Home | History | Annotate | Download | only in QR
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
     12 #define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
     13 
     14 namespace Eigen {
     15 
     16 namespace internal {
     17 
     18 template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType;
     19 
     20 template<typename MatrixType>
     21 struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
     22 {
     23   typedef typename MatrixType::PlainObject ReturnType;
     24 };
     25 
     26 }
     27 
     28 /** \ingroup QR_Module
     29   *
     30   * \class FullPivHouseholderQR
     31   *
     32   * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
     33   *
     34   * \param MatrixType the type of the matrix of which we are computing the QR decomposition
     35   *
     36   * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
     37   * such that
     38   * \f[
     39   *  \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
     40   * \f]
     41   * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
     42   * upper triangular matrix.
     43   *
     44   * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
     45   * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
     46   *
     47   * \sa MatrixBase::fullPivHouseholderQr()
     48   */
     49 template<typename _MatrixType> class FullPivHouseholderQR
     50 {
     51   public:
     52 
     53     typedef _MatrixType MatrixType;
     54     enum {
     55       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     56       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     57       Options = MatrixType::Options,
     58       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     59       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
     60     };
     61     typedef typename MatrixType::Scalar Scalar;
     62     typedef typename MatrixType::RealScalar RealScalar;
     63     typedef typename MatrixType::Index Index;
     64     typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType;
     65     typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
     66     typedef Matrix<Index, 1, ColsAtCompileTime, RowMajor, 1, MaxColsAtCompileTime> IntRowVectorType;
     67     typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
     68     typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
     69     typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
     70     typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;
     71 
     72     /** \brief Default Constructor.
     73       *
     74       * The default constructor is useful in cases in which the user intends to
     75       * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
     76       */
     77     FullPivHouseholderQR()
     78       : m_qr(),
     79         m_hCoeffs(),
     80         m_rows_transpositions(),
     81         m_cols_transpositions(),
     82         m_cols_permutation(),
     83         m_temp(),
     84         m_isInitialized(false),
     85         m_usePrescribedThreshold(false) {}
     86 
     87     /** \brief Default Constructor with memory preallocation
     88       *
     89       * Like the default constructor but with preallocation of the internal data
     90       * according to the specified problem \a size.
     91       * \sa FullPivHouseholderQR()
     92       */
     93     FullPivHouseholderQR(Index rows, Index cols)
     94       : m_qr(rows, cols),
     95         m_hCoeffs((std::min)(rows,cols)),
     96         m_rows_transpositions(rows),
     97         m_cols_transpositions(cols),
     98         m_cols_permutation(cols),
     99         m_temp((std::min)(rows,cols)),
    100         m_isInitialized(false),
    101         m_usePrescribedThreshold(false) {}
    102 
    103     FullPivHouseholderQR(const MatrixType& matrix)
    104       : m_qr(matrix.rows(), matrix.cols()),
    105         m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
    106         m_rows_transpositions(matrix.rows()),
    107         m_cols_transpositions(matrix.cols()),
    108         m_cols_permutation(matrix.cols()),
    109         m_temp((std::min)(matrix.rows(), matrix.cols())),
    110         m_isInitialized(false),
    111         m_usePrescribedThreshold(false)
    112     {
    113       compute(matrix);
    114     }
    115 
    116     /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
    117       * *this is the QR decomposition, if any exists.
    118       *
    119       * \param b the right-hand-side of the equation to solve.
    120       *
    121       * \returns a solution.
    122       *
    123       * \note The case where b is a matrix is not yet implemented. Also, this
    124       *       code is space inefficient.
