Home | History | Annotate | Download | only in src
      1 /* @(#)s_log1p.c 5.1 93/09/24 */
      2 /*
      3  * ====================================================
      4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      5  *
      6  * Developed at SunPro, a Sun Microsystems, Inc. business.
      7  * Permission to use, copy, modify, and distribute this
      8  * software is freely granted, provided that this notice
      9  * is preserved.
     10  * ====================================================
     11  */
     12 
     13 #include <sys/cdefs.h>
     14 __FBSDID("$FreeBSD$");
     15 
     16 /* double log1p(double x)
     17  *
     18  * Method :
     19  *   1. Argument Reduction: find k and f such that
     20  *			1+x = 2^k * (1+f),
     21  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
     22  *
     23  *      Note. If k=0, then f=x is exact. However, if k!=0, then f
     24  *	may not be representable exactly. In that case, a correction
     25  *	term is need. Let u=1+x rounded. Let c = (1+x)-u, then
     26  *	log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
     27  *	and add back the correction term c/u.
     28  *	(Note: when x > 2**53, one can simply return log(x))
     29  *
     30  *   2. Approximation of log1p(f).
     31  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
     32  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
     33  *	     	 = 2s + s*R
     34  *      We use a special Reme algorithm on [0,0.1716] to generate
     35  * 	a polynomial of degree 14 to approximate R The maximum error
     36  *	of this polynomial approximation is bounded by 2**-58.45. In
     37  *	other words,
     38  *		        2      4      6      8      10      12      14
     39  *	    R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
     40  *  	(the values of Lp1 to Lp7 are listed in the program)
     41  *	and
     42  *	    |      2          14          |     -58.45
     43  *	    | Lp1*s +...+Lp7*s    -  R(z) | <= 2
     44  *	    |                             |
     45  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
     46  *	In order to guarantee error in log below 1ulp, we compute log
     47  *	by
     48  *		log1p(f) = f - (hfsq - s*(hfsq+R)).
     49  *
     50  *	3. Finally, log1p(x) = k*ln2 + log1p(f).
     51  *		 	     = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
     52  *	   Here ln2 is split into two floating point number:
     53  *			ln2_hi + ln2_lo,
     54  *	   where n*ln2_hi is always exact for |n| < 2000.
     55  *
     56  * Special cases:
     57  *	log1p(x) is NaN with signal if x < -1 (including -INF) ;
     58  *	log1p(+INF) is +INF; log1p(-1) is -INF with signal;
     59  *	log1p(NaN) is that NaN with no signal.
     60  *
     61  * Accuracy:
     62  *	according to an error analysis, the error is always less than
     63  *	1 ulp (unit in the last place).
     64  *
     65  * Constants:
     66  * The hexadecimal values are the intended ones for the following
     67  * constants. The decimal values may be used, provided that the
     68  * compiler will convert from decimal to binary accurately enough
     69  * to produce the hexadecimal values shown.
     70  *
     71  * Note: Assuming log() return accurate answer, the following
     72  * 	 algorithm can be used to compute log1p(x) to within a few ULP:
     73  *
     74  *		u = 1+x;
     75  *		if(u==1.0) return x ; else
     76  *			   return log(u)*(x/(u-1.0));
     77  *
     78  *	 See HP-15C Advanced Functions Handbook, p.193.
     79  */
     80 
     81 #include <float.h>
     82 
     83 #include "math.h"
     84 #include "math_private.h"
     85 
     86 static const double
     87 ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
     88 ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
     89 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
     90 Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
     91 Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
     92 Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
     93 Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
     94 Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
     95 Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
     96 Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
     97 
     98 static const double zero = 0.0;
     99 static volatile double vzero = 0.0;
    100 
    101 double
    102 log1p(double x)
    103 {
    104 	double hfsq,f,c,s,z,R,u;
    105 	int32_t k,hx,hu,ax;
    106 
    107 	GET_HIGH_WORD(hx,x);
    108 	ax = hx&0x7fffffff;
    109 
    110 	k = 1;
    111 	if (hx < 0x3FDA827A) {			/* 1+x < sqrt(2)+ */
    112 	    if(ax>=0x3ff00000) {		/* x <= -1.0 */
    113 		if(x==-1.0) return -two54/vzero; /* log1p(-1)=+inf */
    114 		else return (x-x)/(x-x);	/* log1p(x<-1)=NaN */
    115 	    }
    116 	    if(ax<0x3e200000) {			/* |x| < 2**-29 */
    117 		if(two54+x>zero			/* raise inexact */
    118 	            &&ax<0x3c900000) 		/* |x| < 2**-54 */
    119 		    return x;
    120 		else
    121 		    return x - x*x*0.5;
    122 	    }
    123 	    if(hx>0||hx<=((int32_t)0xbfd2bec4)) {
    124 		k=0;f=x;hu=1;}		/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
    125 	}
    126 	if (hx >= 0x7ff00000) return x+x;
    127 	if(k!=0) {
    128 	    if(hx<0x43400000) {
    129 		STRICT_ASSIGN(double,u,1.0+x);
    130 		GET_HIGH_WORD(hu,u);
    131 	        k  = (hu>>20)-1023;
    132 	        c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
    133 		c /= u;
    134 	    } else {
    135 		u  = x;
    136 		GET_HIGH_WORD(hu,u);
    137 	        k  = (hu>>20)-1023;
    138 		c  = 0;
    139 	    }
    140 	    hu &= 0x000fffff;
    141 	    /*
    142 	     * The approximation to sqrt(2) used in thresholds is not
    143 	     * critical.  However, the ones used above must give less
    144 	     * strict bounds than the one here so that the k==0 case is
    145 	     * never reached from here, since here we have committed to
    146 	     * using the correction term but don't use it if k==0.
    147 	     */
    148 	    if(hu<0x6a09e) {			/* u ~< sqrt(2) */
    149 	        SET_HIGH_WORD(u,hu|0x3ff00000);	/* normalize u */
    150 	    } else {
    151 	        k += 1;
    152 		SET_HIGH_WORD(u,hu|0x3fe00000);	/* normalize u/2 */
    153 	        hu = (0x00100000-hu)>>2;
    154 	    }
    155 	    f = u-1.0;
    156 	}
    157 	hfsq=0.5*f*f;
    158 	if(hu==0) {	/* |f| < 2**-20 */
    159 	    if(f==zero) {
    160 		if(k==0) {
    161 		    return zero;
    162 		} else {
    163 		    c += k*ln2_lo;
    164 		    return k*ln2_hi+c;
    165 		}
    166 	    }
    167 	    R = hfsq*(1.0-0.66666666666666666*f);
    168 	    if(k==0) return f-R; else
    169 	    	     return k*ln2_hi-((R-(k*ln2_lo+c))-f);
    170 	}
    171  	s = f/(2.0+f);
    172 	z = s*s;
    173 	R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
    174 	if(k==0) return f-(hfsq-s*(hfsq+R)); else
    175 		 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
    176 }
    177 
    178 #if (LDBL_MANT_DIG == 53)
    179 __weak_reference(log1p, log1pl);
    180 #endif
    181