Home | History | Annotate | Download | only in eigen2
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 #include <Eigen/LU>
     12 #include <algorithm>
     13 
     14 template<typename T> std::string type_name() { return "other"; }
     15 template<> std::string type_name<float>() { return "float"; }
     16 template<> std::string type_name<double>() { return "double"; }
     17 template<> std::string type_name<int>() { return "int"; }
     18 template<> std::string type_name<std::complex<float> >() { return "complex<float>"; }
     19 template<> std::string type_name<std::complex<double> >() { return "complex<double>"; }
     20 template<> std::string type_name<std::complex<int> >() { return "complex<int>"; }
     21 
     22 #define EIGEN_DEBUG_VAR(x) std::cerr << #x << " = " << x << std::endl;
     23 
     24 template<typename T> inline typename NumTraits<T>::Real epsilon()
     25 {
     26  return std::numeric_limits<typename NumTraits<T>::Real>::epsilon();
     27 }
     28 
     29 template<typename MatrixType> void inverse_permutation_4x4()
     30 {
     31   typedef typename MatrixType::Scalar Scalar;
     32   typedef typename MatrixType::RealScalar RealScalar;
     33   Vector4i indices(0,1,2,3);
     34   for(int i = 0; i < 24; ++i)
     35   {
     36     MatrixType m = MatrixType::Zero();
     37     m(indices(0),0) = 1;
     38     m(indices(1),1) = 1;
     39     m(indices(2),2) = 1;
     40     m(indices(3),3) = 1;
     41     MatrixType inv = m.inverse();
     42     double error = double( (m*inv-MatrixType::Identity()).norm() / epsilon<Scalar>() );
     43     VERIFY(error == 0.0);
     44     std::next_permutation(indices.data(),indices.data()+4);
     45   }
     46 }
     47 
     48 template<typename MatrixType> void inverse_general_4x4(int repeat)
     49 {
     50   typedef typename MatrixType::Scalar Scalar;
     51   typedef typename MatrixType::RealScalar RealScalar;
     52   double error_sum = 0., error_max = 0.;
     53   for(int i = 0; i < repeat; ++i)
     54   {
     55     MatrixType m;
     56     RealScalar absdet;
     57     do {
     58       m = MatrixType::Random();
     59       absdet = ei_abs(m.determinant());
     60     } while(absdet < 10 * epsilon<Scalar>());
     61     MatrixType inv = m.inverse();
     62     double error = double( (m*inv-MatrixType::Identity()).norm() * absdet / epsilon<Scalar>() );
     63     error_sum += error;
     64     error_max = std::max(error_max, error);
     65   }
     66   std::cerr << "inverse_general_4x4, Scalar = " << type_name<Scalar>() << std::endl;
     67   double error_avg = error_sum / repeat;
     68   EIGEN_DEBUG_VAR(error_avg);
     69   EIGEN_DEBUG_VAR(error_max);
     70   VERIFY(error_avg < (NumTraits<Scalar>::IsComplex ? 8.0 : 1.25));
     71   VERIFY(error_max < (NumTraits<Scalar>::IsComplex ? 64.0 : 20.0));
     72 }
     73 
     74 void test_eigen2_prec_inverse_4x4()
     75 {
     76   CALL_SUBTEST_1((inverse_permutation_4x4<Matrix4f>()));
     77   CALL_SUBTEST_1(( inverse_general_4x4<Matrix4f>(200000 * g_repeat) ));
     78 
     79   CALL_SUBTEST_2((inverse_permutation_4x4<Matrix<double,4,4,RowMajor> >()));
     80   CALL_SUBTEST_2(( inverse_general_4x4<Matrix<double,4,4,RowMajor> >(200000 * g_repeat) ));
     81 
     82   CALL_SUBTEST_3((inverse_permutation_4x4<Matrix4cf>()));
     83   CALL_SUBTEST_3((inverse_general_4x4<Matrix4cf>(50000 * g_repeat)));
     84 }
     85