/external/ceres-solver/internal/ceres/ |
covariance.cc | 31 #include "ceres/covariance.h" 41 Covariance::Covariance(const Covariance::Options& options) { 45 Covariance::~Covariance() { 48 bool Covariance::Compute( 54 bool Covariance::GetCovarianceBlock(const double* parameter_block1,
|
covariance_impl.cc | 43 #include "ceres/covariance.h" 92 CovarianceImpl::CovarianceImpl(const Covariance::Options& options) 118 << "Covariance::GetCovarianceBlock called before Covariance::Compute"; 120 << "Covariance::GetCovarianceBlock called when Covariance::Compute " 124 // covariance block is also zero. 148 // Find where in the covariance matrix the block is located. 160 // covariance block begin. 167 LOG(WARNING) << "Unable to find covariance block for [all...] |
covariance_impl.h | 38 #include "ceres/covariance.h" 51 explicit CovarianceImpl(const Covariance::Options& options); 77 Covariance::Options options_;
|
covariance_test.cc | 31 #include "ceres/covariance.h" 96 Covariance::Options options; 285 void ComputeAndCompareCovarianceBlocks(const Covariance::Options& options, 288 // covariance computation is correct. 315 Covariance covariance(options); 316 EXPECT_TRUE(covariance.Compute(covariance_blocks, &problem_)); 322 GetCovarianceBlockAndCompare(block1, block2, covariance, expected_covariance); 324 GetCovarianceBlockAndCompare(block2, block1, covariance, expected_covariance); 331 const Covariance& covariance [all...] |
CMakeLists.txt | 53 covariance.cc 241 CERES_TEST(covariance)
|
/external/ceres-solver/include/ceres/ |
covariance.h | 55 // This class allows the user to evaluate the covariance for a 62 // non-linear least squares solve is to analyze the covariance of the 70 // independent variable x with mean f(x) and identity covariance. Then 76 // And the covariance of x* is given by 83 // If J(x*) is rank deficient, then the covariance matrix C(x*) is 88 // Note that in the above, we assumed that the covariance 94 // Where S is a positive semi-definite matrix denoting the covariance 99 // and the corresponding covariance estimate of x* is given by 104 // covariance matrix not equal to identity, then it is the user's 108 // is the inverse square root of the covariance matrix S [all...] |
normal_prior.h | 52 // where, mu is a vector and S is a covariance matrix, then, A = 54 // covariance, also known as the stiffness matrix. There are however 56 // which would be the case if the covariance matrix S is rank
|
ceres.h | 44 #include "ceres/covariance.h"
|
/external/eigen/unsupported/Eigen/src/NonLinearOptimization/ |
covar.h | 45 /* form the full lower triangle of the covariance matrix */ 62 /* symmetrize the covariance matrix in r. */
|
/frameworks/native/services/sensorservice/ |
Fusion.h | 40 * the predicated covariance matrix is made of 4 3x3 sub-matrices and it is 52 * the process noise covariance matrix
|
/external/ceres-solver/docs/source/ |
solving.rst | [all...] |
/external/srec/srec/include/ |
hmm_desc.h | 39 #define DIAG (1<<4) /* Diagonal covariance model */ 40 #define FULL (2<<4) /* Full covariance model */
|
hmm_type.h | 39 typedef double covdata; /* covariance data */
|
all_defs.h | 50 #define EIGEN 1 /* for full covariance probability calc. */ 60 #define ITEM_WEIGHT 1 // item weighting for covariance calc.
|
pre_desc.h | 70 prdata grand_mod_cov; /* grand covariance modulus */ 71 prdata grand_mod_cov_gaussian; /* grand covariance modulus */
|
/external/chromium_org/third_party/protobuf/java/src/main/java/com/google/protobuf/ |
Message.java | 53 // (From MessageLite, re-declared here only for return type covariance.) 98 // (From MessageLite, re-declared here only for return type covariance.) 107 // covariance.) 129 // covariance.) 213 // covariance.)
|
MessageOrBuilder.java | 44 // (From MessageLite, re-declared here only for return type covariance.)
|
/external/protobuf/java/src/main/java/com/google/protobuf/ |
Message.java | 61 // (From MessageLite, re-declared here only for return type covariance.) 154 // (From MessageLite, re-declared here only for return type covariance.) 163 // covariance.) 185 // covariance.) 201 // covariance.) 281 // covariance.)
|
/external/eigen/Eigen/src/Eigen2Support/ |
LeastSquares.h | 122 * 2 - compute the covariance matrix 123 * 3 - pick the eigenvector corresponding to the smallest eigenvalue of the covariance matrix 148 // compute the covariance matrix
|
/external/opencv/cv/include/ |
cvtypes.h | 300 CvMat* process_noise_cov; /* process noise covariance matrix (Q) */ 301 CvMat* measurement_noise_cov; /* measurement noise covariance matrix (R) */ 302 CvMat* error_cov_pre; /* priori error estimate covariance matrix (P'(k)): 306 CvMat* error_cov_post; /* posteriori error estimate covariance matrix (P(k)):
|
/external/clang/test/ARCMT/ |
checking.m | 199 - (id) init03; // covariance 200 - (id) init04; // covariance 218 - (Test8_super*) init30; // id exception to covariance 222 - (Test8_super*) init34; // covariance 225 - (Test8*) init40; // id exception to covariance
|
/external/chromium_org/ui/gfx/ |
color_analysis.cc | 407 gfx::Matrix3F covariance = gfx::Matrix3F::Zeros(); local 409 return covariance; 444 // Covariance (not normalized) is E(X*X.t) - m * m.t and this is how it 449 covariance.set( 468 return covariance; 554 gfx::Matrix3F covariance = ComputeColorCovariance(source_bitmap); local 556 gfx::Vector3dF eigenvals = covariance.SolveEigenproblem(&eigenvectors);
|
color_analysis.h | 102 // Compute color covariance matrix for the input bitmap.
|
color_analysis_unittest.cc | 292 gfx::Matrix3F covariance = color_utils::ComputeColorCovariance(bitmap); local 294 EXPECT_TRUE(covariance == gfx::Matrix3F::Zeros()); 309 gfx::Matrix3F covariance = color_utils::ComputeColorCovariance(bitmap); local 315 EXPECT_EQ(expected_covariance, covariance);
|
/external/eigen/Eigen/src/Geometry/ |
Umeyama.h | 70 * The algorithm is based on the analysis of the covariance matrix 75 * though the actual computational effort lies in the covariance
|