1 //===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ exception related code generation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCleanup.h" 16 #include "CGObjCRuntime.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtCXX.h" 19 #include "clang/AST/StmtObjC.h" 20 #include "llvm/IR/Intrinsics.h" 21 #include "llvm/Support/CallSite.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 static llvm::Constant *getAllocateExceptionFn(CodeGenModule &CGM) { 27 // void *__cxa_allocate_exception(size_t thrown_size); 28 29 llvm::FunctionType *FTy = 30 llvm::FunctionType::get(CGM.Int8PtrTy, CGM.SizeTy, /*IsVarArgs=*/false); 31 32 return CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception"); 33 } 34 35 static llvm::Constant *getFreeExceptionFn(CodeGenModule &CGM) { 36 // void __cxa_free_exception(void *thrown_exception); 37 38 llvm::FunctionType *FTy = 39 llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 40 41 return CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception"); 42 } 43 44 static llvm::Constant *getThrowFn(CodeGenModule &CGM) { 45 // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, 46 // void (*dest) (void *)); 47 48 llvm::Type *Args[3] = { CGM.Int8PtrTy, CGM.Int8PtrTy, CGM.Int8PtrTy }; 49 llvm::FunctionType *FTy = 50 llvm::FunctionType::get(CGM.VoidTy, Args, /*IsVarArgs=*/false); 51 52 return CGM.CreateRuntimeFunction(FTy, "__cxa_throw"); 53 } 54 55 static llvm::Constant *getReThrowFn(CodeGenModule &CGM) { 56 // void __cxa_rethrow(); 57 58 llvm::FunctionType *FTy = 59 llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false); 60 61 return CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow"); 62 } 63 64 static llvm::Constant *getGetExceptionPtrFn(CodeGenModule &CGM) { 65 // void *__cxa_get_exception_ptr(void*); 66 67 llvm::FunctionType *FTy = 68 llvm::FunctionType::get(CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 69 70 return CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr"); 71 } 72 73 static llvm::Constant *getBeginCatchFn(CodeGenModule &CGM) { 74 // void *__cxa_begin_catch(void*); 75 76 llvm::FunctionType *FTy = 77 llvm::FunctionType::get(CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 78 79 return CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch"); 80 } 81 82 static llvm::Constant *getEndCatchFn(CodeGenModule &CGM) { 83 // void __cxa_end_catch(); 84 85 llvm::FunctionType *FTy = 86 llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false); 87 88 return CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch"); 89 } 90 91 static llvm::Constant *getUnexpectedFn(CodeGenModule &CGM) { 92 // void __cxa_call_unexpected(void *thrown_exception); 93 94 llvm::FunctionType *FTy = 95 llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 96 97 return CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected"); 98 } 99 100 llvm::Constant *CodeGenFunction::getUnwindResumeFn() { 101 llvm::FunctionType *FTy = 102 llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); 103 104 if (CGM.getLangOpts().SjLjExceptions) 105 return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume"); 106 return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume"); 107 } 108 109 llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() { 110 llvm::FunctionType *FTy = 111 llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); 112 113 if (CGM.getLangOpts().SjLjExceptions) 114 return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow"); 115 return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow"); 116 } 117 118 static llvm::Constant *getTerminateFn(CodeGenModule &CGM) { 119 // void __terminate(); 120 121 llvm::FunctionType *FTy = 122 llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false); 123 124 StringRef name; 125 126 // In C++, use std::terminate(). 127 if (CGM.getLangOpts().CPlusPlus) 128 name = "_ZSt9terminatev"; // FIXME: mangling! 129 else if (CGM.getLangOpts().ObjC1 && 130 CGM.getLangOpts().ObjCRuntime.hasTerminate()) 131 name = "objc_terminate"; 132 else 133 name = "abort"; 134 return CGM.CreateRuntimeFunction(FTy, name); 135 } 136 137 static llvm::Constant *getCatchallRethrowFn(CodeGenModule &CGM, 138 StringRef Name) { 139 llvm::FunctionType *FTy = 140 llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 141 142 return CGM.CreateRuntimeFunction(FTy, Name); 143 } 144 145 namespace { 146 /// The exceptions personality for a function. 147 struct EHPersonality { 148 const char *PersonalityFn; 149 150 // If this is non-null, this personality requires a non-standard 151 // function for rethrowing an exception after a catchall cleanup. 152 // This function must have prototype void(void*). 153 const char *CatchallRethrowFn; 154 155 static const EHPersonality &get(const LangOptions &Lang); 156 static const EHPersonality GNU_C; 157 static const EHPersonality GNU_C_SJLJ; 158 static const EHPersonality GNU_ObjC; 159 static const EHPersonality GNUstep_ObjC; 160 static const EHPersonality GNU_ObjCXX; 161 static const EHPersonality NeXT_ObjC; 162 static const EHPersonality GNU_CPlusPlus; 163 static const EHPersonality GNU_CPlusPlus_SJLJ; 164 }; 165 } 166 167 const EHPersonality EHPersonality::GNU_C = { "__gcc_personality_v0", 0 }; 168 const EHPersonality EHPersonality::GNU_C_SJLJ = { "__gcc_personality_sj0", 0 }; 169 const EHPersonality EHPersonality::NeXT_ObjC = { "__objc_personality_v0", 0 }; 170 const EHPersonality EHPersonality::GNU_CPlusPlus = { "__gxx_personality_v0", 0}; 171 const EHPersonality 172 EHPersonality::GNU_CPlusPlus_SJLJ = { "__gxx_personality_sj0", 0 }; 173 const EHPersonality 174 EHPersonality::GNU_ObjC = {"__gnu_objc_personality_v0", "objc_exception_throw"}; 175 const EHPersonality 176 EHPersonality::GNU_ObjCXX = { "__gnustep_objcxx_personality_v0", 0 }; 177 const EHPersonality 178 EHPersonality::GNUstep_ObjC = { "__gnustep_objc_personality_v0", 0 }; 179 180 static const EHPersonality &getCPersonality(const LangOptions &L) { 181 if (L.SjLjExceptions) 182 return EHPersonality::GNU_C_SJLJ; 183 return EHPersonality::GNU_C; 184 } 185 186 static const EHPersonality &getObjCPersonality(const LangOptions &L) { 187 switch (L.ObjCRuntime.getKind()) { 188 case ObjCRuntime::FragileMacOSX: 189 return getCPersonality(L); 190 case ObjCRuntime::MacOSX: 191 case ObjCRuntime::iOS: 192 return EHPersonality::NeXT_ObjC; 193 case ObjCRuntime::GNUstep: 194 if (L.ObjCRuntime.getVersion() >= VersionTuple(1, 7)) 195 return EHPersonality::GNUstep_ObjC; 196 // fallthrough 197 case ObjCRuntime::GCC: 198 case ObjCRuntime::ObjFW: 199 return EHPersonality::GNU_ObjC; 200 } 201 llvm_unreachable("bad runtime kind"); 202 } 203 204 static const EHPersonality &getCXXPersonality(const LangOptions &L) { 205 if (L.SjLjExceptions) 206 return EHPersonality::GNU_CPlusPlus_SJLJ; 207 else 208 return EHPersonality::GNU_CPlusPlus; 209 } 210 211 /// Determines the personality function to use when both C++ 212 /// and Objective-C exceptions are being caught. 213 static const EHPersonality &getObjCXXPersonality(const LangOptions &L) { 214 switch (L.ObjCRuntime.getKind()) { 215 // The ObjC personality defers to the C++ personality for non-ObjC 216 // handlers. Unlike the C++ case, we use the same personality 217 // function on targets using (backend-driven) SJLJ EH. 218 case ObjCRuntime::MacOSX: 219 case ObjCRuntime::iOS: 220 return EHPersonality::NeXT_ObjC; 221 222 // In the fragile ABI, just use C++ exception handling and hope 223 // they're not doing crazy exception mixing. 