Home | History | Annotate | Download | only in Thumb
      1 /*
      2  * Copyright (C) 2009 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /*
     18  * This file contains codegen for the Thumb ISA and is intended to be
     19  * includes by:
     20  *
     21  *        Codegen-$(TARGET_ARCH_VARIANT).c
     22  *
     23  */
     24 
     25 /*
     26  * Reserve 6 bytes at the beginning of the trace
     27  *        +----------------------------+
     28  *        | prof count addr (4 bytes)  |
     29  *        +----------------------------+
     30  *        | chain cell offset (2 bytes)|
     31  *        +----------------------------+
     32  *
     33  * ...and then code to increment the execution
     34  *
     35  * For continuous profiling (12 bytes):
     36  *
     37  *       mov   r0, pc       @ move adr of "mov r0,pc" + 4 to r0
     38  *       sub   r0, #10      @ back up to addr prof count pointer
     39  *       ldr   r0, [r0]     @ get address of counter
     40  *       ldr   r1, [r0]
     41  *       add   r1, #1
     42  *       str   r1, [r0]
     43  *
     44  * For periodic profiling (4 bytes):
     45  *       call  TEMPLATE_PERIODIC_PROFILING
     46  *
     47  * and return the size (in bytes) of the generated code.
     48  */
     49 
     50 static int genTraceProfileEntry(CompilationUnit *cUnit)
     51 {
     52     intptr_t addr = (intptr_t)dvmJitNextTraceCounter();
     53     assert(__BYTE_ORDER == __LITTLE_ENDIAN);
     54     newLIR1(cUnit, kArm16BitData, addr & 0xffff);
     55     newLIR1(cUnit, kArm16BitData, (addr >> 16) & 0xffff);
     56     cUnit->chainCellOffsetLIR =
     57         (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
     58     cUnit->headerSize = 6;
     59     if ((gDvmJit.profileMode == kTraceProfilingContinuous) ||
     60         (gDvmJit.profileMode == kTraceProfilingDisabled)) {
     61         /* Thumb instruction used directly here to ensure correct size */
     62         newLIR2(cUnit, kThumbMovRR_H2L, r0, r15pc);
     63         newLIR2(cUnit, kThumbSubRI8, r0, 10);
     64         newLIR3(cUnit, kThumbLdrRRI5, r0, r0, 0);
     65         newLIR3(cUnit, kThumbLdrRRI5, r1, r0, 0);
     66         newLIR2(cUnit, kThumbAddRI8, r1, 1);
     67         newLIR3(cUnit, kThumbStrRRI5, r1, r0, 0);
     68         return 12;
     69     } else {
     70         int opcode = TEMPLATE_PERIODIC_PROFILING;
     71         newLIR2(cUnit, kThumbBlx1,
     72             (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
     73             (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
     74         newLIR2(cUnit, kThumbBlx2,
     75             (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
     76             (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
     77         return 4;
     78     }
     79 }
     80 
     81 /*
     82  * Perform a "reg cmp imm" operation and jump to the PCR region if condition
     83  * satisfies.
     84  */
     85 static void genNegFloat(CompilationUnit *cUnit, RegLocation rlDest,
     86                         RegLocation rlSrc)
     87 {
     88     RegLocation rlResult;
     89     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
     90     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
     91     opRegRegImm(cUnit, kOpAdd, rlResult.lowReg,
     92                 rlSrc.lowReg, 0x80000000);
     93     storeValue(cUnit, rlDest, rlResult);
     94 }
     95 
     96 static void genNegDouble(CompilationUnit *cUnit, RegLocation rlDest,
     97                          RegLocation rlSrc)
     98 {
     99     RegLocation rlResult;
    100     rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
    101     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    102     opRegRegImm(cUnit, kOpAdd, rlResult.highReg, rlSrc.highReg,
    103                         0x80000000);
    104     genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
    105     storeValueWide(cUnit, rlDest, rlResult);
    106 }
    107 
    108 static void genMulLong(CompilationUnit *cUnit, RegLocation rlDest,
    109                        RegLocation rlSrc1, RegLocation rlSrc2)
    110 {
    111     RegLocation rlResult;
