/prebuilts/gcc/linux-x86/host/i686-linux-glibc2.7-4.6/sysroot/usr/include/linux/ |
video_decoder.h | 11 #define VIDEO_DECODER_AUTO 8 /* can autosense norm */
|
/prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.7-4.6/sysroot/usr/include/linux/ |
video_decoder.h | 11 #define VIDEO_DECODER_AUTO 8 /* can autosense norm */
|
/external/ceres-solver/internal/ceres/ |
corrector_test.cc | 206 ASSERT_NEAR((g_res - res).norm(), 0.0, 1e-10); 207 ASSERT_NEAR((g_jac - jac).norm(), 0.0, 1e-10); 209 ASSERT_NEAR((g_grad - c_grad).norm(), 0.0, 1e-10); 267 ASSERT_NEAR((g_res - res).norm(), 0.0, 1e-10); 268 ASSERT_NEAR((g_jac - jac).norm(), 0.0, 1e-10); 270 ASSERT_NEAR((g_grad - c_grad).norm(), 0.0, 1e-10); 271 ASSERT_NEAR((g_hess - c_hess).norm(), 0.0, 1e-10);
|
compressed_row_sparse_matrix_test.cc | 62 EXPECT_EQ((y_a - y_b).norm(), 0); 103 EXPECT_EQ((b1 - b2).norm(), 0); 114 EXPECT_EQ((b1 - b2).norm(), 0); 156 EXPECT_EQ((tsm_dense - crsm_dense).norm(), 0.0); 217 EXPECT_EQ((dense.diagonal() - diagonal).norm(), 0.0); 325 EXPECT_NEAR((dense_matrix - dense_transpose.transpose()).norm(), 0.0, 1e-14);
|
dogleg_strategy_test.cc | 148 EXPECT_LE(x_.norm(), options_.initial_radius * (1.0 + 4.0 * kEpsilon)); 168 EXPECT_LE(x_.norm(), options_.initial_radius * (1.0 + 4.0 * kEpsilon)); 213 EXPECT_NEAR(basis.col(0).norm(), 1.0, kTolerance); 214 EXPECT_NEAR(basis.col(1).norm(), 1.0, kTolerance); 219 EXPECT_NEAR((gradient - basis*(basis.transpose()*gradient)).norm(), 225 EXPECT_NEAR((gn - basis*(basis.transpose()*gn)).norm(),
|
/external/eigen/doc/ |
C07_TutorialReductionsVisitorsBroadcasting.dox | 41 \subsection TutorialReductionsVisitorsBroadcastingReductionsNorm Norm computations 43 The (Euclidean a.k.a. \f$\ell^2\f$) squared norm of a vector can be obtained \link MatrixBase::squaredNorm() squaredNorm() \endlink. It is equal to the dot product of the vector by itself, and equivalently to the sum of squared absolute values of its coefficients. 45 Eigen also provides the \link MatrixBase::norm() norm() \endlink method, which returns the square root of \link MatrixBase::squaredNorm() squaredNorm() \endlink. 47 These operations can also operate on matrices; in that case, a n-by-p matrix is seen as a vector of size (n*p), so for example the \link MatrixBase::norm() norm() \endlink method returns the "Frobenius" or "Hilbert-Schmidt" norm. We refrain from speaking of the \f$\ell^2\f$ norm of a matrix because that can mean different things. 49 If you want other \f$\ell^p\f$ norms, use the \link MatrixBase::lpNorm() lpNnorm<p>() \endlink method. The template parameter \a p can take the special value \a Infinity if you want the \f$\ell^\infty\f$ norm, which is the maximum of the absolute values of the coefficients. 258 - <tt>(m.colwise() - v).colwise().squaredNorm()</tt> is a partial reduction, computing the squared norm column-wise. The result o [all...] |
/prebuilts/python/darwin-x86/2.7.5/lib/python2.7/ |
tabnanny.py | 143 # norm 151 # n.indent_level(t) for all t >= 1 iff m.norm == n.norm. 175 self.norm = tuple(count), b 181 count, trailing = self.norm 185 # count, il = self.norm 199 count, trailing = self.norm 208 return self.norm == other.norm 237 # Note that M is of the form (T*)(S*) iff len(M.norm[0]) <= 1 [all...] |
/prebuilts/python/linux-x86/2.7.5/lib/python2.7/ |
tabnanny.py | 143 # norm 151 # n.indent_level(t) for all t >= 1 iff m.norm == n.norm. 175 self.norm = tuple(count), b 181 count, trailing = self.norm 185 # count, il = self.norm 199 count, trailing = self.norm 208 return self.norm == other.norm 237 # Note that M is of the form (T*)(S*) iff len(M.norm[0]) <= 1 [all...] |
/external/chromium_org/third_party/mesa/src/src/gallium/auxiliary/gallivm/ |
lp_bld_type.h | 109 unsigned norm:1; member in struct:lp_type 271 res_type.norm = TRUE; 344 type.norm = FALSE; 360 type.norm = FALSE; 376 type.norm = TRUE;
|
/external/mesa3d/src/gallium/auxiliary/gallivm/ |
lp_bld_type.h | 109 unsigned norm:1; member in struct:lp_type 271 res_type.norm = TRUE; 344 type.norm = FALSE; 360 type.norm = FALSE; 376 type.norm = TRUE;
|
/external/neven/Embedded/common/src/b_BasicEm/ |
