/external/eigen/Eigen/src/Eigenvalues/ |
ComplexSchur.h | 28 * \brief Performs a complex Schur decomposition of a real or complex square matrix 30 * \tparam _MatrixType the type of the matrix of which we are 32 * instantiation of the Matrix class template. 34 * Given a real or complex square matrix A, this class computes the 36 * complex matrix, and T is a complex upper triangular matrix. The 37 * diagonal of the matrix T corresponds to the eigenvalues of the 38 * matrix A. 41 * a given matrix. Alternatively, you can use the 78 * This is a square matrix with entries of type #ComplexScalar. [all...] |
Tridiagonalization.h | 34 * \brief Tridiagonal decomposition of a selfadjoint matrix 36 * \tparam _MatrixType the type of the matrix of which we are computing the 38 * Matrix class template. 40 * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: 41 * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. 43 * A tridiagonal matrix is a matrix which has nonzero elements only on the 45 * decomposition of a selfadjoint matrix is in fact a tridiagonal 47 * eigenvalues and eigenvectors of a selfadjoint matrix. 50 * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType& [all...] |
EigenSolver.h | 25 * \tparam _MatrixType the type of the matrix of which we are computing the 26 * eigendecomposition; this is expected to be an instantiation of the Matrix 29 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars 31 * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and 32 * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = 33 * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we 36 * The eigenvalues and eigenvectors of a matrix may be complex, even when the 37 * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D 39 * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to 47 * a given matrix. Alternatively, you can use the [all...] |
/external/eigen/Eigen/src/SparseCore/ |
ConservativeSparseSparseProduct.h | 29 Matrix<Scalar,Dynamic,1> values(rows); 30 Matrix<Index,Dynamic,1> indices(rows);
|
SparseMatrix.h | 19 * \brief A versatible sparse matrix representation 27 * A call to the function makeCompressed() turns the matrix into the standard \em compressed format 110 Eigen::Map<Matrix<Index,Dynamic,1> > innerNonZeros() { return Eigen::Map<Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); } 111 const Eigen::Map<const Matrix<Index,Dynamic,1> > innerNonZeros() const { return Eigen::Map<const Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); } 118 /** \returns the number of rows of the matrix */ 120 /** \returns the number of columns of the matrix */ 123 /** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */ 125 /** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) * [all...] |
/external/eigen/bench/ |
quat_slerp.cpp | 157 Matrix<RefScalar,Dynamic,1> maxerr(7); 160 Matrix<RefScalar,Dynamic,1> avgerr(7);
|
/external/eigen/test/eigen2/ |
eigen2_sparse_basic.cpp | 54 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; 55 typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
eigen2_geometry.cpp | 21 typedef Matrix<Scalar,2,2> Matrix2; 22 typedef Matrix<Scalar,3,3> Matrix3; 23 typedef Matrix<Scalar,4,4> Matrix4; 24 typedef Matrix<Scalar,2,1> Vector2; 25 typedef Matrix<Scalar,3,1> Vector3; 26 typedef Matrix<Scalar,4,1> Vector4; 90 // rotation matrix conversion 141 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); 142 t0.matrix().setZero(); 144 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()) [all...] |
eigen2_geometry_with_eigen2_prefix.cpp | 23 typedef Matrix<Scalar,2,2> Matrix2; 24 typedef Matrix<Scalar,3,3> Matrix3; 25 typedef Matrix<Scalar,4,4> Matrix4; 26 typedef Matrix<Scalar,2,1> Vector2; 27 typedef Matrix<Scalar,3,1> Vector3; 28 typedef Matrix<Scalar,4,1> Vector4; 92 // rotation matrix conversion 143 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); 144 t0.matrix().setZero(); 146 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()) [all...] |
/external/eigen/test/ |
sparse_permutations.cpp | 21 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; 22 typedef Matrix<Index,Dynamic,1> VectorI;
|
main.h | 305 /** Creates a random Partial Isometry matrix of given rank. 307 * A partial isometry is a matrix all of whose singular values are either 0 or 1. 317 typedef Matrix<Scalar, Dynamic, 1> VectorType; 318 typedef Matrix<Scalar, Rows, Rows> MatrixAType; 319 typedef Matrix<Scalar, Cols, Cols> MatrixBType;
|
/frameworks/base/media/mca/filterpacks/java/android/filterpacks/videosrc/ |
CameraSource.java | 38 import android.opengl.Matrix; 195 Matrix.multiplyMM(mMappedCoords, 0,
|
/external/ceres-solver/internal/ceres/ |
schur_eliminator_impl.h | 37 // Eigen has an internal threshold switching between different matrix 40 // matrix matrix product algorithm that has a higher setup cost. For 41 // matrix sizes close to this threshold, especially when the matrices 104 // matrix should already have been ordered so that all rows 200 += diag.array().square().matrix(); 208 // Gaussian elimination to them. The matrix ete stores the normal 209 // matrix corresponding to the block being eliminated and array 233 typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix 239 ete = diag.array().square().matrix().asDiagonal() [all...] |