    112     loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    113     loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
    114     genDispatchToHandler(cUnit, TEMPLATE_MUL_LONG);
    115     rlResult = dvmCompilerGetReturnWide(cUnit);
    116     storeValueWide(cUnit, rlDest, rlResult);
    117 }
    118 
    119 static bool partialOverlap(int sreg1, int sreg2)
    120 {
    121     return abs(sreg1 - sreg2) == 1;
    122 }
    123 
    124 static void genLong3Addr(CompilationUnit *cUnit, MIR *mir, OpKind firstOp,
    125                          OpKind secondOp, RegLocation rlDest,
    126                          RegLocation rlSrc1, RegLocation rlSrc2)
    127 {
    128     RegLocation rlResult;
    129     if (partialOverlap(rlSrc1.sRegLow,rlSrc2.sRegLow) ||
    130         partialOverlap(rlSrc1.sRegLow,rlDest.sRegLow) ||
    131         partialOverlap(rlSrc2.sRegLow,rlDest.sRegLow)) {
    132         // Rare case - not enough registers to properly handle
    133         genInterpSingleStep(cUnit, mir);
    134     } else if (rlDest.sRegLow == rlSrc1.sRegLow) {
    135         // Already 2-operand
    136         rlResult = loadValueWide(cUnit, rlDest, kCoreReg);
    137         rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
    138         opRegReg(cUnit, firstOp, rlResult.lowReg, rlSrc2.lowReg);
    139         opRegReg(cUnit, secondOp, rlResult.highReg, rlSrc2.highReg);
    140         storeValueWide(cUnit, rlDest, rlResult);
    141     } else if (rlDest.sRegLow == rlSrc2.sRegLow) {
    142         // Bad case - must use/clobber Src1 and reassign Dest
    143         rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
    144         rlResult = loadValueWide(cUnit, rlDest, kCoreReg);
    145         opRegReg(cUnit, firstOp, rlSrc1.lowReg, rlResult.lowReg);
    146         opRegReg(cUnit, secondOp, rlSrc1.highReg, rlResult.highReg);
    147         // Old reg assignments are now invalid
    148         dvmCompilerClobber(cUnit, rlResult.lowReg);
    149         dvmCompilerClobber(cUnit, rlResult.highReg);
    150         dvmCompilerClobber(cUnit, rlSrc1.lowReg);
    151         dvmCompilerClobber(cUnit, rlSrc1.highReg);
    152         rlDest.location = kLocDalvikFrame;
    153         assert(rlSrc1.location == kLocPhysReg);
    154         // Reassign registers - rlDest will now get rlSrc1's old regs
    155         storeValueWide(cUnit, rlDest, rlSrc1);
    156     } else {
    157         // Copy Src1 to Dest
    158         rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
    159         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, false);
    160         loadValueDirectWide(cUnit, rlSrc1, rlResult.lowReg,
    161                             rlResult.highReg);
    162         rlResult.location = kLocPhysReg;
    163         opRegReg(cUnit, firstOp, rlResult.lowReg, rlSrc2.lowReg);
    164         opRegReg(cUnit, secondOp, rlResult.highReg, rlSrc2.highReg);
    165         storeValueWide(cUnit, rlDest, rlResult);
    166     }
    167 }
    168 
    169 void dvmCompilerInitializeRegAlloc(CompilationUnit *cUnit)
    170 {
    171     int numTemps = sizeof(coreTemps)/sizeof(int);
    172     RegisterPool *pool = (RegisterPool *) dvmCompilerNew(sizeof(*pool), true);
    173     cUnit->regPool = pool;
    174     pool->numCoreTemps = numTemps;
    175     pool->coreTemps = (RegisterInfo *)
    176             dvmCompilerNew(numTemps * sizeof(*pool->coreTemps), true);
    177     pool->numFPTemps = 0;
    178     pool->FPTemps = NULL;
    179     dvmCompilerInitPool(pool->coreTemps, coreTemps, pool->numCoreTemps);
    180     dvmCompilerInitPool(pool->FPTemps, NULL, 0);
    181     pool->nullCheckedRegs =
    182         dvmCompilerAllocBitVector(cUnit->numSSARegs, false);
    183 }
    184 
    185 /* Export the Dalvik PC assicated with an instruction to the StackSave area */
    186 static ArmLIR *genExportPC(CompilationUnit *cUnit, MIR *mir)
    187 {
    188     ArmLIR *res;
    189     int rDPC = dvmCompilerAllocTemp(cUnit);
    190     int rAddr = dvmCompilerAllocTemp(cUnit);
    191     int offset = offsetof(StackSaveArea, xtra.currentPc);
    192     res = loadConstant(cUnit, rDPC, (int) (cUnit->method->insns + mir->offset));
    193     newLIR2(cUnit, kThumbMovRR, rAddr, r5FP);
