Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2013 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 
     31 #include "ceres/covariance.h"
     32 
     33 #include <algorithm>
     34 #include <cmath>
     35 #include "ceres/compressed_row_sparse_matrix.h"
     36 #include "ceres/cost_function.h"
     37 #include "ceres/covariance_impl.h"
     38 #include "ceres/local_parameterization.h"
     39 #include "ceres/map_util.h"
     40 #include "ceres/problem_impl.h"
     41 #include "gtest/gtest.h"
     42 
     43 namespace ceres {
     44 namespace internal {
     45 
     46 TEST(CovarianceImpl, ComputeCovarianceSparsity) {
     47   double parameters[10];
     48 
     49   double* block1 = parameters;
     50   double* block2 = block1 + 1;
     51   double* block3 = block2 + 2;
     52   double* block4 = block3 + 3;
     53 
     54   ProblemImpl problem;
     55 
     56   // Add in random order
     57   problem.AddParameterBlock(block1, 1);
     58   problem.AddParameterBlock(block4, 4);
     59   problem.AddParameterBlock(block3, 3);
     60   problem.AddParameterBlock(block2, 2);
     61 
     62   // Sparsity pattern
     63   //
     64   //  x 0 0 0 0 0 x x x x
     65   //  0 x x x x x 0 0 0 0
     66   //  0 x x x x x 0 0 0 0
     67   //  0 0 0 x x x 0 0 0 0
     68   //  0 0 0 x x x 0 0 0 0
     69   //  0 0 0 x x x 0 0 0 0
     70   //  0 0 0 0 0 0 x x x x
     71   //  0 0 0 0 0 0 x x x x
     72   //  0 0 0 0 0 0 x x x x
     73   //  0 0 0 0 0 0 x x x x
     74 
     75   int expected_rows[] = {0, 5, 10, 15, 18, 21, 24, 28, 32, 36, 40};
     76   int expected_cols[] = {0, 6, 7, 8, 9,
     77                          1, 2, 3, 4, 5,
     78                          1, 2, 3, 4, 5,
     79                          3, 4, 5,
     80                          3, 4, 5,
     81                          3, 4, 5,
     82                          6, 7, 8, 9,
     83                          6, 7, 8, 9,
     84                          6, 7, 8, 9,
     85                          6, 7, 8, 9};
     86 
     87 
     88   vector<pair<const double*, const double*> > covariance_blocks;
     89   covariance_blocks.push_back(make_pair(block1, block1));
     90   covariance_blocks.push_back(make_pair(block4, block4));
     91   covariance_blocks.push_back(make_pair(block2, block2));
     92   covariance_blocks.push_back(make_pair(block3, block3));
     93   covariance_blocks.push_back(make_pair(block2, block3));
     94   covariance_blocks.push_back(make_pair(block4, block1));  // reversed
     95 
     96   Covariance::Options options;
     97   CovarianceImpl covariance_impl(options);
     98   EXPECT_TRUE(covariance_impl
     99               .ComputeCovarianceSparsity(covariance_blocks, &problem));
    100 
    101   const CompressedRowSparseMatrix* crsm = covariance_impl.covariance_matrix();
    102 
    103   EXPECT_EQ(crsm->num_rows(), 10);
    104   EXPECT_EQ(crsm->num_cols(), 10);
    105   EXPECT_EQ(crsm->num_nonzeros(), 40);
    106 
    107   const int* rows = crsm->rows();
    108   for (int r = 0; r < crsm->num_rows() + 1; ++r) {
    109     EXPECT_EQ(rows[r], expected_rows[r])
    110         << r << " "
    111         << rows[r] << " "
    112         << expected_rows[r];
    113   }
    114 
    115   const int* cols = crsm->cols();
    116   for (int c = 0; c < crsm->num_nonzeros(); ++c) {
    117     EXPECT_EQ(cols[c], expected_cols[c])
    118         << c << " "
    119         << cols[c] << " "
    120         << expected_cols[c];
    121   }
    122 }
    123 
    124 
    125 class UnaryCostFunction: public CostFunction {
    126  public:
    127   UnaryCostFunction(const int num_residuals,
    128                     const int16 parameter_block_size,
    129                     const double* jacobian)
    130       : jacobian_(jacobian, jacobian + num_residuals * parameter_block_size) {
    131     set_num_residuals(num_residuals);
