HomeSort by relevance Sort by last modified time
    Searched refs:Matrix (Results 526 - 550 of 703) sorted by null

<<212223242526272829

  /external/ceres-solver/internal/ceres/
covariance_test.cc 338 Matrix actual(row_end - row_begin, col_end - col_begin);
589 // 3.4142 is the smallest eigen value of J'J. The following matrix
720 Matrix jacobian(parameter_block_size_, parameter_block_size_);
746 Matrix expected(parameter_block_size_, parameter_block_size_);
747 Matrix actual(parameter_block_size_, parameter_block_size_);
dense_sparse_matrix.cc 88 VectorRef(y, num_rows()) += matrix() * ConstVectorRef(x, num_cols());
93 matrix().transpose() * ConstVectorRef(x, num_rows());
104 void DenseSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const {
147 ConstColMajorMatrixRef DenseSparseMatrix::matrix() const { function in class:ceres::internal::DenseSparseMatrix
implicit_schur_complement.cc 107 // By breaking it down into individual matrix vector products
109 // PartitionedMatrixView of the input matrix A.
133 ConstVectorRef(x, num_cols()).array()).matrix();
142 // Given a block diagonal matrix and an optional array of diagonal
143 // entries D, add them to the diagonal of the matrix and compute the
159 m += d.array().square().matrix().asDiagonal();
165 .solve(Matrix::Identity(row_block_size, row_block_size));
169 // Similar to RightMultiply, use the block structure of the matrix A
205 // this using a series of matrix vector products.
block_sparse_matrix.cc 56 // Count the number of columns in the matrix.
62 // the matrix.
162 void BlockSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const {
167 Matrix& m = *dense_matrix;
185 TripletSparseMatrix* matrix) const {
186 CHECK_NOTNULL(matrix);
188 matrix->Reserve(num_nonzeros_);
189 matrix->Resize(num_rows_, num_cols_);
190 matrix->SetZero();
203 matrix->mutable_rows()[jac_pos] = row_block_pos + r
    [all...]
jet_test.cc 308 Eigen::Matrix<J, 2, 2> M;
309 Eigen::Matrix<J, 2, 1> v, r1, r2;
  /external/eigen/Eigen/src/Core/products/
GeneralMatrixMatrixTriangular_MKL.h 85 /* typedef Matrix<EIGTYPE, Dynamic, Dynamic, RhsStorageOrder> MatrixRhs;*/ \
110 typedef Matrix<EIGTYPE, Dynamic, Dynamic, AStorageOrder> MatrixType; \
GeneralMatrixVector_MKL.h 29 * General matrix-vector product functionality based on ?GEMV.
41 * This file implements general matrix-vector multiplication using BLAS
93 typedef Matrix<EIGTYPE,Dynamic,1,ColMajor> GEMVVector;\
TriangularMatrixVector_MKL.h 29 * Triangular matrix-vector product functionality based on ?TRMV.
41 * This file implements triangular matrix-vector multiplication using BLAS
132 typedef Matrix<EIGTYPE, Dynamic, Dynamic> MatrixLhs; \
217 typedef Matrix<EIGTYPE, Dynamic, Dynamic> MatrixLhs; \
  /external/eigen/Eigen/src/Eigen2Support/Geometry/
AlignedBox.h 34 typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
  /external/eigen/Eigen/src/Geometry/
Scaling.h 70 /** Concatenates a uniform scaling and a linear transformation matrix */
77 inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const
107 /** Concatenates a linear transformation matrix and a uniform scaling */
157 res.matrix().setZero();
  /external/eigen/Eigen/src/SparseCore/
SparseSelfAdjointView.h 18 * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
20 * \param MatrixType the type of the dense matrix storing the coefficients
23 * This class is an expression of a sefladjoint matrix from a triangular part of a matrix
56 typedef Matrix<Index,Dynamic,1> VectorI;
60 inline SparseSelfAdjointView(const MatrixType& matrix) : m_matrix(matrix)
68 /** \internal \returns a reference to the nested matrix */
69 const _MatrixTypeNested& matrix() const { return m_matrix; function in class:Eigen::SparseSelfAdjointView
70 _MatrixTypeNested& matrix() { return m_matrix.const_cast_derived(); } function in class:Eigen::SparseSelfAdjointView
    [all...]
  /external/eigen/Eigen/src/misc/
SparseSolve.h 75 typedef Matrix<typename Rhs::Scalar,
  /external/eigen/bench/
bench_gemm.cpp 19 typedef Matrix<RealScalar,Dynamic,Dynamic> A;
20 typedef Matrix</*Real*/Scalar,Dynamic,Dynamic> B;
21 typedef Matrix<Scalar,Dynamic,Dynamic> C;
22 typedef Matrix<RealScalar,Dynamic,Dynamic> M;
151 std::cout << argv[0] << " s<matrix size> c<cache size> t<nb tries> p<nb repeats>\n";
