Home | History | Annotate | Download | only in AST
      1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "clang/AST/RecordLayout.h"
     11 #include "clang/AST/ASTContext.h"
     12 #include "clang/AST/Attr.h"
     13 #include "clang/AST/CXXInheritance.h"
     14 #include "clang/AST/Decl.h"
     15 #include "clang/AST/DeclCXX.h"
     16 #include "clang/AST/DeclObjC.h"
     17 #include "clang/AST/Expr.h"
     18 #include "clang/Basic/TargetInfo.h"
     19 #include "clang/Sema/SemaDiagnostic.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/Support/CrashRecoveryContext.h"
     22 #include "llvm/Support/Format.h"
     23 #include "llvm/Support/MathExtras.h"
     24 
     25 using namespace clang;
     26 
     27 namespace {
     28 
     29 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
     30 /// For a class hierarchy like
     31 ///
     32 /// class A { };
     33 /// class B : A { };
     34 /// class C : A, B { };
     35 ///
     36 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
     37 /// instances, one for B and two for A.
     38 ///
     39 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
     40 struct BaseSubobjectInfo {
     41   /// Class - The class for this base info.
     42   const CXXRecordDecl *Class;
     43 
     44   /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
     45   bool IsVirtual;
     46 
     47   /// Bases - Information about the base subobjects.
     48   SmallVector<BaseSubobjectInfo*, 4> Bases;
     49 
     50   /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
     51   /// of this base info (if one exists).
     52   BaseSubobjectInfo *PrimaryVirtualBaseInfo;
     53 
     54   // FIXME: Document.
     55   const BaseSubobjectInfo *Derived;
     56 };
     57 
     58 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
     59 /// offsets while laying out a C++ class.
     60 class EmptySubobjectMap {
     61   const ASTContext &Context;
     62   uint64_t CharWidth;
     63 
     64   /// Class - The class whose empty entries we're keeping track of.
     65   const CXXRecordDecl *Class;
     66 
     67   /// EmptyClassOffsets - A map from offsets to empty record decls.
     68   typedef SmallVector<const CXXRecordDecl *, 1> ClassVectorTy;
     69   typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
     70   EmptyClassOffsetsMapTy EmptyClassOffsets;
     71 
     72   /// MaxEmptyClassOffset - The highest offset known to contain an empty
     73   /// base subobject.
     74   CharUnits MaxEmptyClassOffset;
     75 
     76   /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
     77   /// member subobject that is empty.
     78   void ComputeEmptySubobjectSizes();
     79 
     80   void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
     81 
     82   void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
     83                                  CharUnits Offset, bool PlacingEmptyBase);
     84 
     85   void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
     86                                   const CXXRecordDecl *Class,
     87                                   CharUnits Offset);
     88   void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
     89 
     90   /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
     91   /// subobjects beyond the given offset.
     92   bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
     93     return Offset <= MaxEmptyClassOffset;
     94   }
     95 
     96   CharUnits
     97   getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
     98     uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
     99     assert(FieldOffset % CharWidth == 0 &&
    100            "Field offset not at char boundary!");
    101 
    102     return Context.toCharUnitsFromBits(FieldOffset);
    103   }
    104 
    105 protected:
    106   bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
    107                                  CharUnits Offset) const;
    108 
    109   bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
    110                                      CharUnits Offset);
    111 
    112   bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
    113                                       const CXXRecordDecl *Class,
    114                                       CharUnits Offset) const;
    115   bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
    116                                       CharUnits Offset) const;
    117 
    118 public:
    119   /// This holds the size of the largest empty subobject (either a base
    120   /// or a member). Will be zero if the record being built doesn't contain
    121   /// any empty classes.
    122   CharUnits SizeOfLargestEmptySubobject;
    123 
    124   EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
    125   : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
    126       ComputeEmptySubobjectSizes();
    127   }
    128 
    129   /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
    130   /// at the given offset.
    131   /// Returns false if placing the record will result in two components
    132   /// (direct or indirect) of the same type having the same offset.
    133   bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
    134                             CharUnits Offset);
    135 
    136   /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
    137   /// offset.
    138   bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
    139 };
    140 
    141 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
    142   // Check the bases.
    143   for (CXXRecordDecl::base_class_const_iterator I = Class->bases_begin(),
    144        E = Class->bases_end(); I != E; ++I) {
    145     const CXXRecordDecl *BaseDecl =
    146       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    147 
    148     CharUnits EmptySize;
    149     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
    150     if (BaseDecl->isEmpty()) {
    151       // If the class decl is empty, get its size.
    152       EmptySize = Layout.getSize();
    153     } else {
    154       // Otherwise, we get the largest empty subobject for the decl.
    155       EmptySize = Layout.getSizeOfLargestEmptySubobject();
    156     }
    157 
    158     if (EmptySize > SizeOfLargestEmptySubobject)
    159       SizeOfLargestEmptySubobject = EmptySize;
    160   }
    161 
    162   // Check the fields.
    163   for (CXXRecordDecl::field_iterator I = Class->field_begin(),
    164        E = Class->field_end(); I != E; ++I) {
    165 
    166     const RecordType *RT =
    167       Context.getBaseElementType(I->getType())->getAs<RecordType>();
    168 
    169     // We only care about record types.
    170     if (!RT)
    171       continue;
    172 
    173     CharUnits EmptySize;
    174     const CXXRecordDecl *MemberDecl = cast<CXXRecordDecl>(RT->getDecl());
    175     const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
    176     if (MemberDecl->isEmpty()) {
    177       // If the class decl is empty, get its size.
    178       EmptySize = Layout.getSize();
    179     } else {
    180       // Otherwise, we get the largest empty subobject for the decl.
    181       EmptySize = Layout.getSizeOfLargestEmptySubobject();
    182     }
    183 
    184     if (EmptySize > SizeOfLargestEmptySubobject)
    185       SizeOfLargestEmptySubobject = EmptySize;
    186   }
    187 }
    188 
    189 bool
    190 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
    191                                              CharUnits Offset) const {
    192   // We only need to check empty bases.
    193   if (!RD->isEmpty())
    194     return true;
    195 
    196   EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
    197   if (I == EmptyClassOffsets.end())
    198     return true;
    199 
    200   const ClassVectorTy& Classes = I->second;
    201   if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
    202     return true;
    203 
    204   // There is already an empty class of the same type at this offset.
    205   return false;
    206 }
    207 
    208 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
    209                                              CharUnits Offset) {
    210   // We only care about empty bases.
    211   if (!RD->isEmpty())
    212     return;
    213 
    214   // If we have empty structures inside a union, we can assign both
    215   // the same offset. Just avoid pushing them twice in the list.
    216   ClassVectorTy& Classes = EmptyClassOffsets[Offset];
    217   if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
    218     return;
    219 
    220   Classes.push_back(RD);
    221 
    222   // Update the empty class offset.
    223   if (Offset > MaxEmptyClassOffset)
    224     MaxEmptyClassOffset = Offset;
    225 }
    226 
    227 bool
    228 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
    229                                                  CharUnits Offset) {
    230   // We don't have to keep looking past the maximum offset that's known to
    231   // contain an empty class.
    232   if (!AnyEmptySubobjectsBeyondOffset(Offset))
    233     return true;
    234 
    235   if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
    236     return false;
    237 
    238   // Traverse all non-virtual bases.
    239   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
    240   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
    241     BaseSubobjectInfo* Base = Info->Bases[I];
    242     if (Base->IsVirtual)
    243       continue;
    244 
    245     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
    246 
    247     if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
    248       return false;
    249   }
    250 
    251   if (Info->PrimaryVirtualBaseInfo) {
    252     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
    253 
    254     if (Info == PrimaryVirtualBaseInfo->Derived) {
    255       if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
    256         return false;
    257     }
    258   }
    259 
    260   // Traverse all member variables.
    261   unsigned FieldNo = 0;
    262   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
    263        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
    264     if (I->isBitField())
    265       continue;
    266 
    267     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    268     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
    269       return false;
    270   }
    271 
    272   return true;
    273 }
    274 
    275 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
    276                                                   CharUnits Offset,
    277                                                   bool PlacingEmptyBase) {
    278   if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
    279     // We know that the only empty subobjects that can conflict with empty
    280     // subobject of non-empty bases, are empty bases that can be placed at
    281     // offset zero. Because of this, we only need to keep track of empty base
    282     // subobjects with offsets less than the size of the largest empty
    283     // subobject for our class.
    284     return;
    285   }
    286 
    287   AddSubobjectAtOffset(Info->Class, Offset);
    288 
    289   // Traverse all non-virtual bases.
    290   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
    291   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
    292     BaseSubobjectInfo* Base = Info->Bases[I];
    293     if (Base->IsVirtual)
    294       continue;
    295 
    296     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
    297     UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
    298   }
    299 
    300   if (Info->PrimaryVirtualBaseInfo) {
    301     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
    302 
    303     if (Info == PrimaryVirtualBaseInfo->Derived)
    304       UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
    305                                 PlacingEmptyBase);
    306   }
    307 
    308   // Traverse all member variables.
    309   unsigned FieldNo = 0;
    310   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
    311        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
    312     if (I->isBitField())
    313       continue;
    314 
    315     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    316     UpdateEmptyFieldSubobjects(*I, FieldOffset);
    317   }
    318 }
    319 
    320 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
    321                                              CharUnits Offset) {
    322   // If we know this class doesn't have any empty subobjects we don't need to
    323   // bother checking.
    324   if (SizeOfLargestEmptySubobject.isZero())
    325     return true;
    326 
    327   if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
    328     return false;
    329 
    330   // We are able to place the base at this offset. Make sure to update the
    331   // empty base subobject map.
    332   UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
    333   return true;
    334 }
    335 
    336 bool
    337 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
    338                                                   const CXXRecordDecl *Class,
    339                                                   CharUnits Offset) const {
    340   // We don't have to keep looking past the maximum offset that's known to
    341   // contain an empty class.
    342   if (!AnyEmptySubobjectsBeyondOffset(Offset))
    343     return true;
    344 
    345   if (!CanPlaceSubobjectAtOffset(RD, Offset))
    346     return false;
    347 
    348   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    349 
    350   // Traverse all non-virtual bases.
    351   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    352        E = RD->bases_end(); I != E; ++I) {
    353     if (I->isVirtual())
    354       continue;
    355 
    356     const CXXRecordDecl *BaseDecl =
    357       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    358 
    359     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
    360     if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
    361       return false;
    362   }
    363 
    364   if (RD == Class) {
    365     // This is the most derived class, traverse virtual bases as well.
    366     for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
    367          E = RD->vbases_end(); I != E; ++I) {
    368       const CXXRecordDecl *VBaseDecl =
    369         cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    370 
    371       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
    372       if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
    373         return false;
    374     }
    375   }
    376 
    377   // Traverse all member variables.
    378   unsigned FieldNo = 0;
    379   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
    380        I != E; ++I, ++FieldNo) {
    381     if (I->isBitField())
    382       continue;
    383 
    384     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    385 
    386     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
    387       return false;
    388   }
    389 
    390   return true;
    391 }
    392 
    393 bool
    394 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
    395                                                   CharUnits Offset) const {
    396   // We don't have to keep looking past the maximum offset that's known to
    397   // contain an empty class.
    398   if (!AnyEmptySubobjectsBeyondOffset(Offset))
    399     return true;
    400 
    401   QualType T = FD->getType();
    402   if (const RecordType *RT = T->getAs<RecordType>()) {
    403     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    404     return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
    405   }
    406 
    407   // If we have an array type we need to look at every element.
    408   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
    409     QualType ElemTy = Context.getBaseElementType(AT);
    410     const RecordType *RT = ElemTy->getAs<RecordType>();
    411     if (!RT)
    412       return true;
    413 
    414     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    415     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    416 
    417     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
    418     CharUnits ElementOffset = Offset;
    419     for (uint64_t I = 0; I != NumElements; ++I) {
    420       // We don't have to keep looking past the maximum offset that's known to
    421       // contain an empty class.
    422       if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
    423         return true;
    424 
    425       if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
    426         return false;
    427 
    428       ElementOffset += Layout.getSize();
    429     }
    430   }
    431 
    432   return true;
    433 }
    434 
    435 bool
    436 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
    437                                          CharUnits Offset) {
    438   if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
    439     return false;
    440 
    441   // We are able to place the member variable at this offset.