    132     mutable_parameter_block_sizes()->push_back(parameter_block_size);
    133   }
    134 
    135   virtual bool Evaluate(double const* const* parameters,
    136                         double* residuals,
    137                         double** jacobians) const {
    138     for (int i = 0; i < num_residuals(); ++i) {
    139       residuals[i] = 1;
    140     }
    141 
    142     if (jacobians == NULL) {
    143       return true;
    144     }
    145 
    146     if (jacobians[0] != NULL) {
    147       copy(jacobian_.begin(), jacobian_.end(), jacobians[0]);
    148     }
    149 
    150     return true;
    151   }
    152 
    153  private:
    154   vector<double> jacobian_;
    155 };
    156 
    157 
    158 class BinaryCostFunction: public CostFunction {
    159  public:
    160   BinaryCostFunction(const int num_residuals,
    161                      const int16 parameter_block1_size,
    162                      const int16 parameter_block2_size,
    163                      const double* jacobian1,
    164                      const double* jacobian2)
    165       : jacobian1_(jacobian1,
    166                    jacobian1 + num_residuals * parameter_block1_size),
    167         jacobian2_(jacobian2,
    168                    jacobian2 + num_residuals * parameter_block2_size) {
    169     set_num_residuals(num_residuals);
    170     mutable_parameter_block_sizes()->push_back(parameter_block1_size);
    171     mutable_parameter_block_sizes()->push_back(parameter_block2_size);
    172   }
    173 
    174   virtual bool Evaluate(double const* const* parameters,
    175                         double* residuals,
    176                         double** jacobians) const {
    177     for (int i = 0; i < num_residuals(); ++i) {
    178       residuals[i] = 2;
    179     }
    180 
    181     if (jacobians == NULL) {
    182       return true;
    183     }
    184 
    185     if (jacobians[0] != NULL) {
    186       copy(jacobian1_.begin(), jacobian1_.end(), jacobians[0]);
    187     }
    188 
    189     if (jacobians[1] != NULL) {
    190       copy(jacobian2_.begin(), jacobian2_.end(), jacobians[1]);
    191     }
    192 
    193     return true;
    194   }
    195 
    196  private:
    197   vector<double> jacobian1_;
    198   vector<double> jacobian2_;
    199 };
    200 
    201 // x_plus_delta = delta * x;
    202 class PolynomialParameterization : public LocalParameterization {
    203  public:
    204   virtual ~PolynomialParameterization() {}
    205 
    206   virtual bool Plus(const double* x,
    207                     const double* delta,
    208                     double* x_plus_delta) const {
    209     x_plus_delta[0] = delta[0] * x[0];
    210     x_plus_delta[1] = delta[0] * x[1];
    211     return true;
    212   }
    213 
    214   virtual bool ComputeJacobian(const double* x, double* jacobian) const {
    215     jacobian[0] = x[0];
    216     jacobian[1] = x[1];
    217     return true;
    218   }
    219 
    220   virtual int GlobalSize() const { return 2; }
    221   virtual int LocalSize() const { return 1; }
    222 };
    223 
    224 class CovarianceTest : public ::testing::Test {
    225  protected:
    226   virtual void SetUp() {
    227     double* x = parameters_;
    228     double* y = x + 2;
    229     double* z = y + 3;
    230 
    231     x[0] = 1;
    232     x[1] = 1;
    233     y[0] = 2;
    234     y[1] = 2;
    235     y[2] = 2;
    236     z[0] = 3;
    237 
    238     {
    239       double jacobian[] = { 1.0, 0.0, 0.0, 1.0};
    240       problem_.AddResidualBlock(new UnaryCostFunction(2, 2, jacobian), NULL, x);
    241     }
    242 
    243     {
    244       double jacobian[] = { 2.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 2.0 };
    245       problem_.AddResidualBlock(new UnaryCostFunction(3, 3, jacobian), NULL, y);
    246     }
