339         }
   4340 
   4341         // Overwrite previous end points.
   4342         EndPoint[Instr] = Index;
   4343         Ends.insert(Instr);
   4344       }
   4345     }
   4346   }
   4347 
   4348   // Saves the list of intervals that end with the index in 'key'.
   4349   typedef SmallVector<Instruction*, 2> InstrList;
   4350   DenseMap<unsigned, InstrList> TransposeEnds;
   4351 
   4352   // Transpose the EndPoints to a list of values that end at each index.
   4353   for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
   4354        it != e; ++it)
   4355     TransposeEnds[it->second].push_back(it->first);
   4356 
   4357   SmallSet<Instruction*, 8> OpenIntervals;
   4358   unsigned MaxUsage = 0;
   4359 
   4360 
   4361   DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
   4362   for (unsigned int i = 0; i < Index; ++i) {
   4363     Instruction *I = IdxToInstr[i];
   4364     // Ignore instructions that are never used within the loop.
   4365     if (!Ends.count(I)) continue;
   4366 
   4367     // Remove all of the instructions that end at this location.
   4368     InstrList &List = TransposeEnds[i];
   4369     for (unsigned int j=0, e = List.size(); j < e; ++j)
   4370       OpenIntervals.erase(List[j]);
   4371 
   4372     // Count the number of live interals.
   4373     MaxUsage = std::max(MaxUsage, OpenIntervals.size());
   4374 
   4375     DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
   4376           OpenIntervals.size() <<"\n");
   4377 
   4378     // Add the current instruction to the list of open intervals.
   4379     OpenIntervals.insert(I);
   4380   }
   4381 
   4382   unsigned Invariant = LoopInvariants.size();
   4383   DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
   4384   DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
   4385   DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
   4386 
   4387   R.LoopInvariantRegs = Invariant;
   4388   R.MaxLocalUsers = MaxUsage;
   4389   return R;
   4390 }
   4391 
   4392 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
   4393   unsigned Cost = 0;
   4394 
   4395   // For each block.
   4396   for (Loop::block_iterator bb = TheLoop->block_begin(),
   4397        be = TheLoop->block_end(); bb != be; ++bb) {
   4398     unsigned BlockCost = 0;
   4399     BasicBlock *BB = *bb;
   4400 
   4401     // For each instruction in the old loop.
   4402     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
   4403       // Skip dbg intrinsics.
   4404       if (isa<DbgInfoIntrinsic>(it))
   4405         continue;
   4406 
   4407       unsigned C = getInstructionCost(it, VF);
   4408       BlockCost += C;
   4409       DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " <<
   4410             VF << " For instruction: "<< *it << "\n");
   4411     }
   4412 
   4413     // We assume that if-converted blocks have a 50% chance of being executed.
   4414     // When the code is scalar then some of the blocks are avoided due to CF.
   4415     // When the code is vectorized we execute all code paths.
   4416     if (VF == 1 && Legal->blockNeedsPredication(*bb))
   4417       BlockCost /= 2;
   4418 
   4419     Cost += BlockCost;
   4420   }
   4421 
   4422   return Cost;
   4423 }
   4424 
   4425 /// \brief Check whether the address computation for a non-consecutive memory
   4426 /// access looks like an unlikely candidate for being merged into the indexing
   4427 /// mode.
   4428 ///
   4429 /// We look for a GEP which has one index that is an induction variable and all
   4430 /// other indices are loop invariant. If the stride of this access is also
   4431 /// within a small bound we decide that this address computation can likely be
   4432 /// merged into the addressing mode.
   4433 /// In all other cases, we identify the address computation as complex.
   4434 static bool isLikelyComplexAddressComputation(Value *Ptr,
   4435                                               LoopVectorizationLegality *Legal,
   4436                                               ScalarEvolution *SE,
   4437                                               const Loop *TheLoop) {
   4438   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
   4439   if (!Gep)
   4440     return true;
   4441 
   4442   // We are looking for a gep with all loop invariant indices except for one
   4443   // which should be an induction variable.
   4444   unsigned NumOperands = Gep->getNumOperands();
   4445   for (unsigned i = 1; i < NumOperands; ++i) {
   4446     Value *Opd = Gep->getOperand(i);
   4447     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
   4448         !Legal->isInductionVariable(Opd))
   4449       return true;
   4450   }
   4451 
   4452   // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
   4453   // can likely be merged into the address computation.
