HomeSort by relevance Sort by last modified time
    Searched full:covariance (Results 1 - 25 of 51) sorted by null

1 2 3

  /external/ceres-solver/internal/ceres/
covariance.cc 31 #include "ceres/covariance.h"
41 Covariance::Covariance(const Covariance::Options& options) {
45 Covariance::~Covariance() {
48 bool Covariance::Compute(
54 bool Covariance::GetCovarianceBlock(const double* parameter_block1,
covariance_impl.cc 43 #include "ceres/covariance.h"
92 CovarianceImpl::CovarianceImpl(const Covariance::Options& options)
118 << "Covariance::GetCovarianceBlock called before Covariance::Compute";
120 << "Covariance::GetCovarianceBlock called when Covariance::Compute "
124 // covariance block is also zero.
148 // Find where in the covariance matrix the block is located.
160 // covariance block begin.
167 LOG(WARNING) << "Unable to find covariance block for
    [all...]
covariance_impl.h 38 #include "ceres/covariance.h"
51 explicit CovarianceImpl(const Covariance::Options& options);
77 Covariance::Options options_;
covariance_test.cc 31 #include "ceres/covariance.h"
96 Covariance::Options options;
285 void ComputeAndCompareCovarianceBlocks(const Covariance::Options& options,
288 // covariance computation is correct.
315 Covariance covariance(options);
316 EXPECT_TRUE(covariance.Compute(covariance_blocks, &problem_));
322 GetCovarianceBlockAndCompare(block1, block2, covariance, expected_covariance);
324 GetCovarianceBlockAndCompare(block2, block1, covariance, expected_covariance);
331 const Covariance& covariance
    [all...]
CMakeLists.txt 53 covariance.cc
241 CERES_TEST(covariance)
  /external/ceres-solver/include/ceres/
covariance.h 55 // This class allows the user to evaluate the covariance for a
62 // non-linear least squares solve is to analyze the covariance of the
70 // independent variable x with mean f(x) and identity covariance. Then
76 // And the covariance of x* is given by
83 // If J(x*) is rank deficient, then the covariance matrix C(x*) is
88 // Note that in the above, we assumed that the covariance
94 // Where S is a positive semi-definite matrix denoting the covariance
99 // and the corresponding covariance estimate of x* is given by
104 // covariance matrix not equal to identity, then it is the user's
108 // is the inverse square root of the covariance matrix S
    [all...]
normal_prior.h 52 // where, mu is a vector and S is a covariance matrix, then, A =
54 // covariance, also known as the stiffness matrix. There are however
56 // which would be the case if the covariance matrix S is rank
ceres.h 44 #include "ceres/covariance.h"
  /external/eigen/unsupported/Eigen/src/NonLinearOptimization/
covar.h 45 /* form the full lower triangle of the covariance matrix */
62 /* symmetrize the covariance matrix in r. */
  /frameworks/native/services/sensorservice/
Fusion.h 40 * the predicated covariance matrix is made of 4 3x3 sub-matrices and it is
52 * the process noise covariance matrix
  /external/ceres-solver/docs/source/
solving.rst     [all...]
  /external/srec/srec/include/
hmm_desc.h 39 #define DIAG (1<<4) /* Diagonal covariance model */
40 #define FULL (2<<4) /* Full covariance model */
hmm_type.h 39 typedef double covdata; /* covariance data */
all_defs.h 50 #define EIGEN 1 /* for full covariance probability calc. */
60 #define ITEM_WEIGHT 1 // item weighting for covariance calc.
pre_desc.h 70 prdata grand_mod_cov; /* grand covariance modulus */
71 prdata grand_mod_cov_gaussian; /* grand covariance modulus */
  /external/chromium_org/third_party/protobuf/java/src/main/java/com/google/protobuf/
Message.java 53 // (From MessageLite, re-declared here only for return type covariance.)
98 // (From MessageLite, re-declared here only for return type covariance.)
107 // covariance.)
129 // covariance.)
213 // covariance.)
MessageOrBuilder.java 44 // (From MessageLite, re-declared here only for return type covariance.)
  /external/protobuf/java/src/main/java/com/google/protobuf/
Message.java 61 // (From MessageLite, re-declared here only for return type covariance.)
154 // (From MessageLite, re-declared here only for return type covariance.)
163 // covariance.)
185 // covariance.)
201 // covariance.)
281 // covariance.)
  /external/eigen/Eigen/src/Eigen2Support/
LeastSquares.h 122 * 2 - compute the covariance matrix
123 * 3 - pick the eigenvector corresponding to the smallest eigenvalue of the covariance matrix
148 // compute the covariance matrix
  /external/opencv/cv/include/
cvtypes.h 300 CvMat* process_noise_cov; /* process noise covariance matrix (Q) */
301 CvMat* measurement_noise_cov; /* measurement noise covariance matrix (R) */
302 CvMat* error_cov_pre; /* priori error estimate covariance matrix (P'(k)):
306 CvMat* error_cov_post; /* posteriori error estimate covariance matrix (P(k)):
  /external/clang/test/ARCMT/
checking.m 199 - (id) init03; // covariance
200 - (id) init04; // covariance
218 - (Test8_super*) init30; // id exception to covariance
222 - (Test8_super*) init34; // covariance
225 - (Test8*) init40; // id exception to covariance
  /external/chromium_org/ui/gfx/
color_analysis.cc 407 gfx::Matrix3F covariance = gfx::Matrix3F::Zeros(); local
409 return covariance;
444 // Covariance (not normalized) is E(X*X.t) - m * m.t and this is how it
449 covariance.set(
468 return covariance;
554 gfx::Matrix3F covariance = ComputeColorCovariance(source_bitmap); local
556 gfx::Vector3dF eigenvals = covariance.SolveEigenproblem(&eigenvectors);
color_analysis.h 102 // Compute color covariance matrix for the input bitmap.
color_analysis_unittest.cc 292 gfx::Matrix3F covariance = color_utils::ComputeColorCovariance(bitmap); local
294 EXPECT_TRUE(covariance == gfx::Matrix3F::Zeros());
309 gfx::Matrix3F covariance = color_utils::ComputeColorCovariance(bitmap); local
315 EXPECT_EQ(expected_covariance, covariance);
  /external/eigen/Eigen/src/Geometry/
Umeyama.h 70 * The algorithm is based on the analysis of the covariance matrix
75 * though the actual computational effort lies in the covariance

Completed in 3669 milliseconds

1 2 3