    125       *
    126       * \note_about_checking_solutions
    127       *
    128       * \note_about_arbitrary_choice_of_solution
    129       *
    130       * Example: \include FullPivHouseholderQR_solve.cpp
    131       * Output: \verbinclude FullPivHouseholderQR_solve.out
    132       */
    133     template<typename Rhs>
    134     inline const internal::solve_retval<FullPivHouseholderQR, Rhs>
    135     solve(const MatrixBase<Rhs>& b) const
    136     {
    137       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    138       return internal::solve_retval<FullPivHouseholderQR, Rhs>(*this, b.derived());
    139     }
    140 
    141     /** \returns Expression object representing the matrix Q
    142       */
    143     MatrixQReturnType matrixQ(void) const;
    144 
    145     /** \returns a reference to the matrix where the Householder QR decomposition is stored
    146       */
    147     const MatrixType& matrixQR() const
    148     {
    149       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    150       return m_qr;
    151     }
    152 
    153     FullPivHouseholderQR& compute(const MatrixType& matrix);
    154 
    155     const PermutationType& colsPermutation() const
    156     {
    157       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    158       return m_cols_permutation;
    159     }
    160 
    161     const IntColVectorType& rowsTranspositions() const
    162     {
    163       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    164       return m_rows_transpositions;
    165     }
    166 
    167     /** \returns the absolute value of the determinant of the matrix of which
    168       * *this is the QR decomposition. It has only linear complexity
    169       * (that is, O(n) where n is the dimension of the square matrix)
    170       * as the QR decomposition has already been computed.
    171       *
    172       * \note This is only for square matrices.
    173       *
    174       * \warning a determinant can be very big or small, so for matrices
    175       * of large enough dimension, there is a risk of overflow/underflow.
    176       * One way to work around that is to use logAbsDeterminant() instead.
    177       *
    178       * \sa logAbsDeterminant(), MatrixBase::determinant()
    179       */
    180     typename MatrixType::RealScalar absDeterminant() const;
    181 
    182     /** \returns the natural log of the absolute value of the determinant of the matrix of which
    183       * *this is the QR decomposition. It has only linear complexity
    184       * (that is, O(n) where n is the dimension of the square matrix)
    185       * as the QR decomposition has already been computed.
    186       *
    187       * \note This is only for square matrices.
    188       *
    189       * \note This method is useful to work around the risk of overflow/underflow that's inherent
    190       * to determinant computation.
    191       *
    192       * \sa absDeterminant(), MatrixBase::determinant()
    193       */
    194     typename MatrixType::RealScalar logAbsDeterminant() const;
    195 
    196     /** \returns the rank of the matrix of which *this is the QR decomposition.
    197       *
    198       * \note This method has to determine which pivots should be considered nonzero.
    199       *       For that, it uses the threshold value that you can control by calling
    200       *       setThreshold(const RealScalar&).
    201       */
    202     inline Index rank() const
    203     {
    204       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    205       RealScalar premultiplied_threshold = internal::abs(m_maxpivot) * threshold();
    206       Index result = 0;
    207       for(Index i = 0; i < m_nonzero_pivots; ++i)
    208         result += (internal::abs(m_qr.coeff(i,i)) > premultiplied_threshold);
    209       return result;
    210     }
    211 
    212     /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
    213       *
    214       * \note This method has to determine which pivots should be considered nonzero.
    215       *       For that, it uses the threshold value that you can control by calling
    216       *       setThreshold(const RealScalar&).
    217       */
    218     inline Index dimensionOfKernel() const
    219     {
    220       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    221       return cols() - rank();
    222     }
    223 
    224     /** \returns true if the matrix of which *this is the QR decomposition represents an injective
    225       *          linear map, i.e. has trivial kernel; false otherwise.
    226       *
    227       * \note This method has to determine which pivots should be considered nonzero.
    228       *       For that, it uses the threshold value that you can control by calling
    229       *       setThreshold(const RealScalar&).
    230       */
    231     inline bool isInjective() const
    232     {
    233       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    234       return rank() == cols();
    235     }
    236 
    237     /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
    238       *          linear map; false otherwise.
    239       *
    240       * \note This method has to determine which pivots should be considered nonzero.
    241       *       For that, it uses the threshold value that you can control by calling
    242       *       setThreshold(const RealScalar&).
    243       */
    244     inline bool isSurjective() const
    245     {
    246       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    247       return rank() == rows();
    248     }
    249 
    250     /** \returns true if the matrix of which *this is the QR decomposition is invertible.
