Home | History | Annotate | Download | only in Polynomials
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2010 Manuel Yguel <manuel.yguel (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_COMPANION_H
     11 #define EIGEN_COMPANION_H
     12 
     13 // This file requires the user to include
     14 // * Eigen/Core
     15 // * Eigen/src/PolynomialSolver.h
     16 
     17 namespace Eigen {
     18 
     19 namespace internal {
     20 
     21 #ifndef EIGEN_PARSED_BY_DOXYGEN
     22 
     23 template <typename T>
     24 T radix(){ return 2; }
     25 
     26 template <typename T>
     27 T radix2(){ return radix<T>()*radix<T>(); }
     28 
     29 template<int Size>
     30 struct decrement_if_fixed_size
     31 {
     32   enum {
     33     ret = (Size == Dynamic) ? Dynamic : Size-1 };
     34 };
     35 
     36 #endif
     37 
     38 template< typename _Scalar, int _Deg >
     39 class companion
     40 {
     41   public:
     42     EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Deg==Dynamic ? Dynamic : _Deg)
     43 
     44     enum {
     45       Deg = _Deg,
     46       Deg_1=decrement_if_fixed_size<Deg>::ret
     47     };
     48 
     49     typedef _Scalar                                Scalar;
     50     typedef typename NumTraits<Scalar>::Real       RealScalar;
     51     typedef Matrix<Scalar, Deg, 1>                 RightColumn;
     52     //typedef DiagonalMatrix< Scalar, Deg_1, Deg_1 > BottomLeftDiagonal;
     53     typedef Matrix<Scalar, Deg_1, 1>               BottomLeftDiagonal;
     54 
     55     typedef Matrix<Scalar, Deg, Deg>               DenseCompanionMatrixType;
     56     typedef Matrix< Scalar, _Deg, Deg_1 >          LeftBlock;
     57     typedef Matrix< Scalar, Deg_1, Deg_1 >         BottomLeftBlock;
     58     typedef Matrix< Scalar, 1, Deg_1 >             LeftBlockFirstRow;
     59 
     60     typedef DenseIndex Index;
     61 
     62   public:
     63     EIGEN_STRONG_INLINE const _Scalar operator()(Index row, Index col ) const
     64     {
     65       if( m_bl_diag.rows() > col )
     66       {
     67         if( 0 < row ){ return m_bl_diag[col]; }
     68         else{ return 0; }
     69       }
     70       else{ return m_monic[row]; }
     71     }
     72 
     73   public:
     74     template<typename VectorType>
     75     void setPolynomial( const VectorType& poly )
     76     {
     77       const Index deg = poly.size()-1;
     78       m_monic = -1/poly[deg] * poly.head(deg);
     79       //m_bl_diag.setIdentity( deg-1 );
     80       m_bl_diag.setOnes(deg-1);
     81     }
     82 
     83     template<typename VectorType>
     84     companion( const VectorType& poly ){
     85       setPolynomial( poly ); }
     86 
     87   public:
     88     DenseCompanionMatrixType denseMatrix() const
     89     {
     90       const Index deg   = m_monic.size();
     91       const Index deg_1 = deg-1;
     92       DenseCompanionMatrixType companion(deg,deg);
     93       companion <<
     94         ( LeftBlock(deg,deg_1)
     95           << LeftBlockFirstRow::Zero(1,deg_1),
     96           BottomLeftBlock::Identity(deg-1,deg-1)*m_bl_diag.asDiagonal() ).finished()
     97         , m_monic;
     98       return companion;
     99     }
    100 
    101 
    102 
    103   protected:
    104     /** Helper function for the balancing algorithm.
    105      * \returns true if the row and the column, having colNorm and rowNorm
    106      * as norms, are balanced, false otherwise.
    107      * colB and rowB are repectively the multipliers for
    108      * the column and the row in order to balance them.
    109      * */
    110     bool balanced( Scalar colNorm, Scalar rowNorm,
    111         bool& isBalanced, Scalar& colB, Scalar& rowB );
    112 
    113     /** Helper function for the balancing algorithm.
    114      * \returns true if the row and the column, having colNorm and rowNorm
    115      * as norms, are balanced, false otherwise.
    116      * colB and rowB are repectively the multipliers for
    117      * the column and the row in order to balance them.
    118      * */
    119     bool balancedR( Scalar colNorm, Scalar rowNorm,
    120         bool& isBalanced, Scalar& colB, Scalar& rowB );
    121 
    122   public:
    123     /**
    124      * Balancing algorithm from B. N. PARLETT and C. REINSCH (1969)
    125      * "Balancing a matrix for calculation of eigenvalues and eigenvectors"
    126      * adapted to the case of companion matrices.
    127      * A matrix with non zero row and non zero column is balanced
    128      * for a certain norm if the i-th row and the i-th column
    129      * have same norm for all i.