    442   // Make sure to update the empty base subobject map.
    443   UpdateEmptyFieldSubobjects(FD, Offset);
    444   return true;
    445 }
    446 
    447 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
    448                                                    const CXXRecordDecl *Class,
    449                                                    CharUnits Offset) {
    450   // We know that the only empty subobjects that can conflict with empty
    451   // field subobjects are subobjects of empty bases that can be placed at offset
    452   // zero. Because of this, we only need to keep track of empty field
    453   // subobjects with offsets less than the size of the largest empty
    454   // subobject for our class.
    455   if (Offset >= SizeOfLargestEmptySubobject)
    456     return;
    457 
    458   AddSubobjectAtOffset(RD, Offset);
    459 
    460   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    461 
    462   // Traverse all non-virtual bases.
    463   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    464        E = RD->bases_end(); I != E; ++I) {
    465     if (I->isVirtual())
    466       continue;
    467 
    468     const CXXRecordDecl *BaseDecl =
    469       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    470 
    471     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
    472     UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
    473   }
    474 
    475   if (RD == Class) {
    476     // This is the most derived class, traverse virtual bases as well.
    477     for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
    478          E = RD->vbases_end(); I != E; ++I) {
    479       const CXXRecordDecl *VBaseDecl =
    480       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    481 
    482       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
    483       UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
    484     }
    485   }
    486 
    487   // Traverse all member variables.
    488   unsigned FieldNo = 0;
    489   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
    490        I != E; ++I, ++FieldNo) {
    491     if (I->isBitField())
    492       continue;
    493 
    494     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    495 
    496     UpdateEmptyFieldSubobjects(*I, FieldOffset);
    497   }
    498 }
    499 
    500 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
    501                                                    CharUnits Offset) {
    502   QualType T = FD->getType();
    503   if (const RecordType *RT = T->getAs<RecordType>()) {
    504     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    505     UpdateEmptyFieldSubobjects(RD, RD, Offset);
    506     return;
    507   }
    508 
    509   // If we have an array type we need to update every element.
    510   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
    511     QualType ElemTy = Context.getBaseElementType(AT);
    512     const RecordType *RT = ElemTy->getAs<RecordType>();
    513     if (!RT)
    514       return;
    515 
    516     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    517     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    518 
    519     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
    520     CharUnits ElementOffset = Offset;
    521 
    522     for (uint64_t I = 0; I != NumElements; ++I) {
    523       // We know that the only empty subobjects that can conflict with empty
    524       // field subobjects are subobjects of empty bases that can be placed at
    525       // offset zero. Because of this, we only need to keep track of empty field
    526       // subobjects with offsets less than the size of the largest empty
    527       // subobject for our class.
    528       if (ElementOffset >= SizeOfLargestEmptySubobject)
    529         return;
    530 
    531       UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
    532       ElementOffset += Layout.getSize();
    533     }
    534   }
    535 }
    536 
    537 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
    538 
    539 class RecordLayoutBuilder {
    540 protected:
    541   // FIXME: Remove this and make the appropriate fields public.
    542   friend class clang::ASTContext;
    543 
    544   const ASTContext &Context;
    545 
    546   EmptySubobjectMap *EmptySubobjects;
    547 
    548   /// Size - The current size of the record layout.
    549   uint64_t Size;
    550 
    551   /// Alignment - The current alignment of the record layout.
    552   CharUnits Alignment;
    553 
    554   /// \brief The alignment if attribute packed is not used.
    555   CharUnits UnpackedAlignment;
    556 
    557   SmallVector<uint64_t, 16> FieldOffsets;
    558 
    559   /// \brief Whether the external AST source has provided a layout for this
    560   /// record.
    561   unsigned ExternalLayout : 1;
    562 
    563   /// \brief Whether we need to infer alignment, even when we have an
    564   /// externally-provided layout.
    565   unsigned InferAlignment : 1;
    566 
    567   /// Packed - Whether the record is packed or not.
    568   unsigned Packed : 1;
    569 
    570   unsigned IsUnion : 1;
    571 
    572   unsigned IsMac68kAlign : 1;
    573 
    574   unsigned IsMsStruct : 1;
    575 
    576   /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
    577   /// this contains the number of bits in the last unit that can be used for
    578   /// an adjacent bitfield if necessary.  The unit in question is usually
    579   /// a byte, but larger units are used if IsMsStruct.
    580   unsigned char UnfilledBitsInLastUnit;
    581   /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
    582   /// of the previous field if it was a bitfield.
    583   unsigned char LastBitfieldTypeSize;
    584 
    585   /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
    586   /// #pragma pack.
    587   CharUnits MaxFieldAlignment;
    588 
    589   /// DataSize - The data size of the record being laid out.
    590   uint64_t DataSize;
    591 
    592   CharUnits NonVirtualSize;
    593   CharUnits NonVirtualAlignment;
    594 
    595   /// PrimaryBase - the primary base class (if one exists) of the class
    596   /// we're laying out.
    597   const CXXRecordDecl *PrimaryBase;
    598 
    599   /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
    600   /// out is virtual.
    601   bool PrimaryBaseIsVirtual;
    602 
    603   /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
    604   /// pointer, as opposed to inheriting one from a primary base class.
    605   bool HasOwnVFPtr;
    606 
    607   /// VBPtrOffset - Virtual base table offset. Only for MS layout.
    608   CharUnits VBPtrOffset;
    609 
    610   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
    611 
    612   /// Bases - base classes and their offsets in the record.
    613   BaseOffsetsMapTy Bases;
    614 
    615   // VBases - virtual base classes and their offsets in the record.
    616   ASTRecordLayout::VBaseOffsetsMapTy VBases;
    617 
    618   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
    619   /// primary base classes for some other direct or indirect base class.
    620   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
    621 
    622   /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
    623   /// inheritance graph order. Used for determining the primary base class.
    624   const CXXRecordDecl *FirstNearlyEmptyVBase;
    625 
    626   /// VisitedVirtualBases - A set of all the visited virtual bases, used to
    627   /// avoid visiting virtual bases more than once.
    628   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
    629 
    630   /// \brief Externally-provided size.
    631   uint64_t ExternalSize;
    632 
    633   /// \brief Externally-provided alignment.
    634   uint64_t ExternalAlign;
    635 
    636   /// \brief Externally-provided field offsets.
    637   llvm::DenseMap<const FieldDecl *, uint64_t> ExternalFieldOffsets;
    638 
    639   /// \brief Externally-provided direct, non-virtual base offsets.
    640   llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalBaseOffsets;
    641 
    642   /// \brief Externally-provided virtual base offsets.
    643   llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalVirtualBaseOffsets;
    644 
    645   RecordLayoutBuilder(const ASTContext &Context,
    646                       EmptySubobjectMap *EmptySubobjects)
    647     : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
    648       Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
    649       ExternalLayout(false), InferAlignment(false),
    650       Packed(false), IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
    651       UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
    652       MaxFieldAlignment(CharUnits::Zero()),
    653       DataSize(0), NonVirtualSize(CharUnits::Zero()),
    654       NonVirtualAlignment(CharUnits::One()),
    655       PrimaryBase(0), PrimaryBaseIsVirtual(false),
    656       HasOwnVFPtr(false),
    657       VBPtrOffset(CharUnits::fromQuantity(-1)),
    658       FirstNearlyEmptyVBase(0) { }
    659 
    660   /// Reset this RecordLayoutBuilder to a fresh state, using the given
    661   /// alignment as the initial alignment.  This is used for the
    662   /// correct layout of vb-table pointers in MSVC.
    663   void resetWithTargetAlignment(CharUnits TargetAlignment) {
    664     const ASTContext &Context = this->Context;
    665     EmptySubobjectMap *EmptySubobjects = this->EmptySubobjects;
    666     this->~RecordLayoutBuilder();
    667     new (this) RecordLayoutBuilder(Context, EmptySubobjects);
    668     Alignment = UnpackedAlignment = TargetAlignment;
    669   }
    670 
    671   void Layout(const RecordDecl *D);
    672   void Layout(const CXXRecordDecl *D);
    673   void Layout(const ObjCInterfaceDecl *D);
    674 
    675   void LayoutFields(const RecordDecl *D);
    676   void LayoutField(const FieldDecl *D);
    677   void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
    678                           bool FieldPacked, const FieldDecl *D);
    679   void LayoutBitField(const FieldDecl *D);
    680 
    681   TargetCXXABI getCXXABI() const {
    682     return Context.getTargetInfo().getCXXABI();
    683   }
    684 
    685   bool isMicrosoftCXXABI() const {
    686     return getCXXABI().isMicrosoft();
    687   }
    688 
    689   void MSLayoutVirtualBases(const CXXRecordDecl *RD);
    690 
    691   /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
    692   llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
    693 
    694   typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
    695     BaseSubobjectInfoMapTy;
    696 
    697   /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
    698   /// of the class we're laying out to their base subobject info.
    699   BaseSubobjectInfoMapTy VirtualBaseInfo;
    700 
    701   /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
    702   /// class we're laying out to their base subobject info.
    703   BaseSubobjectInfoMapTy NonVirtualBaseInfo;
    704 
    705   /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
    706   /// bases of the given class.
    707   void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
    708 
    709   /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
    710   /// single class and all of its base classes.
    711   BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
    712                                               bool IsVirtual,
    713                                               BaseSubobjectInfo *Derived);
    714 
    715   /// DeterminePrimaryBase - Determine the primary base of the given class.
    716   void DeterminePrimaryBase(const CXXRecordDecl *RD);
    717 
    718   void SelectPrimaryVBase(const CXXRecordDecl *RD);
    719 
    720   void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
    721 
    722   /// LayoutNonVirtualBases - Determines the primary base class (if any) and
    723   /// lays it out. Will then proceed to lay out all non-virtual base clasess.
    724   void LayoutNonVirtualBases(const CXXRecordDecl *RD);
    725 
    726   /// LayoutNonVirtualBase - Lays out a single non-virtual base.
    727   void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
    728 
    729   void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
    730                                     CharUnits Offset);
    731 
    732   bool needsVFTable(const CXXRecordDecl *RD) const;
    733   bool hasNewVirtualFunction(const CXXRecordDecl *RD,
    734                              bool IgnoreDestructor = false) const;
    735   bool isPossiblePrimaryBase(const CXXRecordDecl *Base) const;
    736 
    737   void computeVtordisps(const CXXRecordDecl *RD,
    738                         ClassSetTy &VtordispVBases);
    739 
    740   /// LayoutVirtualBases - Lays out all the virtual bases.
    741   void LayoutVirtualBases(const CXXRecordDecl *RD,
    742                           const CXXRecordDecl *MostDerivedClass);
    743 
    744   /// LayoutVirtualBase - Lays out a single virtual base.
    745   void LayoutVirtualBase(const BaseSubobjectInfo *Base,
    746                          bool IsVtordispNeed = false);
    747 
    748   /// LayoutBase - Will lay out a base and return the offset where it was
    749   /// placed, in chars.
    750   CharUnits LayoutBase(const BaseSubobjectInfo *Base);
    751 
    752   /// InitializeLayout - Initialize record layout for the given record decl.
    753   void InitializeLayout(const Decl *D);
    754 
    755   /// FinishLayout - Finalize record layout. Adjust record size based on the
    756   /// alignment.
    757   void FinishLayout(const NamedDecl *D);
    758 
    759   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
    760   void UpdateAlignment(CharUnits NewAlignment) {
    761     UpdateAlignment(NewAlignment, NewAlignment);
    762   }
    763 
    764   /// \brief Retrieve the externally-supplied field offset for the given
    765   /// field.
    766   ///
    767   /// \param Field The field whose offset is being queried.
    768   /// \param ComputedOffset The offset that we've computed for this field.