Math.h | 149 /** returns floating point squared norm of 32 bit vector (maximum accuracy - overflow-safe); 151 * returned square norm = man * 2^exp 156 /** returns floating point squared norm of 16 bit vector (maximum accuracy - overflow-safe); 157 * returned square norm = man * 2^exp 162 /** returns the norm of a 16 bit vector;
|
/external/jmonkeyengine/engine/src/tools/jme3tools/optimize/ |
GeometryBatchFactory.java | 46 Vector3f norm = new Vector3f(); local 53 norm.x = inBuf.get(i * 3 + 0); 54 norm.y = inBuf.get(i * 3 + 1); 55 norm.z = inBuf.get(i * 3 + 2); 57 transform.multNormal(norm, norm); 59 outBuf.put(offset + i * 3 + 0, norm.x); 60 outBuf.put(offset + i * 3 + 1, norm.y); 61 outBuf.put(offset + i * 3 + 2, norm.z);
|
/frameworks/av/media/libstagefright/codecs/amrnb/enc/src/ |
autocorr.cpp | 171 norm = normalized autocorrelation at lag zero of type Word16 207 Word16 i, j, norm; 252 norm = norm_l (sum); 253 sum = L_shl (sum, norm); 267 sum = L_shl (sum, norm); 271 norm = sub (norm, overfl_shft); 273 return norm; 311 register Word16 norm; local 414 norm = norm_l(sum) 416 sum <<= norm; local [all...] |
/external/chromium_org/third_party/mesa/src/src/gallium/drivers/llvmpipe/ |
lp_test_conv.c | 179 if ((src_type.floating && !dst_type.floating && dst_type.sign && dst_type.norm && src_type.width == dst_type.width) || 188 if ((src_type.floating && !dst_type.floating && dst_type.sign && dst_type.norm && src_type.width == dst_type.width) || 331 /* float, fixed, sign, norm, width, len */ 427 } while (src_type == dst_type || src_type->norm != dst_type->norm); 440 /* float, fixed, sign, norm, width, len */
|
/external/eigen/test/ |
sparse_solver.h | 96 // Compute the norm of the relative error 98 res_error = (refX - x).norm()/refX.norm(); 101 // Compute the relative residual norm 102 res_error = (b - A * x).norm()/b.norm();
|
geo_orthomethods.cpp | 80 VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), RealScalar(1)); 88 VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), RealScalar(1));
|
/external/mesa3d/src/gallium/drivers/llvmpipe/ |
lp_test_conv.c | 179 if ((src_type.floating && !dst_type.floating && dst_type.sign && dst_type.norm && src_type.width == dst_type.width) || 188 if ((src_type.floating && !dst_type.floating && dst_type.sign && dst_type.norm && src_type.width == dst_type.width) || 331 /* float, fixed, sign, norm, width, len */ 427 } while (src_type == dst_type || src_type->norm != dst_type->norm); 440 /* float, fixed, sign, norm, width, len */
|
/external/eigen/Eigen/src/Geometry/ |
EulerAngles.h | 49 Scalar s = Vector2(coeff(j,i) , coeff(k,i)).norm(); 64 Scalar c = Vector2(coeff(i,i) , coeff(i,j)).norm();
|
/external/eigen/demos/opengl/ |
gpuhelper.cpp | 60 float length = vec.norm(); 81 float length = vec.norm();
|
/external/eigen/test/eigen2/ |
eigen2_prec_inverse_4x4.cpp | 42 double error = double( (m*inv-MatrixType::Identity()).norm() / epsilon<Scalar>() ); 62 double error = double( (m*inv-MatrixType::Identity()).norm() * absdet / epsilon<Scalar>() );
|
/external/jmonkeyengine/engine/src/core/com/jme3/collision/ |
CollisionResult.java | 74 public void setContactNormal(Vector3f norm){ 75 this.contactNormal = norm;
|
/external/jmonkeyengine/engine/src/core-effects/Common/MatDefs/SSAO/ |
ssao.frag | 40 float doAmbientOcclusion(in vec2 tc, in vec3 pos, in vec3 norm){
45 return max(0.0, dot(norm, v) - m_Bias) * ( 1.0/(1.0 + d) ) * m_Intensity;
|
/external/srec/srec/crec/ |
get_fram.c | 438 void convert_adjustment_to_imelda(norm_info *norm, preprocessed *prep) 444 ASSERT(norm); 446 fram[ii] = (imeldata) norm->adjust[ii]; /* TODO: review types */ 453 norm->imelda_adjust[ii] = fram[ii]; 455 log_report("NORM AUX: "); 456 for (ii = 0; ii < norm->dim; ii++) 457 log_report("%d ", (int)norm->imelda_adjust[ii]); 460 norm->adj_valid = True;
|
/external/opencv/cxcore/src/ |
cxutils.cpp | 716 double norm = 0, v; local 728 norm += v*v; 730 norm = sqrt(norm); 736 norm += v; 742 norm = MAX(norm,v); 745 norm = norm > DBL_EPSILON ? 1./norm : 0. [all...] |
/external/chromium_org/build/linux/unbundle/ |
README | 16 libraries is the norm.
|