/external/eigen/Eigen/src/Eigen2Support/Geometry/ |
Transform.h | 34 * The homography is internally represented and stored as a (Dim+1)^2 matrix which 35 * is available through the matrix() method. 40 * \sa class Matrix, class Quaternion 53 /** type of the matrix used to represent the transformation */ 54 typedef Matrix<Scalar,HDim,HDim> MatrixType; 55 /** type of the matrix used to represent the linear part of the transformation */ 56 typedef Matrix<Scalar,Dim,Dim> LinearMatrixType; 62 typedef Matrix<Scalar,Dim,1> VectorType; 99 transform->matrix() = other; 109 transform->matrix()(Dim,Dim) = Scalar(1) 143 inline const MatrixType& matrix() const { return m_matrix; } function in class:Eigen::Transform 145 inline MatrixType& matrix() { return m_matrix; } function in class:Eigen::Transform [all...] |
/external/eigen/Eigen/src/SparseCholesky/ |
SimplicialCholesky.h | 68 * such that the factorized matrix is P A P^-1. 70 * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> 85 typedef Matrix<Scalar,Dynamic,1> VectorType; 94 SimplicialCholeskyBase(const MatrixType& matrix) 97 derived().compute(matrix); 113 * \c NumericalIssue if the matrix.appears to be negative. 131 && "SimplicialCholeskyBase::solve(): invalid number of rows of the right hand side matrix b"); 145 && "SimplicialCholesky::solve(): invalid number of rows of the right hand side matrix b"); 225 // we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix. 229 Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmp(size,rhsCols) [all...] |
/frameworks/base/core/java/com/android/internal/widget/ |
LockPatternView.java | 26 import android.graphics.Matrix; 128 private final Matrix mArrowMatrix = new Matrix(); 129 private final Matrix mCircleMatrix = new Matrix(); 132 * Represents a cell in the 3 X 3 matrix of the unlock pattern view. [all...] |
/frameworks/base/packages/SystemUI/src/com/android/systemui/screenshot/ |
GlobalScreenshot.java | 37 import android.graphics.Matrix; 141 Matrix matrix = new Matrix(); 142 matrix.postTranslate((shortSide - mImageWidth) / 2, 144 c.drawBitmap(data.image, matrix, paint); 328 private Matrix mDisplayMatrix; 357 mDisplayMatrix = new Matrix();
|
/packages/apps/Gallery/src/com/android/camera/ |
CropImage.java | 30 import android.graphics.Matrix; 289 croppedImage = Util.transform(new Matrix(), croppedImage, 419 Matrix mImageMatrix; 508 Matrix matrix = new Matrix(); 509 matrix.setScale(mScale, mScale); 511 .getWidth(), mBitmap.getHeight(), matrix, true);
|
/cts/apps/CtsVerifier/src/com/android/cts/verifier/camera/formats/ |
CameraFormatsActivity.java | 28 import android.graphics.Matrix; 401 Matrix transform = new Matrix();
|
/cts/apps/CtsVerifier/src/com/android/cts/verifier/camera/video/ |
CameraVideoActivity.java | 20 import android.graphics.Matrix; 695 Matrix transform = new Matrix();
|
/cts/tests/tests/widget/src/android/widget/cts/ |
ImageViewTest.java | 33 import android.graphics.Matrix; 290 imageView.setScaleType(ImageView.ScaleType.MATRIX); 291 assertEquals(ImageView.ScaleType.MATRIX, imageView.getScaleType()); 312 final Matrix matrix = new Matrix(); local 313 imageView.setImageMatrix(matrix); 314 assertEquals(matrix, imageView.getImageMatrix());
|
/external/eigen/Eigen/src/LU/ |
FullPivLU.h | 19 * \brief LU decomposition of a matrix with complete pivoting, and related features 21 * \param MatrixType the type of the matrix of which we are computing the LU decomposition 23 * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A 32 * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix, 33 * working with the SVD allows to select the smallest singular values of the matrix, something that 39 * As an exemple, here is how the original matrix can be retrieved: 83 * \param matrix the matrix of which to compute the LU decomposition. 86 FullPivLU(const MatrixType& matrix); [all...] |
/external/eigen/Eigen/src/QR/ |
FullPivHouseholderQR.h | 32 * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting 34 * \param MatrixType the type of the matrix of which we are computing the QR decomposition 36 * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R 41 * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an 42 * upper triangular matrix. 66 typedef Matrix<Index, 1, ColsAtCompileTime, RowMajor, 1, MaxColsAtCompileTime> IntRowVectorType; 103 FullPivHouseholderQR(const MatrixType& matrix) 104 : m_qr(matrix.rows(), matrix.cols()) [all...] |
/external/eigen/unsupported/Eigen/src/NonLinearOptimization/ |
HybridNonLinearSolver.h | 66 typedef Matrix< Scalar, Dynamic, 1 > FVectorType; 67 typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType; 69 typedef Matrix< Scalar, Dynamic, Dynamic > UpperTriangularType; 195 /* calculate the jacobian matrix. */ 435 /* calculate the jacobian matrix. */
|
/frameworks/base/media/tests/MediaDump/src/com/android/mediadump/ |
VideoDumpView.java | 48 import android.opengl.Matrix; 357 Matrix.setIdentityM(mSTMatrix, 0); 417 Matrix.setIdentityM(mMVPMatrix, 0);
|