    769   uint64_t updateExternalFieldOffset(const FieldDecl *Field,
    770                                      uint64_t ComputedOffset);
    771 
    772   void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
    773                           uint64_t UnpackedOffset, unsigned UnpackedAlign,
    774                           bool isPacked, const FieldDecl *D);
    775 
    776   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
    777 
    778   CharUnits getSize() const {
    779     assert(Size % Context.getCharWidth() == 0);
    780     return Context.toCharUnitsFromBits(Size);
    781   }
    782   uint64_t getSizeInBits() const { return Size; }
    783 
    784   void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
    785   void setSize(uint64_t NewSize) { Size = NewSize; }
    786 
    787   CharUnits getAligment() const { return Alignment; }
    788 
    789   CharUnits getDataSize() const {
    790     assert(DataSize % Context.getCharWidth() == 0);
    791     return Context.toCharUnitsFromBits(DataSize);
    792   }
    793   uint64_t getDataSizeInBits() const { return DataSize; }
    794 
    795   void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
    796   void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
    797 
    798   RecordLayoutBuilder(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
    799   void operator=(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
    800 };
    801 } // end anonymous namespace
    802 
    803 void
    804 RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
    805   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    806          E = RD->bases_end(); I != E; ++I) {
    807     assert(!I->getType()->isDependentType() &&
    808            "Cannot layout class with dependent bases.");
    809 
    810     const CXXRecordDecl *Base =
    811       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    812 
    813     // Check if this is a nearly empty virtual base.
    814     if (I->isVirtual() && Context.isNearlyEmpty(Base)) {
    815       // If it's not an indirect primary base, then we've found our primary
    816       // base.
    817       if (!IndirectPrimaryBases.count(Base)) {
    818         PrimaryBase = Base;
    819         PrimaryBaseIsVirtual = true;
    820         return;
    821       }
    822 
    823       // Is this the first nearly empty virtual base?
    824       if (!FirstNearlyEmptyVBase)
    825         FirstNearlyEmptyVBase = Base;
    826     }
    827 
    828     SelectPrimaryVBase(Base);
    829     if (PrimaryBase)
    830       return;
    831   }
    832 }
    833 
    834 /// DeterminePrimaryBase - Determine the primary base of the given class.
    835 void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
    836   // If the class isn't dynamic, it won't have a primary base.
    837   if (!RD->isDynamicClass())
    838     return;
    839 
    840   // Compute all the primary virtual bases for all of our direct and
    841   // indirect bases, and record all their primary virtual base classes.
    842   RD->getIndirectPrimaryBases(IndirectPrimaryBases);
    843 
    844   // If the record has a dynamic base class, attempt to choose a primary base
    845   // class. It is the first (in direct base class order) non-virtual dynamic
    846   // base class, if one exists.
    847   for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
    848          e = RD->bases_end(); i != e; ++i) {
    849     // Ignore virtual bases.
    850     if (i->isVirtual())
    851       continue;
    852 
    853     const CXXRecordDecl *Base =
    854       cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
    855 
    856     if (isPossiblePrimaryBase(Base)) {
    857       // We found it.
    858       PrimaryBase = Base;
    859       PrimaryBaseIsVirtual = false;
    860       return;
    861     }
    862   }
    863 
    864   // The Microsoft ABI doesn't have primary virtual bases.
    865   if (isMicrosoftCXXABI()) {
    866     assert(!PrimaryBase && "Should not get here with a primary base!");
    867     return;
    868   }
    869 
    870   // Under the Itanium ABI, if there is no non-virtual primary base class,
    871   // try to compute the primary virtual base.  The primary virtual base is
    872   // the first nearly empty virtual base that is not an indirect primary
    873   // virtual base class, if one exists.
    874   if (RD->getNumVBases() != 0) {
    875     SelectPrimaryVBase(RD);
    876     if (PrimaryBase)
    877       return;
    878   }
    879 
    880   // Otherwise, it is the first indirect primary base class, if one exists.
    881   if (FirstNearlyEmptyVBase) {
    882     PrimaryBase = FirstNearlyEmptyVBase;
    883     PrimaryBaseIsVirtual = true;
    884     return;
    885   }
    886 
    887   assert(!PrimaryBase && "Should not get here with a primary base!");
    888 }
    889 
    890 BaseSubobjectInfo *
    891 RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
    892                                               bool IsVirtual,
    893                                               BaseSubobjectInfo *Derived) {
    894   BaseSubobjectInfo *Info;
    895 
    896   if (IsVirtual) {
    897     // Check if we already have info about this virtual base.
    898     BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
    899     if (InfoSlot) {
    900       assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
    901       return InfoSlot;
    902     }
    903 
    904     // We don't, create it.
    905     InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
    906     Info = InfoSlot;
    907   } else {
    908     Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
    909   }
    910 
    911   Info->Class = RD;
    912   Info->IsVirtual = IsVirtual;
    913   Info->Derived = 0;
    914   Info->PrimaryVirtualBaseInfo = 0;
    915 
    916   const CXXRecordDecl *PrimaryVirtualBase = 0;
    917   BaseSubobjectInfo *PrimaryVirtualBaseInfo = 0;
    918 
    919   // Check if this base has a primary virtual base.
    920   if (RD->getNumVBases()) {
    921     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    922     if (Layout.isPrimaryBaseVirtual()) {
    923       // This base does have a primary virtual base.
    924       PrimaryVirtualBase = Layout.getPrimaryBase();
    925       assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
    926 
    927       // Now check if we have base subobject info about this primary base.
    928       PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
    929 
    930       if (PrimaryVirtualBaseInfo) {
    931         if (PrimaryVirtualBaseInfo->Derived) {
    932           // We did have info about this primary base, and it turns out that it
    933           // has already been claimed as a primary virtual base for another
    934           // base.
    935           PrimaryVirtualBase = 0;
    936         } else {
    937           // We can claim this base as our primary base.
    938           Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
    939           PrimaryVirtualBaseInfo->Derived = Info;
    940         }
    941       }
    942     }
    943   }
    944 
    945   // Now go through all direct bases.
    946   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    947        E = RD->bases_end(); I != E; ++I) {
    948     bool IsVirtual = I->isVirtual();
    949 
    950     const CXXRecordDecl *BaseDecl =
    951       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    952 
    953     Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
    954   }
    955 
    956   if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
    957     // Traversing the bases must have created the base info for our primary
    958     // virtual base.
    959     PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
    960     assert(PrimaryVirtualBaseInfo &&
    961            "Did not create a primary virtual base!");
    962 
    963     // Claim the primary virtual base as our primary virtual base.
    964     Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
    965     PrimaryVirtualBaseInfo->Derived = Info;
    966   }
    967 
    968   return Info;
    969 }
    970 
    971 void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) {
    972   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    973        E = RD->bases_end(); I != E; ++I) {
    974     bool IsVirtual = I->isVirtual();
    975 
    976     const CXXRecordDecl *BaseDecl =
    977       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    978 
    979     // Compute the base subobject info for this base.
    980     BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, 0);
    981 
    982     if (IsVirtual) {
    983       // ComputeBaseInfo has already added this base for us.
    984       assert(VirtualBaseInfo.count(BaseDecl) &&
    985              "Did not add virtual base!");
    986     } else {
    987       // Add the base info to the map of non-virtual bases.
    988       assert(!NonVirtualBaseInfo.count(BaseDecl) &&
    989              "Non-virtual base already exists!");
    990       NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
    991     }
    992   }
    993 }
    994 
    995 void
    996 RecordLayoutBuilder::EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign) {
    997   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
    998 
    999   // The maximum field alignment overrides base align.
   1000   if (!MaxFieldAlignment.isZero()) {
   1001     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
   1002     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
   1003   }
   1004 
   1005   // Round up the current record size to pointer alignment.
   1006   setSize(getSize().RoundUpToAlignment(BaseAlign));
   1007   setDataSize(getSize());
   1008 
   1009   // Update the alignment.
   1010   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
   1011 }
   1012 
   1013 void
   1014 RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
   1015   // Then, determine the primary base class.
   1016   DeterminePrimaryBase(RD);
   1017 
   1018   // Compute base subobject info.
   1019   ComputeBaseSubobjectInfo(RD);
   1020 
   1021   // If we have a primary base class, lay it out.
   1022   if (PrimaryBase) {
   1023     if (PrimaryBaseIsVirtual) {
   1024       // If the primary virtual base was a primary virtual base of some other
   1025       // base class we'll have to steal it.
   1026       BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
   1027       PrimaryBaseInfo->Derived = 0;
   1028 
   1029       // We have a virtual primary base, insert it as an indirect primary base.
   1030       IndirectPrimaryBases.insert(PrimaryBase);
   1031 
   1032       assert(!VisitedVirtualBases.count(PrimaryBase) &&
   1033              "vbase already visited!");
   1034       VisitedVirtualBases.insert(PrimaryBase);
   1035 
   1036       LayoutVirtualBase(PrimaryBaseInfo);
   1037     } else {
   1038       BaseSubobjectInfo *PrimaryBaseInfo =
   1039         NonVirtualBaseInfo.lookup(PrimaryBase);
   1040       assert(PrimaryBaseInfo &&
   1041              "Did not find base info for non-virtual primary base!");
   1042 
   1043       LayoutNonVirtualBase(PrimaryBaseInfo);
   1044     }
   1045 
   1046   // If this class needs a vtable/vf-table and didn't get one from a
   1047   // primary base, add it in now.
   1048   } else if (needsVFTable(RD)) {
   1049     assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
   1050     CharUnits PtrWidth =
   1051       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
   1052     CharUnits PtrAlign =
   1053       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
   1054     EnsureVTablePointerAlignment(PtrAlign);
   1055     HasOwnVFPtr = true;
   1056     setSize(getSize() + PtrWidth);
   1057     setDataSize(getSize());
   1058   }
   1059 
   1060   bool HasDirectVirtualBases = false;
   1061   bool HasNonVirtualBaseWithVBTable = false;
   1062 
   1063   // Now lay out the non-virtual bases.
   1064   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   1065          E = RD->bases_end(); I != E; ++I) {
   1066 
   1067     // Ignore virtual bases, but remember that we saw one.
   1068     if (I->isVirtual()) {
   1069       HasDirectVirtualBases = true;
   1070       continue;
   1071     }
   1072 
   1073     const CXXRecordDecl *BaseDecl =
   1074       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
   1075 
   1076     // Remember if this base has virtual bases itself.
   1077     if (BaseDecl->getNumVBases())
   1078       HasNonVirtualBaseWithVBTable = true;
   1079 
   1080     // Skip the primary base, because we've already laid it out.  The
   1081     // !PrimaryBaseIsVirtual check is required because we might have a
   1082     // non-virtual base of the same type as a primary virtual base.
   1083     if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
   1084       continue;
   1085 
   1086     // Lay out the base.
   1087     BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
   1088     assert(BaseInfo && "Did not find base info for non-virtual base!");
   1089 
   1090     LayoutNonVirtualBase(BaseInfo);
   1091   }
   1092 
   1093   // In the MS ABI, add the vb-table pointer if we need one, which is
   1094   // whenever we have a virtual base and we can't re-use a vb-table
   1095   // pointer from a non-virtual base.
   1096   if (isMicrosoftCXXABI() &&
   1097       HasDirectVirtualBases && !HasNonVirtualBaseWithVBTable) {
   1098     CharUnits PtrWidth =
   1099       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
   1100     CharUnits PtrAlign =
   1101       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
   1102 
   1103     // MSVC potentially over-aligns the vb-table pointer by giving it
   1104     // the max alignment of all the non-virtual objects in the class.
   1105     // This is completely unnecessary, but we're not here to pass
   1106     // judgment.
   1107     //
   1108     // Note that we've only laid out the non-virtual bases, so on the
   1109     // first pass Alignment won't be set correctly here, but if the
   1110     // vb-table doesn't end up aligned correctly we'll come through
   1111     // and redo the layout from scratch with the right alignment.
   1112     //
   1113     // TODO: Instead of doing this, just lay out the fields as if the
   1114     // vb-table were at offset zero, then retroactively bump the field
   1115     // offsets up.
   1116     PtrAlign = std::max(PtrAlign, Alignment);
   1117 
   1118     EnsureVTablePointerAlignment(PtrAlign);
   1119     VBPtrOffset = getSize();
   1120     setSize(getSize() + PtrWidth);
   1121     setDataSize(getSize());
   1122   }
   1123 }
   1124 
   1125 void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) {
   1126   // Layout the base.
   1127   CharUnits Offset = LayoutBase(Base);
   1128 
   1129   // Add its base class offset.
   1130   assert(!Bases.count(Base->Class) && "base offset already exists!");
   1131   Bases.insert(std::make_pair(Base->Class, Offset));
   1132 
   1133   AddPrimaryVirtualBaseOffsets(Base, Offset);
   1134 }
   1135 
   1136 void
   1137 RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
   1138                                                   CharUnits Offset) {
   1139   // This base isn't interesting, it has no virtual bases.
