/external/ceres-solver/internal/ceres/ |
covariance_test.cc | 338 Matrix actual(row_end - row_begin, col_end - col_begin); 589 // 3.4142 is the smallest eigen value of J'J. The following matrix 720 Matrix jacobian(parameter_block_size_, parameter_block_size_); 746 Matrix expected(parameter_block_size_, parameter_block_size_); 747 Matrix actual(parameter_block_size_, parameter_block_size_);
|
dense_sparse_matrix.cc | 88 VectorRef(y, num_rows()) += matrix() * ConstVectorRef(x, num_cols()); 93 matrix().transpose() * ConstVectorRef(x, num_rows()); 104 void DenseSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const { 147 ConstColMajorMatrixRef DenseSparseMatrix::matrix() const { function in class:ceres::internal::DenseSparseMatrix
|
implicit_schur_complement.cc | 107 // By breaking it down into individual matrix vector products 109 // PartitionedMatrixView of the input matrix A. 133 ConstVectorRef(x, num_cols()).array()).matrix(); 142 // Given a block diagonal matrix and an optional array of diagonal 143 // entries D, add them to the diagonal of the matrix and compute the 159 m += d.array().square().matrix().asDiagonal(); 165 .solve(Matrix::Identity(row_block_size, row_block_size)); 169 // Similar to RightMultiply, use the block structure of the matrix A 205 // this using a series of matrix vector products.
|
block_sparse_matrix.cc | 56 // Count the number of columns in the matrix. 62 // the matrix. 162 void BlockSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const { 167 Matrix& m = *dense_matrix; 185 TripletSparseMatrix* matrix) const { 186 CHECK_NOTNULL(matrix); 188 matrix->Reserve(num_nonzeros_); 189 matrix->Resize(num_rows_, num_cols_); 190 matrix->SetZero(); 203 matrix->mutable_rows()[jac_pos] = row_block_pos + r [all...] |
jet_test.cc | 308 Eigen::Matrix<J, 2, 2> M; 309 Eigen::Matrix<J, 2, 1> v, r1, r2;
|
/external/eigen/Eigen/src/Core/products/ |
GeneralMatrixMatrixTriangular_MKL.h | 85 /* typedef Matrix<EIGTYPE, Dynamic, Dynamic, RhsStorageOrder> MatrixRhs;*/ \ 110 typedef Matrix<EIGTYPE, Dynamic, Dynamic, AStorageOrder> MatrixType; \
|
GeneralMatrixVector_MKL.h | 29 * General matrix-vector product functionality based on ?GEMV. 41 * This file implements general matrix-vector multiplication using BLAS 93 typedef Matrix<EIGTYPE,Dynamic,1,ColMajor> GEMVVector;\
|
TriangularMatrixVector_MKL.h | 29 * Triangular matrix-vector product functionality based on ?TRMV. 41 * This file implements triangular matrix-vector multiplication using BLAS 132 typedef Matrix<EIGTYPE, Dynamic, Dynamic> MatrixLhs; \ 217 typedef Matrix<EIGTYPE, Dynamic, Dynamic> MatrixLhs; \
|
/external/eigen/Eigen/src/Eigen2Support/Geometry/ |
AlignedBox.h | 34 typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
|
/external/eigen/Eigen/src/Geometry/ |
Scaling.h | 70 /** Concatenates a uniform scaling and a linear transformation matrix */ 77 inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const 107 /** Concatenates a linear transformation matrix and a uniform scaling */ 157 res.matrix().setZero();
|
/external/eigen/Eigen/src/SparseCore/ |
SparseSelfAdjointView.h | 18 * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. 20 * \param MatrixType the type of the dense matrix storing the coefficients 23 * This class is an expression of a sefladjoint matrix from a triangular part of a matrix 56 typedef Matrix<Index,Dynamic,1> VectorI; 60 inline SparseSelfAdjointView(const MatrixType& matrix) : m_matrix(matrix) 68 /** \internal \returns a reference to the nested matrix */ 69 const _MatrixTypeNested& matrix() const { return m_matrix; function in class:Eigen::SparseSelfAdjointView 70 _MatrixTypeNested& matrix() { return m_matrix.const_cast_derived(); } function in class:Eigen::SparseSelfAdjointView [all...] |
/external/eigen/Eigen/src/misc/ |
SparseSolve.h | 75 typedef Matrix<typename Rhs::Scalar,
|
/external/eigen/bench/ |
bench_gemm.cpp | 19 typedef Matrix<RealScalar,Dynamic,Dynamic> A; 20 typedef Matrix</*Real*/Scalar,Dynamic,Dynamic> B; 21 typedef Matrix<Scalar,Dynamic,Dynamic> C; 22 typedef Matrix<RealScalar,Dynamic,Dynamic> M; 151 std::cout << argv[0] << " s<matrix size> c<cache size> t<nb tries> p<nb repeats>\n"; 166 std::cout << "Matrix sizes = " << m << "x" << p << " * " << p << "x" << n << "\n";