224 case ObjCRuntime::FragileMacOSX: 225 return getCXXPersonality(L); 226 227 // The GCC runtime's personality function inherently doesn't support 228 // mixed EH. Use the C++ personality just to avoid returning null. 229 case ObjCRuntime::GCC: 230 case ObjCRuntime::ObjFW: // XXX: this will change soon 231 return EHPersonality::GNU_ObjC; 232 case ObjCRuntime::GNUstep: 233 return EHPersonality::GNU_ObjCXX; 234 } 235 llvm_unreachable("bad runtime kind"); 236 } 237 238 const EHPersonality &EHPersonality::get(const LangOptions &L) { 239 if (L.CPlusPlus && L.ObjC1) 240 return getObjCXXPersonality(L); 241 else if (L.CPlusPlus) 242 return getCXXPersonality(L); 243 else if (L.ObjC1) 244 return getObjCPersonality(L); 245 else 246 return getCPersonality(L); 247 } 248 249 static llvm::Constant *getPersonalityFn(CodeGenModule &CGM, 250 const EHPersonality &Personality) { 251 llvm::Constant *Fn = 252 CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, true), 253 Personality.PersonalityFn); 254 return Fn; 255 } 256 257 static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM, 258 const EHPersonality &Personality) { 259 llvm::Constant *Fn = getPersonalityFn(CGM, Personality); 260 return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); 261 } 262 263 /// Check whether a personality function could reasonably be swapped 264 /// for a C++ personality function. 265 static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) { 266 for (llvm::Constant::use_iterator 267 I = Fn->use_begin(), E = Fn->use_end(); I != E; ++I) { 268 llvm::User *User = *I; 269 270 // Conditionally white-list bitcasts. 271 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(User)) { 272 if (CE->getOpcode() != llvm::Instruction::BitCast) return false; 273 if (!PersonalityHasOnlyCXXUses(CE)) 274 return false; 275 continue; 276 } 277 278 // Otherwise, it has to be a landingpad instruction. 279 llvm::LandingPadInst *LPI = dyn_cast<llvm::LandingPadInst>(User); 280 if (!LPI) return false; 281 282 for (unsigned I = 0, E = LPI->getNumClauses(); I != E; ++I) { 283 // Look for something that would've been returned by the ObjC 284 // runtime's GetEHType() method. 285 llvm::Value *Val = LPI->getClause(I)->stripPointerCasts(); 286 if (LPI->isCatch(I)) { 287 // Check if the catch value has the ObjC prefix. 288 if (llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Val)) 289 // ObjC EH selector entries are always global variables with 290 // names starting like this. 291 if (GV->getName().startswith("OBJC_EHTYPE")) 292 return false; 293 } else { 294 // Check if any of the filter values have the ObjC prefix. 295 llvm::Constant *CVal = cast<llvm::Constant>(Val); 296 for (llvm::User::op_iterator 297 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) { 298 if (llvm::GlobalVariable *GV = 299 cast<llvm::GlobalVariable>((*II)->stripPointerCasts())) 300 // ObjC EH selector entries are always global variables with 301 // names starting like this. 302 if (GV->getName().startswith("OBJC_EHTYPE")) 303 return false; 304 } 305 } 306 } 307 } 308 309 return true; 310 } 311 312 /// Try to use the C++ personality function in ObjC++. Not doing this 313 /// can cause some incompatibilities with gcc, which is more 314 /// aggressive about only using the ObjC++ personality in a function 315 /// when it really needs it. 316 void CodeGenModule::SimplifyPersonality() { 317 // If we're not in ObjC++ -fexceptions, there's nothing to do. 318 if (!LangOpts.CPlusPlus || !LangOpts.ObjC1 || !LangOpts.Exceptions) 319 return; 320 321 // Both the problem this endeavors to fix and the way the logic 322 // above works is specific to the NeXT runtime. 323 if (!LangOpts.ObjCRuntime.isNeXTFamily()) 324 return; 325 326 const EHPersonality &ObjCXX = EHPersonality::get(LangOpts); 327 const EHPersonality &CXX = getCXXPersonality(LangOpts); 328 if (&ObjCXX == &CXX) 329 return; 330 331 assert(std::strcmp(ObjCXX.PersonalityFn, CXX.PersonalityFn) != 0 && 332 "Different EHPersonalities using the same personality function."); 333 334 llvm::Function *Fn = getModule().getFunction(ObjCXX.PersonalityFn); 335 336 // Nothing to do if it's unused. 337 if (!Fn || Fn->use_empty()) return; 338 339 // Can't do the optimization if it has non-C++ uses. 340 if (!PersonalityHasOnlyCXXUses(Fn)) return; 341 342 // Create the C++ personality function and kill off the old 343 // function. 344 llvm::Constant *CXXFn = getPersonalityFn(*this, CXX); 345 346 // This can happen if the user is screwing with us. 347 if (Fn->getType() != CXXFn->getType()) return; 348 349 Fn->replaceAllUsesWith(CXXFn); 350 Fn->eraseFromParent(); 351 } 352 353 /// Returns the value to inject into a selector to indicate the 354 /// presence of a catch-all. 355 static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) { 356 // Possibly we should use @llvm.eh.catch.all.value here. 357 return llvm::ConstantPointerNull::get(CGF.Int8PtrTy); 358 } 359 360 namespace { 361 /// A cleanup to free the exception object if its initialization 362 /// throws. 363 struct FreeException : EHScopeStack::Cleanup { 364 llvm::Value *exn; 365 FreeException(llvm::Value *exn) : exn(exn) {} 366 void Emit(CodeGenFunction &CGF, Flags flags) { 367 CGF.EmitNounwindRuntimeCall(getFreeExceptionFn(CGF.CGM), exn); 368 } 369 }; 370 } 371 372 // Emits an exception expression into the given location. This 373 // differs from EmitAnyExprToMem only in that, if a final copy-ctor 374 // call is required, an exception within that copy ctor causes 375 // std::terminate to be invoked. 376 static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e, 377 llvm::Value *addr) { 378 // Make sure the exception object is cleaned up if there's an 379 // exception during initialization. 380 CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr); 381 EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin(); 382 383 // __cxa_allocate_exception returns a void*; we need to cast this 384 // to the appropriate type for the object. 385 llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo(); 386 llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty); 387 388 // FIXME: this isn't quite right! If there's a final unelided call 389 // to a copy constructor, then according to [except.terminate]p1 we 390 // must call std::terminate() if that constructor throws, because 391 // technically that copy occurs after the exception expression is 392 // evaluated but before the exception is caught. But the best way 393 // to handle that is to teach EmitAggExpr to do the final copy 394 // differently if it can't be elided. 395 CGF.EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers(), 396 /*IsInit*/ true); 397 398 // Deactivate the cleanup block. 399 CGF.DeactivateCleanupBlock(cleanup, cast<llvm::Instruction>(typedAddr)); 400 } 401 402 llvm::Value *CodeGenFunction::getExceptionSlot() { 403 if (!ExceptionSlot) 404 ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot"); 405 return ExceptionSlot; 406 } 407 408 llvm::Value *CodeGenFunction::getEHSelectorSlot() { 409 if (!EHSelectorSlot) 410 EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot"); 411 return EHSelectorSlot; 412 } 413 414 llvm::Value *CodeGenFunction::getExceptionFromSlot() { 415 return Builder.CreateLoad(getExceptionSlot(), "exn"); 416 } 417 418 llvm::Value *CodeGenFunction::getSelectorFromSlot() { 419 return Builder.CreateLoad(getEHSelectorSlot(), "sel"); 420 } 421 422 void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E, 423 bool KeepInsertionPoint) { 424 if (!E->getSubExpr()) { 425 EmitNoreturnRuntimeCallOrInvoke(getReThrowFn(CGM), 426 ArrayRef<llvm::Value*>()); 427 428 // throw is an expression, and the expression emitters expect us 429 // to leave ourselves at a valid insertion point. 430 if (KeepInsertionPoint) 431 EmitBlock(createBasicBlock("throw.cont")); 432 433 return; 434 } 435 436 QualType ThrowType = E->getSubExpr()->getType(); 437 438 if (ThrowType->isObjCObjectPointerType()) { 439 const Stmt *ThrowStmt = E->getSubExpr(); 440 const ObjCAtThrowStmt S(E->getExprLoc(), 441 const_cast<Stmt *>(ThrowStmt)); 442 CGM.getObjCRuntime().EmitThrowStmt(*this, S, false); 443 // This will clear insertion point which was not cleared in 444 // call to EmitThrowStmt. 