   1140   if (!Info->Class->getNumVBases())
   1141     return;
   1142 
   1143   // First, check if we have a virtual primary base to add offsets for.
   1144   if (Info->PrimaryVirtualBaseInfo) {
   1145     assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
   1146            "Primary virtual base is not virtual!");
   1147     if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
   1148       // Add the offset.
   1149       assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
   1150              "primary vbase offset already exists!");
   1151       VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
   1152                                    ASTRecordLayout::VBaseInfo(Offset, false)));
   1153 
   1154       // Traverse the primary virtual base.
   1155       AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
   1156     }
   1157   }
   1158 
   1159   // Now go through all direct non-virtual bases.
   1160   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
   1161   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
   1162     const BaseSubobjectInfo *Base = Info->Bases[I];
   1163     if (Base->IsVirtual)
   1164       continue;
   1165 
   1166     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
   1167     AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
   1168   }
   1169 }
   1170 
   1171 /// needsVFTable - Return true if this class needs a vtable or vf-table
   1172 /// when laid out as a base class.  These are treated the same because
   1173 /// they're both always laid out at offset zero.
   1174 ///
   1175 /// This function assumes that the class has no primary base.
   1176 bool RecordLayoutBuilder::needsVFTable(const CXXRecordDecl *RD) const {
   1177   assert(!PrimaryBase);
   1178 
   1179   // In the Itanium ABI, every dynamic class needs a vtable: even if
   1180   // this class has no virtual functions as a base class (i.e. it's
   1181   // non-polymorphic or only has virtual functions from virtual
   1182   // bases),x it still needs a vtable to locate its virtual bases.
   1183   if (!isMicrosoftCXXABI())
   1184     return RD->isDynamicClass();
   1185 
   1186   // In the MS ABI, we need a vfptr if the class has virtual functions
   1187   // other than those declared by its virtual bases.  The AST doesn't
   1188   // tell us that directly, and checking manually for virtual
   1189   // functions that aren't overrides is expensive, but there are
   1190   // some important shortcuts:
   1191 
   1192   //  - Non-polymorphic classes have no virtual functions at all.
   1193   if (!RD->isPolymorphic()) return false;
   1194 
   1195   //  - Polymorphic classes with no virtual bases must either declare
   1196   //    virtual functions directly or inherit them, but in the latter
   1197   //    case we would have a primary base.
   1198   if (RD->getNumVBases() == 0) return true;
   1199 
   1200   return hasNewVirtualFunction(RD);
   1201 }
   1202 
   1203 /// Does the given class inherit non-virtually from any of the classes
   1204 /// in the given set?
   1205 static bool hasNonVirtualBaseInSet(const CXXRecordDecl *RD,
   1206                                    const ClassSetTy &set) {
   1207   for (CXXRecordDecl::base_class_const_iterator
   1208          I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) {
   1209     // Ignore virtual links.
   1210     if (I->isVirtual()) continue;
   1211 
   1212     // Check whether the set contains the base.
   1213     const CXXRecordDecl *base = I->getType()->getAsCXXRecordDecl();
   1214     if (set.count(base))
   1215       return true;
   1216 
   1217     // Otherwise, recurse and propagate.
   1218     if (hasNonVirtualBaseInSet(base, set))
   1219       return true;
   1220   }
   1221 
   1222   return false;
   1223 }
   1224 
   1225 /// Does the given method (B::foo()) already override a method (A::foo())
   1226 /// such that A requires a vtordisp in B?  If so, we don't need to add a
   1227 /// new vtordisp for B in a yet-more-derived class C providing C::foo().
   1228 static bool overridesMethodRequiringVtorDisp(const ASTContext &Context,
   1229                                              const CXXMethodDecl *M) {
   1230   CXXMethodDecl::method_iterator
   1231     I = M->begin_overridden_methods(), E = M->end_overridden_methods();
   1232   if (I == E) return false;
   1233 
   1234   const ASTRecordLayout::VBaseOffsetsMapTy &offsets =
   1235     Context.getASTRecordLayout(M->getParent()).getVBaseOffsetsMap();
   1236   do {
   1237     const CXXMethodDecl *overridden = *I;
   1238 
   1239     // If the overridden method's class isn't recognized as a virtual
   1240     // base in the derived class, ignore it.
   1241     ASTRecordLayout::VBaseOffsetsMapTy::const_iterator
   1242       it = offsets.find(overridden->getParent());
   1243     if (it == offsets.end()) continue;
   1244 
   1245     // Otherwise, check if the overridden method's class needs a vtordisp.
   1246     if (it->second.hasVtorDisp()) return true;
   1247 
   1248   } while (++I != E);
   1249   return false;
   1250 }
   1251 
   1252 /// In the Microsoft ABI, decide which of the virtual bases require a
   1253 /// vtordisp field.
   1254 void RecordLayoutBuilder::computeVtordisps(const CXXRecordDecl *RD,
   1255                                            ClassSetTy &vtordispVBases) {
   1256   // Bail out if we have no virtual bases.
   1257   assert(RD->getNumVBases());
   1258 
   1259   // Build up the set of virtual bases that we haven't decided yet.
   1260   ClassSetTy undecidedVBases;
   1261   for (CXXRecordDecl::base_class_const_iterator
   1262          I = RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) {
   1263     const CXXRecordDecl *vbase = I->getType()->getAsCXXRecordDecl();
   1264     undecidedVBases.insert(vbase);
   1265   }
   1266   assert(!undecidedVBases.empty());
   1267 
   1268   // A virtual base requires a vtordisp field in a derived class if it
   1269   // requires a vtordisp field in a base class.  Walk all the direct
   1270   // bases and collect this information.
   1271   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   1272        E = RD->bases_end(); I != E; ++I) {
   1273     const CXXRecordDecl *base = I->getType()->getAsCXXRecordDecl();
   1274     const ASTRecordLayout &baseLayout = Context.getASTRecordLayout(base);
   1275 
   1276     // Iterate over the set of virtual bases provided by this class.
   1277     for (ASTRecordLayout::VBaseOffsetsMapTy::const_iterator
   1278            VI = baseLayout.getVBaseOffsetsMap().begin(),
   1279            VE = baseLayout.getVBaseOffsetsMap().end(); VI != VE; ++VI) {
   1280       // If it doesn't need a vtordisp in this base, ignore it.
   1281       if (!VI->second.hasVtorDisp()) continue;
   1282 
   1283       // If we've already seen it and decided it needs a vtordisp, ignore it.
   1284       if (!undecidedVBases.erase(VI->first))
   1285         continue;
   1286 
   1287       // Add it.
   1288       vtordispVBases.insert(VI->first);
   1289 
   1290       // Quit as soon as we've decided everything.
   1291       if (undecidedVBases.empty())
   1292         return;
   1293     }
   1294   }
   1295 
   1296   // Okay, we have virtual bases that we haven't yet decided about.  A
   1297   // virtual base requires a vtordisp if any the non-destructor
   1298   // virtual methods declared in this class directly override a method
   1299   // provided by that virtual base.  (If so, we need to emit a thunk
   1300   // for that method, to be used in the construction vftable, which
   1301   // applies an additional 'vtordisp' this-adjustment.)
   1302 
   1303   // Collect the set of bases directly overridden by any method in this class.
   1304   // It's possible that some of these classes won't be virtual bases, or won't be
   1305   // provided by virtual bases, or won't be virtual bases in the overridden
   1306   // instance but are virtual bases elsewhere.  Only the last matters for what
   1307   // we're doing, and we can ignore those:  if we don't directly override
   1308   // a method provided by a virtual copy of a base class, but we do directly
   1309   // override a method provided by a non-virtual copy of that base class,
   1310   // then we must indirectly override the method provided by the virtual base,
   1311   // and so we should already have collected it in the loop above.
   1312   ClassSetTy overriddenBases;
   1313   for (CXXRecordDecl::method_iterator
   1314          M = RD->method_begin(), E = RD->method_end(); M != E; ++M) {
   1315     // Ignore non-virtual methods and destructors.
   1316     if (isa<CXXDestructorDecl>(*M) || !M->isVirtual())
   1317       continue;
   1318 
   1319     for (CXXMethodDecl::method_iterator I = M->begin_overridden_methods(),
   1320           E = M->end_overridden_methods(); I != E; ++I) {
   1321       const CXXMethodDecl *overriddenMethod = (*I);
   1322 
   1323       // Ignore methods that override methods from vbases that require
   1324       // require vtordisps.
   1325       if (overridesMethodRequiringVtorDisp(Context, overriddenMethod))
   1326         continue;
   1327 
   1328       // As an optimization, check immediately whether we're overriding
   1329       // something from the undecided set.
   1330       const CXXRecordDecl *overriddenBase = overriddenMethod->getParent();
   1331       if (undecidedVBases.erase(overriddenBase)) {
   1332         vtordispVBases.insert(overriddenBase);
   1333         if (undecidedVBases.empty()) return;
   1334 
   1335         // We can't 'continue;' here because one of our undecided
   1336         // vbases might non-virtually inherit from this base.
   1337         // Consider:
   1338         //   struct A { virtual void foo(); };
   1339         //   struct B : A {};
   1340         //   struct C : virtual A, virtual B { virtual void foo(); };
   1341         // We need a vtordisp for B here.
   1342       }
   1343 
   1344       // Otherwise, just collect it.
   1345       overriddenBases.insert(overriddenBase);
   1346     }
   1347   }
   1348 
   1349   // Walk the undecided v-bases and check whether they (non-virtually)
   1350   // provide any of the overridden bases.  We don't need to consider
   1351   // virtual links because the vtordisp inheres to the layout
   1352   // subobject containing the base.
   1353   for (ClassSetTy::const_iterator
   1354          I = undecidedVBases.begin(), E = undecidedVBases.end(); I != E; ++I) {
   1355     if (hasNonVirtualBaseInSet(*I, overriddenBases))
   1356       vtordispVBases.insert(*I);
   1357   }
   1358 }
   1359 
   1360 /// hasNewVirtualFunction - Does the given polymorphic class declare a
   1361 /// virtual function that does not override a method from any of its
   1362 /// base classes?
   1363 bool
   1364 RecordLayoutBuilder::hasNewVirtualFunction(const CXXRecordDecl *RD,
   1365                                            bool IgnoreDestructor) const {
   1366   if (!RD->getNumBases())
   1367     return true;
   1368 
   1369   for (CXXRecordDecl::method_iterator method = RD->method_begin();
   1370        method != RD->method_end();
   1371        ++method) {
   1372     if (method->isVirtual() && !method->size_overridden_methods() &&
   1373         !(IgnoreDestructor && method->getKind() == Decl::CXXDestructor)) {
   1374       return true;
   1375     }
   1376   }
   1377   return false;
   1378 }
   1379 
   1380 /// isPossiblePrimaryBase - Is the given base class an acceptable
   1381 /// primary base class?
   1382 bool
   1383 RecordLayoutBuilder::isPossiblePrimaryBase(const CXXRecordDecl *base) const {
   1384   // In the Itanium ABI, a class can be a primary base class if it has
   1385   // a vtable for any reason.
   1386   if (!isMicrosoftCXXABI())
   1387     return base->isDynamicClass();
   1388 
   1389   // In the MS ABI, a class can only be a primary base class if it
   1390   // provides a vf-table at a static offset.  That means it has to be
   1391   // non-virtual base.  The existence of a separate vb-table means
   1392   // that it's possible to get virtual functions only from a virtual
   1393   // base, which we have to guard against.
   1394 
   1395   // First off, it has to have virtual functions.
   1396   if (!base->isPolymorphic()) return false;
   1397 
   1398   // If it has no virtual bases, then the vfptr must be at a static offset.
   1399   if (!base->getNumVBases()) return true;
   1400 
   1401   // Otherwise, the necessary information is cached in the layout.
   1402   const ASTRecordLayout &layout = Context.getASTRecordLayout(base);
   1403 
   1404   // If the base has its own vfptr, it can be a primary base.
   1405   if (layout.hasOwnVFPtr()) return true;
   1406 
   1407   // If the base has a primary base class, then it can be a primary base.
   1408   if (layout.getPrimaryBase()) return true;
   1409 
   1410   // Otherwise it can't.