    247 
    248     {
    249       double jacobian = 5.0;
    250       problem_.AddResidualBlock(new UnaryCostFunction(1, 1, &jacobian), NULL, z);
    251     }
    252 
    253     {
    254       double jacobian1[] = { 1.0, 2.0, 3.0 };
    255       double jacobian2[] = { -5.0, -6.0 };
    256       problem_.AddResidualBlock(
    257           new BinaryCostFunction(1, 3, 2, jacobian1, jacobian2),
    258           NULL,
    259           y,
    260           x);
    261     }
    262 
    263     {
    264       double jacobian1[] = {2.0 };
    265       double jacobian2[] = { 3.0, -2.0 };
    266       problem_.AddResidualBlock(
    267           new BinaryCostFunction(1, 1, 2, jacobian1, jacobian2),
    268           NULL,
    269           z,
    270           x);
    271     }
    272 
    273     all_covariance_blocks_.push_back(make_pair(x, x));
    274     all_covariance_blocks_.push_back(make_pair(y, y));
    275     all_covariance_blocks_.push_back(make_pair(z, z));
    276     all_covariance_blocks_.push_back(make_pair(x, y));
    277     all_covariance_blocks_.push_back(make_pair(x, z));
    278     all_covariance_blocks_.push_back(make_pair(y, z));
    279 
    280     column_bounds_[x] = make_pair(0, 2);
    281     column_bounds_[y] = make_pair(2, 5);
    282     column_bounds_[z] = make_pair(5, 6);
    283   }
    284 
    285   void ComputeAndCompareCovarianceBlocks(const Covariance::Options& options,
    286                                          const double* expected_covariance) {
    287     // Generate all possible combination of block pairs and check if the
    288     // covariance computation is correct.
    289     for (int i = 1; i <= 64; ++i) {
    290       vector<pair<const double*, const double*> > covariance_blocks;
    291       if (i & 1) {
    292         covariance_blocks.push_back(all_covariance_blocks_[0]);
    293       }
    294 
    295       if (i & 2) {
    296         covariance_blocks.push_back(all_covariance_blocks_[1]);
    297       }
    298 
    299       if (i & 4) {
    300         covariance_blocks.push_back(all_covariance_blocks_[2]);
    301       }
    302 
    303       if (i & 8) {
    304         covariance_blocks.push_back(all_covariance_blocks_[3]);
    305       }
    306 
    307       if (i & 16) {
    308         covariance_blocks.push_back(all_covariance_blocks_[4]);
    309       }
    310 
    311       if (i & 32) {
    312         covariance_blocks.push_back(all_covariance_blocks_[5]);
    313       }
    314 
    315       Covariance covariance(options);
    316       EXPECT_TRUE(covariance.Compute(covariance_blocks, &problem_));
    317 
    318       for (int i = 0; i < covariance_blocks.size(); ++i) {
    319         const double* block1 = covariance_blocks[i].first;
    320         const double* block2 = covariance_blocks[i].second;
    321         // block1, block2
    322         GetCovarianceBlockAndCompare(block1, block2, covariance, expected_covariance);
    323         // block2, block1
    324         GetCovarianceBlockAndCompare(block2, block1, covariance, expected_covariance);
    325       }
    326     }
    327   }
    328 
    329   void GetCovarianceBlockAndCompare(const double* block1,
    330                                     const double* block2,
    331                                     const Covariance& covariance,
    332                                     const double* expected_covariance) {
    333     const int row_begin = FindOrDie(column_bounds_, block1).first;
    334     const int row_end = FindOrDie(column_bounds_, block1).second;
    335     const int col_begin = FindOrDie(column_bounds_, block2).first;
    336     const int col_end = FindOrDie(column_bounds_, block2).second;
    337 
    338     Matrix actual(row_end - row_begin, col_end - col_begin);
    339     EXPECT_TRUE(covariance.GetCovarianceBlock(block1,