445 if (KeepInsertionPoint) 446 EmitBlock(createBasicBlock("throw.cont")); 447 return; 448 } 449 450 // Now allocate the exception object. 451 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 452 uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity(); 453 454 llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(CGM); 455 llvm::CallInst *ExceptionPtr = 456 EmitNounwindRuntimeCall(AllocExceptionFn, 457 llvm::ConstantInt::get(SizeTy, TypeSize), 458 "exception"); 459 460 EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr); 461 462 // Now throw the exception. 463 llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, 464 /*ForEH=*/true); 465 466 // The address of the destructor. If the exception type has a 467 // trivial destructor (or isn't a record), we just pass null. 468 llvm::Constant *Dtor = 0; 469 if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) { 470 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); 471 if (!Record->hasTrivialDestructor()) { 472 CXXDestructorDecl *DtorD = Record->getDestructor(); 473 Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete); 474 Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy); 475 } 476 } 477 if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy); 478 479 llvm::Value *args[] = { ExceptionPtr, TypeInfo, Dtor }; 480 EmitNoreturnRuntimeCallOrInvoke(getThrowFn(CGM), args); 481 482 // throw is an expression, and the expression emitters expect us 483 // to leave ourselves at a valid insertion point. 484 if (KeepInsertionPoint) 485 EmitBlock(createBasicBlock("throw.cont")); 486 } 487 488 void CodeGenFunction::EmitStartEHSpec(const Decl *D) { 489 if (!CGM.getLangOpts().CXXExceptions) 490 return; 491 492 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 493 if (FD == 0) 494 return; 495 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 496 if (Proto == 0) 497 return; 498 499 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 500 if (isNoexceptExceptionSpec(EST)) { 501 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 502 // noexcept functions are simple terminate scopes. 503 EHStack.pushTerminate(); 504 } 505 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 506 unsigned NumExceptions = Proto->getNumExceptions(); 507 EHFilterScope *Filter = EHStack.pushFilter(NumExceptions); 508 509 for (unsigned I = 0; I != NumExceptions; ++I) { 510 QualType Ty = Proto->getExceptionType(I); 511 QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType(); 512 llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType, 513 /*ForEH=*/true); 514 Filter->setFilter(I, EHType); 515 } 516 } 517 } 518 519 /// Emit the dispatch block for a filter scope if necessary. 520 static void emitFilterDispatchBlock(CodeGenFunction &CGF, 521 EHFilterScope &filterScope) { 522 llvm::BasicBlock *dispatchBlock = filterScope.getCachedEHDispatchBlock(); 523 if (!dispatchBlock) return; 524 if (dispatchBlock->use_empty()) { 525 delete dispatchBlock; 526 return; 527 } 528 529 CGF.EmitBlockAfterUses(dispatchBlock); 530 531 // If this isn't a catch-all filter, we need to check whether we got 532 // here because the filter triggered. 533 if (filterScope.getNumFilters()) { 534 // Load the selector value. 535 llvm::Value *selector = CGF.getSelectorFromSlot(); 536 llvm::BasicBlock *unexpectedBB = CGF.createBasicBlock("ehspec.unexpected"); 537 538 llvm::Value *zero = CGF.Builder.getInt32(0); 539 llvm::Value *failsFilter = 540 CGF.Builder.CreateICmpSLT(selector, zero, "ehspec.fails"); 541 CGF.Builder.CreateCondBr(failsFilter, unexpectedBB, CGF.getEHResumeBlock(false)); 542 543 CGF.EmitBlock(unexpectedBB); 544 } 545 546 // Call __cxa_call_unexpected. This doesn't need to be an invoke 547 // because __cxa_call_unexpected magically filters exceptions 548 // according to the last landing pad the exception was thrown 549 // into. Seriously. 550 llvm::Value *exn = CGF.getExceptionFromSlot(); 551 CGF.EmitRuntimeCall(getUnexpectedFn(CGF.CGM), exn) 552 ->setDoesNotReturn(); 553 CGF.Builder.CreateUnreachable(); 554 } 555 556 void CodeGenFunction::EmitEndEHSpec(const Decl *D) { 557 if (!CGM.getLangOpts().CXXExceptions) 558 return; 559 560 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 561 if (FD == 0) 562 return; 563 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 564 if (Proto == 0) 565 return; 566 567 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 568 if (isNoexceptExceptionSpec(EST)) { 569 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 570 EHStack.popTerminate(); 571 } 572 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 573 EHFilterScope &filterScope = cast<EHFilterScope>(*EHStack.begin()); 574 emitFilterDispatchBlock(*this, filterScope); 575 EHStack.popFilter(); 576 } 577 } 578 579 void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) { 580 EnterCXXTryStmt(S); 581 EmitStmt(S.getTryBlock()); 582 ExitCXXTryStmt(S); 583 } 584 585 void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 586 unsigned NumHandlers = S.getNumHandlers(); 587 EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers); 588 589 for (unsigned I = 0; I != NumHandlers; ++I) { 590 const CXXCatchStmt *C = S.getHandler(I); 591 592 llvm::BasicBlock *Handler = createBasicBlock("catch"); 593 if (C->getExceptionDecl()) { 594 // FIXME: Dropping the reference type on the type into makes it 595 // impossible to correctly implement catch-by-reference 596 // semantics for pointers. Unfortunately, this is what all 597 // existing compilers do, and it's not clear that the standard 598 // personality routine is capable of doing this right. See C++ DR 388: 599 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388 600 QualType CaughtType = C->getCaughtType(); 601 CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType(); 602 603 llvm::Value *TypeInfo = 0; 604 if (CaughtType->isObjCObjectPointerType()) 605 TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType); 606 else 607 TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true); 608 CatchScope->setHandler(I, TypeInfo, Handler); 609 } else { 610 // No exception decl indicates '...', a catch-all. 611 CatchScope->setCatchAllHandler(I, Handler); 612 } 613 } 614 } 615 616 llvm::BasicBlock * 617 CodeGenFunction::getEHDispatchBlock(EHScopeStack::stable_iterator si) { 618 // The dispatch block for the end of the scope chain is a block that 619 // just resumes unwinding. 620 if (si == EHStack.stable_end()) 621 return getEHResumeBlock(true); 622 623 // Otherwise, we should look at the actual scope. 624 EHScope &scope = *EHStack.find(si); 625 626 llvm::BasicBlock *dispatchBlock = scope.getCachedEHDispatchBlock(); 627 if (!dispatchBlock) { 628 switch (scope.getKind()) { 629 case EHScope::Catch: { 630 // Apply a special case to a single catch-all. 631 EHCatchScope &catchScope = cast<EHCatchScope>(scope); 632 if (catchScope.getNumHandlers() == 1 && 633 catchScope.getHandler(0).isCatchAll()) { 634 dispatchBlock = catchScope.getHandler(0).Block; 635 636 // Otherwise, make a dispatch block. 637 } else { 638 dispatchBlock = createBasicBlock("catch.dispatch"); 639 } 640 break; 641 } 642 643 case EHScope::Cleanup: 644 dispatchBlock = createBasicBlock("ehcleanup"); 645 break; 646 647 case EHScope::Filter: 648 dispatchBlock = createBasicBlock("filter.dispatch"); 649 break; 650 651 case EHScope::Terminate: 652 dispatchBlock = getTerminateHandler(); 653 break; 654 } 655 scope.setCachedEHDispatchBlock(dispatchBlock); 656 } 657 return dispatchBlock; 658 } 659 660 /// Check whether this is a non-EH scope, i.e. a scope which doesn't 661 /// affect exception handling. Currently, the only non-EH scopes are 662 /// normal-only cleanup scopes. 