   1411   return false;
   1412 }
   1413 
   1414 void
   1415 RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
   1416                                         const CXXRecordDecl *MostDerivedClass) {
   1417   const CXXRecordDecl *PrimaryBase;
   1418   bool PrimaryBaseIsVirtual;
   1419 
   1420   if (MostDerivedClass == RD) {
   1421     PrimaryBase = this->PrimaryBase;
   1422     PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
   1423   } else {
   1424     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   1425     PrimaryBase = Layout.getPrimaryBase();
   1426     PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
   1427   }
   1428 
   1429   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   1430          E = RD->bases_end(); I != E; ++I) {
   1431     assert(!I->getType()->isDependentType() &&
   1432            "Cannot layout class with dependent bases.");
   1433 
   1434     const CXXRecordDecl *BaseDecl =
   1435       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
   1436 
   1437     if (I->isVirtual()) {
   1438       if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
   1439         bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
   1440 
   1441         // Only lay out the virtual base if it's not an indirect primary base.
   1442         if (!IndirectPrimaryBase) {
   1443           // Only visit virtual bases once.
   1444           if (!VisitedVirtualBases.insert(BaseDecl))
   1445             continue;
   1446 
   1447           const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
   1448           assert(BaseInfo && "Did not find virtual base info!");
   1449           LayoutVirtualBase(BaseInfo);
   1450         }
   1451       }
   1452     }
   1453 
   1454     if (!BaseDecl->getNumVBases()) {
   1455       // This base isn't interesting since it doesn't have any virtual bases.
   1456       continue;
   1457     }
   1458 
   1459     LayoutVirtualBases(BaseDecl, MostDerivedClass);
   1460   }
   1461 }
   1462 
   1463 void RecordLayoutBuilder::MSLayoutVirtualBases(const CXXRecordDecl *RD) {
   1464   if (!RD->getNumVBases())
   1465     return;
   1466 
   1467   ClassSetTy VtordispVBases;
   1468   computeVtordisps(RD, VtordispVBases);
   1469 
   1470   // This is substantially simplified because there are no virtual
   1471   // primary bases.
   1472   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
   1473        E = RD->vbases_end(); I != E; ++I) {
   1474     const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
   1475     const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
   1476     assert(BaseInfo && "Did not find virtual base info!");
   1477 
   1478     // If this base requires a vtordisp, add enough space for an int field.
   1479     // This is apparently always 32-bits, even on x64.
   1480     bool vtordispNeeded = false;
   1481     if (VtordispVBases.count(BaseDecl)) {
   1482       CharUnits IntSize =
   1483         CharUnits::fromQuantity(Context.getTargetInfo().getIntWidth() / 8);
   1484 
   1485       setSize(getSize() + IntSize);
   1486       setDataSize(getSize());
   1487       vtordispNeeded = true;
   1488     }
   1489 
   1490     LayoutVirtualBase(BaseInfo, vtordispNeeded);
   1491   }
   1492 }
   1493 
   1494 void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base,
   1495                                             bool IsVtordispNeed) {
   1496   assert(!Base->Derived && "Trying to lay out a primary virtual base!");
   1497 
   1498   // Layout the base.
   1499   CharUnits Offset = LayoutBase(Base);
   1500 
   1501   // Add its base class offset.
   1502   assert(!VBases.count(Base->Class) && "vbase offset already exists!");
   1503   VBases.insert(std::make_pair(Base->Class,
   1504                        ASTRecordLayout::VBaseInfo(Offset, IsVtordispNeed)));
   1505 
   1506   if (!isMicrosoftCXXABI())
   1507     AddPrimaryVirtualBaseOffsets(Base, Offset);
   1508 }
   1509 
   1510 CharUnits RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
   1511   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
   1512 
   1513 
   1514   CharUnits Offset;
   1515 
   1516   // Query the external layout to see if it provides an offset.
   1517   bool HasExternalLayout = false;
   1518   if (ExternalLayout) {
   1519     llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
   1520     if (Base->IsVirtual) {
   1521       Known = ExternalVirtualBaseOffsets.find(Base->Class);
   1522       if (Known != ExternalVirtualBaseOffsets.end()) {
   1523         Offset = Known->second;
   1524         HasExternalLayout = true;
   1525       }
   1526     } else {
   1527       Known = ExternalBaseOffsets.find(Base->Class);
   1528       if (Known != ExternalBaseOffsets.end()) {
   1529         Offset = Known->second;
   1530         HasExternalLayout = true;
   1531       }
   1532     }
   1533   }
   1534 
   1535   CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlign();
   1536   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
   1537 
   1538   // If we have an empty base class, try to place it at offset 0.
   1539   if (Base->Class->isEmpty() &&
   1540       (!HasExternalLayout || Offset == CharUnits::Zero()) &&
   1541       EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
   1542     setSize(std::max(getSize(), Layout.getSize()));
   1543     UpdateAlignment(BaseAlign, UnpackedBaseAlign);
   1544 
   1545     return CharUnits::Zero();
   1546   }
   1547 
   1548   // The maximum field alignment overrides base align.
   1549   if (!MaxFieldAlignment.isZero()) {
   1550     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
   1551     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
   1552   }
   1553 
   1554   if (!HasExternalLayout) {
   1555     // Round up the current record size to the base's alignment boundary.
   1556     Offset = getDataSize().RoundUpToAlignment(BaseAlign);
   1557 
   1558     // Try to place the base.
   1559     while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
   1560       Offset += BaseAlign;
   1561   } else {
   1562     bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
   1563     (void)Allowed;
   1564     assert(Allowed && "Base subobject externally placed at overlapping offset");
   1565 
   1566     if (InferAlignment && Offset < getDataSize().RoundUpToAlignment(BaseAlign)){
   1567       // The externally-supplied base offset is before the base offset we
   1568       // computed. Assume that the structure is packed.
   1569       Alignment = CharUnits::One();
   1570       InferAlignment = false;
   1571     }
   1572   }
   1573 
   1574   if (!Base->Class->isEmpty()) {
   1575     // Update the data size.
   1576     setDataSize(Offset + Layout.getNonVirtualSize());
   1577 
   1578     setSize(std::max(getSize(), getDataSize()));
   1579   } else
   1580     setSize(std::max(getSize(), Offset + Layout.getSize()));
   1581 
   1582   // Remember max struct/class alignment.
   1583   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
   1584 
   1585   return Offset;
   1586 }
   1587 
   1588 void RecordLayoutBuilder::InitializeLayout(const Decl *D) {
   1589   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
   1590     IsUnion = RD->isUnion();
   1591     IsMsStruct = RD->isMsStruct(Context);
   1592   }
   1593 
   1594   Packed = D->hasAttr<PackedAttr>();
   1595 
   1596   // Honor the default struct packing maximum alignment flag.
   1597   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
   1598     MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
   1599   }
   1600 
   1601   // mac68k alignment supersedes maximum field alignment and attribute aligned,
   1602   // and forces all structures to have 2-byte alignment. The IBM docs on it
   1603   // allude to additional (more complicated) semantics, especially with regard
   1604   // to bit-fields, but gcc appears not to follow that.
   1605   if (D->hasAttr<AlignMac68kAttr>()) {
   1606     IsMac68kAlign = true;
   1607     MaxFieldAlignment = CharUnits::fromQuantity(2);
   1608     Alignment = CharUnits::fromQuantity(2);
   1609   } else {
   1610     if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
   1611       MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
   1612 
   1613     if (unsigned MaxAlign = D->getMaxAlignment())
   1614       UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
   1615   }
   1616 
   1617   // If there is an external AST source, ask it for the various offsets.
   1618   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
   1619     if (ExternalASTSource *External = Context.getExternalSource()) {
   1620       ExternalLayout = External->layoutRecordType(RD,
   1621                                                   ExternalSize,
   1622                                                   ExternalAlign,
   1623                                                   ExternalFieldOffsets,
   1624                                                   ExternalBaseOffsets,
   1625                                                   ExternalVirtualBaseOffsets);
   1626 
   1627       // Update based on external alignment.
   1628       if (ExternalLayout) {
   1629         if (ExternalAlign > 0) {
   1630           Alignment = Context.toCharUnitsFromBits(ExternalAlign);
   1631         } else {
   1632           // The external source didn't have alignment information; infer it.
   1633           InferAlignment = true;
   1634         }
   1635       }
   1636     }
   1637 }
   1638 
   1639 void RecordLayoutBuilder::Layout(const RecordDecl *D) {
   1640   InitializeLayout(D);
   1641   LayoutFields(D);
   1642 
   1643   // Finally, round the size of the total struct up to the alignment of the
   1644   // struct itself.
   1645   FinishLayout(D);
   1646 }
   1647 
   1648 void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
   1649   InitializeLayout(RD);
   1650 
   1651   // Lay out the vtable and the non-virtual bases.
   1652   LayoutNonVirtualBases(RD);
   1653 
   1654   LayoutFields(RD);
   1655 
   1656   NonVirtualSize = Context.toCharUnitsFromBits(
   1657         llvm::RoundUpToAlignment(getSizeInBits(),
   1658                                  Context.getTargetInfo().getCharAlign()));
   1659   NonVirtualAlignment = Alignment;
   1660 
   1661   if (isMicrosoftCXXABI()) {
   1662     if (NonVirtualSize != NonVirtualSize.RoundUpToAlignment(Alignment)) {
   1663     CharUnits AlignMember =
   1664       NonVirtualSize.RoundUpToAlignment(Alignment) - NonVirtualSize;
   1665 
   1666     setSize(getSize() + AlignMember);
   1667     setDataSize(getSize());
   1668 
   1669     NonVirtualSize = Context.toCharUnitsFromBits(
   1670                              llvm::RoundUpToAlignment(getSizeInBits(),
   1671                              Context.getTargetInfo().getCharAlign()));
   1672     }
   1673 
   1674     MSLayoutVirtualBases(RD);
   1675   } else {
   1676     // Lay out the virtual bases and add the primary virtual base offsets.
   1677     LayoutVirtualBases(RD, RD);
   1678   }
   1679 
   1680   // Finally, round the size of the total struct up to the alignment
   1681   // of the struct itself.
   1682   FinishLayout(RD);
   1683 
   1684 #ifndef NDEBUG
   1685   // Check that we have base offsets for all bases.
   1686   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   1687        E = RD->bases_end(); I != E; ++I) {
   1688     if (I->isVirtual())
   1689       continue;
   1690 
   1691     const CXXRecordDecl *BaseDecl =
   1692       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
   1693 
   1694     assert(Bases.count(BaseDecl) && "Did not find base offset!");
   1695   }
   1696 
   1697   // And all virtual bases.
   1698   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
   1699        E = RD->vbases_end(); I != E; ++I) {
   1700     const CXXRecordDecl *BaseDecl =
   1701       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
   1702 
   1703     assert(VBases.count(BaseDecl) && "Did not find base offset!");
   1704   }
   1705 #endif
   1706 }
   1707 
   1708 void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
   1709   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
   1710     const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
   1711 
   1712     UpdateAlignment(SL.getAlignment());
   1713 
   1714     // We start laying out ivars not at the end of the superclass
   1715     // structure, but at the next byte following the last field.
   1716     setSize(SL.getDataSize());
   1717     setDataSize(getSize());
   1718   }
   1719 
   1720   InitializeLayout(D);
   1721   // Layout each ivar sequentially.
   1722   for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
   1723        IVD = IVD->getNextIvar())
   1724     LayoutField(IVD);
   1725 
   1726   // Finally, round the size of the total struct up to the alignment of the
   1727   // struct itself.
   1728   FinishLayout(D);
   1729 }
   1730 
   1731 void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
   1732   // Layout each field, for now, just sequentially, respecting alignment.  In
   1733   // the future, this will need to be tweakable by targets.
   1734   for (RecordDecl::field_iterator Field = D->field_begin(),
   1735        FieldEnd = D->field_end(); Field != FieldEnd; ++Field)
   1736     LayoutField(*Field);
   1737 }
   1738 
   1739 void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
   1740                                              uint64_t TypeSize,
   1741                                              bool FieldPacked,
   1742                                              const FieldDecl *D) {
   1743   assert(Context.getLangOpts().CPlusPlus &&
   1744          "Can only have wide bit-fields in C++!");
   1745 
   1746   // Itanium C++ ABI 2.4:
   1747   //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
   1748   //   sizeof(T')*8 <= n.