    251       *
    252       * \note This method has to determine which pivots should be considered nonzero.
    253       *       For that, it uses the threshold value that you can control by calling
    254       *       setThreshold(const RealScalar&).
    255       */
    256     inline bool isInvertible() const
    257     {
    258       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    259       return isInjective() && isSurjective();
    260     }
    261 
    262     /** \returns the inverse of the matrix of which *this is the QR decomposition.
    263       *
    264       * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
    265       *       Use isInvertible() to first determine whether this matrix is invertible.
    266       */    inline const
    267     internal::solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType>
    268     inverse() const
    269     {
    270       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    271       return internal::solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType>
    272                (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
    273     }
    274 
    275     inline Index rows() const { return m_qr.rows(); }
    276     inline Index cols() const { return m_qr.cols(); }
    277     const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
    278 
    279     /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
    280       * who need to determine when pivots are to be considered nonzero. This is not used for the
    281       * QR decomposition itself.
    282       *
    283       * When it needs to get the threshold value, Eigen calls threshold(). By default, this
    284       * uses a formula to automatically determine a reasonable threshold.
    285       * Once you have called the present method setThreshold(const RealScalar&),
    286       * your value is used instead.
    287       *
    288       * \param threshold The new value to use as the threshold.
    289       *
    290       * A pivot will be considered nonzero if its absolute value is strictly greater than
    291       *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
    292       * where maxpivot is the biggest pivot.
    293       *
    294       * If you want to come back to the default behavior, call setThreshold(Default_t)
    295       */
    296     FullPivHouseholderQR& setThreshold(const RealScalar& threshold)
    297     {
    298       m_usePrescribedThreshold = true;
    299       m_prescribedThreshold = threshold;
    300       return *this;
    301     }
    302 
    303     /** Allows to come back to the default behavior, letting Eigen use its default formula for
    304       * determining the threshold.
    305       *
    306       * You should pass the special object Eigen::Default as parameter here.
    307       * \code qr.setThreshold(Eigen::Default); \endcode
    308       *
    309       * See the documentation of setThreshold(const RealScalar&).
    310       */
    311     FullPivHouseholderQR& setThreshold(Default_t)
    312     {
    313       m_usePrescribedThreshold = false;
    314       return *this;
    315     }
    316 
    317     /** Returns the threshold that will be used by certain methods such as rank().
    318       *
    319       * See the documentation of setThreshold(const RealScalar&).
    320       */
    321     RealScalar threshold() const
    322     {
    323       eigen_assert(m_isInitialized || m_usePrescribedThreshold);
    324       return m_usePrescribedThreshold ? m_prescribedThreshold
    325       // this formula comes from experimenting (see "LU precision tuning" thread on the list)
    326       // and turns out to be identical to Higham's formula used already in LDLt.
    327                                       : NumTraits<Scalar>::epsilon() * m_qr.diagonalSize();
    328     }
    329 
    330     /** \returns the number of nonzero pivots in the QR decomposition.
    331       * Here nonzero is meant in the exact sense, not in a fuzzy sense.
    332       * So that notion isn't really intrinsically interesting, but it is
    333       * still useful when implementing algorithms.
    334       *
    335       * \sa rank()
    336       */
    337     inline Index nonzeroPivots() const
    338     {
    339       eigen_assert(m_isInitialized && "LU is not initialized.");
    340       return m_nonzero_pivots;
    341     }
    342 
    343     /** \returns the absolute value of the biggest pivot, i.e. the biggest
    344       *          diagonal coefficient of U.