663 static bool isNonEHScope(const EHScope &S) { 664 switch (S.getKind()) { 665 case EHScope::Cleanup: 666 return !cast<EHCleanupScope>(S).isEHCleanup(); 667 case EHScope::Filter: 668 case EHScope::Catch: 669 case EHScope::Terminate: 670 return false; 671 } 672 673 llvm_unreachable("Invalid EHScope Kind!"); 674 } 675 676 llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() { 677 assert(EHStack.requiresLandingPad()); 678 assert(!EHStack.empty()); 679 680 if (!CGM.getLangOpts().Exceptions) 681 return 0; 682 683 // Check the innermost scope for a cached landing pad. If this is 684 // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad. 685 llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad(); 686 if (LP) return LP; 687 688 // Build the landing pad for this scope. 689 LP = EmitLandingPad(); 690 assert(LP); 691 692 // Cache the landing pad on the innermost scope. If this is a 693 // non-EH scope, cache the landing pad on the enclosing scope, too. 694 for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) { 695 ir->setCachedLandingPad(LP); 696 if (!isNonEHScope(*ir)) break; 697 } 698 699 return LP; 700 } 701 702 // This code contains a hack to work around a design flaw in 703 // LLVM's EH IR which breaks semantics after inlining. This same 704 // hack is implemented in llvm-gcc. 705 // 706 // The LLVM EH abstraction is basically a thin veneer over the 707 // traditional GCC zero-cost design: for each range of instructions 708 // in the function, there is (at most) one "landing pad" with an 709 // associated chain of EH actions. A language-specific personality 710 // function interprets this chain of actions and (1) decides whether 711 // or not to resume execution at the landing pad and (2) if so, 712 // provides an integer indicating why it's stopping. In LLVM IR, 713 // the association of a landing pad with a range of instructions is 714 // achieved via an invoke instruction, the chain of actions becomes 715 // the arguments to the @llvm.eh.selector call, and the selector 716 // call returns the integer indicator. Other than the required 717 // presence of two intrinsic function calls in the landing pad, 718 // the IR exactly describes the layout of the output code. 719 // 720 // A principal advantage of this design is that it is completely 721 // language-agnostic; in theory, the LLVM optimizers can treat 722 // landing pads neutrally, and targets need only know how to lower 723 // the intrinsics to have a functioning exceptions system (assuming 724 // that platform exceptions follow something approximately like the 725 // GCC design). Unfortunately, landing pads cannot be combined in a 726 // language-agnostic way: given selectors A and B, there is no way 727 // to make a single landing pad which faithfully represents the 728 // semantics of propagating an exception first through A, then 729 // through B, without knowing how the personality will interpret the 730 // (lowered form of the) selectors. This means that inlining has no 731 // choice but to crudely chain invokes (i.e., to ignore invokes in 732 // the inlined function, but to turn all unwindable calls into 733 // invokes), which is only semantically valid if every unwind stops 734 // at every landing pad. 735 // 736 // Therefore, the invoke-inline hack is to guarantee that every 737 // landing pad has a catch-all. 738 enum CleanupHackLevel_t { 739 /// A level of hack that requires that all landing pads have 740 /// catch-alls. 741 CHL_MandatoryCatchall, 742 743 /// A level of hack that requires that all landing pads handle 744 /// cleanups. 745 CHL_MandatoryCleanup, 746 747 /// No hacks at all; ideal IR generation. 748 CHL_Ideal 749 }; 750 const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup; 751 752 llvm::BasicBlock *CodeGenFunction::EmitLandingPad() { 753 assert(EHStack.requiresLandingPad()); 754 755 EHScope &innermostEHScope = *EHStack.find(EHStack.getInnermostEHScope()); 756 switch (innermostEHScope.getKind()) { 757 case EHScope::Terminate: 758 return getTerminateLandingPad(); 759 760 case EHScope::Catch: 761 case EHScope::Cleanup: 762 case EHScope::Filter: 763 if (llvm::BasicBlock *lpad = innermostEHScope.getCachedLandingPad()) 764 return lpad; 765 } 766 767 // Save the current IR generation state. 768 CGBuilderTy::InsertPoint savedIP = Builder.saveAndClearIP(); 769 SourceLocation SavedLocation; 770 if (CGDebugInfo *DI = getDebugInfo()) { 771 SavedLocation = DI->getLocation(); 772 DI->EmitLocation(Builder, CurEHLocation); 773 } 774 775 const EHPersonality &personality = EHPersonality::get(getLangOpts()); 776 777 // Create and configure the landing pad. 778 llvm::BasicBlock *lpad = createBasicBlock("lpad"); 779 EmitBlock(lpad); 780 781 llvm::LandingPadInst *LPadInst = 782 Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL), 783 getOpaquePersonalityFn(CGM, personality), 0); 784 785 llvm::Value *LPadExn = Builder.CreateExtractValue(LPadInst, 0); 786 Builder.CreateStore(LPadExn, getExceptionSlot()); 787 llvm::Value *LPadSel = Builder.CreateExtractValue(LPadInst, 1); 788 Builder.CreateStore(LPadSel, getEHSelectorSlot()); 789 790 // Save the exception pointer. It's safe to use a single exception 791 // pointer per function because EH cleanups can never have nested 792 // try/catches. 793 // Build the landingpad instruction. 794 795 // Accumulate all the handlers in scope. 796 bool hasCatchAll = false; 797 bool hasCleanup = false; 798 bool hasFilter = false; 799 SmallVector<llvm::Value*, 4> filterTypes; 800 llvm::SmallPtrSet<llvm::Value*, 4> catchTypes; 801 for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end(); 802 I != E; ++I) { 803 804 switch (I->getKind()) { 805 case EHScope::Cleanup: 806 // If we have a cleanup, remember that. 807 hasCleanup = (hasCleanup || cast<EHCleanupScope>(*I).isEHCleanup()); 808 continue; 809 810 case EHScope::Filter: { 811 assert(I.next() == EHStack.end() && "EH filter is not end of EH stack"); 812 assert(!hasCatchAll && "EH filter reached after catch-all"); 813 814 // Filter scopes get added to the landingpad in weird ways. 815 EHFilterScope &filter = cast<EHFilterScope>(*I); 816 hasFilter = true; 817 818 // Add all the filter values. 819 for (unsigned i = 0, e = filter.getNumFilters(); i != e; ++i) 820 filterTypes.push_back(filter.getFilter(i)); 821 goto done; 822 } 823 824 case EHScope::Terminate: 825 // Terminate scopes are basically catch-alls. 826 assert(!hasCatchAll); 827 hasCatchAll = true; 828 goto done; 829 830 case EHScope::Catch: 831 break; 832 } 833 834 EHCatchScope &catchScope = cast<EHCatchScope>(*I); 835 for (unsigned hi = 0, he = catchScope.getNumHandlers(); hi != he; ++hi) { 836 EHCatchScope::Handler handler = catchScope.getHandler(hi); 837 838 // If this is a catch-all, register that and abort. 839 if (!handler.Type) { 840 assert(!hasCatchAll); 841 hasCatchAll = true; 842 goto done; 843 } 844 845 // Check whether we already have a handler for this type. 846 if (catchTypes.insert(handler.Type)) 847 // If not, add it directly to the landingpad. 848 LPadInst->addClause(handler.Type); 849 } 850 } 851 852 done: 853 // If we have a catch-all, add null to the landingpad. 854 assert(!(hasCatchAll && hasFilter)); 855 if (hasCatchAll) { 856 LPadInst->addClause(getCatchAllValue(*this)); 857 858 // If we have an EH filter, we need to add those handlers in the 859 // right place in the landingpad, which is to say, at the end. 860 } else if (hasFilter) { 861 // Create a filter expression: a constant array indicating which filter 862 // types there are. The personality routine only lands here if the filter 863 // doesn't match. 864 SmallVector<llvm::Constant*, 8> Filters; 865 llvm::ArrayType *AType = 866 llvm::ArrayType::get(!filterTypes.empty() ? 867 filterTypes[0]->getType() : Int8PtrTy, 868 filterTypes.size()); 869 870 for (unsigned i = 0, e = filterTypes.size(); i != e; ++i) 871 Filters.push_back(cast<llvm::Constant>(filterTypes[i])); 872 llvm::Constant *FilterArray = llvm::ConstantArray::get(AType, Filters); 873 LPadInst->addClause(FilterArray); 874 875 // Also check whether we need a cleanup. 