   4454   unsigned MaxMergeDistance = 64;
   4455 
   4456   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
   4457   if (!AddRec)
   4458     return true;
   4459 
   4460   // Check the step is constant.
   4461   const SCEV *Step = AddRec->getStepRecurrence(*SE);
   4462   // Calculate the pointer stride and check if it is consecutive.
   4463   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
   4464   if (!C)
   4465     return true;
   4466 
   4467   const APInt &APStepVal = C->getValue()->getValue();
   4468 
   4469   // Huge step value - give up.
   4470   if (APStepVal.getBitWidth() > 64)
   4471     return true;
   4472 
   4473   int64_t StepVal = APStepVal.getSExtValue();
   4474 
   4475   return StepVal > MaxMergeDistance;
   4476 }
   4477 
   4478 unsigned
   4479 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
   4480   // If we know that this instruction will remain uniform, check the cost of
   4481   // the scalar version.
   4482   if (Legal->isUniformAfterVectorization(I))
   4483     VF = 1;
   4484 
   4485   Type *RetTy = I->getType();
   4486   Type *VectorTy = ToVectorTy(RetTy, VF);
   4487 
   4488   // TODO: We need to estimate the cost of intrinsic calls.
   4489   switch (I->getOpcode()) {
   4490   case Instruction::GetElementPtr:
   4491     // We mark this instruction as zero-cost because the cost of GEPs in
   4492     // vectorized code depends on whether the corresponding memory instruction
   4493     // is scalarized or not. Therefore, we handle GEPs with the memory
   4494     // instruction cost.
   4495     return 0;
   4496   case Instruction::Br: {
   4497     return TTI.getCFInstrCost(I->getOpcode());
   4498   }
   4499   case Instruction::PHI:
   4500     //TODO: IF-converted IFs become selects.
   4501     return 0;
   4502   case Instruction::Add:
   4503   case Instruction::FAdd:
   4504   case Instruction::Sub:
   4505   case Instruction::FSub:
   4506   case Instruction::Mul:
   4507   case Instruction::FMul:
   4508   case Instruction::UDiv:
   4509   case Instruction::SDiv:
   4510   case Instruction::FDiv:
   4511   case Instruction::URem:
   4512   case Instruction::SRem:
   4513   case Instruction::FRem:
   4514   case Instruction::Shl:
   4515   case Instruction::LShr:
   4516   case Instruction::AShr:
   4517   case Instruction::And:
   4518   case Instruction::Or:
   4519   case Instruction::Xor: {
   4520     // Certain instructions can be cheaper to vectorize if they have a constant
   4521     // second vector operand. One example of this are shifts on x86.
   4522     TargetTransformInfo::OperandValueKind Op1VK =
   4523       TargetTransformInfo::OK_AnyValue;
   4524     TargetTransformInfo::OperandValueKind Op2VK =
   4525       TargetTransformInfo::OK_AnyValue;
   4526 
   4527     if (isa<ConstantInt>(I->getOperand(1)))
   4528       Op2VK = TargetTransformInfo::OK_UniformConstantValue;
   4529 
   4530     return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
   4531   }
   4532   case Instruction::Select: {
   4533     SelectInst *SI = cast<SelectInst>(I);
   4534     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
   4535     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
   4536     Type *CondTy = SI->getCondition()->getType();
   4537     if (!ScalarCond)
   4538       CondTy = VectorType::get(CondTy, VF);
   4539 
   4540     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
   4541   }
   4542   case Instruction::ICmp:
   4543   case Instruction::FCmp: {
   4544     Type *ValTy = I->getOperand(0)->getType();
   4545     VectorTy = ToVectorTy(ValTy, VF);
   4546     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
   4547   }
   4548   case Instruction::Store:
   4549   case Instruction::Load: {
   4550     StoreInst *SI = dyn_cast<StoreInst>(I);
   4551     LoadInst *LI = dyn_cast<LoadInst>(I);
   4552     Type *ValTy = (SI ? SI->getValueOperand()->getType() :
   4553                    LI->getType());
   4554     VectorTy = ToVectorTy(ValTy, VF);
   4555 
   4556     unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
   4557     unsigned AS = SI ? SI->getPointerAddressSpace() :
   4558       LI->getPointerAddressSpace();
   4559     Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
   4560     // We add the cost of address computation here instead of with the gep
   4561     // instruction because only here we know whether the operation is
   4562     // scalarized.