    340                                               block2,
    341                                               actual.data()));
    342 
    343     ConstMatrixRef expected(expected_covariance, 6, 6);
    344     double diff_norm = (expected.block(row_begin,
    345                                        col_begin,
    346                                        row_end - row_begin,
    347                                        col_end - col_begin) - actual).norm();
    348     diff_norm /= (row_end - row_begin) * (col_end - col_begin);
    349 
    350     const double kTolerance = 1e-5;
    351     EXPECT_NEAR(diff_norm, 0.0, kTolerance)
    352         << "rows: " << row_begin << " " << row_end << "  "
    353         << "cols: " << col_begin << " " << col_end << "  "
    354         << "\n\n expected: \n " << expected.block(row_begin,
    355                                                   col_begin,
    356                                                   row_end - row_begin,
    357                                                   col_end - col_begin)
    358         << "\n\n actual: \n " << actual
    359         << "\n\n full expected: \n" << expected;
    360   }
    361 
    362   double parameters_[10];
    363   Problem problem_;
    364   vector<pair<const double*, const double*> > all_covariance_blocks_;
    365   map<const double*, pair<int, int> > column_bounds_;
    366 };
    367 
    368 
    369 TEST_F(CovarianceTest, NormalBehavior) {
    370   // J
    371   //
    372   //   1  0  0  0  0  0
    373   //   0  1  0  0  0  0
    374   //   0  0  2  0  0  0
    375   //   0  0  0  2  0  0
    376   //   0  0  0  0  2  0
    377   //   0  0  0  0  0  5
    378   //  -5 -6  1  2  3  0
    379   //   3 -2  0  0  0  2
    380 
    381   // J'J
    382   //
    383   //   35  24 -5 -10 -15  6
    384   //   24  41 -6 -12 -18 -4
    385   //   -5  -6  5   2   3  0
    386   //  -10 -12  2   8   6  0
    387   //  -15 -18  3   6  13  0
    388   //    6  -4  0   0   0 29
    389 
    390   // inv(J'J) computed using octave.
    391   double expected_covariance[] = {
    392      7.0747e-02,  -8.4923e-03,   1.6821e-02,   3.3643e-02,   5.0464e-02,  -1.5809e-02,  // NOLINT
    393     -8.4923e-03,   8.1352e-02,   2.4758e-02,   4.9517e-02,   7.4275e-02,   1.2978e-02,  // NOLINT
    394      1.6821e-02,   2.4758e-02,   2.4904e-01,  -1.9271e-03,  -2.8906e-03,  -6.5325e-05,  // NOLINT
    395      3.3643e-02,   4.9517e-02,  -1.9271e-03,   2.4615e-01,  -5.7813e-03,  -1.3065e-04,  // NOLINT
    396      5.0464e-02,   7.4275e-02,  -2.8906e-03,  -5.7813e-03,   2.4133e-01,  -1.9598e-04,  // NOLINT
    397     -1.5809e-02,   1.2978e-02,  -6.5325e-05,  -1.3065e-04,  -1.9598e-04,   3.9544e-02,  // NOLINT
    398   };
    399 
    400   Covariance::Options options;
    401 
    402 #ifndef CERES_NO_SUITESPARSE
    403   options.algorithm_type = SPARSE_CHOLESKY;
    404   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
    405 
    406   options.algorithm_type = SPARSE_QR;
    407   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
    408 #endif
    409 
    410   options.algorithm_type = DENSE_SVD;
    411   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
    412 }
    413 
    414 #ifdef CERES_USE_OPENMP
    415 
    416 TEST_F(CovarianceTest, ThreadedNormalBehavior) {
    417   // J
    418   //
    419   //   1  0  0  0  0  0
    420   //   0  1  0  0  0  0
    421   //   0  0  2  0  0  0
    422   //   0  0  0  2  0  0
    423   //   0  0  0  0  2  0
    424   //   0  0  0  0  0  5
    425   //  -5 -6  1  2  3  0
    426   //   3 -2  0  0  0  2
    427 
    428   // J'J
    429   //
    430   //   35  24 -5 -10 -15  6
    431   //   24  41 -6 -12 -18 -4
    432   //   -5  -6  5   2   3  0
    433   //  -10 -12  2   8   6  0
    434   //  -15 -18  3   6  13  0
    435   //    6  -4  0   0   0 29
    436 
    437   // inv(J'J) computed using octave.