876 if (hasCleanup) 877 LPadInst->setCleanup(true); 878 879 // Otherwise, signal that we at least have cleanups. 880 } else if (CleanupHackLevel == CHL_MandatoryCatchall || hasCleanup) { 881 if (CleanupHackLevel == CHL_MandatoryCatchall) 882 LPadInst->addClause(getCatchAllValue(*this)); 883 else 884 LPadInst->setCleanup(true); 885 } 886 887 assert((LPadInst->getNumClauses() > 0 || LPadInst->isCleanup()) && 888 "landingpad instruction has no clauses!"); 889 890 // Tell the backend how to generate the landing pad. 891 Builder.CreateBr(getEHDispatchBlock(EHStack.getInnermostEHScope())); 892 893 // Restore the old IR generation state. 894 Builder.restoreIP(savedIP); 895 if (CGDebugInfo *DI = getDebugInfo()) 896 DI->EmitLocation(Builder, SavedLocation); 897 898 return lpad; 899 } 900 901 namespace { 902 /// A cleanup to call __cxa_end_catch. In many cases, the caught 903 /// exception type lets us state definitively that the thrown exception 904 /// type does not have a destructor. In particular: 905 /// - Catch-alls tell us nothing, so we have to conservatively 906 /// assume that the thrown exception might have a destructor. 907 /// - Catches by reference behave according to their base types. 908 /// - Catches of non-record types will only trigger for exceptions 909 /// of non-record types, which never have destructors. 910 /// - Catches of record types can trigger for arbitrary subclasses 911 /// of the caught type, so we have to assume the actual thrown 912 /// exception type might have a throwing destructor, even if the 913 /// caught type's destructor is trivial or nothrow. 914 struct CallEndCatch : EHScopeStack::Cleanup { 915 CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} 916 bool MightThrow; 917 918 void Emit(CodeGenFunction &CGF, Flags flags) { 919 if (!MightThrow) { 920 CGF.EmitNounwindRuntimeCall(getEndCatchFn(CGF.CGM)); 921 return; 922 } 923 924 CGF.EmitRuntimeCallOrInvoke(getEndCatchFn(CGF.CGM)); 925 } 926 }; 927 } 928 929 /// Emits a call to __cxa_begin_catch and enters a cleanup to call 930 /// __cxa_end_catch. 931 /// 932 /// \param EndMightThrow - true if __cxa_end_catch might throw 933 static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, 934 llvm::Value *Exn, 935 bool EndMightThrow) { 936 llvm::CallInst *call = 937 CGF.EmitNounwindRuntimeCall(getBeginCatchFn(CGF.CGM), Exn); 938 939 CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow); 940 941 return call; 942 } 943 944 /// A "special initializer" callback for initializing a catch 945 /// parameter during catch initialization. 946 static void InitCatchParam(CodeGenFunction &CGF, 947 const VarDecl &CatchParam, 948 llvm::Value *ParamAddr) { 949 // Load the exception from where the landing pad saved it. 950 llvm::Value *Exn = CGF.getExceptionFromSlot(); 951 952 CanQualType CatchType = 953 CGF.CGM.getContext().getCanonicalType(CatchParam.getType()); 954 llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType); 955 956 // If we're catching by reference, we can just cast the object 957 // pointer to the appropriate pointer. 958 if (isa<ReferenceType>(CatchType)) { 959 QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType(); 960 bool EndCatchMightThrow = CaughtType->isRecordType(); 961 962 // __cxa_begin_catch returns the adjusted object pointer. 963 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow); 964 965 // We have no way to tell the personality function that we're 966 // catching by reference, so if we're catching a pointer, 967 // __cxa_begin_catch will actually return that pointer by value. 968 if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) { 969 QualType PointeeType = PT->getPointeeType(); 970 971 // When catching by reference, generally we should just ignore 972 // this by-value pointer and use the exception object instead. 973 if (!PointeeType->isRecordType()) { 974 975 // Exn points to the struct _Unwind_Exception header, which 976 // we have to skip past in order to reach the exception data. 977 unsigned HeaderSize = 978 CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); 979 AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize); 980 981 // However, if we're catching a pointer-to-record type that won't 982 // work, because the personality function might have adjusted 983 // the pointer. There's actually no way for us to fully satisfy 984 // the language/ABI contract here: we can't use Exn because it 985 // might have the wrong adjustment, but we can't use the by-value 986 // pointer because it's off by a level of abstraction. 987 // 988 // The current solution is to dump the adjusted pointer into an 989 // alloca, which breaks language semantics (because changing the 990 // pointer doesn't change the exception) but at least works. 991 // The better solution would be to filter out non-exact matches 992 // and rethrow them, but this is tricky because the rethrow 993 // really needs to be catchable by other sites at this landing 994 // pad. The best solution is to fix the personality function. 995 } else { 996 // Pull the pointer for the reference type off. 997 llvm::Type *PtrTy = 998 cast<llvm::PointerType>(LLVMCatchTy)->getElementType(); 999 1000 // Create the temporary and write the adjusted pointer into it. 1001 llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp"); 1002 llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 1003 CGF.Builder.CreateStore(Casted, ExnPtrTmp); 1004 1005 // Bind the reference to the temporary. 1006 AdjustedExn = ExnPtrTmp; 1007 } 1008 } 1009 1010 llvm::Value *ExnCast = 1011 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref"); 1012 CGF.Builder.CreateStore(ExnCast, ParamAddr); 1013 return; 1014 } 1015 1016 // Scalars and complexes. 1017 TypeEvaluationKind TEK = CGF.getEvaluationKind(CatchType); 1018 if (TEK != TEK_Aggregate) { 1019 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false); 1020 1021 // If the catch type is a pointer type, __cxa_begin_catch returns 1022 // the pointer by value. 1023 if (CatchType->hasPointerRepresentation()) { 1024 llvm::Value *CastExn = 1025 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted"); 1026 1027 switch (CatchType.getQualifiers().getObjCLifetime()) { 1028 case Qualifiers::OCL_Strong: 1029 CastExn = CGF.EmitARCRetainNonBlock(CastExn); 1030 // fallthrough 1031 1032 case Qualifiers::OCL_None: 1033 case Qualifiers::OCL_ExplicitNone: 1034 case Qualifiers::OCL_Autoreleasing: 1035 CGF.Builder.CreateStore(CastExn, ParamAddr); 1036 return; 1037 1038 case Qualifiers::OCL_Weak: 1039 CGF.EmitARCInitWeak(ParamAddr, CastExn); 1040 return; 1041 } 1042 llvm_unreachable("bad ownership qualifier!"); 1043 } 1044 1045 // Otherwise, it returns a pointer into the exception object. 1046 1047 llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1048 llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 1049 1050 LValue srcLV = CGF.MakeNaturalAlignAddrLValue(Cast, CatchType); 1051 LValue destLV = CGF.MakeAddrLValue(ParamAddr, CatchType, 1052 CGF.getContext().getDeclAlign(&CatchParam)); 1053 switch (TEK) { 1054 case TEK_Complex: 1055 CGF.EmitStoreOfComplex(CGF.EmitLoadOfComplex(srcLV), destLV, 1056 /*init*/ true); 1057 return; 1058 case TEK_Scalar: { 1059 llvm::Value *ExnLoad = CGF.EmitLoadOfScalar(srcLV); 1060 CGF.EmitStoreOfScalar(ExnLoad, destLV, /*init*/ true); 1061 return; 1062 } 1063 case TEK_Aggregate: 1064 llvm_unreachable("evaluation kind filtered out!"); 1065 } 1066 llvm_unreachable("bad evaluation kind"); 1067 } 1068 1069 assert(isa<RecordType>(CatchType) && "unexpected catch type!"); 1070 1071 llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1072 1073 // Check for a copy expression. If we don't have a copy expression, 1074 // that means a trivial copy is okay. 1075 const Expr *copyExpr = CatchParam.getInit(); 1076 if (!copyExpr) { 1077 llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true); 1078 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1079 CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType); 1080 return; 1081 } 1082 1083 // We have to call __cxa_get_exception_ptr to get the adjusted 1084 // pointer before copying. 