   1749 
   1750   QualType IntegralPODTypes[] = {
   1751     Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
   1752     Context.UnsignedLongTy, Context.UnsignedLongLongTy
   1753   };
   1754 
   1755   QualType Type;
   1756   for (unsigned I = 0, E = llvm::array_lengthof(IntegralPODTypes);
   1757        I != E; ++I) {
   1758     uint64_t Size = Context.getTypeSize(IntegralPODTypes[I]);
   1759 
   1760     if (Size > FieldSize)
   1761       break;
   1762 
   1763     Type = IntegralPODTypes[I];
   1764   }
   1765   assert(!Type.isNull() && "Did not find a type!");
   1766 
   1767   CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
   1768 
   1769   // We're not going to use any of the unfilled bits in the last byte.
   1770   UnfilledBitsInLastUnit = 0;
   1771   LastBitfieldTypeSize = 0;
   1772 
   1773   uint64_t FieldOffset;
   1774   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
   1775 
   1776   if (IsUnion) {
   1777     setDataSize(std::max(getDataSizeInBits(), FieldSize));
   1778     FieldOffset = 0;
   1779   } else {
   1780     // The bitfield is allocated starting at the next offset aligned
   1781     // appropriately for T', with length n bits.
   1782     FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(),
   1783                                            Context.toBits(TypeAlign));
   1784 
   1785     uint64_t NewSizeInBits = FieldOffset + FieldSize;
   1786 
   1787     setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
   1788                                          Context.getTargetInfo().getCharAlign()));
   1789     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
   1790   }
   1791 
   1792   // Place this field at the current location.
   1793   FieldOffsets.push_back(FieldOffset);
   1794 
   1795   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
   1796                     Context.toBits(TypeAlign), FieldPacked, D);
   1797 
   1798   // Update the size.
   1799   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   1800 
   1801   // Remember max struct/class alignment.
   1802   UpdateAlignment(TypeAlign);
   1803 }
   1804 
   1805 void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
   1806   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
   1807   uint64_t FieldSize = D->getBitWidthValue(Context);
   1808   std::pair<uint64_t, unsigned> FieldInfo = Context.getTypeInfo(D->getType());
   1809   uint64_t TypeSize = FieldInfo.first;
   1810   unsigned FieldAlign = FieldInfo.second;
   1811 
   1812   if (IsMsStruct) {
   1813     // The field alignment for integer types in ms_struct structs is
   1814     // always the size.
   1815     FieldAlign = TypeSize;
   1816     // Ignore zero-length bitfields after non-bitfields in ms_struct structs.
   1817     if (!FieldSize && !LastBitfieldTypeSize)
   1818       FieldAlign = 1;
   1819     // If a bitfield is followed by a bitfield of a different size, don't
   1820     // pack the bits together in ms_struct structs.
   1821     if (LastBitfieldTypeSize != TypeSize) {
   1822       UnfilledBitsInLastUnit = 0;
   1823       LastBitfieldTypeSize = 0;
   1824     }
   1825   }
   1826 
   1827   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
   1828   uint64_t FieldOffset = IsUnion ? 0 : UnpaddedFieldOffset;
   1829 
   1830   bool ZeroLengthBitfield = false;
   1831   if (!Context.getTargetInfo().useBitFieldTypeAlignment() &&
   1832       Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
   1833       FieldSize == 0) {
   1834     // The alignment of a zero-length bitfield affects the alignment
   1835     // of the next member.  The alignment is the max of the zero
   1836     // length bitfield's alignment and a target specific fixed value.
   1837     ZeroLengthBitfield = true;
   1838     unsigned ZeroLengthBitfieldBoundary =
   1839       Context.getTargetInfo().getZeroLengthBitfieldBoundary();
   1840     if (ZeroLengthBitfieldBoundary > FieldAlign)
   1841       FieldAlign = ZeroLengthBitfieldBoundary;
   1842   }
   1843 
   1844   if (FieldSize > TypeSize) {
   1845     LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
   1846     return;
   1847   }
   1848 
   1849   // The align if the field is not packed. This is to check if the attribute
   1850   // was unnecessary (-Wpacked).
   1851   unsigned UnpackedFieldAlign = FieldAlign;
   1852   uint64_t UnpackedFieldOffset = FieldOffset;
   1853   if (!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield)
   1854     UnpackedFieldAlign = 1;
   1855 
   1856   if (FieldPacked ||
   1857       (!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield))
   1858     FieldAlign = 1;
   1859   FieldAlign = std::max(FieldAlign, D->getMaxAlignment());
   1860   UnpackedFieldAlign = std::max(UnpackedFieldAlign, D->getMaxAlignment());
   1861 
   1862   // The maximum field alignment overrides the aligned attribute.
   1863   if (!MaxFieldAlignment.isZero() && FieldSize != 0) {
   1864     unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
   1865     FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
   1866     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
   1867   }
   1868 
   1869   // ms_struct bitfields always have to start at a round alignment.
   1870   if (IsMsStruct && !LastBitfieldTypeSize) {
   1871     FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
   1872     UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
   1873                                                    UnpackedFieldAlign);
   1874   }
   1875 
   1876   // Check if we need to add padding to give the field the correct alignment.
   1877   if (FieldSize == 0 ||
   1878       (MaxFieldAlignment.isZero() &&
   1879        (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize))
   1880     FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
   1881 
   1882   if (FieldSize == 0 ||
   1883       (MaxFieldAlignment.isZero() &&
   1884        (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
   1885     UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
   1886                                                    UnpackedFieldAlign);
   1887 
   1888   // Padding members don't affect overall alignment, unless zero length bitfield
   1889   // alignment is enabled.
   1890   if (!D->getIdentifier() &&
   1891       !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
   1892       !IsMsStruct)
   1893     FieldAlign = UnpackedFieldAlign = 1;
   1894 
   1895   if (ExternalLayout)
   1896     FieldOffset = updateExternalFieldOffset(D, FieldOffset);
   1897 
   1898   // Place this field at the current location.
   1899   FieldOffsets.push_back(FieldOffset);
   1900 
   1901   if (!ExternalLayout)
   1902     CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
   1903                       UnpackedFieldAlign, FieldPacked, D);
   1904 
   1905   // Update DataSize to include the last byte containing (part of) the bitfield.
   1906   if (IsUnion) {
   1907     // FIXME: I think FieldSize should be TypeSize here.
   1908     setDataSize(std::max(getDataSizeInBits(), FieldSize));
   1909   } else {
   1910     if (IsMsStruct && FieldSize) {
   1911       // Under ms_struct, a bitfield always takes up space equal to the size
   1912       // of the type.  We can't just change the alignment computation on the
   1913       // other codepath because of the way this interacts with #pragma pack:
   1914       // in a packed struct, we need to allocate misaligned space in the
   1915       // struct to hold the bitfield.
   1916       if (!UnfilledBitsInLastUnit) {
   1917         setDataSize(FieldOffset + TypeSize);
   1918         UnfilledBitsInLastUnit = TypeSize - FieldSize;
   1919       } else if (UnfilledBitsInLastUnit < FieldSize) {
   1920         setDataSize(getDataSizeInBits() + TypeSize);
   1921         UnfilledBitsInLastUnit = TypeSize - FieldSize;
   1922       } else {
   1923         UnfilledBitsInLastUnit -= FieldSize;
   1924       }
   1925       LastBitfieldTypeSize = TypeSize;
   1926     } else {
   1927       uint64_t NewSizeInBits = FieldOffset + FieldSize;
   1928       uint64_t BitfieldAlignment = Context.getTargetInfo().getCharAlign();
   1929       setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, BitfieldAlignment));
   1930       UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
   1931       LastBitfieldTypeSize = 0;
   1932     }
   1933   }
   1934 
   1935   // Update the size.
   1936   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   1937 
   1938   // Remember max struct/class alignment.
   1939   UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
   1940                   Context.toCharUnitsFromBits(UnpackedFieldAlign));
   1941 }
   1942 
   1943 void RecordLayoutBuilder::LayoutField(const FieldDecl *D) {
   1944   if (D->isBitField()) {
   1945     LayoutBitField(D);
   1946     return;
   1947   }
   1948 
   1949   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
   1950 
   1951   // Reset the unfilled bits.
   1952   UnfilledBitsInLastUnit = 0;
   1953   LastBitfieldTypeSize = 0;
   1954 
   1955   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
   1956   CharUnits FieldOffset =
   1957     IsUnion ? CharUnits::Zero() : getDataSize();
   1958   CharUnits FieldSize;
   1959   CharUnits FieldAlign;
   1960 
   1961   if (D->getType()->isIncompleteArrayType()) {
   1962     // This is a flexible array member; we can't directly
   1963     // query getTypeInfo about these, so we figure it out here.
   1964     // Flexible array members don't have any size, but they
   1965     // have to be aligned appropriately for their element type.
   1966     FieldSize = CharUnits::Zero();
   1967     const ArrayType* ATy = Context.getAsArrayType(D->getType());
   1968     FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
   1969   } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
   1970     unsigned AS = RT->getPointeeType().getAddressSpace();
   1971     FieldSize =
   1972       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
   1973     FieldAlign =
   1974       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
   1975   } else {
   1976     std::pair<CharUnits, CharUnits> FieldInfo =
   1977       Context.getTypeInfoInChars(D->getType());
   1978     FieldSize = FieldInfo.first;
   1979     FieldAlign = FieldInfo.second;
   1980 
   1981     if (IsMsStruct) {
   1982       // If MS bitfield layout is required, figure out what type is being
   1983       // laid out and align the field to the width of that type.
   1984 
   1985       // Resolve all typedefs down to their base type and round up the field
   1986       // alignment if necessary.
   1987       QualType T = Context.getBaseElementType(D->getType());
   1988       if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
   1989         CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
   1990         if (TypeSize > FieldAlign)
   1991           FieldAlign = TypeSize;
   1992       }
   1993     }
   1994   }
   1995 
   1996   // The align if the field is not packed. This is to check if the attribute
   1997   // was unnecessary (-Wpacked).
   1998   CharUnits UnpackedFieldAlign = FieldAlign;
   1999   CharUnits UnpackedFieldOffset = FieldOffset;
   2000 
   2001   if (FieldPacked)
   2002     FieldAlign = CharUnits::One();
   2003   CharUnits MaxAlignmentInChars =
   2004     Context.toCharUnitsFromBits(D->getMaxAlignment());
   2005   FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
   2006   UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
   2007 
   2008   // The maximum field alignment overrides the aligned attribute.
   2009   if (!MaxFieldAlignment.isZero()) {
   2010     FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
   2011     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
   2012   }
   2013 
   2014   // Round up the current record size to the field's alignment boundary.
   2015   FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
   2016   UnpackedFieldOffset =
   2017     UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
   2018 
   2019   if (ExternalLayout) {
   2020     FieldOffset = Context.toCharUnitsFromBits(
   2021                     updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
   2022 
   2023     if (!IsUnion && EmptySubobjects) {
   2024       // Record the fact that we're placing a field at this offset.
   2025       bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
   2026       (void)Allowed;
   2027       assert(Allowed && "Externally-placed field cannot be placed here");
   2028     }
   2029   } else {
   2030     if (!IsUnion && EmptySubobjects) {
   2031       // Check if we can place the field at this offset.
   2032       while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
   2033         // We couldn't place the field at the offset. Try again at a new offset.
   2034         FieldOffset += FieldAlign;
   2035       }
   2036     }
   2037   }
   2038 
   2039   // Place this field at the current location.
   2040   FieldOffsets.push_back(Context.toBits(FieldOffset));
   2041 
   2042   if (!ExternalLayout)
   2043     CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
   2044                       Context.toBits(UnpackedFieldOffset),
   2045                       Context.toBits(UnpackedFieldAlign), FieldPacked, D);
   2046 
   2047   // Reserve space for this field.
   2048   uint64_t FieldSizeInBits = Context.toBits(FieldSize);
   2049   if (IsUnion)
   2050     setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
   2051   else
   2052     setDataSize(FieldOffset + FieldSize);
   2053 
   2054   // Update the size.
   2055   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   2056 
   2057   // Remember max struct/class alignment.
   2058   UpdateAlignment(FieldAlign, UnpackedFieldAlign);
   2059 }
   2060 
   2061 void RecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
   2062   // In C++, records cannot be of size 0.