    345       */
    346     RealScalar maxPivot() const { return m_maxpivot; }
    347 
    348   protected:
    349     MatrixType m_qr;
    350     HCoeffsType m_hCoeffs;
    351     IntColVectorType m_rows_transpositions;
    352     IntRowVectorType m_cols_transpositions;
    353     PermutationType m_cols_permutation;
    354     RowVectorType m_temp;
    355     bool m_isInitialized, m_usePrescribedThreshold;
    356     RealScalar m_prescribedThreshold, m_maxpivot;
    357     Index m_nonzero_pivots;
    358     RealScalar m_precision;
    359     Index m_det_pq;
    360 };
    361 
    362 template<typename MatrixType>
    363 typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
    364 {
    365   eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    366   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
    367   return internal::abs(m_qr.diagonal().prod());
    368 }
    369 
    370 template<typename MatrixType>
    371 typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
    372 {
    373   eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    374   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
    375   return m_qr.diagonal().cwiseAbs().array().log().sum();
    376 }
    377 
    378 template<typename MatrixType>
    379 FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
    380 {
    381   Index rows = matrix.rows();
    382   Index cols = matrix.cols();
    383   Index size = (std::min)(rows,cols);
    384 
    385   m_qr = matrix;
    386   m_hCoeffs.resize(size);
    387 
    388   m_temp.resize(cols);
    389 
    390   m_precision = NumTraits<Scalar>::epsilon() * size;
    391 
    392   m_rows_transpositions.resize(matrix.rows());
    393   m_cols_transpositions.resize(matrix.cols());
    394   Index number_of_transpositions = 0;
    395 
    396   RealScalar biggest(0);
    397 
    398   m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
    399   m_maxpivot = RealScalar(0);
    400 
    401   for (Index k = 0; k < size; ++k)
    402   {
    403     Index row_of_biggest_in_corner, col_of_biggest_in_corner;
    404     RealScalar biggest_in_corner;
    405 
    406     biggest_in_corner = m_qr.bottomRightCorner(rows-k, cols-k)
    407                             .cwiseAbs()
    408                             .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
    409     row_of_biggest_in_corner += k;
    410     col_of_biggest_in_corner += k;
    411     if(k==0) biggest = biggest_in_corner;
    412 
    413     // if the corner is negligible, then we have less than full rank, and we can finish early
    414     if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
    415     {
    416       m_nonzero_pivots = k;
    417       for(Index i = k; i < size; i++)
    418       {
    419         m_rows_transpositions.coeffRef(i) = i;
    420         m_cols_transpositions.coeffRef(i) = i;
    421         m_hCoeffs.coeffRef(i) = Scalar(0);
    422       }
    423       break;
    424     }
    425 
    426     m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
    427     m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
    428     if(k != row_of_biggest_in_corner) {
    429       m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
    430       ++number_of_transpositions;
    431     }
    432     if(k != col_of_biggest_in_corner) {
    433       m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
    434       ++number_of_transpositions;
    435     }
    436 
    437     RealScalar beta;
    438     m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
    439     m_qr.coeffRef(k,k) = beta;
    440 
    441     // remember the maximum absolute value of diagonal coefficients
    442     if(internal::abs(beta) > m_maxpivot) m_maxpivot = internal::abs(beta);
    443 
    444     m_qr.bottomRightCorner(rows-k, cols-k-1)
    445         .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
    446   }
    447 
    448   m_cols_permutation.setIdentity(cols);
    449   for(Index k = 0; k < size; ++k)
    450     m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));
    451 
    452   m_det_pq = (number_of_transpositions%2) ? -1 : 1;
    453   m_isInitialized = true;
    454 
    455   return *this;
    456 }
    457 
    458 namespace internal {
    459 
    460 template<typename _MatrixType, typename Rhs>
    461 struct solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs>
    462   : solve_retval_base<FullPivHouseholderQR<_MatrixType>, Rhs>
    463 {
    464   EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs)
    465 
    466   template<typename Dest> void evalTo(Dest& dst) const
    467   {
    468     const Index rows = dec().rows(), cols = dec().cols();
    469     eigen_assert(rhs().rows() == rows);
    470 
    471     // FIXME introduce nonzeroPivots() and use it here. and more generally,
    472     // make the same improvements in this dec as in FullPivLU.