1085 llvm::CallInst *rawAdjustedExn = 1086 CGF.EmitNounwindRuntimeCall(getGetExceptionPtrFn(CGF.CGM), Exn); 1087 1088 // Cast that to the appropriate type. 1089 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1090 1091 // The copy expression is defined in terms of an OpaqueValueExpr. 1092 // Find it and map it to the adjusted expression. 1093 CodeGenFunction::OpaqueValueMapping 1094 opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr), 1095 CGF.MakeAddrLValue(adjustedExn, CatchParam.getType())); 1096 1097 // Call the copy ctor in a terminate scope. 1098 CGF.EHStack.pushTerminate(); 1099 1100 // Perform the copy construction. 1101 CharUnits Alignment = CGF.getContext().getDeclAlign(&CatchParam); 1102 CGF.EmitAggExpr(copyExpr, 1103 AggValueSlot::forAddr(ParamAddr, Alignment, Qualifiers(), 1104 AggValueSlot::IsNotDestructed, 1105 AggValueSlot::DoesNotNeedGCBarriers, 1106 AggValueSlot::IsNotAliased)); 1107 1108 // Leave the terminate scope. 1109 CGF.EHStack.popTerminate(); 1110 1111 // Undo the opaque value mapping. 1112 opaque.pop(); 1113 1114 // Finally we can call __cxa_begin_catch. 1115 CallBeginCatch(CGF, Exn, true); 1116 } 1117 1118 /// Begins a catch statement by initializing the catch variable and 1119 /// calling __cxa_begin_catch. 1120 static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) { 1121 // We have to be very careful with the ordering of cleanups here: 1122 // C++ [except.throw]p4: 1123 // The destruction [of the exception temporary] occurs 1124 // immediately after the destruction of the object declared in 1125 // the exception-declaration in the handler. 1126 // 1127 // So the precise ordering is: 1128 // 1. Construct catch variable. 1129 // 2. __cxa_begin_catch 1130 // 3. Enter __cxa_end_catch cleanup 1131 // 4. Enter dtor cleanup 1132 // 1133 // We do this by using a slightly abnormal initialization process. 1134 // Delegation sequence: 1135 // - ExitCXXTryStmt opens a RunCleanupsScope 1136 // - EmitAutoVarAlloca creates the variable and debug info 1137 // - InitCatchParam initializes the variable from the exception 1138 // - CallBeginCatch calls __cxa_begin_catch 1139 // - CallBeginCatch enters the __cxa_end_catch cleanup 1140 // - EmitAutoVarCleanups enters the variable destructor cleanup 1141 // - EmitCXXTryStmt emits the code for the catch body 1142 // - EmitCXXTryStmt close the RunCleanupsScope 1143 1144 VarDecl *CatchParam = S->getExceptionDecl(); 1145 if (!CatchParam) { 1146 llvm::Value *Exn = CGF.getExceptionFromSlot(); 1147 CallBeginCatch(CGF, Exn, true); 1148 return; 1149 } 1150 1151 // Emit the local. 1152 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 1153 InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF)); 1154 CGF.EmitAutoVarCleanups(var); 1155 } 1156 1157 /// Emit the structure of the dispatch block for the given catch scope. 1158 /// It is an invariant that the dispatch block already exists. 1159 static void emitCatchDispatchBlock(CodeGenFunction &CGF, 1160 EHCatchScope &catchScope) { 1161 llvm::BasicBlock *dispatchBlock = catchScope.getCachedEHDispatchBlock(); 1162 assert(dispatchBlock); 1163 1164 // If there's only a single catch-all, getEHDispatchBlock returned 1165 // that catch-all as the dispatch block. 1166 if (catchScope.getNumHandlers() == 1 && 1167 catchScope.getHandler(0).isCatchAll()) { 1168 assert(dispatchBlock == catchScope.getHandler(0).Block); 1169 return; 1170 } 1171 1172 CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveIP(); 1173 CGF.EmitBlockAfterUses(dispatchBlock); 1174 1175 // Select the right handler. 1176 llvm::Value *llvm_eh_typeid_for = 1177 CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for); 1178 1179 // Load the selector value. 1180 llvm::Value *selector = CGF.getSelectorFromSlot(); 1181 1182 // Test against each of the exception types we claim to catch. 1183 for (unsigned i = 0, e = catchScope.getNumHandlers(); ; ++i) { 1184 assert(i < e && "ran off end of handlers!"); 1185 const EHCatchScope::Handler &handler = catchScope.getHandler(i); 1186 1187 llvm::Value *typeValue = handler.Type; 1188 assert(typeValue && "fell into catch-all case!"); 1189 typeValue = CGF.Builder.CreateBitCast(typeValue, CGF.Int8PtrTy); 1190 1191 // Figure out the next block. 1192 bool nextIsEnd; 1193 llvm::BasicBlock *nextBlock; 1194 1195 // If this is the last handler, we're at the end, and the next 1196 // block is the block for the enclosing EH scope. 1197 if (i + 1 == e) { 1198 nextBlock = CGF.getEHDispatchBlock(catchScope.getEnclosingEHScope()); 1199 nextIsEnd = true; 1200 1201 // If the next handler is a catch-all, we're at the end, and the 1202 // next block is that handler. 1203 } else if (catchScope.getHandler(i+1).isCatchAll()) { 1204 nextBlock = catchScope.getHandler(i+1).Block; 1205 nextIsEnd = true; 1206 1207 // Otherwise, we're not at the end and we need a new block. 1208 } else { 1209 nextBlock = CGF.createBasicBlock("catch.fallthrough"); 1210 nextIsEnd = false; 1211 } 1212 1213 // Figure out the catch type's index in the LSDA's type table. 1214 llvm::CallInst *typeIndex = 1215 CGF.Builder.CreateCall(llvm_eh_typeid_for, typeValue); 1216 typeIndex->setDoesNotThrow(); 1217 1218 llvm::Value *matchesTypeIndex = 1219 CGF.Builder.CreateICmpEQ(selector, typeIndex, "matches"); 1220 CGF.Builder.CreateCondBr(matchesTypeIndex, handler.Block, nextBlock); 1221 1222 // If the next handler is a catch-all, we're completely done. 1223 if (nextIsEnd) { 1224 CGF.Builder.restoreIP(savedIP); 1225 return; 1226 } 1227 // Otherwise we need to emit and continue at that block. 1228 CGF.EmitBlock(nextBlock); 1229 } 1230 } 1231 1232 void CodeGenFunction::popCatchScope() { 1233 EHCatchScope &catchScope = cast<EHCatchScope>(*EHStack.begin()); 1234 if (catchScope.hasEHBranches()) 1235 emitCatchDispatchBlock(*this, catchScope); 1236 EHStack.popCatch(); 1237 } 1238 1239 void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 1240 unsigned NumHandlers = S.getNumHandlers(); 1241 EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin()); 1242 assert(CatchScope.getNumHandlers() == NumHandlers); 1243 1244 // If the catch was not required, bail out now. 1245 if (!CatchScope.hasEHBranches()) { 1246 EHStack.popCatch(); 1247 return; 1248 } 1249 1250 // Emit the structure of the EH dispatch for this catch. 1251 emitCatchDispatchBlock(*this, CatchScope); 1252 1253 // Copy the handler blocks off before we pop the EH stack. Emitting 1254 // the handlers might scribble on this memory. 1255 SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers); 1256 memcpy(Handlers.data(), CatchScope.begin(), 1257 NumHandlers * sizeof(EHCatchScope::Handler)); 1258 1259 EHStack.popCatch(); 1260 1261 // The fall-through block. 1262 llvm::BasicBlock *ContBB = createBasicBlock("try.cont"); 1263 1264 // We just emitted the body of the try; jump to the continue block. 1265 if (HaveInsertPoint()) 1266 Builder.CreateBr(ContBB); 1267 1268 // Determine if we need an implicit rethrow for all these catch handlers; 1269 // see the comment below. 1270 bool doImplicitRethrow = false; 1271 if (IsFnTryBlock) 1272 doImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) || 1273 isa<CXXConstructorDecl>(CurCodeDecl); 1274 1275 // Perversely, we emit the handlers backwards precisely because we 1276 // want them to appear in source order. In all of these cases, the 1277 // catch block will have exactly one predecessor, which will be a 1278 // particular block in the catch dispatch. However, in the case of 1279 // a catch-all, one of the dispatch blocks will branch to two 1280 // different handlers, and EmitBlockAfterUses will cause the second 1281 // handler to be moved before the first. 