    438   double expected_covariance[] = {
    439      7.0747e-02,  -8.4923e-03,   1.6821e-02,   3.3643e-02,   5.0464e-02,  -1.5809e-02,  // NOLINT
    440     -8.4923e-03,   8.1352e-02,   2.4758e-02,   4.9517e-02,   7.4275e-02,   1.2978e-02,  // NOLINT
    441      1.6821e-02,   2.4758e-02,   2.4904e-01,  -1.9271e-03,  -2.8906e-03,  -6.5325e-05,  // NOLINT
    442      3.3643e-02,   4.9517e-02,  -1.9271e-03,   2.4615e-01,  -5.7813e-03,  -1.3065e-04,  // NOLINT
    443      5.0464e-02,   7.4275e-02,  -2.8906e-03,  -5.7813e-03,   2.4133e-01,  -1.9598e-04,  // NOLINT
    444     -1.5809e-02,   1.2978e-02,  -6.5325e-05,  -1.3065e-04,  -1.9598e-04,   3.9544e-02,  // NOLINT
    445   };
    446 
    447   Covariance::Options options;
    448   options.num_threads = 4;
    449 
    450 #ifndef CERES_NO_SUITESPARSE
    451   options.algorithm_type = SPARSE_CHOLESKY;
    452   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
    453 
    454   options.algorithm_type = SPARSE_QR;
    455   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
    456 #endif
    457 
    458   options.algorithm_type = DENSE_SVD;
    459   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
    460 }
    461 
    462 #endif  // CERES_USE_OPENMP
    463 
    464 TEST_F(CovarianceTest, ConstantParameterBlock) {
    465   problem_.SetParameterBlockConstant(parameters_);
    466 
    467   // J
    468   //
    469   //  0  0  0  0  0  0
    470   //  0  0  0  0  0  0
    471   //  0  0  2  0  0  0
    472   //  0  0  0  2  0  0
    473   //  0  0  0  0  2  0
    474   //  0  0  0  0  0  5
    475   //  0  0  1  2  3  0
    476   //  0  0  0  0  0  2
    477 
    478   // J'J
    479   //
    480   //  0  0  0  0  0  0
    481   //  0  0  0  0  0  0
    482   //  0  0  5  2  3  0
    483   //  0  0  2  8  6  0
    484   //  0  0  3  6 13  0
    485   //  0  0  0  0  0 29
    486 
    487   // pinv(J'J) computed using octave.
    488   double expected_covariance[] = {
    489               0,            0,            0,            0,            0,            0,  // NOLINT
    490               0,            0,            0,            0,            0,            0,  // NOLINT
    491               0,            0,      0.23611,     -0.02778,     -0.04167,     -0.00000,  // NOLINT
    492               0,            0,     -0.02778,      0.19444,     -0.08333,     -0.00000,  // NOLINT
    493               0,            0,     -0.04167,     -0.08333,      0.12500,     -0.00000,  // NOLINT
    494               0,            0,     -0.00000,     -0.00000,     -0.00000,      0.03448   // NOLINT
    495   };
    496 
    497   Covariance::Options options;
    498 
    499 #ifndef CERES_NO_SUITESPARSE
    500   options.algorithm_type = SPARSE_CHOLESKY;
    501   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
    502 
    503   options.algorithm_type = SPARSE_QR;
    504   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
    505 #endif
    506 
    507   options.algorithm_type = DENSE_SVD;
    508   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
    509 }
    510 
    511 TEST_F(CovarianceTest, LocalParameterization) {
    512   double* x = parameters_;
    513   double* y = x + 2;
    514 
    515   problem_.SetParameterization(x, new PolynomialParameterization);
    516 
    517   vector<int> subset;
    518   subset.push_back(2);
    519   problem_.SetParameterization(y, new SubsetParameterization(3, subset));
    520 
    521   // Raw Jacobian: J
    522   //
    523   //   1   0  0  0  0  0
    524   //   0   1  0  0  0  0
    525   //   0   0  2  0  0  0
    526   //   0   0  0  2  0  0
    527   //   0   0  0  0  0  0
    528   //   0   0  0  0  0  5
    529   //  -5  -6  1  2  0  0
    530   //   3  -2  0  0  0  2
    531 
    532   // Global to local jacobian: A
    533   //
    534   //
    535   //  1   0   0   0   0
    536   //  1   0   0   0   0
    537   //  0   1   0   0   0
    538   //  0   0   1   0   0
    539   //  0   0   0   1   0
    540   //  0   0   0   0   1
    541 
    542   // A * pinv((J*A)'*(J*A)) * A'
    543   // Computed using octave.