|
/external/eigen/test/ |
linearstructure.cpp | 73 CALL_SUBTEST_1( linearStructure(Matrix<float, 1, 1>()) );
|
/external/eigen/unsupported/Eigen/src/KroneckerProduct/ |
KroneckerTensorProduct.h | 23 * \param A Dense matrix A 24 * \param B Dense matrix B 43 * \param A Matrix A 44 * \param B Matrix B 86 * \param a Dense matrix a 87 * \param b Dense matrix b 91 void kroneckerProduct(const MatrixBase<A>& a, const MatrixBase<B>& b, Matrix<CScalar,CRows,CCols,COptions,CMaxRows,CMaxCols>& c) 102 * output matrix is a submatrix, e.g. 105 * \param a Dense matrix a 106 * \param b Dense matrix [all...] |
/external/eigen/unsupported/Eigen/src/MatrixFunctions/ |
MatrixFunctionAtomic.h | 17 * \brief Helper class for computing matrix functions of atomic matrices. 20 * Here, an atomic matrix is a triangular matrix whose diagonal 32 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; 35 * \param[in] f matrix function to compute. 39 /** \brief Compute matrix function of atomic matrix 40 * \param[in] A argument of matrix function, should be upper triangular and atomic 41 * \returns f(A), the matrix function evaluated at the given matrix [all...] |
/external/eigen/unsupported/Eigen/src/Splines/ |
SplineFitting.h | 73 chord_lengths.rightCols(n-1) = (pts.array().leftCols(n-1) - pts.array().rightCols(n-1)).matrix().colwise().norm(); 124 typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
|
/external/llvm/lib/CodeGen/ |
RegAllocPBQP.cpp | 278 PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0)); 294 PBQP::Matrix &costMat, 298 assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch."); 299 assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch."); 377 edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1, 403 PBQP::Matrix &costMat,
|
/external/robolectric/src/main/java/com/xtremelabs/robolectric/shadows/ |
ShadowCanvas.java | 115 public void drawBitmap(Bitmap bitmap, Matrix matrix, Paint paint) { 118 appendDescription(" transformed by matrix");
|
/frameworks/base/core/java/android/app/ |
WallpaperManager.java | 30 import android.graphics.Matrix; 521 Matrix m = new Matrix(); 524 m.setRectToRect(cropRect, returnRect, Matrix.ScaleToFit.FILL); [all...] |
/frameworks/base/graphics/java/android/graphics/ |
Bitmap.java | 80 private static volatile Matrix sScaleMatrix; 579 Matrix m; 581 // small pool of just 1 matrix 587 m = new Matrix(); 638 * transformed by the optional matrix. The new bitmap may be the 651 * @param m Optional matrix to be applied to the pixels 653 * Only applies if the matrix contains more than just 661 Matrix m, boolean filter) { [all...] |
/packages/apps/Browser/src/com/android/browser/ |
PhoneUi.java | 27 import android.graphics.Matrix; 473 mContent.setScaleType(ImageView.ScaleType.MATRIX); 474 mContent.setImageMatrix(new Matrix()); 533 Matrix m = new Matrix();
|
/packages/apps/Camera2/src/com/android/camera/crop/ |
GeometryMathUtils.java | 21 import android.graphics.Matrix;
|
/packages/apps/LegacyCamera/src/com/android/camera/ |
Util.java | 29 import android.graphics.Matrix; 122 Matrix m = new Matrix(); 576 public static void prepareMatrix(Matrix matrix, boolean mirror, int displayOrientation, 579 matrix.setScale(mirror ? -1 : 1, 1); 581 matrix.postRotate(displayOrientation); 584 matrix.postScale(viewWidth / 2000f, viewHeight / 2000f); 585 matrix.postTranslate(viewWidth / 2f, viewHeight / 2f);
|
/external/eigen/Eigen/src/Core/ |
Transpositions.h | 25 * Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges 26 * the rows \c i and \c indices[i] of the matrix \c M. 32 * To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example: 38 * In this example, we detect that the matrix appears on both side, and so the transpositions 115 // might be usefull when the target matrix expression is complex, e.g.: 116 // object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..); 151 typedef Matrix<Index, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType; 201 /** Constructs an uninitialized permutation matrix of given size. 222 typedef Map<const Matrix<Index,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType [all...] |