1282 for (unsigned I = NumHandlers; I != 0; --I) { 1283 llvm::BasicBlock *CatchBlock = Handlers[I-1].Block; 1284 EmitBlockAfterUses(CatchBlock); 1285 1286 // Catch the exception if this isn't a catch-all. 1287 const CXXCatchStmt *C = S.getHandler(I-1); 1288 1289 // Enter a cleanup scope, including the catch variable and the 1290 // end-catch. 1291 RunCleanupsScope CatchScope(*this); 1292 1293 // Initialize the catch variable and set up the cleanups. 1294 BeginCatch(*this, C); 1295 1296 // Perform the body of the catch. 1297 EmitStmt(C->getHandlerBlock()); 1298 1299 // [except.handle]p11: 1300 // The currently handled exception is rethrown if control 1301 // reaches the end of a handler of the function-try-block of a 1302 // constructor or destructor. 1303 1304 // It is important that we only do this on fallthrough and not on 1305 // return. Note that it's illegal to put a return in a 1306 // constructor function-try-block's catch handler (p14), so this 1307 // really only applies to destructors. 1308 if (doImplicitRethrow && HaveInsertPoint()) { 1309 EmitRuntimeCallOrInvoke(getReThrowFn(CGM)); 1310 Builder.CreateUnreachable(); 1311 Builder.ClearInsertionPoint(); 1312 } 1313 1314 // Fall out through the catch cleanups. 1315 CatchScope.ForceCleanup(); 1316 1317 // Branch out of the try. 1318 if (HaveInsertPoint()) 1319 Builder.CreateBr(ContBB); 1320 } 1321 1322 EmitBlock(ContBB); 1323 } 1324 1325 namespace { 1326 struct CallEndCatchForFinally : EHScopeStack::Cleanup { 1327 llvm::Value *ForEHVar; 1328 llvm::Value *EndCatchFn; 1329 CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn) 1330 : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {} 1331 1332 void Emit(CodeGenFunction &CGF, Flags flags) { 1333 llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch"); 1334 llvm::BasicBlock *CleanupContBB = 1335 CGF.createBasicBlock("finally.cleanup.cont"); 1336 1337 llvm::Value *ShouldEndCatch = 1338 CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch"); 1339 CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB); 1340 CGF.EmitBlock(EndCatchBB); 1341 CGF.EmitRuntimeCallOrInvoke(EndCatchFn); // catch-all, so might throw 1342 CGF.EmitBlock(CleanupContBB); 1343 } 1344 }; 1345 1346 struct PerformFinally : EHScopeStack::Cleanup { 1347 const Stmt *Body; 1348 llvm::Value *ForEHVar; 1349 llvm::Value *EndCatchFn; 1350 llvm::Value *RethrowFn; 1351 llvm::Value *SavedExnVar; 1352 1353 PerformFinally(const Stmt *Body, llvm::Value *ForEHVar, 1354 llvm::Value *EndCatchFn, 1355 llvm::Value *RethrowFn, llvm::Value *SavedExnVar) 1356 : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn), 1357 RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {} 1358 1359 void Emit(CodeGenFunction &CGF, Flags flags) { 1360 // Enter a cleanup to call the end-catch function if one was provided. 1361 if (EndCatchFn) 1362 CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup, 1363 ForEHVar, EndCatchFn); 1364 1365 // Save the current cleanup destination in case there are 1366 // cleanups in the finally block. 1367 llvm::Value *SavedCleanupDest = 1368 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(), 1369 "cleanup.dest.saved"); 1370 1371 // Emit the finally block. 1372 CGF.EmitStmt(Body); 1373 1374 // If the end of the finally is reachable, check whether this was 1375 // for EH. If so, rethrow. 1376 if (CGF.HaveInsertPoint()) { 1377 llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow"); 1378 llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont"); 1379 1380 llvm::Value *ShouldRethrow = 1381 CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow"); 1382 CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB); 1383 1384 CGF.EmitBlock(RethrowBB); 1385 if (SavedExnVar) { 1386 CGF.EmitRuntimeCallOrInvoke(RethrowFn, 1387 CGF.Builder.CreateLoad(SavedExnVar)); 1388 } else { 1389 CGF.EmitRuntimeCallOrInvoke(RethrowFn); 1390 } 1391 CGF.Builder.CreateUnreachable(); 1392 1393 CGF.EmitBlock(ContBB); 1394 1395 // Restore the cleanup destination. 1396 CGF.Builder.CreateStore(SavedCleanupDest, 1397 CGF.getNormalCleanupDestSlot()); 1398 } 1399 1400 // Leave the end-catch cleanup. As an optimization, pretend that 1401 // the fallthrough path was inaccessible; we've dynamically proven 1402 // that we're not in the EH case along that path. 1403 if (EndCatchFn) { 1404 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 1405 CGF.PopCleanupBlock(); 1406 CGF.Builder.restoreIP(SavedIP); 1407 } 1408 1409 // Now make sure we actually have an insertion point or the 1410 // cleanup gods will hate us. 1411 CGF.EnsureInsertPoint(); 1412 } 1413 }; 1414 } 1415 1416 /// Enters a finally block for an implementation using zero-cost 1417 /// exceptions. This is mostly general, but hard-codes some 1418 /// language/ABI-specific behavior in the catch-all sections. 1419 void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF, 1420 const Stmt *body, 1421 llvm::Constant *beginCatchFn, 1422 llvm::Constant *endCatchFn, 1423 llvm::Constant *rethrowFn) { 1424 assert((beginCatchFn != 0) == (endCatchFn != 0) && 1425 "begin/end catch functions not paired"); 1426 assert(rethrowFn && "rethrow function is required"); 1427 1428 BeginCatchFn = beginCatchFn; 1429 1430 // The rethrow function has one of the following two types: 1431 // void (*)() 1432 // void (*)(void*) 1433 // In the latter case we need to pass it the exception object. 1434 // But we can't use the exception slot because the @finally might 1435 // have a landing pad (which would overwrite the exception slot). 1436 llvm::FunctionType *rethrowFnTy = 1437 cast<llvm::FunctionType>( 1438 cast<llvm::PointerType>(rethrowFn->getType())->getElementType()); 1439 SavedExnVar = 0; 1440 if (rethrowFnTy->getNumParams()) 1441 SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn"); 1442 1443 // A finally block is a statement which must be executed on any edge 1444 // out of a given scope. Unlike a cleanup, the finally block may 1445 // contain arbitrary control flow leading out of itself. In 1446 // addition, finally blocks should always be executed, even if there 1447 // are no catch handlers higher on the stack. Therefore, we 1448 // surround the protected scope with a combination of a normal 1449 // cleanup (to catch attempts to break out of the block via normal 1450 // control flow) and an EH catch-all (semantically "outside" any try 1451 // statement to which the finally block might have been attached). 1452 // The finally block itself is generated in the context of a cleanup 1453 // which conditionally leaves the catch-all. 1454 1455 // Jump destination for performing the finally block on an exception 1456 // edge. We'll never actually reach this block, so unreachable is 1457 // fine. 1458 RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock()); 1459 1460 // Whether the finally block is being executed for EH purposes. 1461 ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh"); 1462 CGF.Builder.CreateStore(CGF.Builder.getFalse(), ForEHVar); 1463 1464 // Enter a normal cleanup which will perform the @finally block. 1465 CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body, 1466 ForEHVar, endCatchFn, 1467 rethrowFn, SavedExnVar); 1468 1469 // Enter a catch-all scope. 