    544   double expected_covariance[] = {
    545     0.01766,   0.01766,   0.02158,   0.04316,   0.00000,  -0.00122,
    546     0.01766,   0.01766,   0.02158,   0.04316,   0.00000,  -0.00122,
    547     0.02158,   0.02158,   0.24860,  -0.00281,   0.00000,  -0.00149,
    548     0.04316,   0.04316,  -0.00281,   0.24439,   0.00000,  -0.00298,
    549     0.00000,   0.00000,   0.00000,   0.00000,   0.00000,   0.00000,
    550    -0.00122,  -0.00122,  -0.00149,  -0.00298,   0.00000,   0.03457
    551   };
    552 
    553   Covariance::Options options;
    554 
    555 #ifndef CERES_NO_SUITESPARSE
    556   options.algorithm_type = SPARSE_CHOLESKY;
    557   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
    558 
    559   options.algorithm_type = SPARSE_QR;
    560   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
    561 #endif
    562 
    563   options.algorithm_type = DENSE_SVD;
    564   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
    565 }
    566 
    567 
    568 TEST_F(CovarianceTest, TruncatedRank) {
    569   // J
    570   //
    571   //   1  0  0  0  0  0
    572   //   0  1  0  0  0  0
    573   //   0  0  2  0  0  0
    574   //   0  0  0  2  0  0
    575   //   0  0  0  0  2  0
    576   //   0  0  0  0  0  5
    577   //  -5 -6  1  2  3  0
    578   //   3 -2  0  0  0  2
    579 
    580   // J'J
    581   //
    582   //   35  24 -5 -10 -15  6
    583   //   24  41 -6 -12 -18 -4
    584   //   -5  -6  5   2   3  0
    585   //  -10 -12  2   8   6  0
    586   //  -15 -18  3   6  13  0
    587   //    6  -4  0   0   0 29
    588 
    589   // 3.4142 is the smallest eigen value of J'J. The following matrix
    590   // was obtained by dropping the eigenvector corresponding to this
    591   // eigenvalue.
    592   double expected_covariance[] = {
    593      5.4135e-02,  -3.5121e-02,   1.7257e-04,   3.4514e-04,   5.1771e-04,  -1.6076e-02,
    594     -3.5121e-02,   3.8667e-02,  -1.9288e-03,  -3.8576e-03,  -5.7864e-03,   1.2549e-02,
    595      1.7257e-04,  -1.9288e-03,   2.3235e-01,  -3.5297e-02,  -5.2946e-02,  -3.3329e-04,
    596      3.4514e-04,  -3.8576e-03,  -3.5297e-02,   1.7941e-01,  -1.0589e-01,  -6.6659e-04,
    597      5.1771e-04,  -5.7864e-03,  -5.2946e-02,  -1.0589e-01,   9.1162e-02,  -9.9988e-04,
    598     -1.6076e-02,   1.2549e-02,  -3.3329e-04,  -6.6659e-04,  -9.9988e-04,   3.9539e-02
    599   };
    600 
    601 
    602   {
    603     Covariance::Options options;
    604     options.algorithm_type = DENSE_SVD;
    605     // Force dropping of the smallest eigenvector.