    130      */
    131     void balance();
    132 
    133   protected:
    134       RightColumn                m_monic;
    135       BottomLeftDiagonal         m_bl_diag;
    136 };
    137 
    138 
    139 
    140 template< typename _Scalar, int _Deg >
    141 inline
    142 bool companion<_Scalar,_Deg>::balanced( Scalar colNorm, Scalar rowNorm,
    143     bool& isBalanced, Scalar& colB, Scalar& rowB )
    144 {
    145   if( Scalar(0) == colNorm || Scalar(0) == rowNorm ){ return true; }
    146   else
    147   {
    148     //To find the balancing coefficients, if the radix is 2,
    149     //one finds \f$ \sigma \f$ such that
    150     // \f$ 2^{2\sigma-1} < rowNorm / colNorm \le 2^{2\sigma+1} \f$
    151     // then the balancing coefficient for the row is \f$ 1/2^{\sigma} \f$
    152     // and the balancing coefficient for the column is \f$ 2^{\sigma} \f$
    153     rowB = rowNorm / radix<Scalar>();
    154     colB = Scalar(1);
    155     const Scalar s = colNorm + rowNorm;
    156 
    157     while (colNorm < rowB)
    158     {
    159       colB *= radix<Scalar>();
    160       colNorm *= radix2<Scalar>();
    161     }
    162 
    163     rowB = rowNorm * radix<Scalar>();
    164 
    165     while (colNorm >= rowB)
    166     {
    167       colB /= radix<Scalar>();
    168       colNorm /= radix2<Scalar>();
    169     }
    170 
    171     //This line is used to avoid insubstantial balancing
    172     if ((rowNorm + colNorm) < Scalar(0.95) * s * colB)
    173     {
    174       isBalanced = false;
    175       rowB = Scalar(1) / colB;
    176       return false;
    177     }
    178     else{
    179       return true; }
    180   }
    181 }
    182 
    183 template< typename _Scalar, int _Deg >
    184 inline
    185 bool companion<_Scalar,_Deg>::balancedR( Scalar colNorm, Scalar rowNorm,
    186     bool& isBalanced, Scalar& colB, Scalar& rowB )
    187 {
    188   if( Scalar(0) == colNorm || Scalar(0) == rowNorm ){ return true; }
    189   else
    190   {
    191     /**
    192      * Set the norm of the column and the row to the geometric mean
    193      * of the row and column norm
    194      */
    195     const _Scalar q = colNorm/rowNorm;
    196     if( !isApprox( q, _Scalar(1) ) )
    197     {
    198       rowB = sqrt( colNorm/rowNorm );
    199       colB = Scalar(1)/rowB;
    200 
    201       isBalanced = false;
    202       return false;
    203     }
    204     else{
    205       return true; }
    206   }
    207 }
    208 
    209 
    210 template< typename _Scalar, int _Deg >
    211 void companion<_Scalar,_Deg>::balance()
    212 {
    213   EIGEN_STATIC_ASSERT( Deg == Dynamic || 1 < Deg, YOU_MADE_A_PROGRAMMING_MISTAKE );
    214   const Index deg   = m_monic.size();
    215   const Index deg_1 = deg-1;
    216 
    217   bool hasConverged=false;
    218   while( !hasConverged )
    219   {
    220     hasConverged = true;
    221     Scalar colNorm,rowNorm;
    222     Scalar colB,rowB;
    223 
    224     //First row, first column excluding the diagonal
    225     //==============================================
    226     colNorm = abs(m_bl_diag[0]);
    227     rowNorm = abs(m_monic[0]);
    228 
    229     //Compute balancing of the row and the column
    230     if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
    231     {
    232       m_bl_diag[0] *= colB;
    233       m_monic[0] *= rowB;
    234     }
    235 
    236     //Middle rows and columns excluding the diagonal
    237     //==============================================
    238     for( Index i=1; i<deg_1; ++i )
    239     {
    240       // column norm, excluding the diagonal
    241       colNorm = abs(m_bl_diag[i]);
    242 
    243       // row norm, excluding the diagonal
    244       rowNorm = abs(m_bl_diag[i-1]) + abs(m_monic[i]);
    245 
    246       //Compute balancing of the row and the column
    247       if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
    248       {
    249         m_bl_diag[i]   *= colB;
    250         m_bl_diag[i-1] *= rowB;
    251         m_monic[i]     *= rowB;
    252       }
    253     }
    254 
    255     //Last row, last column excluding the diagonal
    256     //============================================
    257     const Index ebl = m_bl_diag.size()-1;
    258     VectorBlock<RightColumn,Deg_1> headMonic( m_monic, 0, deg_1 );
    259     colNorm = headMonic.array().abs().sum();
    260     rowNorm = abs( m_bl_diag[ebl] );
    261 
    262     //Compute balancing of the row and the column
    263     if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
    264     {
    265       headMonic      *= colB;
    266       m_bl_diag[ebl] *= rowB;
    267     }
    268   }
    269 }
    270 
    271 } // end namespace internal
    272 
    273 } // end namespace Eigen
    274 
    275 #endif // EIGEN_COMPANION_H
    276