166 std::cout << "Matrix sizes = " << m << "x" << p << " * " << p << "x" << n << "\n";
  /external/eigen/test/
linearstructure.cpp 73 CALL_SUBTEST_1( linearStructure(Matrix<float, 1, 1>()) );
  /external/eigen/unsupported/Eigen/src/KroneckerProduct/
KroneckerTensorProduct.h 23 * \param A Dense matrix A
24 * \param B Dense matrix B
43 * \param A Matrix A
44 * \param B Matrix B
86 * \param a Dense matrix a
87 * \param b Dense matrix b
91 void kroneckerProduct(const MatrixBase<A>& a, const MatrixBase<B>& b, Matrix<CScalar,CRows,CCols,COptions,CMaxRows,CMaxCols>& c)
102 * output matrix is a submatrix, e.g.
105 * \param a Dense matrix a
106 * \param b Dense matrix
    [all...]
  /external/eigen/unsupported/Eigen/src/MatrixFunctions/
MatrixFunctionAtomic.h 17 * \brief Helper class for computing matrix functions of atomic matrices.
20 * Here, an atomic matrix is a triangular matrix whose diagonal
32 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
35 * \param[in] f matrix function to compute.
39 /** \brief Compute matrix function of atomic matrix
40 * \param[in] A argument of matrix function, should be upper triangular and atomic
41 * \returns f(A), the matrix function evaluated at the given matrix
    [all...]
  /external/eigen/unsupported/Eigen/src/Splines/
SplineFitting.h 73 chord_lengths.rightCols(n-1) = (pts.array().leftCols(n-1) - pts.array().rightCols(n-1)).matrix().colwise().norm();
124 typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
  /external/llvm/lib/CodeGen/
RegAllocPBQP.cpp 278 PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0));
294 PBQP::Matrix &costMat,
298 assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch.");
299 assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch.");
377 edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1,
403 PBQP::Matrix &costMat,
  /external/robolectric/src/main/java/com/xtremelabs/robolectric/shadows/
ShadowCanvas.java 115 public void drawBitmap(Bitmap bitmap, Matrix matrix, Paint paint) {
118 appendDescription(" transformed by matrix");
  /frameworks/base/core/java/android/app/
WallpaperManager.java 30 import android.graphics.Matrix;
521 Matrix m = new Matrix();
524 m.setRectToRect(cropRect, returnRect, Matrix.ScaleToFit.FILL);
    [all...]
  /frameworks/base/graphics/java/android/graphics/
Bitmap.java 80 private static volatile Matrix sScaleMatrix;
579 Matrix m;
581 // small pool of just 1 matrix
587 m = new Matrix();
638 * transformed by the optional matrix. The new bitmap may be the
651 * @param m Optional matrix to be applied to the pixels
653 * Only applies if the matrix contains more than just
661 Matrix m, boolean filter) {
    [all...]
  /packages/apps/Browser/src/com/android/browser/
PhoneUi.java 27 import android.graphics.Matrix;
473 mContent.setScaleType(ImageView.ScaleType.MATRIX);
474 mContent.setImageMatrix(new Matrix());
533 Matrix m = new Matrix();
  /packages/apps/Camera2/src/com/android/camera/crop/
GeometryMathUtils.java 21 import android.graphics.Matrix;
  /packages/apps/LegacyCamera/src/com/android/camera/
Util.java 29 import android.graphics.Matrix;
122 Matrix m = new Matrix();
576 public static void prepareMatrix(Matrix matrix, boolean mirror, int displayOrientation,
579 matrix.setScale(mirror ? -1 : 1, 1);
581 matrix.postRotate(displayOrientation);
584 matrix.postScale(viewWidth / 2000f, viewHeight / 2000f);
585 matrix.postTranslate(viewWidth / 2f, viewHeight / 2f);
  /external/eigen/Eigen/src/Core/
Transpositions.h 25 * Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges
26 * the rows \c i and \c indices[i] of the matrix \c M.
32 * To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example:
38 * In this example, we detect that the matrix appears on both side, and so the transpositions
115 // might be usefull when the target matrix expression is complex, e.g.:
116 // object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..);
151 typedef Matrix<Index, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
201 /** Constructs an uninitialized permutation matrix of given size.
222 typedef Map<const Matrix<Index,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType
    [all...]

Completed in 673 milliseconds

<<212223242526272829