   4563     if (VF == 1)
   4564       return TTI.getAddressComputationCost(VectorTy) +
   4565         TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
   4566 
   4567     // Scalarized loads/stores.
   4568     int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
   4569     bool Reverse = ConsecutiveStride < 0;
   4570     unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
   4571     unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
   4572     if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
   4573       bool IsComplexComputation =
   4574         isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
   4575       unsigned Cost = 0;
   4576       // The cost of extracting from the value vector and pointer vector.
   4577       Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
   4578       for (unsigned i = 0; i < VF; ++i) {
   4579         //  The cost of extracting the pointer operand.
   4580         Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
   4581         // In case of STORE, the cost of ExtractElement from the vector.
   4582         // In case of LOAD, the cost of InsertElement into the returned
   4583         // vector.
   4584         Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
   4585                                             Instruction::InsertElement,
   4586                                             VectorTy, i);
   4587       }
   4588 
   4589       // The cost of the scalar loads/stores.
   4590       Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
   4591       Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
   4592                                        Alignment, AS);
   4593       return Cost;
   4594     }
   4595 
   4596     // Wide load/stores.
   4597     unsigned Cost = TTI.getAddressComputationCost(VectorTy);
   4598     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
   4599 
   4600     if (Reverse)
   4601       Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
   4602                                   VectorTy, 0);
   4603     return Cost;
   4604   }
   4605   case Instruction::ZExt:
   4606   case Instruction::SExt:
   4607   case Instruction::FPToUI:
   4608   case Instruction::FPToSI:
   4609   case Instruction::FPExt:
   4610   case Instruction::PtrToInt:
   4611   case Instruction::IntToPtr:
   4612   case Instruction::SIToFP:
   4613   case Instruction::UIToFP:
   4614   case Instruction::Trunc:
   4615   case Instruction::FPTrunc:
   4616   case Instruction::BitCast: {
   4617     // We optimize the truncation of induction variable.
   4618     // The cost of these is the same as the scalar operation.
   4619     if (I->getOpcode() == Instruction::Trunc &&
   4620         Legal->isInductionVariable(I->getOperand(0)))
   4621       return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
   4622                                   I->getOperand(0)->getType());
   4623 
   4624     Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
   4625     return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
   4626   }
   4627   case Instruction::Call: {
   4628     CallInst *CI = cast<CallInst>(I);
   4629     Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
   4630     assert(ID && "Not an intrinsic call!");
   4631     Type *RetTy = ToVectorTy(CI->getType(), VF);
   4632     SmallVector<Type*, 4> Tys;
   4633     for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
   4634       Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
   4635     return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
   4636   }
   4637   default: {
   4638     // We are scalarizing the instruction. Return the cost of the scalar
   4639     // instruction, plus the cost of insert and extract into vector
   4640     // elements, times the vector width.
   4641     unsigned Cost = 0;
   4642 
   4643     if (!RetTy->isVoidTy() && VF != 1) {
   4644       unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
   4645                                                 VectorTy);
   4646       unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
   4647                                                 VectorTy);
   4648 
   4649       // The cost of inserting the results plus extracting each one of the
   4650       // operands.
   4651       Cost += VF * (InsCost + ExtCost * I->getNumOperands());
   4652     }
   4653 
   4654     // The cost of executing VF copies of the scalar instruction. This opcode
   4655     // is unknown. Assume that it is the same as 'mul'.
   4656     Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
   4657     return Cost;
   4658   }
   4659   }// end of switch.
   4660 }
   4661 
   4662 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
   4663   if (Scalar->isVoidTy() || VF == 1)
   4664     return Scalar;
   4665   return VectorType::get(Scalar, VF);
   4666 }
   4667 
   4668 char LoopVectorize::ID = 0;
   4669 static const char lv_name[] = "Loop Vectorization";
   4670 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
   4671 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
   4672 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
   4673 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
   4674 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
   4675 
   4676 namespace llvm {
   4677   Pass *createLoopVectorizePass() {
   4678     return new LoopVectorize();
   4679   }
   4680 }
   4681 
   4682 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
   4683   // Check for a store.
   4684   if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
   4685     return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
   4686 
   4687   // Check for a load.
   4688   if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
   4689     return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
   4690 
   4691   return false;
   4692 }
   4693