   2063   if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
   2064     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
   2065       // Compatibility with gcc requires a class (pod or non-pod)
   2066       // which is not empty but of size 0; such as having fields of
   2067       // array of zero-length, remains of Size 0
   2068       if (RD->isEmpty())
   2069         setSize(CharUnits::One());
   2070     }
   2071     else
   2072       setSize(CharUnits::One());
   2073   }
   2074 
   2075   // Finally, round the size of the record up to the alignment of the
   2076   // record itself.
   2077   uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
   2078   uint64_t UnpackedSizeInBits =
   2079   llvm::RoundUpToAlignment(getSizeInBits(),
   2080                            Context.toBits(UnpackedAlignment));
   2081   CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
   2082   uint64_t RoundedSize
   2083     = llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment));
   2084 
   2085   if (ExternalLayout) {
   2086     // If we're inferring alignment, and the external size is smaller than
   2087     // our size after we've rounded up to alignment, conservatively set the
   2088     // alignment to 1.
   2089     if (InferAlignment && ExternalSize < RoundedSize) {
   2090       Alignment = CharUnits::One();
   2091       InferAlignment = false;
   2092     }
   2093     setSize(ExternalSize);
   2094     return;
   2095   }
   2096 
   2097 
   2098   // MSVC doesn't round up to the alignment of the record with virtual bases.
   2099   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
   2100     if (isMicrosoftCXXABI() && RD->getNumVBases())
   2101       return;
   2102   }
   2103 
   2104   // Set the size to the final size.
   2105   setSize(RoundedSize);
   2106 
   2107   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
   2108   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
   2109     // Warn if padding was introduced to the struct/class/union.
   2110     if (getSizeInBits() > UnpaddedSize) {
   2111       unsigned PadSize = getSizeInBits() - UnpaddedSize;
   2112       bool InBits = true;
   2113       if (PadSize % CharBitNum == 0) {
   2114         PadSize = PadSize / CharBitNum;
   2115         InBits = false;
   2116       }
   2117       Diag(RD->getLocation(), diag::warn_padded_struct_size)
   2118           << Context.getTypeDeclType(RD)
   2119           << PadSize
   2120           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
   2121     }
   2122 
   2123     // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
   2124     // bother since there won't be alignment issues.
   2125     if (Packed && UnpackedAlignment > CharUnits::One() &&
   2126         getSize() == UnpackedSize)
   2127       Diag(D->getLocation(), diag::warn_unnecessary_packed)
   2128           << Context.getTypeDeclType(RD);
   2129   }
   2130 }
   2131 
   2132 void RecordLayoutBuilder::UpdateAlignment(CharUnits NewAlignment,
   2133                                           CharUnits UnpackedNewAlignment) {
   2134   // The alignment is not modified when using 'mac68k' alignment or when
   2135   // we have an externally-supplied layout that also provides overall alignment.
   2136   if (IsMac68kAlign || (ExternalLayout && !InferAlignment))
   2137     return;
   2138 
   2139   if (NewAlignment > Alignment) {
   2140     assert(llvm::isPowerOf2_32(NewAlignment.getQuantity() &&
   2141            "Alignment not a power of 2"));
   2142     Alignment = NewAlignment;
   2143   }
   2144 
   2145   if (UnpackedNewAlignment > UnpackedAlignment) {
   2146     assert(llvm::isPowerOf2_32(UnpackedNewAlignment.getQuantity() &&
   2147            "Alignment not a power of 2"));
   2148     UnpackedAlignment = UnpackedNewAlignment;
   2149   }
   2150 }
   2151 
   2152 uint64_t
   2153 RecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
   2154                                                uint64_t ComputedOffset) {
   2155   assert(ExternalFieldOffsets.find(Field) != ExternalFieldOffsets.end() &&
   2156          "Field does not have an external offset");
   2157 
   2158   uint64_t ExternalFieldOffset = ExternalFieldOffsets[Field];
   2159 
   2160   if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
   2161     // The externally-supplied field offset is before the field offset we
   2162     // computed. Assume that the structure is packed.
   2163     Alignment = CharUnits::One();
   2164     InferAlignment = false;
   2165   }
   2166 
   2167   // Use the externally-supplied field offset.
   2168   return ExternalFieldOffset;
   2169 }
   2170 
   2171 /// \brief Get diagnostic %select index for tag kind for
   2172 /// field padding diagnostic message.
   2173 /// WARNING: Indexes apply to particular diagnostics only!
   2174 ///
   2175 /// \returns diagnostic %select index.
   2176 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
   2177   switch (Tag) {
   2178   case TTK_Struct: return 0;
   2179   case TTK_Interface: return 1;
   2180   case TTK_Class: return 2;
   2181   default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
   2182   }
   2183 }
   2184 
   2185 void RecordLayoutBuilder::CheckFieldPadding(uint64_t Offset,
   2186                                             uint64_t UnpaddedOffset,
   2187                                             uint64_t UnpackedOffset,
   2188                                             unsigned UnpackedAlign,
   2189                                             bool isPacked,
   2190                                             const FieldDecl *D) {
   2191   // We let objc ivars without warning, objc interfaces generally are not used
   2192   // for padding tricks.
   2193   if (isa<ObjCIvarDecl>(D))
   2194     return;
   2195 
   2196   // Don't warn about structs created without a SourceLocation.  This can
   2197   // be done by clients of the AST, such as codegen.
   2198   if (D->getLocation().isInvalid())
   2199     return;
   2200 
   2201   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
   2202 
   2203   // Warn if padding was introduced to the struct/class.
   2204   if (!IsUnion && Offset > UnpaddedOffset) {
   2205     unsigned PadSize = Offset - UnpaddedOffset;
   2206     bool InBits = true;
   2207     if (PadSize % CharBitNum == 0) {
   2208       PadSize = PadSize / CharBitNum;
   2209       InBits = false;
   2210     }
   2211     if (D->getIdentifier())
   2212       Diag(D->getLocation(), diag::warn_padded_struct_field)
   2213           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
   2214           << Context.getTypeDeclType(D->getParent())
   2215           << PadSize
   2216           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1) // plural or not
   2217           << D->getIdentifier();
   2218     else
   2219       Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
   2220           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
   2221           << Context.getTypeDeclType(D->getParent())
   2222           << PadSize
   2223           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
   2224   }
   2225 
   2226   // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
   2227   // bother since there won't be alignment issues.
   2228   if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
   2229     Diag(D->getLocation(), diag::warn_unnecessary_packed)
   2230         << D->getIdentifier();
   2231 }
   2232 
   2233 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
   2234                                                const CXXRecordDecl *RD) {
   2235   // If a class isn't polymorphic it doesn't have a key function.
   2236   if (!RD->isPolymorphic())
   2237     return 0;
   2238 
   2239   // A class that is not externally visible doesn't have a key function. (Or
   2240   // at least, there's no point to assigning a key function to such a class;
   2241   // this doesn't affect the ABI.)
   2242   if (!RD->isExternallyVisible())
   2243     return 0;
   2244 
   2245   // Template instantiations don't have key functions,see Itanium C++ ABI 5.2.6.
   2246   // Same behavior as GCC.
   2247   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
   2248   if (TSK == TSK_ImplicitInstantiation ||
   2249       TSK == TSK_ExplicitInstantiationDefinition)
   2250     return 0;
   2251 
   2252   bool allowInlineFunctions =
   2253     Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
   2254 
   2255   for (CXXRecordDecl::method_iterator I = RD->method_begin(),
   2256          E = RD->method_end(); I != E; ++I) {
   2257     const CXXMethodDecl *MD = *I;
   2258 
   2259     if (!MD->isVirtual())
   2260       continue;
   2261 
   2262     if (MD->isPure())
   2263       continue;
   2264 
   2265     // Ignore implicit member functions, they are always marked as inline, but
   2266     // they don't have a body until they're defined.
   2267     if (MD->isImplicit())
   2268       continue;
   2269 
   2270     if (MD->isInlineSpecified())
   2271       continue;
   2272 
   2273     if (MD->hasInlineBody())
   2274       continue;
   2275 
   2276     // Ignore inline deleted or defaulted functions.
   2277     if (!MD->isUserProvided())
   2278       continue;
   2279 
   2280     // In certain ABIs, ignore functions with out-of-line inline definitions.
   2281     if (!allowInlineFunctions) {
   2282       const FunctionDecl *Def;
   2283       if (MD->hasBody(Def) && Def->isInlineSpecified())
   2284         continue;
   2285     }
   2286 
   2287     // We found it.
   2288     return MD;
   2289   }
   2290 
   2291   return 0;
   2292 }
   2293 
   2294 DiagnosticBuilder
   2295 RecordLayoutBuilder::Diag(SourceLocation Loc, unsigned DiagID) {
   2296   return Context.getDiagnostics().Report(Loc, DiagID);
   2297 }
   2298 
   2299 /// Does the target C++ ABI require us to skip over the tail-padding
   2300 /// of the given class (considering it as a base class) when allocating
   2301 /// objects?
   2302 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
   2303   switch (ABI.getTailPaddingUseRules()) {
   2304   case TargetCXXABI::AlwaysUseTailPadding:
   2305     return false;
   2306 
   2307   case TargetCXXABI::UseTailPaddingUnlessPOD03:
   2308     // FIXME: To the extent that this is meant to cover the Itanium ABI
   2309     // rules, we should implement the restrictions about over-sized
   2310     // bitfields:
   2311     //
   2312     // http://mentorembedded.github.com/cxx-abi/abi.html#POD :
   2313     //   In general, a type is considered a POD for the purposes of
   2314     //   layout if it is a POD type (in the sense of ISO C++
   2315     //   [basic.types]). However, a POD-struct or POD-union (in the
   2316     //   sense of ISO C++ [class]) with a bitfield member whose
   2317     //   declared width is wider than the declared type of the
   2318     //   bitfield is not a POD for the purpose of layout.  Similarly,
   2319     //   an array type is not a POD for the purpose of layout if the
   2320     //   element type of the array is not a POD for the purpose of
   2321     //   layout.
   2322     //
   2323     //   Where references to the ISO C++ are made in this paragraph,
   2324     //   the Technical Corrigendum 1 version of the standard is
   2325     //   intended.
   2326     return RD->isPOD();
   2327 
   2328   case TargetCXXABI::UseTailPaddingUnlessPOD11:
   2329     // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
   2330     // but with a lot of abstraction penalty stripped off.  This does
   2331     // assume that these properties are set correctly even in C++98
   2332     // mode; fortunately, that is true because we want to assign
   2333     // consistently semantics to the type-traits intrinsics (or at
   2334     // least as many of them as possible).
   2335     return RD->isTrivial() && RD->isStandardLayout();
   2336   }
   2337 
   2338   llvm_unreachable("bad tail-padding use kind");
   2339 }
   2340 
   2341 /// getASTRecordLayout - Get or compute information about the layout of the
   2342 /// specified record (struct/union/class), which indicates its size and field
   2343 /// position information.
   2344 const ASTRecordLayout &
   2345 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
   2346   // These asserts test different things.  A record has a definition
   2347   // as soon as we begin to parse the definition.  That definition is
   2348   // not a complete definition (which is what isDefinition() tests)
   2349   // until we *finish* parsing the definition.
   2350 
   2351   if (D->hasExternalLexicalStorage() && !D->getDefinition())
   2352     getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
   2353 
   2354   D = D->getDefinition();
   2355   assert(D && "Cannot get layout of forward declarations!");
   2356   assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
   2357   assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
   2358 
   2359   // Look up this layout, if already laid out, return what we have.
   2360   // Note that we can't save a reference to the entry because this function
   2361   // is recursive.
   2362   const ASTRecordLayout *Entry = ASTRecordLayouts[D];
   2363   if (Entry) return *Entry;
   2364 
   2365   const ASTRecordLayout *NewEntry;
   2366 
   2367   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
   2368     EmptySubobjectMap EmptySubobjects(*this, RD);
   2369     RecordLayoutBuilder Builder(*this, &EmptySubobjects);
   2370     Builder.Layout(RD);
   2371 
   2372     // MSVC gives the vb-table pointer an alignment equal to that of
   2373     // the non-virtual part of the structure.  That's an inherently
   2374     // multi-pass operation.  If our first pass doesn't give us
   2375     // adequate alignment, try again with the specified minimum
   2376     // alignment.  This is *much* more maintainable than computing the
   2377     // alignment in advance in a separately-coded pass; it's also
   2378     // significantly more efficient in the common case where the
   2379     // vb-table doesn't need extra padding.