    473     if(dec().rank()==0)
    474     {
    475       dst.setZero();
    476       return;
    477     }
    478 
    479     typename Rhs::PlainObject c(rhs());
    480 
    481     Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols());
    482     for (Index k = 0; k < dec().rank(); ++k)
    483     {
    484       Index remainingSize = rows-k;
    485       c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k)));
    486       c.bottomRightCorner(remainingSize, rhs().cols())
    487        .applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1),
    488                                   dec().hCoeffs().coeff(k), &temp.coeffRef(0));
    489     }
    490 
    491     if(!dec().isSurjective())
    492     {
    493       // is c is in the image of R ?
    494       RealScalar biggest_in_upper_part_of_c = c.topRows(   dec().rank()     ).cwiseAbs().maxCoeff();
    495       RealScalar biggest_in_lower_part_of_c = c.bottomRows(rows-dec().rank()).cwiseAbs().maxCoeff();
    496       // FIXME brain dead
    497       const RealScalar m_precision = NumTraits<Scalar>::epsilon() * (std::min)(rows,cols);
    498       // this internal:: prefix is needed by at least gcc 3.4 and ICC
    499       if(!internal::isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision))
    500         return;
    501     }
    502     dec().matrixQR()
    503        .topLeftCorner(dec().rank(), dec().rank())
    504        .template triangularView<Upper>()
    505        .solveInPlace(c.topRows(dec().rank()));
    506 
    507     for(Index i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
    508     for(Index i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
    509   }
    510 };
    511 
    512 /** \ingroup QR_Module
    513   *
    514   * \brief Expression type for return value of FullPivHouseholderQR::matrixQ()
    515   *
    516   * \tparam MatrixType type of underlying dense matrix
    517   */
    518 template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType
    519   : public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
    520 {
    521 public:
    522   typedef typename MatrixType::Index Index;
    523   typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
    524   typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
    525   typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1,
    526                  MatrixType::MaxRowsAtCompileTime> WorkVectorType;
    527 
    528   FullPivHouseholderQRMatrixQReturnType(const MatrixType&       qr,
    529                                         const HCoeffsType&      hCoeffs,
    530                                         const IntColVectorType& rowsTranspositions)
    531     : m_qr(qr),
    532       m_hCoeffs(hCoeffs),
    533       m_rowsTranspositions(rowsTranspositions)
    534       {}
    535 
    536   template <typename ResultType>
    537   void evalTo(ResultType& result) const
    538   {
    539     const Index rows = m_qr.rows();
    540     WorkVectorType workspace(rows);
    541     evalTo(result, workspace);
    542   }
    543 
    544   template <typename ResultType>
    545   void evalTo(ResultType& result, WorkVectorType& workspace) const
    546   {
    547     // compute the product H'_0 H'_1 ... H'_n-1,
    548     // where H_k is the k-th Householder transformation I - h_k v_k v_k'
    549     // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
    550     const Index rows = m_qr.rows();
    551     const Index cols = m_qr.cols();
    552     const Index size = (std::min)(rows, cols);
    553     workspace.resize(rows);
    554     result.setIdentity(rows, rows);
    555     for (Index k = size-1; k >= 0; k--)
    556     {
    557       result.block(k, k, rows-k, rows-k)
    558             .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), internal::conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k));
    559       result.row(k).swap(result.row(m_rowsTranspositions.coeff(k)));
    560     }
    561   }
    562 
    563     Index rows() const { return m_qr.rows(); }
    564     Index cols() const { return m_qr.rows(); }
    565 
    566 protected:
    567   typename MatrixType::Nested m_qr;
    568   typename HCoeffsType::Nested m_hCoeffs;
    569   typename IntColVectorType::Nested m_rowsTranspositions;
    570 };
    571 
    572 } // end namespace internal
    573 
    574 template<typename MatrixType>
    575 inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const
    576 {
    577   eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    578   return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions);
    579 }
    580 
    581 /** \return the full-pivoting Householder QR decomposition of \c *this.
    582   *
    583   * \sa class FullPivHouseholderQR
    584   */
    585 template<typename Derived>
    586 const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
    587 MatrixBase<Derived>::fullPivHouseholderQr() const
    588 {
    589   return FullPivHouseholderQR<PlainObject>(eval());
    590 }
    591 
    592 } // end namespace Eigen
    593 
    594 #endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
    595