1470 llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall"); 1471 EHCatchScope *catchScope = CGF.EHStack.pushCatch(1); 1472 catchScope->setCatchAllHandler(0, catchBB); 1473 } 1474 1475 void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) { 1476 // Leave the finally catch-all. 1477 EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin()); 1478 llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block; 1479 1480 CGF.popCatchScope(); 1481 1482 // If there are any references to the catch-all block, emit it. 1483 if (catchBB->use_empty()) { 1484 delete catchBB; 1485 } else { 1486 CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP(); 1487 CGF.EmitBlock(catchBB); 1488 1489 llvm::Value *exn = 0; 1490 1491 // If there's a begin-catch function, call it. 1492 if (BeginCatchFn) { 1493 exn = CGF.getExceptionFromSlot(); 1494 CGF.EmitNounwindRuntimeCall(BeginCatchFn, exn); 1495 } 1496 1497 // If we need to remember the exception pointer to rethrow later, do so. 1498 if (SavedExnVar) { 1499 if (!exn) exn = CGF.getExceptionFromSlot(); 1500 CGF.Builder.CreateStore(exn, SavedExnVar); 1501 } 1502 1503 // Tell the cleanups in the finally block that we're do this for EH. 1504 CGF.Builder.CreateStore(CGF.Builder.getTrue(), ForEHVar); 1505 1506 // Thread a jump through the finally cleanup. 1507 CGF.EmitBranchThroughCleanup(RethrowDest); 1508 1509 CGF.Builder.restoreIP(savedIP); 1510 } 1511 1512 // Finally, leave the @finally cleanup. 1513 CGF.PopCleanupBlock(); 1514 } 1515 1516 /// In a terminate landing pad, should we use __clang__call_terminate 1517 /// or just a naked call to std::terminate? 1518 /// 1519 /// __clang_call_terminate calls __cxa_begin_catch, which then allows 1520 /// std::terminate to usefully report something about the 1521 /// violating exception. 1522 static bool useClangCallTerminate(CodeGenModule &CGM) { 1523 // Only do this for Itanium-family ABIs in C++ mode. 1524 return (CGM.getLangOpts().CPlusPlus && 1525 CGM.getTarget().getCXXABI().isItaniumFamily()); 1526 } 1527 1528 /// Get or define the following function: 1529 /// void @__clang_call_terminate(i8* %exn) nounwind noreturn 1530 /// This code is used only in C++. 1531 static llvm::Constant *getClangCallTerminateFn(CodeGenModule &CGM) { 1532 llvm::FunctionType *fnTy = 1533 llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); 1534 llvm::Constant *fnRef = 1535 CGM.CreateRuntimeFunction(fnTy, "__clang_call_terminate"); 1536 1537 llvm::Function *fn = dyn_cast<llvm::Function>(fnRef); 1538 if (fn && fn->empty()) { 1539 fn->setDoesNotThrow(); 1540 fn->setDoesNotReturn(); 1541 1542 // What we really want is to massively penalize inlining without 1543 // forbidding it completely. The difference between that and 1544 // 'noinline' is negligible. 1545 fn->addFnAttr(llvm::Attribute::NoInline); 1546 1547 // Allow this function to be shared across translation units, but 1548 // we don't want it to turn into an exported symbol. 1549 fn->setLinkage(llvm::Function::LinkOnceODRLinkage); 1550 fn->setVisibility(llvm::Function::HiddenVisibility); 1551 1552 // Set up the function. 1553 llvm::BasicBlock *entry = 1554 llvm::BasicBlock::Create(CGM.getLLVMContext(), "", fn); 1555 CGBuilderTy builder(entry); 1556 1557 // Pull the exception pointer out of the parameter list. 1558 llvm::Value *exn = &*fn->arg_begin(); 1559 1560 // Call __cxa_begin_catch(exn). 1561 llvm::CallInst *catchCall = builder.CreateCall(getBeginCatchFn(CGM), exn); 1562 catchCall->setDoesNotThrow(); 1563 catchCall->setCallingConv(CGM.getRuntimeCC()); 1564 1565 // Call std::terminate(). 1566 llvm::CallInst *termCall = builder.CreateCall(getTerminateFn(CGM)); 1567 termCall->setDoesNotThrow(); 1568 termCall->setDoesNotReturn(); 1569 termCall->setCallingConv(CGM.getRuntimeCC()); 1570 1571 // std::terminate cannot return. 1572 builder.CreateUnreachable(); 1573 } 1574 1575 return fnRef; 1576 } 1577 1578 llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() { 1579 if (TerminateLandingPad) 1580 return TerminateLandingPad; 1581 1582 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1583 1584 // This will get inserted at the end of the function. 1585 TerminateLandingPad = createBasicBlock("terminate.lpad"); 1586 Builder.SetInsertPoint(TerminateLandingPad); 1587 1588 // Tell the backend that this is a landing pad. 1589 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts()); 1590 llvm::LandingPadInst *LPadInst = 1591 Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL), 1592 getOpaquePersonalityFn(CGM, Personality), 0); 1593 LPadInst->addClause(getCatchAllValue(*this)); 1594 1595 llvm::CallInst *terminateCall; 1596 if (useClangCallTerminate(CGM)) { 1597 // Extract out the exception pointer. 1598 llvm::Value *exn = Builder.CreateExtractValue(LPadInst, 0); 1599 terminateCall = EmitNounwindRuntimeCall(getClangCallTerminateFn(CGM), exn); 1600 } else { 1601 terminateCall = EmitNounwindRuntimeCall(getTerminateFn(CGM)); 1602 } 1603 terminateCall->setDoesNotReturn(); 1604 Builder.CreateUnreachable(); 1605 1606 // Restore the saved insertion state. 1607 Builder.restoreIP(SavedIP); 1608 1609 return TerminateLandingPad; 1610 } 1611 1612 llvm::BasicBlock *CodeGenFunction::getTerminateHandler() { 1613 if (TerminateHandler) 1614 return TerminateHandler; 1615 1616 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1617 1618 // Set up the terminate handler. This block is inserted at the very 1619 // end of the function by FinishFunction. 1620 TerminateHandler = createBasicBlock("terminate.handler"); 1621 Builder.SetInsertPoint(TerminateHandler); 1622 llvm::CallInst *terminateCall; 1623 if (useClangCallTerminate(CGM)) { 1624 // Load the exception pointer. 1625 llvm::Value *exn = getExceptionFromSlot(); 1626 terminateCall = EmitNounwindRuntimeCall(getClangCallTerminateFn(CGM), exn); 1627 } else { 1628 terminateCall = EmitNounwindRuntimeCall(getTerminateFn(CGM)); 1629 } 1630 terminateCall->setDoesNotReturn(); 1631 Builder.CreateUnreachable(); 1632 1633 // Restore the saved insertion state. 1634 Builder.restoreIP(SavedIP); 1635 1636 return TerminateHandler; 1637 } 1638 1639 llvm::BasicBlock *CodeGenFunction::getEHResumeBlock(bool isCleanup) { 1640 if (EHResumeBlock) return EHResumeBlock; 1641 1642 CGBuilderTy::InsertPoint SavedIP = Builder.saveIP(); 1643 1644 // We emit a jump to a notional label at the outermost unwind state. 1645 EHResumeBlock = createBasicBlock("eh.resume"); 1646 Builder.SetInsertPoint(EHResumeBlock); 1647 1648 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts()); 1649 1650 // This can always be a call because we necessarily didn't find 1651 // anything on the EH stack which needs our help. 1652 const char *RethrowName = Personality.CatchallRethrowFn; 1653 if (RethrowName != 0 && !isCleanup) { 1654 EmitRuntimeCall(getCatchallRethrowFn(CGM, RethrowName), 1655 getExceptionFromSlot()) 1656 ->setDoesNotReturn(); 1657 } else { 1658 switch (CleanupHackLevel) { 1659 case CHL_MandatoryCatchall: 1660 // In mandatory-catchall mode, we need to use 1661 // _Unwind_Resume_or_Rethrow, or whatever the personality's 1662 // equivalent is. 1663 EmitRuntimeCall(getUnwindResumeOrRethrowFn(), 1664 getExceptionFromSlot()) 1665 ->setDoesNotReturn(); 1666 break; 1667 case CHL_MandatoryCleanup: { 1668 // In mandatory-cleanup mode, we should use 'resume'. 1669 1670 // Recreate the landingpad's return value for the 'resume' instruction. 1671 llvm::Value *Exn = getExceptionFromSlot(); 1672 llvm::Value *Sel = getSelectorFromSlot(); 1673 1674 llvm::Type *LPadType = llvm::StructType::get(Exn->getType(), 1675 Sel->getType(), NULL); 1676 llvm::Value *LPadVal = llvm::UndefValue::get(LPadType); 1677 LPadVal = Builder.CreateInsertValue(LPadVal, Exn, 0, "lpad.val"); 1678 LPadVal = Builder.CreateInsertValue(LPadVal, Sel, 1, "lpad.val"); 1679 1680 Builder.CreateResume(LPadVal); 1681 Builder.restoreIP(SavedIP); 1682 return EHResumeBlock; 1683 } 1684 case CHL_Ideal: 1685 // In an idealized mode where we don't have to worry about the 1686 // optimizer combining landing pads, we should just use 1687 // _Unwind_Resume (or the personality's equivalent). 1688 EmitRuntimeCall(getUnwindResumeFn(), getExceptionFromSlot()) 1689 ->setDoesNotReturn(); 1690 break; 1691 } 1692 } 1693 1694 Builder.CreateUnreachable(); 1695 1696 Builder.restoreIP(SavedIP); 1697 1698 return EHResumeBlock; 1699 } 1700