    606     options.null_space_rank = 1;
    607     ComputeAndCompareCovarianceBlocks(options, expected_covariance);
    608   }
    609 
    610   {
    611     Covariance::Options options;
    612     options.algorithm_type = DENSE_SVD;
    613     // Force dropping of the smallest eigenvector via the ratio but
    614     // automatic truncation.
    615     options.min_reciprocal_condition_number = 0.044494;
    616     options.null_space_rank = -1;
    617     ComputeAndCompareCovarianceBlocks(options, expected_covariance);
    618   }
    619 }
    620 
    621 class RankDeficientCovarianceTest : public CovarianceTest {
    622  protected:
    623   virtual void SetUp() {
    624     double* x = parameters_;
    625     double* y = x + 2;
    626     double* z = y + 3;
    627 
    628     {
    629       double jacobian[] = { 1.0, 0.0, 0.0, 1.0};
    630       problem_.AddResidualBlock(new UnaryCostFunction(2, 2, jacobian), NULL, x);
    631     }
    632 
    633     {
    634       double jacobian[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
    635       problem_.AddResidualBlock(new UnaryCostFunction(3, 3, jacobian), NULL, y);
    636     }
    637 
    638     {
    639       double jacobian = 5.0;
    640       problem_.AddResidualBlock(new UnaryCostFunction(1, 1, &jacobian), NULL, z);
    641     }
    642 
    643     {
    644       double jacobian1[] = { 0.0, 0.0, 0.0 };
    645       double jacobian2[] = { -5.0, -6.0 };
    646       problem_.AddResidualBlock(
    647           new BinaryCostFunction(1, 3, 2, jacobian1, jacobian2),
    648           NULL,
    649           y,
    650           x);
    651     }
    652 
    653     {
    654       double jacobian1[] = {2.0 };
    655       double jacobian2[] = { 3.0, -2.0 };
    656       problem_.AddResidualBlock(
    657           new BinaryCostFunction(1, 1, 2, jacobian1, jacobian2),
    658           NULL,
    659           z,
    660           x);
    661     }
    662 
    663     all_covariance_blocks_.push_back(make_pair(x, x));
    664     all_covariance_blocks_.push_back(make_pair(y, y));
    665     all_covariance_blocks_.push_back(make_pair(z, z));
    666     all_covariance_blocks_.push_back(make_pair(x, y));
    667     all_covariance_blocks_.push_back(make_pair(x, z));
    668     all_covariance_blocks_.push_back(make_pair(y, z));
    669 
    670     column_bounds_[x] = make_pair(0, 2);
    671     column_bounds_[y] = make_pair(2, 5);
    672     column_bounds_[z] = make_pair(5, 6);
    673   }
    674 };
    675 
    676 TEST_F(RankDeficientCovarianceTest, AutomaticTruncation) {
    677   // J
    678   //
    679   //   1  0  0  0  0  0
    680   //   0  1  0  0  0  0
    681   //   0  0  0  0  0  0
    682   //   0  0  0  0  0  0
    683   //   0  0  0  0  0  0
    684   //   0  0  0  0  0  5
    685   //  -5 -6  0  0  0  0
    686   //   3 -2  0  0  0  2
    687 
    688   // J'J
    689   //
    690   //  35 24  0  0  0  6
    691   //  24 41  0  0  0 -4
    692   //   0  0  0  0  0  0
    693   //   0  0  0  0  0  0
    694   //   0  0  0  0  0  0
    695   //   6 -4  0  0  0 29
    696 
    697   // pinv(J'J) computed using octave.