    194     newLIR2(cUnit, kThumbSubRI8, rAddr, sizeof(StackSaveArea) - offset);
    195     storeWordDisp( cUnit, rAddr, 0, rDPC);
    196     return res;
    197 }
    198 
    199 static void genMonitor(CompilationUnit *cUnit, MIR *mir)
    200 {
    201     genMonitorPortable(cUnit, mir);
    202 }
    203 
    204 static void genCmpLong(CompilationUnit *cUnit, MIR *mir, RegLocation rlDest,
    205                        RegLocation rlSrc1, RegLocation rlSrc2)
    206 {
    207     RegLocation rlResult;
    208     loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    209     loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
    210     genDispatchToHandler(cUnit, TEMPLATE_CMP_LONG);
    211     rlResult = dvmCompilerGetReturn(cUnit);
    212     storeValue(cUnit, rlDest, rlResult);
    213 }
    214 
    215 static bool genInlinedAbsFloat(CompilationUnit *cUnit, MIR *mir)
    216 {
    217     int offset = offsetof(Thread, interpSave.retval);
    218     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
    219     int reg0 = loadValue(cUnit, rlSrc, kCoreReg).lowReg;
    220     int signMask = dvmCompilerAllocTemp(cUnit);
    221     loadConstant(cUnit, signMask, 0x7fffffff);
    222     newLIR2(cUnit, kThumbAndRR, reg0, signMask);
    223     dvmCompilerFreeTemp(cUnit, signMask);
    224     storeWordDisp(cUnit, r6SELF, offset, reg0);
    225     //TUNING: rewrite this to not clobber
    226     dvmCompilerClobber(cUnit, reg0);
    227     return false;
    228 }
    229 
    230 static bool genInlinedAbsDouble(CompilationUnit *cUnit, MIR *mir)
    231 {
    232     int offset = offsetof(Thread, interpSave.retval);
    233     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    234     RegLocation regSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
    235     int reglo = regSrc.lowReg;
    236     int reghi = regSrc.highReg;
    237     int signMask = dvmCompilerAllocTemp(cUnit);
    238     loadConstant(cUnit, signMask, 0x7fffffff);
    239     storeWordDisp(cUnit, r6SELF, offset, reglo);
    240     newLIR2(cUnit, kThumbAndRR, reghi, signMask);
    241     dvmCompilerFreeTemp(cUnit, signMask);
    242     storeWordDisp(cUnit, r6SELF, offset + 4, reghi);
    243     //TUNING: rewrite this to not clobber
    244     dvmCompilerClobber(cUnit, reghi);
    245     return false;
    246 }
    247 
    248 /* No select in thumb, so we need to branch.  Thumb2 will do better */
    249 static bool genInlinedMinMaxInt(CompilationUnit *cUnit, MIR *mir, bool isMin)
    250 {
    251     int offset = offsetof(Thread, interpSave.retval);
    252     RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
    253     RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
    254     int reg0 = loadValue(cUnit, rlSrc1, kCoreReg).lowReg;
    255     int reg1 = loadValue(cUnit, rlSrc2, kCoreReg).lowReg;
    256     newLIR2(cUnit, kThumbCmpRR, reg0, reg1);
    257     ArmLIR *branch1 = newLIR2(cUnit, kThumbBCond, 2,
    258            isMin ? kArmCondLt : kArmCondGt);
    259     newLIR2(cUnit, kThumbMovRR, reg0, reg1);
    260     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
    261     target->defMask = ENCODE_ALL;
    262     newLIR3(cUnit, kThumbStrRRI5, reg0, r6SELF, offset >> 2);
    263     branch1->generic.target = (LIR *)target;
    264     //TUNING: rewrite this to not clobber
    265     dvmCompilerClobber(cUnit,reg0);
    266     return false;
    267 }
    268 
    269 static void genMultiplyByTwoBitMultiplier(CompilationUnit *cUnit,
    270         RegLocation rlSrc, RegLocation rlResult, int lit,
    271         int firstBit, int secondBit)
    272 {
    273     // We can't implement "add src, src, src, lsl#shift" on Thumb, so we have
    274     // to do a regular multiply.
    275     opRegRegImm(cUnit, kOpMul, rlResult.lowReg, rlSrc.lowReg, lit);
    276 }
    277 
    278 static void genMultiplyByShiftAndReverseSubtract(CompilationUnit *cUnit,
    279         RegLocation rlSrc, RegLocation rlResult, int lit)
    280 {
    281     int tReg = dvmCompilerAllocTemp(cUnit);
    282     opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lit);
    283     opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg);
    284 }
    285