   2380     if (Builder.VBPtrOffset != CharUnits::fromQuantity(-1) &&
   2381         (Builder.VBPtrOffset % Builder.NonVirtualAlignment) != 0) {
   2382       Builder.resetWithTargetAlignment(Builder.NonVirtualAlignment);
   2383       Builder.Layout(RD);
   2384     }
   2385 
   2386     // In certain situations, we are allowed to lay out objects in the
   2387     // tail-padding of base classes.  This is ABI-dependent.
   2388     // FIXME: this should be stored in the record layout.
   2389     bool skipTailPadding =
   2390       mustSkipTailPadding(getTargetInfo().getCXXABI(), cast<CXXRecordDecl>(D));
   2391 
   2392     // FIXME: This should be done in FinalizeLayout.
   2393     CharUnits DataSize =
   2394       skipTailPadding ? Builder.getSize() : Builder.getDataSize();
   2395     CharUnits NonVirtualSize =
   2396       skipTailPadding ? DataSize : Builder.NonVirtualSize;
   2397 
   2398     NewEntry =
   2399       new (*this) ASTRecordLayout(*this, Builder.getSize(),
   2400                                   Builder.Alignment,
   2401                                   Builder.HasOwnVFPtr,
   2402                                   Builder.VBPtrOffset,
   2403                                   DataSize,
   2404                                   Builder.FieldOffsets.data(),
   2405                                   Builder.FieldOffsets.size(),
   2406                                   NonVirtualSize,
   2407                                   Builder.NonVirtualAlignment,
   2408                                   EmptySubobjects.SizeOfLargestEmptySubobject,
   2409                                   Builder.PrimaryBase,
   2410                                   Builder.PrimaryBaseIsVirtual,
   2411                                   Builder.Bases, Builder.VBases);
   2412   } else {
   2413     RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
   2414     Builder.Layout(D);
   2415 
   2416     NewEntry =
   2417       new (*this) ASTRecordLayout(*this, Builder.getSize(),
   2418                                   Builder.Alignment,
   2419                                   Builder.getSize(),
   2420                                   Builder.FieldOffsets.data(),
   2421                                   Builder.FieldOffsets.size());
   2422   }
   2423 
   2424   ASTRecordLayouts[D] = NewEntry;
   2425 
   2426   if (getLangOpts().DumpRecordLayouts) {
   2427     llvm::outs() << "\n*** Dumping AST Record Layout\n";
   2428     DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
   2429   }
   2430 
   2431   return *NewEntry;
   2432 }
   2433 
   2434 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
   2435   if (!getTargetInfo().getCXXABI().hasKeyFunctions())
   2436     return 0;
   2437 
   2438   assert(RD->getDefinition() && "Cannot get key function for forward decl!");
   2439   RD = cast<CXXRecordDecl>(RD->getDefinition());
   2440 
   2441   const CXXMethodDecl *&entry = KeyFunctions[RD];
   2442   if (!entry) {
   2443     entry = computeKeyFunction(*this, RD);
   2444   }
   2445 
   2446   return entry;
   2447 }
   2448 
   2449 void ASTContext::setNonKeyFunction(const CXXMethodDecl *method) {
   2450   assert(method == method->getFirstDeclaration() &&
   2451          "not working with method declaration from class definition");
   2452 
   2453   // Look up the cache entry.  Since we're working with the first
   2454   // declaration, its parent must be the class definition, which is
   2455   // the correct key for the KeyFunctions hash.
   2456   llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*>::iterator
   2457     i = KeyFunctions.find(method->getParent());
   2458 
   2459   // If it's not cached, there's nothing to do.
   2460   if (i == KeyFunctions.end()) return;
   2461 
   2462   // If it is cached, check whether it's the target method, and if so,
   2463   // remove it from the cache.
   2464   if (i->second == method) {
   2465     // FIXME: remember that we did this for module / chained PCH state?
   2466     KeyFunctions.erase(i);
   2467   }
   2468 }
   2469 
   2470 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
   2471   const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
   2472   return Layout.getFieldOffset(FD->getFieldIndex());
   2473 }
   2474 
   2475 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
   2476   uint64_t OffsetInBits;
   2477   if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
   2478     OffsetInBits = ::getFieldOffset(*this, FD);
   2479   } else {
   2480     const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
   2481 
   2482     OffsetInBits = 0;
   2483     for (IndirectFieldDecl::chain_iterator CI = IFD->chain_begin(),
   2484                                            CE = IFD->chain_end();
   2485          CI != CE; ++CI)
   2486       OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(*CI));
   2487   }
   2488 
   2489   return OffsetInBits;
   2490 }
   2491 
   2492 /// getObjCLayout - Get or compute information about the layout of the
   2493 /// given interface.
   2494 ///
   2495 /// \param Impl - If given, also include the layout of the interface's
   2496 /// implementation. This may differ by including synthesized ivars.
   2497 const ASTRecordLayout &
   2498 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
   2499                           const ObjCImplementationDecl *Impl) const {
   2500   // Retrieve the definition
   2501   if (D->hasExternalLexicalStorage() && !D->getDefinition())
   2502     getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
   2503   D = D->getDefinition();
   2504   assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
   2505 
   2506   // Look up this layout, if already laid out, return what we have.
   2507   const ObjCContainerDecl *Key =
   2508     Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
   2509   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
   2510     return *Entry;
   2511 
   2512   // Add in synthesized ivar count if laying out an implementation.
   2513   if (Impl) {
   2514     unsigned SynthCount = CountNonClassIvars(D);
   2515     // If there aren't any sythesized ivars then reuse the interface
   2516     // entry. Note we can't cache this because we simply free all
   2517     // entries later; however we shouldn't look up implementations
   2518     // frequently.
   2519     if (SynthCount == 0)
   2520       return getObjCLayout(D, 0);
   2521   }
   2522 
   2523   RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
   2524   Builder.Layout(D);
   2525 
   2526   const ASTRecordLayout *NewEntry =
   2527     new (*this) ASTRecordLayout(*this, Builder.getSize(),
   2528                                 Builder.Alignment,
   2529                                 Builder.getDataSize(),
   2530                                 Builder.FieldOffsets.data(),
   2531                                 Builder.FieldOffsets.size());
   2532 
   2533   ObjCLayouts[Key] = NewEntry;
   2534 
   2535   return *NewEntry;
   2536 }
   2537 
   2538 static void PrintOffset(raw_ostream &OS,
   2539                         CharUnits Offset, unsigned IndentLevel) {
   2540   OS << llvm::format("%4" PRId64 " | ", (int64_t)Offset.getQuantity());
   2541   OS.indent(IndentLevel * 2);
   2542 }
   2543 
   2544 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
   2545   OS << "     | ";
   2546   OS.indent(IndentLevel * 2);
   2547 }
   2548 
   2549 static void DumpCXXRecordLayout(raw_ostream &OS,
   2550                                 const CXXRecordDecl *RD, const ASTContext &C,
   2551                                 CharUnits Offset,
   2552                                 unsigned IndentLevel,
   2553                                 const char* Description,
   2554                                 bool IncludeVirtualBases) {
   2555   const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
   2556 
   2557   PrintOffset(OS, Offset, IndentLevel);
   2558   OS << C.getTypeDeclType(const_cast<CXXRecordDecl *>(RD)).getAsString();
   2559   if (Description)
   2560     OS << ' ' << Description;
   2561   if (RD->isEmpty())
   2562     OS << " (empty)";
   2563   OS << '\n';
   2564 
   2565   IndentLevel++;
   2566 
   2567   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
   2568   bool HasVfptr = Layout.hasOwnVFPtr();
   2569   bool HasVbptr = Layout.getVBPtrOffset() != CharUnits::fromQuantity(-1);
   2570 
   2571   // Vtable pointer.
   2572   if (RD->isDynamicClass() && !PrimaryBase &&
   2573       !C.getTargetInfo().getCXXABI().isMicrosoft()) {
   2574     PrintOffset(OS, Offset, IndentLevel);
   2575     OS << '(' << *RD << " vtable pointer)\n";
   2576   }
   2577 
   2578   // Dump (non-virtual) bases
   2579   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   2580          E = RD->bases_end(); I != E; ++I) {
   2581     assert(!I->getType()->isDependentType() &&
   2582            "Cannot layout class with dependent bases.");
   2583     if (I->isVirtual())
   2584       continue;
   2585 
   2586     const CXXRecordDecl *Base =
   2587       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
   2588 
   2589     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
   2590 
   2591     DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
   2592                         Base == PrimaryBase ? "(primary base)" : "(base)",
   2593                         /*IncludeVirtualBases=*/false);
   2594   }
   2595 
   2596   // vfptr and vbptr (for Microsoft C++ ABI)
   2597   if (HasVfptr) {
   2598     PrintOffset(OS, Offset, IndentLevel);
   2599     OS << '(' << *RD << " vftable pointer)\n";
   2600   }
   2601   if (HasVbptr) {
   2602     PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
   2603     OS << '(' << *RD << " vbtable pointer)\n";
   2604   }
   2605 
   2606   // Dump fields.
   2607   uint64_t FieldNo = 0;
   2608   for (CXXRecordDecl::field_iterator I = RD->field_begin(),
   2609          E = RD->field_end(); I != E; ++I, ++FieldNo) {
   2610     const FieldDecl &Field = **I;
   2611     CharUnits FieldOffset = Offset +
   2612       C.toCharUnitsFromBits(Layout.getFieldOffset(FieldNo));
   2613 
   2614     if (const RecordType *RT = Field.getType()->getAs<RecordType>()) {
   2615       if (const CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
   2616         DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel,
   2617                             Field.getName().data(),
   2618                             /*IncludeVirtualBases=*/true);
   2619         continue;
   2620       }
   2621     }
   2622 
   2623     PrintOffset(OS, FieldOffset, IndentLevel);
   2624     OS << Field.getType().getAsString() << ' ' << Field << '\n';
   2625   }
   2626 
   2627   if (!IncludeVirtualBases)
   2628     return;
   2629 
   2630   // Dump virtual bases.
   2631   const ASTRecordLayout::VBaseOffsetsMapTy &vtordisps =
   2632     Layout.getVBaseOffsetsMap();
   2633   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
   2634          E = RD->vbases_end(); I != E; ++I) {
   2635     assert(I->isVirtual() && "Found non-virtual class!");
   2636     const CXXRecordDecl *VBase =
   2637       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
   2638 
   2639     CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
   2640 
   2641     if (vtordisps.find(VBase)->second.hasVtorDisp()) {
   2642       PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
   2643       OS << "(vtordisp for vbase " << *VBase << ")\n";
   2644     }
   2645 
   2646     DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
   2647                         VBase == PrimaryBase ?
   2648                         "(primary virtual base)" : "(virtual base)",
   2649                         /*IncludeVirtualBases=*/false);
   2650   }
   2651 
   2652   PrintIndentNoOffset(OS, IndentLevel - 1);
   2653   OS << "[sizeof=" << Layout.getSize().getQuantity();
   2654   OS << ", dsize=" << Layout.getDataSize().getQuantity();
   2655   OS << ", align=" << Layout.getAlignment().getQuantity() << '\n';
   2656 
   2657   PrintIndentNoOffset(OS, IndentLevel - 1);
   2658   OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
   2659   OS << ", nvalign=" << Layout.getNonVirtualAlign().getQuantity() << "]\n";
   2660   OS << '\n';
   2661 }
   2662 
   2663 void ASTContext::DumpRecordLayout(const RecordDecl *RD,
   2664                                   raw_ostream &OS,
   2665                                   bool Simple) const {
   2666   const ASTRecordLayout &Info = getASTRecordLayout(RD);
   2667 
   2668   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
   2669     if (!Simple)
   2670       return DumpCXXRecordLayout(OS, CXXRD, *this, CharUnits(), 0, 0,
   2671                                  /*IncludeVirtualBases=*/true);
   2672 
   2673   OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
   2674   if (!Simple) {
   2675     OS << "Record: ";
   2676     RD->dump();
   2677   }
   2678   OS << "\nLayout: ";
   2679   OS << "<ASTRecordLayout\n";
   2680   OS << "  Size:" << toBits(Info.getSize()) << "\n";
   2681   OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
   2682   OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
   2683   OS << "  FieldOffsets: [";
   2684   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
   2685     if (i) OS << ", ";
   2686     OS << Info.getFieldOffset(i);
   2687   }
   2688   OS << "]>\n";
   2689 }
   2690