    698   double expected_covariance[] = {
    699      0.053998,  -0.033145,   0.000000,   0.000000,   0.000000,  -0.015744,
    700     -0.033145,   0.045067,   0.000000,   0.000000,   0.000000,   0.013074,
    701      0.000000,   0.000000,   0.000000,   0.000000,   0.000000,   0.000000,
    702      0.000000,   0.000000,   0.000000,   0.000000,   0.000000,   0.000000,
    703      0.000000,   0.000000,   0.000000,   0.000000,   0.000000,   0.000000,
    704     -0.015744,   0.013074,   0.000000,   0.000000,   0.000000,   0.039543
    705   };
    706 
    707   Covariance::Options options;
    708   options.algorithm_type = DENSE_SVD;
    709   options.null_space_rank = -1;
    710   ComputeAndCompareCovarianceBlocks(options, expected_covariance);
    711 }
    712 
    713 class LargeScaleCovarianceTest : public ::testing::Test {
    714  protected:
    715   virtual void SetUp() {
    716     num_parameter_blocks_ = 2000;
    717     parameter_block_size_ = 5;
    718     parameters_.reset(new double[parameter_block_size_ * num_parameter_blocks_]);
    719 
    720     Matrix jacobian(parameter_block_size_, parameter_block_size_);
    721     for (int i = 0; i < num_parameter_blocks_; ++i) {
    722       jacobian.setIdentity();
    723       jacobian *= (i + 1);
    724 
    725       double* block_i = parameters_.get() + i * parameter_block_size_;
    726       problem_.AddResidualBlock(new UnaryCostFunction(parameter_block_size_,
    727                                                       parameter_block_size_,
    728                                                       jacobian.data()),
    729                                 NULL,
    730                                 block_i );
    731       for (int j = i; j < num_parameter_blocks_; ++j) {
    732         double* block_j = parameters_.get() + j * parameter_block_size_;
    733         all_covariance_blocks_.push_back(make_pair(block_i, block_j));
    734       }
    735     }
    736   }
    737 
    738   void ComputeAndCompare(CovarianceAlgorithmType algorithm_type,
    739                          int num_threads) {
    740     Covariance::Options options;
    741     options.algorithm_type = algorithm_type;
    742     options.num_threads = num_threads;
    743     Covariance covariance(options);
    744     EXPECT_TRUE(covariance.Compute(all_covariance_blocks_, &problem_));
    745 
    746     Matrix expected(parameter_block_size_, parameter_block_size_);
    747     Matrix actual(parameter_block_size_, parameter_block_size_);
    748     const double kTolerance = 1e-16;
    749 
    750     for (int i = 0; i < num_parameter_blocks_; ++i) {
    751       expected.setIdentity();
    752       expected /= (i + 1.0) * (i + 1.0);
    753 
    754       double* block_i = parameters_.get() + i * parameter_block_size_;
    755       covariance.GetCovarianceBlock(block_i, block_i, actual.data());
    756       EXPECT_NEAR((expected - actual).norm(), 0.0, kTolerance)
    757           << "block: " << i << ", " << i << "\n"
    758           << "expected: \n" << expected << "\n"
    759           << "actual: \n" << actual;
    760 
    761       expected.setZero();
    762       for (int j = i + 1; j < num_parameter_blocks_; ++j) {
    763         double* block_j = parameters_.get() + j * parameter_block_size_;
    764         covariance.GetCovarianceBlock(block_i, block_j, actual.data());
    765         EXPECT_NEAR((expected - actual).norm(), 0.0, kTolerance)
    766             << "block: " << i << ", " << j << "\n"
    767             << "expected: \n" << expected << "\n"
    768             << "actual: \n" << actual;
    769       }
    770     }
    771   }
    772 
    773   scoped_array<double> parameters_;
    774   int parameter_block_size_;
    775   int num_parameter_blocks_;
    776 
    777   Problem problem_;
    778   vector<pair<const double*, const double*> > all_covariance_blocks_;
    779 };
    780 
    781 #if !defined(CERES_NO_SUITESPARSE) && defined(CERES_USE_OPENMP)
    782 
    783 TEST_F(LargeScaleCovarianceTest, Parallel) {
    784   ComputeAndCompare(SPARSE_CHOLESKY, 4);
    785   ComputeAndCompare(SPARSE_QR, 4);
    786 }
    787 
    788 #endif  // !defined(CERES_NO_SUITESPARSE) && defined(CERES_USE_OPENMP)
    789 
    790 }  // namespace internal
    791 }  // namespace ceres
    792